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Abstract
This work is devoted to show the efficiency of a new numerical approach in solving
geometrical shape optimization problems constrained to partial differential equations,
on a family of convex domains. More precisely, we are interested to an improved
numerical optimization process based on the new shape derivative formula, using the
Minkowski deformation of convex domains, recently established in Boulkhemair and
Chakib (J. ConvexAnal. 21(n◦1), 67–87 2014), Boulkhemair (SIAMJ. Control Optim.
55(n◦1), 156–171 2017). This last formula allows to express the shape derivative by
means of the support function, in contrast to the classical one expressed in term of
vector fields Henrot and Pierre 2005, Delfour and Zolésio 2011, Sokolowski and
Zolesio 1992. This avoids some of the disadvantages related to the classical shape
derivative approach, when one use the finite elements discretization for approximating
the auxiliary boundary value problems in shape optimization processes Allaire 2007.
So, we investigate here the performance of the proposed shape optimization approach
through the numerical resolution of some shape optimization problems constrained
to boundary value problems governed by Laplace or Stokes operator. Notably, we
carry out a comparative numerical study between its resulting numerical optimization
process and the classical one. Finally, we give some numerical results showing the
efficiency of the proposed approach and its ability in producing good quality solutions
and in providing better accuracy for the optimal solution in less CPU time compared
to the classical approach.
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1 Introduction

The shape optimization is a classical and ubiquitous field of research whose study
becomes popular in academic researches and industry due to its increasingly wide
applications in the field of computer science and engineering [14, 20, 30], structural
mechanics [1, 20], optimal control [1, 24, 38], acoustics [42, 43], electromagnetics [19,
20] and chemical reactions [44]. The difficulty to dealing with this type of problems
is to obtain analytically the optimal shapes which is usually impossible, notably in
the usual case where the optimal shape design problems are constrained to partial
differential equations (PDEs). So, a variety of numerical approaches and techniques
find their powers to localize (approximate) optimal shapes with the help of the efficient
PDEs discretization methods and modern optimization processes [5, 17, 25, 27].

In this respect, several questions arise when one deals with the study of a shape
optimization problem. Notably, the existence of an optimal shape, its regularity as well
as its geometrical property. On the other hand, the numerical investigation of shape
optimization problems using the gradient optimization process is based on the study
of the first variation of the cost functional, and in particular on the computation of its
gradient or what one call the shape derivative. This notion of derivation with respect
to domains was intensively studied in the 1980s by several authors. The first result
concerning the differentiability with respect to perturbations of a geometrical domain
was obtained by Hadamard in 1907 for solving an eigenvalue shape optimization
problem [18]. Then, the shape derivative was introduced by Céa [8–11] and developed
later by Murat and Simon [31, 36, 37] and extensively investigated in more recent
works [15, 16, 40, 41], as well as in the books [1, 7, 14, 24, 38]. Also, different
approaches, were applied to solve many problems in shape optimization, see, for
example, the books [1, 14, 24, 34, 38] and the references therein. Finally, let us also
mention that recent discussions on the so-called pre-shape derivative methods, based
on the volume representation of the shape derivative, which enables to perform mesh
and shape optimization approaches at the same time, are done in [28, 29].

This work is devoted to show the efficiency of a new numerical shape optimization
approach, basedon the shapederivative formula, involving theMinkowski deformation
on a family of convex domains, recently established in [2, 3], in solving geometrical
shape optimization problems.More precisely, we are interested to an improved numer-
ical shape optimization process, based on this shape derivative formula allowing us
to establish its expression by means of the support function, in contrast to the clas-
sical shape derivative expressed in term of vector fields [14, 24, 38]. In this context,
we precise that the classical approach presents some difficulties from both theoreti-
cal and numerical point of view. For example, when one wants to connect the set of
admissible domains with vector fields, one has to suppose high smoothness condi-
tions on the initial data in order to differentiate functions depending on the domain.
Note also that to solve a conditional shape optimization problem by this method is yet
more complicated and usually requires to reduce it to a non conditional problem (for
example, by Lagrange’s multipliers method). Moreover, we believe that the numerical
optimization processes involving the classical shape derivative presents some disad-
vantages. We refer here to [1], for example, for explanations about the issues that
arise when implementing numerically the gradient optimization algorithm using the
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classical shape derivative. Briefly, when one uses the deformation by vector fields, we
have to extend the vector field (obtained only on the boundary) to the whole domain
or to re-mesh the domain, at each iteration, and both tasks are expensive. In order
to avoid a part of the above issues, we define and use another way of variation of
domains, a way that is linked to the convexity context and based on the Minkowski
sum. Recall that for any convex bounded domain the support function of this domain is
a continuous convex and positive homogeneous function. Conversely, it is known that
each continuous convex and positive homogeneous function is the support function of
a convex bounded set (sub-differential of this function at the origin). Using this fact,
the variation of domains is clearly characterized by the variation of the correspond-
ing support function. Then, when solving optimal shape design problems numerically
using an optimization process based the new shape derivative formula, one gets a
support function at each step of the implementation, the domain being recovered as
the sub-differential of this support function. So in order to show the efficiency of
this approach, which is successfully applied for solving concrete problems in [4, 5]
using boundary element method, we investigate here its numerical comparative study
with the classical one, in solving some shape optimization problems of minimizing
appropriate cost functionals constrained to elliptic boundary value problems. In this
respect, let us mention that a first numerical comparative result for solving a simple
shape optimization problem of minimizing only a least-square cost functional of the
velocity, solution of the state Stokes problem, was stated in a short communication
[6]. We deal here with the numerical study of more complicated situations for differ-
ent shape optimization problems of minimizing various cost functional constrained
to Laplace or Stokes Operator. For this, we provide a detailed description of the new
approach and investigate the numerical shape optimization algorithms using different
shape derivative approaches performed by the finite elementmethod for approximating
the auxiliary boundary value problems in the shape optimization processes. Finally,
we give some numerical experiments including comparison results which confirm our
expectation. Mainly the proposed approach using the new shape derivative formula
converges to solutions of good quality and offer better accuracy for the optimal shape
as well as the associated reconstructed solution in less CPU time compared to the one
using the classical approach.

The remainder of this paper is organized as follows: in Sect. 2, we present a brief
survey on the classical shape sensitivity analysis based the Hadamard approaches and
summarized its resulting numerical shape optimization process. We propose the new
numerical shape optimization approach based on the shape derivative formula involv-
ing theMinkowski deformation and present its numerical algorithm. Then, we propose
the discretization of this shape optimization approach using the finite element method
and suggest the discrete numerical optimization process. The Sect. 3 is devoted to the
application of both approaches for solving some shape optimization problems of min-
imizing some appropriate cost functionals subjected to some elliptic boundary value
problems governed by Laplace or Stokes equation. Notably, we give some numerical
experiments including comparison results showing the efficiency of the new shape
optimization approach compared to the classical one.
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2 Shape sensitivity approaches and resulting algorithms

Thenumerical investigation of shape optimization problems is based on the study of the
first variation of a shape functional, and in particular, on the computation of its gradient
with respect to domains. So in this section, we present a short survey on the notion of
differentiability with respect to domains or the so-called the shape derivative. The first
part is devoted to introduce the Hadamard’s shape derivative approaches extensively
studied in the literature (see, for example, [1, 14, 24, 30, 38]) and summarized the
resulting numerical algorithm for solving shape optimization problems. Then, we
present the new shape derivative approach introduced in [2, 3] for convex domains
and suggest its resulting numerical shape optimization process.

In all what follows, let us consider a typical shape optimization problem:

min
�∈U

F(�, u�,∇u�) (2.1)

where F is a shape cost functional and U is a family of admissible open smooth
enough subsets of D, a large and a smooth set of R

d (d ≥ 2), and u� is the solution
of boundary value problem on � called the state problem.

2.1 Hadamard’s shape sensitivity based approaches

In order to carry out the sensitivity analysis of shape cost functionals � → J (�), one
needs to introduce a family of perturbations {�ε}ε of a given domain �0 ⊂ R

d for
0 ≤ ε < 1. Thereby one can construct a family of transformations Tε : R

d → R
d for

some ε ∈ [0, 1[ andTε maps�onto�ε.The family of domains {�ε}ε is thendefinedby
�ε = Tε(�), such that Tε satisfies appropriate regularity assumptions.More precisely,
in the case of enough smooth domains, one can use the transformation of domains
introduced by Hadamard in 1907 in his famous memory on elastic plates [18] to
compute the derivative of a shape functional � → J (�) by considering the normal
perturbations of the boundary. This is the basic idea in the notion of shape derivative in
a topological context developed later by several authors. This approach can be briefly
described as follows, if�0 is domain of class C∞, its outward unit normal vector ν0 on
�0 := ∂�0 is in C(�0, R

d). Let g ∈ C∞(�0) be a given function, since �0 is assumed
to be compact, then there exists δ > 0 such that for any ε ∈] − δ, δ[, we have that

�ε = � + εgν = {y | y = x + εg(x)ν0(x) for x ∈ �0}

is the boundary of the domain �ε which is of class C∞. Consider an extension N0
to R

d of the normal vector field ν0 defined on �0, N0 ∈ C∞(Rd , R
d), we can define

the transformation Tε = IdRd + εg0N0, where g0 denotes an extension in C∞(Rd) of
g ∈ C∞(�).

