
Numerical Algorithms (2024) 96:449–488
https://doi.org/10.1007/s11075-023-01653-3

ORIG INAL PAPER

The constant solution method for solving large-scale
differential Sylvester matrix equations with time invariant
coefficients

Abderrahman Bouhamidi1 · Lakhdar Elbouyahyaoui2 ·Mohammed Heyouni1

Received: 11 September 2022 / Accepted: 23 August 2023 / Published online: 15 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
This paper is mainly focused on the solution of Sylvester matrix differential equations
with time-independent coefficients. We propose a new approach based on the con-
struction of a particular constant solution which allows to construct an approximate
solution of the differential equation from that of the corresponding algebraic equa-
tion. Moreover, when the matrix coefficients of the differential equation are large, we
combine the constant solution approach with Krylov subspace methods for obtain-
ing an approximate solution of the Sylvester algebraic equation, and thus form an
approximate solution of the large-scale Sylvester matrix differential equation. We
establish some theoretical results including error estimates and convergence as well
as relations between the residuals of the differential and its corresponding algebraic
Sylvester matrix equation. We also give explicit benchmark formulas for the solution
of the differential equation. To illustrate the efficiency of the proposed approach, we
perform numerous numerical tests and make various comparisons with other methods
for solving Sylvester matrix differential equations.

Keywords Krylov subspace methods · Block Arnoldi · Matrix differential Sylvester
equation · Dynamical systems · Control · Ordinary differential equations

Mathematics Subject Classification (2010) MSC 65F

B Mohammed Heyouni
mohammed.heyouni@univ-littoral.fr

Abderrahman Bouhamidi
abderrahman.bouhamidi@univ-littoral.fr

Lakhdar Elbouyahyaoui
lakhdarr2000@yahoo.fr

1 L.M.P.A, Université du Littoral Côte d’Opale, 50 rue F. Buisson BP. 699,
F-62228 Calais Cedex, France

2 Centre Régional des Métiers de l’Education et de la Formation de l’Oriental, Oujda, Maroc

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01653-3&domain=pdf

450 Numerical Algorithms (2024) 96:449–488

1 Introduction

Differential Lyapunov and Sylvester equations are involved in many areas of applied
mathematics and arise in numerous scientific applications. For instance, they play a
crucial role in control theory, model order reduction, image processing and the list is
not exhaustive. In particular, the differential Lyapunov matrix equation is a useful tool
for stability analysis and control design for linear time-dependent systems [2, 3]. In
this paper, we are concerned with numerically solving the differential Sylvester matrix
equation of the form

{
Ẋ(t) = A X(t) + X(t) B − C, t ∈ [t0, T]
X(t0) = X0,

(1)

where [t0,T] ⊂ R is a closed and bounded time interval with t0, T are the initial and
final times respectively. We set ΔT = T − t0, the length of the interval [t0,T]. The
coefficient matrices A ∈ R

n×n , B ∈ R
s×s , and C ∈ R

n×s are constant real matrices,
where the setRq×k is the space of realmatrices of size q×k. The differential Lyapunov
matrix equation corresponds to the symmetric case where B = AT . Before describing
the new proposed method, we refer to the algebraic equation canonically associated
to (1)

A X + X B = C, (2)

as the corresponding (or associated) algebraic Sylvester equation. To the best of our
knowledge, despite the importance of differential matrix equations, few works have
been devoted to their numerical resolution when the matrix coefficients are large.
Adaptation of BDF and/or Rosenbrock methods has been described in [7, 8] (see
also the references in [5]). However these adaptations usually suffer from a problem
of numerical data storage. To remedy this problem, combining Krylov subspaces
techniques with BDF methods or with Taylor series expansions have recently been
proposed [5, 20]. Other existing methods described in the recent literature for solving
large-scale differential Sylvester matrix equation rely on using the integral formula
or some numerical ODE solver [21, 38]. The strategy we pursue in this manuscript is
different in the sense that our approach for solving differential Sylvester (or Lyapunov)
matrix equations is based on the use of the constant solution to the differential equation.
The first result we use indicates that the solution of the differential equation is written
in terms of the solution of the corresponding algebraic equation. Additionally, in
the case where the coefficient matrices A and/or B are large, we combine the new
expression of the solution with some projection techniques on Krylov subspaces, such
as the block Arnoldi algorithm for solving the corresponding algebraic equations or
for approximating the exponential of a matrix.