Then, this approach was widely developed by many authors, see, for example, [14,
24, 30, 31, 38] and the references therein. Notably, there are two variants of the
Hadamard’smethod of shape differentiation.Wewill present here themore extensively
used:
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The first one is introduced by Murat and Simon [31, 36, 37] and based on the
variation of domains by the transformation Tθ := IdRd + θ , such that

�θ := Tθ (�0) = {x + θ(x) | x ∈ �0}, (2.2)

where �0 is an element of a family of domains U and θ ∈ W 1,∞(Rd , R
d).

So assume that there exists ε ∈]0, 1[ such that �θ ∈ U ∀θ ∈ BW 1,∞(0, ε), where
BW 1,∞(0, ε) is the ball of center 0 and radius ε in W 1,∞(Rd , R

d). Then, the shape
derivative of a cost functional � → J (�) at �0 is defined as the Fréchet derivative at
0 in W 1,∞(Rd , R

d) of θ ∈ BW 1,∞(0, ε) �→ J ((IdRd + θ)(�0)) ∈ R.
Note that when θ ∈ W 1,∞(Rd , R

d), such that ‖θ‖W 1,∞ ≤ ε (for ε ∈ [0, 1[), the
function IdRd + θ called the perturbation of the identity [13] is a diffeomorphism,
which is the main fact used for the existence of the shape derivative with respect to
domains.

The second approach is the so-called speedmethod, introduced byZolésio et al. [15,
16, 40, 41], and summarized as follows: for a given vector field V ∈ C1(R×R

d; R
d),

consider the solution of the following ordinary differential equation

	V (0, x) = x and
d	V (ε, x)

dε
= V (ε,	V (ε, x)), x ∈ �0. (2.3)

and define the domain

�ε = Tε(V )(�0) = {Tε(V )(x) | x ∈ �0}, Tε(V )(�0) := 	V (ε,�0).

Then,

(i) the Eulerian derivative of J (�) at �0:

d J (�0)(V ) := lim
ε→0

J (Tε(V )(�0)) − J (�0)

ε
(2.4)

exists for all V ∈ C(]0, ε[, Ck(D, R
d)) (k ∈ N) and for |ε| < 1.

(i i) the mapping V → d J (�0, V ) is linear and continuous from C(]0, ε[, Ck(D, R
d))

into R.

Note that, using the Taylor expansions for Tε(V ) with respect to ε, we can write:

Tε(V ) = 	V (ε, x) = 	V (0, x) + ε
d	V (ε, x)

dε

∣
∣
∣
∣
ε=0

+ ε2
d2	V (ε, x)

dε2

∣
∣
∣
∣
ε=0

= x + εV (0, x) + ε2

2
∇V (0, x)V (0, x) + o(ε2).

So Tε(V ) can be approximated by the diffeomorphism IdRd + εV (0, .) on a neighbor-
hood of x , which is the frequently used deformation in the literature for the variation
of domains in the shape derivative approach [1, 7, 14, 24, 38].
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2.1.1 Identification shape optimization process

In order to introduce a gradient method for minimizing the shape optimization prob-
lem (3.1), let us consider here the frequent variations of a given domain �0 ∈ U
defined by the transformation ε → IdRd + εV where V : R

d → R
d is a smooth

vector field and IdRd is the identity mapping in R
d , such that �ε = (IdRd + εV )(�0),

t ∈ [0, 1[. So, let us assume that the functional ε → F(�ε, u�ε ,∇u�ε ) is differen-
tiable at ε = 0. Then, according to the fundamental result called "structure theorem"
established by Hadamard and rigorously considered later by Zolésio [14], which plays
a crucial role in shape optimization tools both from numerical and theoretical point
of view, one can write the shape derivative of F in the direction of V , denoted by
δF(�0)[V ], as follows:

δF(�0)[V ] :=
∫

∂�0

g0(u�0 , ψ�0)〈V , ν0〉dσ (2.5)

where g0(·, ·) is an integrable function on ∂�0, ψ�0 is the solution of an appropriate
adjoint state problem, ν0 denotes the outward unit normal vector to ∂�0 and 〈., .〉
designates the inner product in R

d .
This formula known as the canonical form in the shape optimization theory provides

a descent direction for the gradient method which can be given by the vector field
V = −g0ν0. Then, we can update the shape �0 by �ε = (IdRd + εV )(�). So we get

F(�ε, u�ε ,∇u�ε ) = F(�0, u�0 ,∇u�0) − ε

∫

∂�0

g20 〈ν0, ν0〉 dσ + o(ε2). (2.6)

This ensures the decrease of the cost functional. However, the vector field V is defined
only on the boundary ∂�0 and must be extended to the whole domain �0. So we can
extend it accordingly to the structure theorem [27], as the unique solution in [H1(�0)]d
of the following variational problem:

∫

�0

∇V : ∇�dx +
∫

�0

V · �dx = −δF(�0)[�], ∀� = (�(1), ..., �(d)) ∈ [H1(�0)]d (2.7)

where ∇V : ∇� =
d
∑

k, j=1

∂V (k)

∂x j

∂�
(k)
i

∂x j
with V = (V (1), ..., V (d)).

In fact, we can find more details about the choice of the descent direction for
example in [1]. We note also that for the choice of the step size ρ, for the gradient
method, one can opt for the approach inspired from the Armijo-Goldstein strategy
in [26] as follows:

ρ = α
F(�, u�,∇u�)

‖V ‖2
H1(�)

, for some α ∈]0, 1[. (2.8)
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Thereby, we have

F(�ρ, u�ρ , ∇u�ρ ) � F(�0, u�0 , ∇u�0 ) + ρδF(�0)[V ] + O(ρ2)

= F(�0, u�0 , ∇u�0 ) + α
F(�0, u�0 , ∇u�0 )

‖V ‖2
H1(�)

δF(�0)[V ] + O(ρ2)

= (1 − α)F(�0, u�0 , ∇u�0 ) + O(ρ2).

Then, the vector fields ρV defines a descent direction for α ∈]0, 1[. Moreover, we
note that when the step size parameter is such that α > 1, the vector fields ρV still
define a descent direction. This last choice of the parameters α is illustrated in some
numerical tests in the numerical results section.

Hence, the numerical gradient algorithm for solving the shape optimization prob-
lem (2.1) is summarized as follows:

Algorithm 1 Numerical optimization algorithm based on the classical formula.
1. Choose initial domain �0 ∈ U and a precision Eps.
2. At step k ≥ 0, calculate uk and ψk the solution of state and adjoint problem in �k respectively.
4. Compute gk = gk (uk , ψk ) on �k := ∂�k .
3. Compute the direction Vk solution of (2.7) in �k .

4. Update the domain �k+1 = (Id
Rd + ρVk )(�k ), with optimal step size ρk given in (2.8).

5.Adapt-mesh.
6. If |J (�k )| ≤ Eps, Return �k ; Else, Back to previous step 2.

2.2 Shape derivative via minkowski deformation

The shape derivative approach presented in the previous section presents some dif-
ficulties from both theoretical and numerical point of view. For example, when one
wants to connect the set of admissible domains with vector fields, one has to sup-
pose high smoothness conditions on the initial data in order to differentiate functions
depending on the domain and we have to extend the vector fields (obtained only on
the boundary) to the whole domain or to re-mesh the domain, at each iteration, and
both tasks are expensive. In order to avoid a part of the above issues, we define and
use another way of variation of domains, a way that is linked to the convexity context
and based on the Minkowski sum. This allows to define a novel concept of computing
the derivative with respect to domains using the so called support functions in convex
analysis.

In order to be more precise, let D be a fixed smooth convex and bounded open
subset of R

d , let us consider the set of admissible domains U given by

U = {� ⊂ D / � is open, convex and of class C2}

and let us recall that a support function P� of a bounded convex domain � is given by

P�(x) = sup
y∈�

〈x, y〉 = sup
y∈�

〈x, y〉 ,
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where 〈x, y〉 denotes the standard scalar product of x and y in R
d .

So, let us define the shape derivative approach based on the variation of domains
using the Minkowski sum. Let �0 ∈ U and � be a convex domain. The deformed
domain denoted by �ε is given by the Minkowski sum as follows:

�ε = �0 + ε� := {x + εy | x ∈ �0, y ∈ �}, ε ∈ [0, 1].
Consider a real-valued shape function J : � ∈ U �−→ J (�) ∈ R defined on a family
U of subsets of R

d . The shape functional J is called shape differentiable at �0 in the
direction of �, if the eulerian derivative

δ J (�0)[�] := lim
ε→0+

J (�ε) − J (�0)

ε
.

exists for all convex domain �. Then, the expression δ J (�0)[�] is called the shape
derivative of J at �0 in the direction of �.

In this context, let us precise that the shape derivative of a volume functional J
defined on U by

� → J (�) =
∫

�

f dx, where f is a fixed function defined in R
d ,

using a convex deformation of kind:

(1 − ε)�0 + ε�, for �0,� ∈ U and ε ∈ [0, 1]
was first established by A. A. Niftiyev and Y. Gasimov [32], for the function f is of
class C1. More precisely they show that

δ J (�0)[�] := lim
ε→0+

J ((1 − ε)�0 + ε�) − J (�0)

ε
=
∫

∂�0

f (x)
(

P�(ν0(x)) − P�0 (ν0(x))
)

dσ(x),

(2.9)
where ν0(x) denotes the outward unit normal vector to ∂�0 at x , and P�0 , P� are the
support functions of the domains �0, �, respectively.

Recently, A. Boulkhemair and A. Chakib [3] extended this formula to the case
where f is in the space W 1,1

loc (Rn). Then, based on the Brunn-Minkowski theory (see,
for example, R. Schneider, [35]), they also proposed a similar shape derivative formula
to (2.9) by considering the Minkowski deformation

�0 + ε�, for �0,� ∈ U , and ε ∈ [0, 1],

that is,

lim
ε→0+

J (�0 + ε�) − J (�0)

ε
=
∫

∂�0

f (x) P�(ν0(x)) dσ(x), (2.10)

where ν0(x) denotes the outward unit normal vector to ∂�0 at x , and P� is the support
function of the domain �.

123



Numerical Algorithms (2024) 96:621–663 629

In fact, this formula holds true for bounded convex domains, see [2]. Moreover,
according to this work, there is an equivalence between the formulas (2.9) and (2.10) of
shape derivative with respect to respectively convex and Minkowski deformations. So
depending on what it is needed, we use one of the two deformations and consequently
investigate the associated shape derivative formula. In this context, we mention that
numerical optimization processes based on the gradient method involving these shape
derivative formulas are successfully applied for solving concrete problems in [4,
5], using boundary element method for approximating the auxiliary boundary value
problems.

We note also that the above formulas allow us to express the shape derivative of the
cost functional bymeans of support functions, andwhen solving numerically problems
one gets a support function at each step of the implementation, then the domain can be
recovered as the sub-differential of the support function. Thereby, during the numerical
process, we get at each step support functions instead of domains. From this fact,
we believe that, in the context of convexity and the numerical implementation, the
use of these formulas involving the support functions is more advantageous than the
classical shape derivative formula expressed in term of vectors fields. So the aim
of this paper is to prove numerically these expectations by a comparative numerical
study between the two approaches through the resolution of some shape optimization
problems constrained to boundary value problems governed by elliptic operators.

2.2.1 New numerical optimization process involving support function

In this section, we will describe the numerical process adopted to solve numerically
the problem (3.1), using the shape derivative formulas (2.10) and (2.9). Let us first
recall that when one assumes that � is strongly convex, according to [3], the domains
�ε = �0 + ε� for small enough ε can be considered as deformations of the domain
�0 by the following explicit vector field V defined by V (0) = 0 and

V (x) = J�0(x)∇P�

(

ν0

(
x

J�0(x)

))

, x ∈ R
d , x �= 0 (2.11)

where P� is the support function of�, ν0 is the outward unit normal vector to ∂�0 and
J�0 is the gauge function associated to � which is defined by J�0(x) = inf{λ; λ >

0, x ∈ λ�0}. Thereby �ε = (IdRd + εV )(�0) for small enough ε. Furthermore,
since �0 and � are of class C2, then V ∈ W 1,∞(Rd , R

d) ∩ C1. Therefore, if ε →
F(�ε, u�ε ,∇u�ε ) is differentiable at 0

+, using the formula (2.5), we get

δF(�0)[�] := 〈g0(u�0 , ψ�0), 〈V , ν0〉〉L2(∂�0)
,

where g0(u�0 , ψ�0) is an integrable function on ∂�0,ψ�0 is the solution of an appro-
priate adjoint state problem. It follows from Lemma 4.1 of [3] that 〈V , ν0〉 = P�(ν0)

on ∂�0, so that

δF(�0)[�] = 〈g0(u�0 , ψ�0), P�(ν0)〉L2(∂�0)
. (2.12)

123



630 Numerical Algorithms (2024) 96:621–663

So the numerical optimization algorithm for solving the shape optimal design prob-
lem (3.1), based on the shape derivative formula (2.12) is summarized in the following
algorithm.

Algorithm 2 Numerical optimization algorithm involving support function.
1. Choose initial domain �0 ∈ U , fix step size ρ ∈]0, 1[ and a precision Eps.
2. At step k ≥ 0, calculate uk and ψk the solution of the state and adjoint state problem in �k respectively.
4. Compute gk = gk (uk , ψk ) on �k := ∂�k .
5. Compute P̂k the solution of

arg min
ϕ∈P δFk (ϕ) (2.13)

where

δFk (ϕ) :=
∫

�k

gk (x)ϕ(νk (x)) ds

and P = {	 ∈ C(D) / 	 is convex and homogeneous of degree 1 and 0 ≤ 	 ≤ PD}
5. Update the domain �k+1 = �k + ρ�̃k , where �̃k is associated to P̂k by its sub-differential:

�̃k = ∂ P̂k (0) =
{

l ∈ R
2 / P̂k (x) ≥ 〈l, x〉, ∀x ∈ R

2
}

.

6. Adapt-mesh.
7. If ‖F(�k , uk , ∇uk )‖ ≤ Eps, Return �k ; Else, Back to previous step 2.

We note that the problem (2.13) admits a solution p̂ ∈ P. Since the functional j :
p ∈ P → j(p) = 〈g∂�0 , p ◦ ν0〉L2(∂�) is continuous on a compact set P of C(D).
Indeed, let p ∈ P , so it is the support function of a unique convex bounded open set
which is its sub-differential at 0, that is, p = P∂ p(0) (see, for example, [33, 39]). So,
for all x, y ∈ D, using the fact that a support function is sub-linear and homogenous
of degree 1 and p ≤ PD , we get

∀x, y ∈ D, ∀p ∈ P |p(x) − p(y)| = |P∂ p(0)(x) − P∂ p(0)(y)|
≤ sup

w∈Sn−1
P∂ p(0)(w)‖x − y‖

≤ sup
w∈Sn−1

PD(w)‖x − y‖.

which implies that the family P is equicontinuous. On the other hand, it is clear that
j is linear, and moreover, it is continuous since:

∀p, q ∈ P | j(p)| ≤ ||g∂�0 ||L1(∂�0)
||p||∞,D.

So it follows from the Ascoli-Arzela theorem’s that P is relatively compact in C(D).
Then, it is easy to check that it is closed in (C(D), || · ||∞,D) and then it is compact in
(C(D), || · ||∞,D).
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We note also that, the shape derivative of a general class of shape functionals J (�)

in direction of a vector field V has the generic form:

δ J (�)[V ] =
∫

∂�

g〈V (x), ν(x)〉dσ(x) =: 〈g|�, 〈V (x), ν(x)〉〉L2(∂�). (2.14)

where the scalar function g : ∂� → R is the shape gradient of J with respect to
the L2(∂�) inner product. In the case of convex domains, using the shape derivative
formulas (2.10) and (2.9), this formula becomes

δg(�)[�] :=
∫

∂�

g∂�(x)P�(ν(x))dσ(x) = 〈g∂�, P�(ν)〉L2(∂�). (2.15)

Here, δ J (�)[�] depends only on the normal component of P� on the boundary
∂�. This expression allows to easily to deduce the direction of descent, as it was
summarized in the above algorithm. Indeed, the sequence of domains (�k)k∈N must
be constructed in such a way that (J (�k))k∈N is decreasing. So let k ∈ N

∗, then for a
small ρ ∈]0, 1[, we have

J (�k+1) − J (�k) = J (�k + ρ�k) − J (�k) = ρ

(∫

∂�k

gk P�k ◦ νkdσ

)

+ O(ρ2).

Thus, if we take P�k = P̂k the solution of argmin
p∈E

�k(p), we get

�k(P̂k) =
∫

∂�k

gk P�k ◦ νkdσ ≤ �k(0) = 0.

This ensures the decrease of the objective functional J . Consequently �̂k = ∂ P̂k(0)
defines a descent direction for J .