The outline of this paper is as follows: In Sect. 2, some preliminaries and basic
results are recalled and the notations needed in this paper are introduced. In Sect. 3, we
introduce our proposed method which is called the constant solution method (CSM in
short), describe some of its properties and give some theoretical results. A summarized

123

Numerical Algorithms (2024) 96:449–488 451

and brief description of the corresponding algorithm will also be given. In Sect. 4, we
combine CSMwith the block Arnoldi algorithm for solving algebraic Sylvester matrix
equations in order to tackle large-scale differential Sylvester equations. The two cases:
full and low-rank are discussed. Moreover, we establish theoretical results expressing
the residual of the differential equation in terms of that of the algebraic equation. We
also establish some theoretical results on the convergence and on the error estimates
provided by the constant solution method. To have at hand an exact solution to which
the approximate solution delivered by CSM, we show in Sect. 5 how to generate two
benchmark differential Sylvester matrix equations with a known exact solution. In the
last Section 6, which is devoted to numerical experiments, we describe several set of
tests whose results indicate that CSM is an efficient and robust method. As usual, the
last section is devoted to a brief conclusion.

2 Preliminaries and notations

In this section, we recall some known results and introduce the notations used in the
rest of this paper. The identity matrix of Rq×q is denoted by Iq . The Frobenius inner
product is defined by

〈Y , Z〉 = tr(Y T Z), Y , Z ∈ R
l×q ,

where tr(M) denotes the trace of a square matrix M . The associated Frobenius norm is
denoted by ‖Y‖ = √〈Y ,Y 〉. A basis [W1,W2, . . . ,Wm] of matrices is F-orthogonal
with respect the Frobenius inner product if 〈Wi ,Wj 〉 = 0, for i �= j . For a bounded
matrix-valued function G defined on the interval [t0, T], we consider the following
uniform norm given by

‖G‖∞ = sup
t∈[t0,T]

‖G(t)‖.

We recall that a bounded function on the compact [t0, T] is continuous on a such
interval. The Kronecker product of two matrices J ∈ R

n j×m j and K ∈ R
nk×mk is the

matrix J ⊗K = [Ji, j K] of size n j nk ×m j mk . The following well known properties
are used throughout this paper:

1. (A ⊗ B) (C ⊗ D) = (AC) ⊗ (B D),
2. (A ⊗ B)T = (AT ⊗ BT),
3. vec(A B C) = (CT ⊗ A) vec(B).

The vec operator consists in transforming a matrix into a vector by stacking its
columns one by one to form a single column vector. We also recall that the Hadamard
product of two matrices J , K ∈ R

p×q is the matrix J � K = [Ji, j Ki, j] of the same
size p × q.

The following proposition is given in [1] without any specific details of its proof.
Although this proof does not present any major difficulty, it seemed interesting to us
to give the details of this proof.

123

452 Numerical Algorithms (2024) 96:449–488

Proposition 1 The unique solution of the differential Sylvester matrix equation (1) is
given by the following integral formula

X(t) = e(t−t0) A X0 e
(t−t0) B −

∫ t

t0
e(t−u) A C e(t−u) B du. (3)

Proof Let x0, x , c be the vectors such that x0 = vec(X0), x = vec(X), c = vec(C)

where X0, X(t), and C are appearing in the system (1) which may be transformed to
the following classical differential linear system

{
ẋ(t) = A x(t) − c,
x(t0) = x0,

(4)

where the matrix A of size ns × ns is given by

A = Is ⊗ A + BT ⊗ In .