2.3 Discretization of the proposed shape optimization process

In what follows, we suppose that d = 2. Let �0 ∈ Uad and let X = (xk)Nk=1 be
a partition of �0 := ∂�0, such that N is the number of the nodes located at the
boundary �0 and xk = (x (1)

k , x (2)
k ). Let us also consider the family ζ = (ξk)

N
k=1, with

ξk = (ξ
(1)
k , ξ

(2)
k ) is the centroid of the boundary elements Ci = [xi , xi+1] which is

also a partition of �0. Let us also denote by Th a regular mesh of �0 (see [12]) and
by Nmn the number of the freedom degrees generated from the mesh of the domain
limited by the N boundary elements.

So the discrete approximation of the gradient of F , δF(�0)[�] reads:

δF0(P) =
N−1
∑

k=1

∫ xk+1

xk
g P(ν) =

N
∑

k=1

�k gk Pk (2.16)
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where �k = ‖xk+1 − xk‖; P = (Pk = P(νk)
N
k=1); νk = ν(ξk) is the outward unit

normal vector to the boundary elements [xk, xk+1] that can be computed explicitly
by the relation ν(ξk) = ((x (2)

k+1 − x (2)
k )/�k, (−x (1)

k+1 + x (1)
k )/�k), g = g(u0, ψ0) is

the shape gradient which depends on u0 the solution of the state problem and ψ0 the
solution of an appropriate adjoint state problem and gk is the approximate value of
the shape gradient function g at the node xk , using finite element discretization of the
state and adjoint state problems.

Then, the next step is to deal with the discretization of the problem (2.13).
For this purpose based on the polygonal shape of the discretized boundary � =
∪N−1
k=1 [xk, xk+1], we derive some equations using the fact that the support function is

sub-linear and homogeneous of degree 1. So, let B(0, R) be a large ball which contains
D, the space of the admissible support function is discretized as follows [5]:

P = {

P = (P1, · · · , PN ) ∈ R
N/P satisfies equations (2.17) and (2.18)

}

where

r = r‖ν(ξk )‖ = PB(0,r)(ν(ξk )) ≤ Pk ≤ PD(ν(ξk )) ≤ PB(0,R)(ν(ξk )) = R‖ν(ξk )‖ = R for k = 1, . . . , N . (2.17)

and ⎧

⎪⎨

⎪⎩

P1 ≤ (1 − λ1) PN + λ1 P2,

Pk ≤ (1 − λk) Pk−1 + λk Pk+1, for k = 2, . . . , N − 1

PN ≤ (1 − λN ) PN−1 + λN P1

(2.18)

with

λ1 = ‖ν(ξ1) − ν(ξN )‖
‖ν(ξ2) − ν(ξN )‖ , λi = ‖ν(ξi ) − ν(ξi−1)‖

‖ν(ξi+1) − ν(ξi−1)‖ for i = 2, . . . , N − 1;

λN = ‖ν(ξN ) − ν(ξN−1)‖
‖ν(ξ1) − ν(ξN−1)‖ .

The final step is to identify the boundary of the shape �k+1, at each iteration k ≥ 0,
defined by the following: �k+1 = �k + ε ∂ P̂k (0) . For this, let P̂k be the solution of
the problem (2.13) and let us consider its sub-differential at 0, ∂ P̂k (0) , which is a
bounded convex domain [33]. Based on Lemma 4.7. of [3], for all δ > 0, the domain
∂ P̂k (0) can be approximated by strongly convex sub-domains denoted by �(k), such
that

dH (∂ P̂k (0) ,�(k)) ≤ δ. (2.19)

On the other hand, according to [3], we can connect the two shapes �k and �(k), by
an explicit vector fields as follows:

�k + ε �(k) = (IdRd + ε�k)(�k) and ∂(�k + ε �(k)) = (IdRd + ε�k)(∂�k)

where �k is the vector field defined by
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�k(0) = 0 and �k(x) = J�k (x)∇P�(k)

(

ν∂�k

(
x

J�k (x)

))

, x ∈ R
2, x �= 0

such that �k satisfies the following properties:

P�(k) (ν∂�k ) = 〈�k, ν∂�k 〉 and ν∂�(k) (�k) = ν∂�k . (2.20)

where ν∂�(k) and ν∂�k denotes the outward vectors normal to ∂�(k) and ∂�k respec-
tively. Moreover, from equation (2.19), by using the properties of Hausdorff distance
on convex domains (see, for example, [35, 39]), we get

dH (�k+1,�k + ε �(k)) = dH (�k,�k) + ε dH (∂ P̂k (0) ,�(k)) ≤ εδ.

So, we can approach �k+1 by the set (IdRd + ε�k)(�k).

Now, let us determine �k+1, using the partition �k = ⋃N−1
i=1 Ci . This is equivalent

to compute the set �k(�k). For this, we can use the equation (2.20) and the family
(Pi )i (solution of the problem (2.13)) to get an approximation of the family (�k(ξi ) =
∇P�(k) (ν∂�k (ξi )))i , or we can use the properties in (2.20) to get (�k(ξi ))i as the

solution of the following systems (see [5, 32]). So denote by�k(ξi ) = li = (l(1)i , l(2)i ),
we have that li − ξi is collinear to ν(ξi ) = ν∂�k (ξi ) = (ν(1)(ξi ), ν

(2)(ξi )), i.e.,

ν(1)(ξi ) l
(2)
i − ν(2)(ξi ) l

(1)
i = ν(1)(ξi ) ξ

(2)
i − ν(2)(ξi ) ξ

(1)
i for i = 1, . . . , N . (2.21)

On the other hand, we have

ν(1)(ξi ) l
(1)
i + ν(2)(ξi ) l

(2)
i = P̂i for i = 1, . . . , N . (2.22)

We are now ready to provide a precise sketch of the discrete shape optimization
algorithm accordingly to the previous considerations.

We note that the problem (2.23) can be read as follows:

arg min
P=(Pi )i

jk(P) :=
N
∑

i=1

�i Gi Pi (2.24)

with �i = ‖xi+1 − xi‖, i = 1, ..., N

subject to (2.25)

AP ≤ B := B = (bi )
3N
i=1 where
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Algorithm 3 Discrete algorithmic description of the optimization process.
◦ For iteration k=0,...
1. Choose the initial data �k = ∂�k = ⋃N−1

i=1 Ci , Ci = [xi , xi+1], xi = (x(1)
i , x(2)

i ) and Compute

(ξi )
N
i=1, such that ξi = (ξ

(1)
i , ξ

(2)
i ) is the centroid of the boundary elements Ci . Consider a mesh T (k)

h of
�k . Fix step size ρ ∈]0, 1[ and a precision Eps.
2. Calculate uk and ψk the approximate solutions of the state and adjoint state problems, which are of size
Nmn .
3. Compute gi = g(uik , ψ

i
k ) the approximate values of the shape gradient g(uk , ψk ) at xi , for i = 1, ..., N .

4. Compute P̂(k) = (̂P(k)
i )
N
i=1 the solution of the following problem

arg min
P=(Pi )i

δFk (P) (2.23)

where P subject to

P1 − λ1 P2 + (λ1 − 1) PN ≤ 0

Pi − λi Pi+1 + (λi − 1) Pi−1 ≤ 0, for i = 2, . . . , N − 1

PN − λN P1 + (λN − 1) PN−1 ≤ 0

−Pi ≤ −r , Pi ≤ R, i = 1, ..., N

where

δFk (P) :=
N
∑

i=1

�i gi Pi

with �i = ‖xi+1 − xi‖, i = 1, ..., N and

λ1 = ‖ν(ξ1) − ν(ξN )‖
‖ν(ξ2) − ν(ξN )‖ , λi = ‖ν(ξi ) − ν(ξi−1)‖

‖ν(ξi+1) − ν(ξi−1)‖
for i = 2, . . . , N − 1; λN = ‖ν(ξN ) − ν(ξN−1)‖

‖ν(ξ1) − ν(ξN−1)‖
.

5. if ‖F(�k , uk ,∇uk )‖ ≤ Eps, Return �k .

6. Compute the boundary �k+1 = ⋃N−1
i=1 [(c(1)i , c(2)i ), (c(1)i+1, c

(2)
i+1)] of �k+1 with

(c(1)i , c(2)i ) = (1 − ρ) (x(1)
i , x(2)

i ) + ρ (l(1)i , l(2)i ), for i = 1, . . . , N ,

where (l(1)i , l(2)i )i are the solutions of the systems

{

l(1)i = ν(2)(ξi )(x
(1)
i ν(2)(ξi ) − x(2)

i ν(1)(ξi )) + ν(1)(ξi )P̂
(k)
i ,

l(2)i = ν(1)(ξi )(x
(2)
i ν(1)(ξi ) − x(1)

i ν(2)(ξi )) + ν(2)(ξi )P̂
(k)
i ,

for i = 1, . . . , N .

A =
⎡

⎣

A
−IN
IN

⎤

⎦ where A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 −λ1 0 . . . 0 (λ1 − 1)
(λ2 − 1) 1 −λ2 . . . 0 0

0 (λ3 − 1) 1 −λ3 . . . 0
...

...
...

. . .
. . .

...

−λN 0 0 . . . (λN − 1) 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

bi =

⎧

⎪⎨

⎪⎩

0, for i = 1, ..., N

−r , for i = N + 1, ..., 2N

R, for i = 2N , ..., 3N

123



Numerical Algorithms (2024) 96:621–663 635

with

λ1 = ‖ν(ξ1) − ν(ξN )‖
‖ν(ξ2) − ν(ξN )‖ , λi = ‖ν(ξi ) − ν(ξi−1)‖

‖ν(ξi+1) − ν(ξi−1)‖ for i = 2, . . . , N − 1;

λN = ‖ν(ξN ) − ν(ξN−1)‖
‖ν(ξ1) − ν(ξN−1)‖

and IN denotes the matrix identity in R
N×N .

We note that this linear optimization problem can be solved using for example the
simplex method.

3 Application for solving some classical shape optimization problems

In this section, we test the efficiency of the proposed approach through the resolution of
some shape optimization problems. Especially, we propose a comparative numerical
study between this proposed shape gradient approach and the classical one.

3.1 Statement of the shape optimization problems

The first considered shape optimization problems consist in minimizing a generic vol-
ume cost functional constrained to a Laplace-Dirichlet or Laplace-Neumann boundary
value problems and the second one is a fluid mechanics shape optimal design problem
which aims to minimize appropriate cost functional constrained to Stokes boundary
value problem. So, let D be a large smooth domain in R

2 and let us denote the set of
admissible shapes by

U = {� ⊂ D / � is open, � ∈ C2 ∩ K},

where K denotes the set of all convex domains and C2 denotes the space of domains
with boundaries of class C2. We will solve numerically the following models:

Model 1: Shape optimization problems for classical elliptic operator

Let us consider the following shape optimization problem:

min
�∈U F(�, u�, ∇u�)whereF(�, u�, ∇u�) := � ||u� − ϕ1||2L2(�)

+ β||∇u� − ϕ2||2L2(�)
(3.1)

and u� satisfies the following state problem:

− μ�u + λu = f in �, (3.2)

η∂νu + γ u = g on � := ∂�, (3.3)

where ϕ1, ϕ2, f and g are given functions, �, β, μ, η and γ are given constants
that satisfy appropriate assumptions allowing the existence and the uniqueness of the
solution of the boundary value problem (3.2)-(3.3) and ∂νu = 〈∇u|�, ν〉, with ν is the
outward unit normal vector to � and 〈·, ·〉 denotes the scalar product in R

2.
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Model 2: Shape optimization problems in fluid dynamics
Let us consider a fluidmechanics shape optimization problem constrained to Stokes

equation:

min
�∈U S(�, w�, Dw�) where S(�, w�, ∇w�) := ρ

∫

�
||w�−φ1||2dx+σ

∫

�
||∇w�−φ2||2dx (3.4)

and (w�, p�) is solution of the Stokes system:

⎧

⎨

⎩

−κ�w + ∇ p = h in �

divw = 0 in �

w = 0 on � := ∂�

(3.5)

where � is the domain occupied by a fluid, κ > 0 is the viscosity coefficient, w =
(w�)

2
�=1 represents the fluid velocity, p is the associated pressure, φ1 is the target

velocity, φ2 is a given function and h is a source term. The norm ||∇w|| is associated to
the usual Frobenius inner product given by the following:∇w : ∇w =

2
∑

k,�=1

∂w�

∂xk

∂w�

∂xk
.

In the sequel, in order to test the validity and the efficiency of the proposed
approach summarized in the Algorithm 2 involving the new shape derivative formula,
we propose its numerical comparative study with the classical approach based on the
Algorithm 1 in terms of computation time (time CPU) and the accuracy of the obtained
optimal solutions by dealing with numerical resolution of the problem (3.1) con-
strained to (3.2)-(3.3) for different values of the constants �, β, μ and γ . Then, we
deal with the numerical approximation of the shape optimization problem in fluid
dynamics (3.4), by minimizing the cost functional S for different values of ρ and σ ,
constrained to the Stokes problem (3.5).

3.2 Numerical results for shape optimization problems

The numerical algorithms are implemented using the programming software FreeFem+
+ [21], so in order to increase the mesh quality, notably its uniformness and regularity,
the “adapt-mesh” tool can be used if necessary. The numerical experiments is done on a
workstationwith an Intel(R)Core(TM) i7-6700CPU@3.40GHz.For all the numerical
test the target shape is taken as the disc of center 0 and radius 1 and the stopping criterion
precision is chosen the same for the two algorithms. Also the considered initial domain
can be chosen as follows:

• case 1: square [−2, 2]2;
• case 2: disk {(x, y)|x = 3 cos(t), y = 3 sin(t), t ∈ [0, 2π ]};
• case 3: ellipse {(x, y)|x = 2.5 cos(t), y = 3 sin(t), t ∈ [0, 2π ]}.
In order to perform a numerical comparative study between the two approaches

based on the gradient method, let us first start by analyzing the sensitivity and the
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influence of the choice of the step size parameter on the convergence performance of
these algorithms.

3.2.1 Influence of the step size on the shape optimization processes

In this section, we deal with the numerical analysis of the sensitivity of the two shape
optimization processes with respect to the step size parameter through the numerical
resolution of the shape optimization problem (3.1) of minimizing the cost functional
F with � = 1

2 and β = 0:

F(�, u�,∇u�) = 1

2
||u� − uex ||2L2(�)

, (3.6)

where u� is the solution of the Dirichlet boundary value state problem associated to
the parameters μ = 1, λ = 1, η = 0 and γ = 1. The shape gradient of this functional
at �0 ∈ U , for the two shape derivative formulas, is given by the following:

(

|u�0 − uex |2 + ∂u�0

∂ν0

∂ψ0

∂ν0

)∣
∣
∣
∣
∂�0

, (3.7)

where ψ0 is the solution of the adjoint state problem:

− �ψ0 + ψ0 = (u�0 − uex ) in �0, ψ0 = 0 on ∂�0 (3.8)

The aim of the following numerical tests is to reconstruct the target shape and the
exact solution of the state problem, which is taken to be uex = x2 + y2 −1, using both

Fig. 1 The computed error of the solution in optimal domain using Algorithm 1 (above) and Algorithm 2
(below) for different cases
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Fig. 2 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2 for
different cases

algorithms for different initial shapes. Thereby, we propose first to compare the two
algorithms using a fixed optimal steps size (the best ones allowing a rapid convergence
of the algorithms). Then, we compare the Algorithm 2 (Algorithm of the new method
“NM”) using a fixed optimal step size and the Algorithm 1 (Algorithm of the classical
method “CM”) performed with updated step size by Armijo-Goldstein strategy (2.8),
for different values of α.
Shape optimization processes with fixed optimal step-size
The implementation of the two algorithms is done using the number of elements
N = 36 and by choosing fixed step size parameters allowing rapid convergence of the
two algorithms. In this respect, we note that these parameters are chosen in an optimal
way, such that, if we take greater values of these parameters than the chosen ones,
the two algorithms diverges. So the optimal step size parameters used respectively for
both algorithms and for different initial shapes are taken such that, in case 1 (ρ=0.1
for Algorithm 2 and ρ=0.052 for Algorithm 1), in case 2 (ρ=0.9 for Algorithm 2
and ρ=0.043 for Algorithm 1) and in case 3 (ρ=0.79 for Algorithm 2 and ρ=0.034 for
Algorithm 1). Thereby, in Fig. 1, we present the errors (u−uex) in the optimal domains
obtained by the finite element discretization for different initial domains: case 1, case 2,
and case 3. The variation of the objective or cost functionals with respect to the number
of iterations are shown respectively in Fig. 2 for different cases. These results shows
that the Algorithm 2 converges faster to more accurate optimal solutions than the
Algorithm 1, for different initial shapes. This expectation is confirmed in Table 1,
where we present the CPU-time, the final objective cost, the iteration numbers and the
time reduction for both approaches. We observe that the proposed approach converges
in less number of iterations compared to the classical one and the CPU execution
time is reduced by at least 93%. These numerical tests show the efficiency of the

Table 1 Numerical comparison between Algorithms 1 and 2 for different cases

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

Case 1 813.213 600 7.45 × 10−4 10.03 41 1.39 × 10−4 98,76%

Case 2 234.8 163 7.68 × 10−4 6.37 3 4.70 × 10−6 97.25%

Case 3 560.497 259 1.76 × 10−4 8.16 4 1.99 × 10−4 98.54%

123



Numerical Algorithms (2024) 96:621–663 639

Fig. 3 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2 for
different values of α: case 1

Algorithm 2 in terms of CPU time execution and the accuracy of optimal solutions
compared to Algorithm 1, when one use fixed optimal step size parameters.