It is well known that the previous system (4) has a unique solution x(t) which is
differentiable with a continuous derivative on [t0, T] (it is even of infinite class on
[t0, T]), and the unique solution of (4) is given by the following formula

x(t) = e(t−t0)A x0 −
∫ t

t0
e(t−u)A c du. (5)

Now, since, the matrices Is ⊗ A and BT ⊗ In commute, then using the properties
of the Kronecker product and the additive commutativity of the matrix exponential
(eM+N = eM eN ⇐⇒ M N = N M), it follows that

e(t−t0)A = e(t−t0) (Is⊗A+BT ⊗In) = e(t−t0) (Is⊗A) e(t−t0) (BT ⊗In)

= (Is ⊗ e(t−t0) A) (e(t−t0) BT ⊗ In) = e(t−t0) BT ⊗ e(t−t0) A.

Thus,

e(t−t0)A x0 =
[
e(t−t0) BT ⊗ e(t−t0) A

]
vec(X0) = vec(e(t−t0) A X0 e

(t−t0) B).

Finally, this implies that the formula (5) giving the solution to the system (4)
leads to the formula (3) giving the unique solution to the differential Sylvester
system (1). ��
Remark 1 Although, the systems (1) and (4) are mathematically equivalent, the diffi-
culties one may encounter when solving these systems are different. For moderate size
problems, it is possible to apply a numerical integration scheme directly to the system
(4) or to use (5). However, in many practical situations, exploiting expression (4) for
computing the solution x(t) may be very expensive. Indeed, the matrix A can be very
large and difficult to handle on a computer. Another obstacle that can be encountered

123

Numerical Algorithms (2024) 96:449–488 453

is in the evaluation of the exponential of matrices. With the form (1), some numerical
techniques are available to approximate the matrix exponential, see [25, 33, 36].

3 The constant solutionmethod for the differential sylvester matrix
equation

In the integral Formula (3), quadrature methods are needed to compute numerically
the approximate solution. Thus, when one (or both) of the matrix coefficients A or B
is (or are) large and has (or have) no particular exploitable structure, the computation
of the integral may be expensive or even unfeasible. In this section, we use another
expression for the solution of the system (1) which is given in terms of the solution
of the corresponding algebraic Sylvester matrix equation (2). This expression avoids
the use of quadrature methods since it does not contain an integral. To the best of our
knowledge, the approach we describe in this section has never been exploited in the
context of solving large-scale differential Sylvester matrix equations. However, it is
based on the classical and simple technique of adding a particular constant solution
to the general solution of the homogeneous differential equation to form the general
solution of a linear differential equation of order one with constant coefficients. Next,
we give the following theorem, which gives a useful and interesting expression of the
unique solution of the system (1). The result of this theorem is known in the literature
[6, 16], but, in practice, it has not been exploited numerically to give approximate
solutions. This theorem is not difficult to establish. However, in order to facilitate the
reading of the present work, it seems interesting to us to give the proof of this theorem.

Theorem 1 Suppose that the matrices A and B in the system (1) are such that σ(A)∩
σ(−B) = ∅, where σ(M) denotes the spectrum of the matrix M, then the unique and
exact solution X∗(t) of the system (1) is given by

X∗(t) = e(t−t0) A
(
X0 − X̃∗) e(t−t0) B + X̃∗, (6)

where X̃∗ is the unique and exact solution of the algebraic Sylvester equation (2).

Proof The general solution of the homogeneous differential equation associated to (1)
is given by

Z(t) = et A Y et B,

where Y ∈ R
n×s is some constant matrix. Since σ(A) ∩ σ(−B) = ∅, the algebraic

Sylvester equation (2) has a unique solution X̃∗ (see, e.g., [26, Thm. 2.4.4.1]). Thus,
the unique solution X̃∗ seen as a constant matrix function (i.e., X̃∗(t) = X̃∗), may be
considered as a particular solution of the differential equation

Ẋ(t) = A X(t) + X(t) B − C .