Fig. 4 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2 for
different values of α: case 3
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Table 2 Numerical comparison between Algorithms 1 and 2 for different values of α: case 1

CM Time reduction
CPU-time (s) Iteration Objective

α = 0.2 229.80 179 2.11 × 10−4 90.84%

α = 0.6 137.22 111 2.15 × 10−4 84.67%

α = 0.8 108.97 89 2.05 × 10−4 80.70%

α = 0.98 106.17 88 2.13 × 10−4 80.19%

αopt = 2.1 40.35 71 1.62 × 10−4 47.88%

In the sequel, in order to improve the performance of theAlgorithm 1, we propose to
update the step size parameter using the Armijo-Goldstein strategy (2.8), for different
values of α.

Algorithm 2 with fixed step size and Algorithm 1 performed with Armijo-Goldstein
step size
In this case, the number of elements is taken N = 36 and the Algorithm 2 is imple-
mented using only a fixed optimal step size parameter, while the Algorithm 1 is
performed using the Armijo-Goldstein strategy (2.8) for different values of α, includ-
ing its optimal value denotes αopt allowing a rapid convergence of this algorithm and
chosen such that if we take greater value of it the algorithm diverges. Thereby, the
variation of the objective with respect to the number of iterations for different values of
α is presented in Figs. 3 and 4, respectively, for the case 1 and case 3. The CPU-time,
the final objective functional, the iteration numbers and the time reduction for both
approaches are illustrated in Tables 2 and 3, for the different initial shapes.We observe
in this case also that the proposed approach converges in less number of iterations to
accurate solutions compared to the classical one and theCPUexecution time is reduced
by at least (90.84% for case 1) and (90.13% for case 3), which decrease when the
parameters α increase to reaches there optimal values, and the CPU time reduction
in this case reaches (47% for case 1) and (46% for case 3). These numerical tests
show the efficiency of the Algorithm 2, using only a fixed optimal step size parameter,
in terms of CPU time execution and the accuracy of optimal solutions compared to
Algorithm 1 performed with the Armijo-Goldstein strategy, for different values of α.

Table 3 Numerical comparison between Algorithms 1 and 2 for different values of α: case 3

CM Time reduction
CPU-time (s) Iteration Objective

α = 0.5 82.72 25 2.21 × 10−4 90.13%

α = 0.75 34.7 15 4.57 × 10−4 76.48%

α = 0.9 15.49 12 5.10 × 10−4 47,32%

αopt = 0.98 15.17 11 4.16 × 10−4 46.20%
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Fig. 5 Comparisons on the reconstructed shape using Algorithm 1 (above) and Algorithm 2 (below): case 1

From these numerical results, we conclude that the Algorithm 2 with only a fixed
optimal step size parameter is more efficient than the Algorithm 1 performed with the
Armijo-Goldstein strategy for optimal value of α, in terms of CPU time execution and
the accuracy of optimal solutions. This is due to the fact that the classical approach
requires, at each iteration, the resolution of the state and the adjoint state problems
as well as the extension boundary value problem of the vector fields to the whole
domain (2.7), which are of size Nmn the number of the nodes generated from the mesh
of the domain limited by the N boundary elements (which is such that Nmn � N ),

Fig. 6 The computed error of the solution in optimal domain using Algorithm 1 (above) and Algorithm 2
(below): case 1
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Fig. 7 The computed error of the solution in optimal domain using Algorithm 1 (above) and Algorithm 2
(below): case 2

in contrast to the proposed approach which requires in addition to the resolution
of the state and the adjoint state problems, to minimize only a linear optimization
problem (2.13) of size N .

In the sequel, in order to show the performance of the proposed approach, we will
present more numerical tests for different values of boundary elements N using the

Fig. 8 The computed error of the solution in optimal domain using Algorithm 1 (above) and Algorithm 2
(below): case 3
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Fig. 9 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2: case 1

Fig. 10 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2:
cases 2

Fig. 11 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2:
cases 3

Table 4 Numerical comparison between Algorithms 1 and 2: case 2

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

N = 48 16.53 19 1.1 × 10−4 7.315 3 3.93 × 10−6 56%

N = 80 34.77 24 6.67 × 10−5 14.655 3 3.24 × 10−5 58%
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Table 5 Numerical comparison between Algorithms 1 and 2 for different cases and for N = 28

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

disc 12.573 13 1.1 × 10−4 6.675 3 1.43 × 10−4 47%

ellipse 20.107 15 5.2 × 10−4 7.588 3 7.27 × 10−4 62,26%

square 49.795 39 2.76 × 10−4 14.504 37 4.2 × 10−4 71%

Algorithm 2 with fixed optimal step size parameter and the Algorithm 1 performed
with the Armijo-Goldstein strategy.

Numerical examples tests for different values of boundary elements
For these tests, the initial shape is taken to be the square. Let us first illustrate the
convergence of the two algorithms, for the number of elements N = 28. So, we
present in Fig. 5, the successive and optimal shapes for both approaches. The obtained
optimal shapes are reached after 35 and 39 iteration respectively for the Algorithm
2 and the Algorithm 1. We observe that the numerical optimal shape obtained by
Algorithm 2 is of good quality compared to the one obtained by Algorithm 1 which
presents four singular corner points appearing on its boundary. Then, the errors on the
solutions in the optimal domains obtained by the finite element method for different
initial domains case 1, case 2, and case 3 and for different N (N ∈ {28, 48, 80})
are presented respectively in Figs. 6, 7, and 8. Also the variation of the objective or
cost functionals with respect to the number of iterations are presented respectively in
Figs. 9, 10, and 11. These results shows that the new Algorithm 2 converges faster
to more accurate optimal solutions than the Algorithm 1 for different initial shapes
and different values of N . This expectation is confirmed in Table 4 where we present
the CPU-time, the final objective cost, the iteration numbers and the time reduction
for both approaches, when we use the initial shape of case 2. We observe that the
proposed approach converges in less number of iterations compared to the classical
one and the CPU execution time is reduced by at least 50% which increases with the
number of elements N to reaches 58%. In the Table 5, we illustrate the CPU-time, the
final objective cost and the time reduction, for N = 28 and different initial shapes,
for both approaches. We see that the time reduction obtained by using the square as
an initial shape is very important (71%) compared to the one obtained by using the
disk as an initial shape (47%), which is obvious due to singular points of the square
(see Fig. 5).

3.2.2 Shape optimization problems of minimizing L2−gradient and H1 norms
constrained to Dirichlet boundary value problem

In this section, we consider the numerical approximation of shape optimization prob-
lems, constrained to Laplace-Dirichlet boundary value state problem, of minimizing
cost functionals involving the L2−norm of the gradient and the H1-norm of the
solution of the state problem. For all the numerical tests the exact solution is taken
uex = x2 + y2 − 1.
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Fig. 12 Comparisons on the reconstructed shape using Algorithm 1 (above) and Algorithm 2 (below)

Our main objective is to propose a comparative numerical study between the Algo-
rithm 2 and the Algorithm 1 in terms of computation time (time CPU) and the accuracy
of the obtained optimal solutions for different initial domains associated to the three
considered cases.

Cost functional involving the L2−norm of the gradient of the state problems
solution’s
We perform now a comparison numerical result between the Algorithm 2 and the
Algorithm 1 for solving the shape optimization problem (3.1) of minimizing the cost

functional F , for � = 0 and β = 1

2
:

F(�, u�,∇u�) = 1

2
||∇u� − ∇uex ||2L2(�)

. (3.9)

where u� is the solution of the following Dirichlet state problem:

(PE2)

{−�u + u = fex in D
u = gex on ∂D.

Fig. 13 The computed error of
the solution in optimal shape
using Algorithm 1 (left) and
Algorithm 2 (right)
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Fig. 14 Comparison of the
convergence histories of the
objective functional using
Algorithms 1 and 2

Fig. 15 Comparison of the reconstructed solution using Algorithm 1 (above) and Algorithm 2 (below):
case 1

Table 6 Numerical comparison
between Algorithms 1 and 2

CM NM

CPU (s) 125.302 51.98

Iteration 139 34

Objective 1.14 × 10−2 2.5 × 10−3

Time reduction 58,51%
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Fig. 16 Comparison of the reconstructed solution using Algorithm 1 (above) and Algorithm 2 (below):
case 3

So, the expression of the gradient at �0 ∈ U , for the two shape derivative formulas,
is given by the following:

(
∂u�0

∂ν0

∂ p0
∂ν0

+ 1

2

(

|∇uex |2 − [∂u�0

∂ν0
]2
))∣

∣
∣
∣
∂�0

,

Fig. 17 The computed errors of the solutions in the optimal domain using Algorithm 1 (above) and Algo-
rithm 2 (below): case 1
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Fig. 18 Comparison of the convergence histories of the objective functional using Algorithm 1 and Algo-
rithm 2: case 1

where p0 is the solution of the adjoint state problem (PE2) with f = �uex − �u.
In this example, we choose the initial shape as the square given in case 1 and we

set the number of elements N = 36 for both approaches. The successive and optimal
shape is plotted in Fig. 12. The computed errors of the solutions in the optimal shape
are presented in Fig. 13. Then, the convergence history for the objective functional
is plotted in Fig. 14, which shows that the proposed approach converges faster for
more accurate optimal solution than the classical one with the same precision of the
stopping criterion. This is confirmed in Table 6 where we present the CPU-time, the
number of iteration, the final cost functional and the CPU-time reduction. In this case
the CPU time for the proposed approach is reduced by 58% compared to the classical
one.

Cost functional involving the H1-norm of the state problems solution’s
We deal here with the numerical approximation of the shape optimization prob-
lem (3.1) of minimizing the cost functional F , for � = 1

2 and β = 1
2 :

F(�, u�,∇u�) = 1

2
||u� − v1||2L2(�)

+ 1

2
||∇u� − ∇v2||2L2(�)

(3.10)

where v1 = v2 = uex and u� is the solution of the Dirichlet state problem. The shape
gradient of this functional at �0 ∈ U , for the two shape derivative formulas, is given
by the following:

(

∂u�0

∂ν0

∂ p0
∂ν0

+ 1

2

(

|∇v2| −
[
∂u�0

∂ν0

]2
)

+ 1

2

∣
∣u�0 − v1

∣
∣2

)∣
∣
∣
∣
∣
∂�0

. (3.11)

Fig. 19 Comparison of the convergence histories of the objective functionals using Algorithm 1 and Algo-
rithm 2: case 3
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Fig. 20 Comparison of the reconstructed shapes using Algorithm 1 (above) and Algorithm 2 (below): case 3

where p0 is the solution of the adjoint state problem:

− �p0 + p0 = (�v2 − �u) + (u − v1) in �0, p0 = 0 on ∂�0 (3.12)

For this example we take N = 80, so in Figs. 15 and 16, we plot the successive and
the final reconstructed solutions respectively for initial shapes the square (case 1) and
the ellipse (case 3). The computed errors of the solutions in the optimal shapes are

Fig. 21 Comparison of the reconstructed solutions using Algorithm 1 (above) and Algorithm 2 (below):
case 1
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Fig. 22 The computed error of
the solution in the optimal shape
for ellipse as initial shape (first
row) and square as initial shape
(second row) using Algorithm 1
(left) and Algorithm 2 (right)

Fig. 23 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2 for
both Cases

Table 7 Numerical comparison between Algorithms 1 and 2: case 1

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

N = 36 132.37 63 1.98 × 10−3 50.41 24 1.91 × 10−3 62%

N = 48 197.498 104 1.81 × 10−3 67.121 60 1.80 × 10−3 66%

N = 80 300.14 79 8.39 × 10−3 90.85 72 8.04 × 10−3 69.73%

Table 8 Numerical comparison between Algorithms 1 and 2: case 3

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

N = 36 37.015 33 9.67 × 10−3 17.029 28 7.20 × 10−3 54%

N = 48 47.701 29 7.83 × 10−4 20.087 20 9.46 × 10−4 58%

N = 80 69.58 26 7.53 × 10−3 25.41 18 6.79 × 10−3 63.48%
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Table 9 Numerical comparisons between Algorithms 1 and 2

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

case 3 125.55 12 1.88 × 10−4 13.93 9 1.80 × 10−4 88,90%

case 1 460.677 100 2.10 × 10−6 250.861 27 8.50 × 10−7 45,54%

shown in Fig. 17 for the initial shape is square. The comparison of the convergence
history of the objective functional for both approaches and for different initial shapes
are presented in Figs. 18 and 19. In Tables 7 and 8, we give the final cost functional,
the CPU time, the iterations number and the CPU time reduction for N = 36, N = 48
and N = 80. In this example, we deduce also that the proposed approach converges
faster to more accurate optimal solutions in less number of iterations compared to the
classical one for both initial shapes and for different values of N .

3.2.3 Shape optimization constrained to elliptic Neumann boundary value problem

We consider the shape optimization problem 2.1 of minimizing the cost functional F
with � = 1 and β = 0:

F(�, u�,∇u�) = ||u� − uex ||2L2(�)
, (3.13)

where uex = x2 + y2 − 1 and u� is the solution of the Neumann boundary value state
problem associated to the parameters μ = 1, λ = 1, η = 1 and γ = 0. The shape
gradient of this functional at �0 ∈ U , for the two shape derivative formulas, is given
by the following:

(

|u − uex |2 + ∇u.∇ p + p(u − uex )
)∣
∣
∣
∂�0

, (3.14)

where p is the solution of the adjoint state problem:

− �p + p = −2(u0 − uex ) in �0,
∂ p

∂ν
= 0 on ∂�0. (3.15)

In this example, we take N = 36, so in Figs. 20 and 21, we plot the successive and the
final reconstructed shapes respectively for initial shapes the ellipse (case 3) and the
square (case 1). The computed errors of the solutions in the optimal shapes are shown
in Fig. 22 for the initial shape is square and ellipse. The comparison of the convergence
history of the objective cost functional for both approaches and for different initial
shapes are presented in Fig. 23. Finally, in Table 9, we give the final cost functional,
the CPU time, the iterations number and the CPU time reduction for different cases.
In this example, we deduce also that the proposed approach converges faster to more
accurate optimal solutions in less number of iterations compared to the classical one
for both initial shapes.
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3.2.4 Shape optimization constrained to elliptic Stokes flows equation

In this section, we deal with the numerical approximation of shape optimization prob-
lem (3.4) of minimizing different cost functionals constrained to Stokes equation,
especially the functional of minimizing the L2−norm of the solution of the state
problem or the functional energy. So, the main objective is to achieve a comparative
numerical study between the Algorithm 2 and the Algorithm 1 in terms of the CPU
(s) time and the accuracy of the obtained optimal solutions, through the resolution of
this class of problems for different initial domains associated the three above cases.
For this, the Taylor-Hood finite element discretization P2/P1 is used with different
number of boundary elements N for approximating respectively the fluid velocity and
the associated pressure for the Stokes problem for the following data: the viscosity
coefficient is given by κ = 0.01, the target velocity and pressure are respectively
given by ud(x, y) = (−y (x2 + y2 − 4), x (x2 + y2 − 4)), pex = x + y − 1 and
fex = (8 κ y + 1, 1 − 8 κ x).

Quadratic functional
We consider the shape optimization problem (3.4) of minimizing the cost functional
S for ρ = 1

2 and σ = 0:

� ∈ U �−→ S(�,w�0 ,∇w�0) := 1

2

∫

�0

||w�0 − ud ||2dx, (3.16)

where (ω�0 , p�0) is solution of the problem (3.5) on �0. The shape gradient of this
functional at�0 ∈ U , for the two shape derivative formulas, is given by the following:

(‖w�0 − ud‖ + ∇w�0 : ∇ψ0
)∣
∣
∂�0

, (3.17)

Fig. 24 Comparison of the reconstructed shapes using Algorithm 1 (above) and Algorithm 2 (below): case 1
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Fig. 25 Comparison of the reconstructed shape using Algorithm 1 (above) and Algorithm 2 (below): case 3

Fig. 26 The computed error of the solution in the optimal domain using Algorithm 1 (above) and Algorithm
2 (below): case 1
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Fig. 27 The computed error of the solution in the optimal domain using Algorithm 1 (above) and Algorithm
2 (below): case 2

such that (ψ0, p0) is the solution of the adjoint state stokes problem:

−κ�ψ0 +∇ p0 = u0 −ud in �0, divψ0 = 0 in �0 ψ0 = 0 on ∂�0. (3.18)

For the first test we take N = 80, thereby the successive and optimal shape are
plotted in Figs. 24 and 25 respectively for the initial shape is a square (case 1) and
a disc (case 3). Then, the computed errors of the solutions in the optimal shape with

Fig. 28 The computed error of the solution in the optimal domain using Algorithm 1 (above) and Algorithm
2 (below): case 3
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Fig. 29 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2:
case 1

Fig. 30 Comparison of the convergence histories of the objective functional using Algorithms 1 and 2:
case 2

Fig. 31 Comparisons of the convergence histories of the objective functional using Algorithms 1 and 2:
case 3