It follows that the general solution of the previous differential equation is given by

X(t) = et A Y et B + X̃∗.

123

454 Numerical Algorithms (2024) 96:449–488

Finally, since the unique solution of the differential system (1) must satisfy the
initial condition X∗(t0) = X0, it follows that X∗(t0) = et0 A Y et0 B + X̃∗ = X0.
The last equality implies Y = e−t0 A

(
X0 − X̃∗) e−t0 B , and expression (6) follows

immediately. ��
Remark 2 As the constant solution method is based on the existence of a solution to its
corresponding algebraic matrix equation, our proposed method may not be feasible
if the condition σ(A) ∩ σ(−B) = ∅ is not fulfilled.

In the remainder of this paper, we assume that the matrices A and B in (1) satisfy
the condition

σ(A) ∩ σ(−B) = ∅.

The following property shows the behavior of the matrix solution X∗(t) as the
interval [t0, T] becomes very more and more large, namely, as the final time T goes
to +∞.

Proposition 2 [30, Chapter 8] Suppose that the coefficients A and B in the system
(1) are stable matrices, then the unique solution X∗(t) of the differential system (1)
satisfies

lim
T→+∞ ‖X∗(T) − X̃∗‖ = 0,

where X̃∗ is the unique solution of the corresponding algebraic Sylvester equation
(2).

In the remainder of this section, we suppose that the matrix coefficients A and B
are of moderate size. In this case, an approximate solution to the algebraic Sylvester
equation (2) may be obtained by a direct solver such as the Bartels-Stewart algorithm,
the Schur decomposition, or the Hammarling method [4, 19, 22, 31, 41]. A common
point to all these methods is first the computation of the real Schur forms of the
coefficientmatrices using theQR algorithm. Then, the original equation is transformed
into an equivalent form that is easier to solve by a forward substitution. Now, suppose
that X̃a is an approximate solution to the exact solution X̃∗ of the Sylvester algebraic
equation (2), it follows that an approximate solution Xa(t) to the exact solution X∗(t)
of the Sylvester differential equation (1) can be expressed in the following form.

Xa(t) = e(t−t0) A
(
X0 − X̃a

)
e(t−t0) B + X̃a . (7)

Here, as A and B are assumed to be of moderate size, we also assume that both
exponential e(t−t0) A and e(t−t0) B are computed exactly. To establish an upper bound
for the error norm, let us introduce the algebraic error Ẽ and the differential error E(t)
given by

Ẽ = X̃∗ − X̃a, and E(t) = X∗(t) − Xa(t), ∀t ∈ [t0, T],

respectively. Finally, recalling that ΔT = T − t0 and ‖E‖∞ = sup
t∈[t0,T]

||E(t)||, we
have the following result

123

Numerical Algorithms (2024) 96:449–488 455

Proposition 3 In the case where the matrix exponential is computed exactly, we have

||E(t)|| ≤
(
1 + e(t−t0) (‖A‖+‖B‖)) ‖Ẽ‖, ∀t ∈ [t0, T].

It follows that

‖E‖∞ ≤
(
1 + eΔT (‖A‖+‖B‖)) ‖Ẽ‖,

where E and Ẽ are the errors associated to the approximate solutions Xa(t) and X̃a

respectively.

Proof Subtracting (7) from (6), we get

E(t) = X∗(t) − Xa(t) = −e(t−t0) A Ẽ e(t−t0) B + Ẽ, ∀t ∈ [t0, T],

and from the triangular inequality, we obtain

||E(t)|| ≤ ||e(t−t0) A Ẽ e(t−t0) B || + ||Ẽ ||, ∀t ∈ [t0, T].

The Frobenius norm being multiplicative (that is ‖A B‖ ≤ ‖A‖ ‖B‖), this implies
that ‖es M‖ ≤ es ‖M‖ for all s ≥ 0 and for any square matrix M . Thus,

||E(t)|| ≤
(
1 + e(t−t0) (‖A‖+‖B‖)) ‖Ẽ‖, ∀t ∈ [t0, T].