Table 10 Numerical comparison between Algorithms 1 and 2: case 1

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

N = 36 103.45 64 9.6 × 10−2 60.79 17 6.1 × 10−2 41.23%

N = 80 740.378 167 3.03 × 10−4 412.06 69 9.14 × 10−5 44,34%

N = 100 1120.456 180 9.99 × 10−5 580.40 83 2.46 × 10−4 48,19%

123



656 Numerical Algorithms (2024) 96:621–663

Fig. 32 Comparison of the reconstructed shapes using Algorithm 1 (above) and Algorithm 2 (below)

the iso-value meshes are presented in Figs. 26, 27, and 28 for different number of
element N and different initial shapes. The convergence history for the objective
functional is plotted in Figs. 29, 30, and 31, which shows that the proposed approach
converges faster for more accurate optimal solution than the classical one using the
same precision of the stopping criterion. The performance of the proposed approach
is confirmed in Table 10 where we present the CPU-time, the number of iteration,
the final cost functional and the CPU-time reduction. In this case the CPU time of
execution for this approach is reduced by 48% compared to that of the classical one

Fig. 33 The computed error of the solution in the optimal domain using Algorithm 1 (above) and Algorithm
2 (below): case 1
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Fig. 34 The computed error of the solution in the optimal domain using Algorithm 1 (above) and Algorithm
2 (below): case 3

Energy functional Now we consider the shape optimization problem (3.1) of mini-
mizing the cost functional F for ρ = 0 and σ = κ:

� ∈ U �−→ S(�,w�,∇w�) := κ

∫

�

||∇w� − ∇ud ||2dx . (3.19)

Fig. 35 The computed error of the solution in the optimal domain using Algorithms 1 and 2: case 1
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Fig. 36 The computed error of the solution in optimal domain using Algorithms 1 and 2: case 3

The shape gradient of this functional at�0 ∈ U , for the two shape derivative formulas,
is given by the following:

(κ
[

(∇w�0 .ν0).(∇ p0.ν0) − ||∇w�0 .ν0||2
]

)

∣
∣
∣
∂�0

,

such that (ψ0, p0) is the solution of the adjoint state stokes problem:

− κ�ψ0 + ∇q0 = κ�(w�0 − ud) in �0, divψ0 = 0 in �0 ψ0 = 0 on ∂�0.

(3.20)

For this example, the successive and optimal shape are plotted in Fig. 32 for the
initial shape is ellipse case 3) and for N = 100. The computed optimal shapes are
reached after 24 and 59 iteration respectively for the Algorithms 2 and 1. The errors
on the solutions in the optimal domains obtained by the finite element method for
different initial domains considered in case 1 and case 3 and for different values of
N (N ∈ {28, 36, 48, 100}) are presented respectively in Figs. 33 and 34. Also the
variation of the objective functionals with respect to the number of iterations are
presented respectively in Figs. 35 and 36. These results shows that the new Algorithm
2 converges faster tomore accurate optimal solutions than theAlgorithm 1 for different
values of N . This expectation is confirmed in Table 11 where we present the CPU-
time, the final objective functional, the iteration numbers and the time reduction for
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Table 11 Numerical comparison between Algorithms 1 and 2: case 3

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

N = 36 225.77 42 3.71 × 10−4 112.868 28 2.00 × 10−4 50%

N = 48 324.584 66 9.30 × 10−5 148.511 30 8.67 × 10−5 54,24%

N = 100 441.156 59 9.15 × 10−3 153.418 24 1.82 × 10−5 65,22%

both approaches, when we use the initial shape of case 3. We observe for this test also
that the proposed approach converges in less number of iterations compared to the
classical one and the CPU execution time is reduced by at least 50% which increases
with the number of elements N to reaches 65%. This expectation is confirmed in
Table 12 where we illustrate the CPU-time, the final objective functional and the time
reduction, for N = 28 and different initial shapes, for both approaches.

3.2.5 Discussions and concluding remarks on the numerical results

The comparative numerical study between the Algorithm 1 and the Algorithm 2 con-
cerns the quality of optimal solutions and the CPU time reduction. In this regard,
we note that for all the obtained numerical results, the Algorithm 2 reaches the opti-
mal solutions on less number of iterations compared to the Algorithm 1. Moreover,
we observe from these numerical results, that the difference between the numbers of
iterations at convergence for the two algorithms and the CPU time reduction depend
strongly on the choice of the step descent parameter in the gradient methods and the
number of boundary elements discretization N as well as the type of the boundary con-
dition in the state problems and the initial domains in the shape optimization processes.
Indeed:

• Concerning the choice of the step descent parameter in the gradient methods,
we have analyzed the sensitivity and the influence of the choice of the step size
parameter on the convergence performance of the both algorithms.More precisely,
we have compared first the two algorithms using a fixed optimal steps size (the
best ones allowing a rapid convergence of the algorithms). Then, we compared
the Algorithm 2 using a fixed optimal step size and the Algorithm 1 performed

Table 12 Numerical comparison between Algorithms 1 and 2 for different cases and N = 28

CM NM Time reduction
CPU-time (s) Iteration Objective CPU-time (s) Iteration Objective

Square 310.20 71 1.13 × 10−2 146.028 51 2.73 × 10−4 53%

Ellipse 98.5 27 5.86 × 10−4 55.107 15 5.25 × 10−4 44,05%
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with updated step size by Armijo-Goldstein strategy (2.8). From the obtained
numerical results, we conclude that the Algorithm 2 with only a fixed optimal step
size parameter is more efficient than the Algorithm 1 performed with the Armijo-
Goldstein strategy, in terms of CPU time execution and the accuracy of optimal
solutions. This is due to the fact that the classical approach (Algorithm 1) requires,
at each iteration, the resolution of the state and the adjoint state problems as well
as the extension boundary value problem of the vector fields to the whole domain
(2.8), which are of size Nmn the number of the freedom degrees generated from
the mesh of the domain limited by the N boundary elements (which is such that
Nmn � N ), in contrast to the proposed approach which requires in addition to the
resolution of the state and the adjoint state problems, to minimize only a linear
optimization problem (2.13) of size N .

• Regarding the influence of the number of boundary elements N or its resulting
number of the freedom degrees Nmn on the reduction of the CPU time, we have
observed from some example tests, that even if the difference between the itera-
tion numbers of the two algorithms is not large, the CPU time reduction is very
remarkable. This is due to the fact that the Algorithm 1 requires to solve more
additional linear systems of size Nmn (which are of number more greater than the
iterations number of the Algorithm 2) compared to the Algorithm 2. This is in fact
illustrated for example in Table 7 (last line for the case N = 80) where we remark
that even if the difference between the iteration numbers of the two algorithms is
just 7 iterations, the reduction of the CPU times reaches 69%, and for example in
Table 8 (first line for the case N = 36) where the obtained CPU time reduction
reaches 54%.

• Wenote also that theCPU time reduction is influencedby thegeometrical regularity
of the considered initial domains as well as on the type of the boundary condition
(Dirichlet or Neumann condition) in the considered state problems. Indeed, when
one consider the Dirichlet boundary value state problem on the square as initial
shape, the shape optimization process requires a mesh refinement of the successive
domains to overcome to the inconveniences due to the singularity of the corners
points, thereby the number Nmn may be too large (Nmn ≫ N ) compared to the
case where the initial shape is more regular, such as the ellipse or the disc. This
means that the reduction in CPU time is more important, when the initial domain
is a square, even if the difference between the number of iterations of the two
algorithms is not large. This is due to the fact that the Algorithm 1 requires to solve
some additional linear systems of size Nmn (which are of number more greater
than the iterations number of the Algorithm 2) compared to the Algorithm 2. This
is in fact illustrated in the example tests in Table 5, where even if the difference
between the iteration numbers of the two algorithms is not large, the CPU time
reduction is remarkable and reaches 71%. This expectation is no longer true, when
one consider the Neumann boundary value state problem on the square as initial
shape, since the accuracy of the solutions of the state and adjoint state problems
for both algorithms is affected by the discontinuity of the normal derivative on the
corner points. This is in fact illustrated inTable 9,where theCPU time reduction for
the example test where the initial shape is the ellipse is more important compared
to the one where the initial shape is the square.
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4 Conclusion

We conclude from this numerical study that the use of the shape derivative involving
the support functions in the gradient shape optimization process is more advantageous
than the one using the classical shape derivative involving vector fields, when the
finite element method is used for the discretization of the auxiliary problems. This
is illustrated through the comparative numerical results showing the efficiency of the
resulting numerical process “Algorithm 2” of the proposed approach and its ability
in producing good quality solutions and in providing better accuracy for the optimal
solution in less CPU time compared to the classical approach “Algorithm 1,” even if
this last algorithm is based on the gradient method performed with the optimal step
strategy of Armijo-Goldstein [26], while the Algorithm 2 is accomplished with only
a fixed step chosen once for all the iterations of the optimization process.
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