As E is a continuous matrix function on the interval [t0, T], (t − t0) ≤ ΔT and
‖E‖∞ = sup

t∈[t0,T]
||E(t)||, then the desired result follows obviously. ��

Le us now introduce R(t) and R̃ the residuals associated to the differential and
algebraic Sylvester matrix equations, respectively. These residuals are defined by

{
R(t) = Ẋa(t) − (A Xa(t) + Xa(t) B − C) , t ∈ [t0, T],
R̃ = C − (

A X̃a + X̃a B
)
,

(8)

and satisfy the following proposition.

Proposition 4 In the case where the matrix exponential is computed exactly, the resid-
ual for the differential equation, is time-independent and we have

R(t) = R̃, ∀t ∈ [t0, T].

Proof From (7), we have

Ẋa(t) = e(t−t0) A
(
A (X0 − X̃a) + (X0 − X̃a) B

)
e(t−t0) B .

123

456 Numerical Algorithms (2024) 96:449–488

On the other hand, we have

A Xa(t) + Xa(t) B = e(t−t0) A
(
A (X0 − X̃a) + (X0 − X̃a) B

)
e(t−t0) B

+A X̃a + X̃a B.

Then subtracting one of the two previous relations from the other, we get

R(t) = Ẋa(t) − (A Xa(t) + Xa(t) B − C) = C − (
A X̃a + X̃a B

) = R̃.

��
Before ending this section, we sketch in Algorithm 1 below the main steps that

must be followed to obtain approximations Xk = Xa(tk) to the solution of the dif-
ferential Sylvester equation (1) at different nodes tk (for k = 1, . . . , N) of a suitable
discretization of the time interval [t0, T].

Algorithm 1 Constant solution method in the case of moderate size (CSM).
1: Input: The matrices A, B, C , the initial and final times t0, T , the number N of nodes and the step time

δT .
2: Output: X1, . . . , XN , (where Xk = Xa(tk)), (1 ≤ k ≤ N)

3: Solve the algebraic Sylvester equation: A X + X B = C, to get an approximate solution X̃a to the exact
solution X̃∗.

4: for k = 1, . . . , N do
5: Compute: tk = tk−1 + δT ;
6: Compute: Xk = e(tk−t0) A

(
X0 − X̃a

)
e(tk−t0) B + X̃a ;

7: end for

4 Block Arnoldi for solving large-scale differential Sylvester matrix
equations

It is well known that computing the matrix exponential may be expensive when the
matrix is very large. Thus, expression (6) may not be directly exploitable in the case
of large-scale matrix coefficients. In the following, we will see how to circumvent this
difficulty using projection methods onto some Krylov subspace. Indeed, in addition
to allowing us to obtain a good approximation of the exact solution of the algebraic
Sylvester equation (2), Krylov subspace methods are also a useful tool to compute the
action of matrix exponential on a block vector with a satisfactory accuracy. During the
last three decades, various projection methods on block, global or extended Krylov
subspaces have been proposed to solve Sylvester matrix equations (or other similar
equations) whose coefficients are large and sparsematrices [10–12, 17, 23, 24, 27–29].
The common idea behind these methods is to first reduce the size of the original equa-
tion by constructing a suitable Krylov basis, then solve the obtained low-dimensional
equation by means of a direct method such as the Hessenberg-Schur method or the
Bartels-Stewart algorithm [4, 19], and finally recover the solution of the original large
equation from the smaller one. For a complete overview of the main methods for

123

Numerical Algorithms (2024) 96:449–488 457

solving algebraic Sylvester or Lyapunov equations, we refer to [3, 14, 40] and the
references therein. In order to be as general as possible and not to impose restrictive
assumptions, we opt for a resolution of the Sylvester (or Lyapunov) equation using the
block Arnoldi process rather than the extended block Arnoldi process since the latter
requires that the coefficient matrices A and B are non singular. This last condition
may not be fulfilled in many practical cases.

We recall that projection techniques on block Krylov subspaces for solving matrix
differential equations were first proposed in [20, 21] by exploiting the integral formula
(3) and approximating the exponential of a matrix times a block of vectors or by
solving a projected low-dimensional differential Sylvester matrix equation by means
of numerical integration methods such as the backward differentiation formula (BDF)
[13].

As said before, the approach we follow in this work is different from the one pro-
posed in [20, 21]. It consists of exploiting formula (6), instead of the integral formula
(3), which is less expensive. To have at hand an adequate basis of the consideredKrylov
subspace, we will use the block Arnoldi process described in the next subsection.

4.1 The block Arnoldi process

Let M be an l × l matrix and V an l × s block vector. We consider the classical block
Krylov subspace

Km(M, V) = Range([V , M V , . . . , Mm−1 V])

=
{
m−1∑
k=0

Mk V Ωk, Ωk ∈ R
s×s, 0 ≤ k ≤ m − 1

}
.

The block Arnoldi process, described in Algorithm 2, generates an orthonormal
basis VM

m of the block Krylov subspace Km(M, V).

Algorithm 2 The block Arnoldi process (BA) applied to the pair (M, V).
1: Input: M a matrix of size l × l, V a matrix of size l × s and m an integer.

2: Output: VM
m+1 and H

M
m satisfying (9)–(11).

3: Get V M
1 by computing the QR decomposition of V , i.e., V = V M

1 Λ1;
4: for j = 1, . . . ,m do
5: Compute U = M VM

j ;
6: for i = 1, 2, . . . , j do
7: Hi, j = (V M

i)T U ;

8: U = U − V M
i Hi, j ;

9: end for
10: Get V M

j+1 and Hj+1, j by computing the QR decomposition of U ,

11: i.e., U = V M
j+1 Hj+1, j .

12: Set Hi, j = 0 for i > j + 1

13: Define VM
j+1 = [V M

1 , . . . , V M
j , V M

j+1] and H
M
j = (Hk,�)1≤k≤ j+1,1≤�≤ j

14: end for

123

458 Numerical Algorithms (2024) 96:449–488

Suppose that the upper triangular matrices Hj+1, j are full rank then, since the
above algorithm involves a Gram-Schmidt procedure, the obtained block vectors
V M
1 , V M

2 , . . . , V M
m (V M

i ∈ R
l×s) have their columns mutually orthogonal. Hence,

afterm steps, Algorithm2 generates an orthonormal basisVM
m = [

V M
1 , V M

2 , . . . , V M
m

]
of the block Krylov subspace Km(M, V) and a block upper Hessenberg matrix H

M
m

whose non zeros blocks are the Hi, j ∈ R
s×s . We have the following and useful

algebraic relations [18, 37].

M V
M
m = V

M
m+1H

M
m = V

M
m H

M
m + V M

m+1 H
M
m+1,m (E(s)

m)T , (9)(
V

M
m

)T
M V

M
m = H

M
m , (10)

(
V

M
m

)T
V

M
m = Im s, (11)

whereH
M
m = (VM

m+1)
T M V

M
m ∈ R

(m+1) s×m s , Hi, j ∈ R
s×s is the (i, j) block ofHM

m

and E
(s)
m is the matrix of the last s columns of the m s × m s identity matrix Im s , i.e.,

E
(s)
m = [0s×(m−1) s, Is]T . In the following, we will use the notation

V M
m,s = V M

m+1 H
M
m+1,m (E(s)

m)T . (12)

4.2 Full-rank case

Here, we suppose that A is a large matrix while B is relatively smaller, i.e., s � n.
We also assume that the derivative Ẋ(t0) of X at t0 is full rank, i.e., rank(Ẋ(t0)) = s,
where X(t) denotes the exact solution of (1).
Now, as Ẋ(t0) = −C0 = A X0 + X0 B − C , then C0 = C − (A X0 + X0 B). It
follows that the matrix function given by Y (t) = X(t) − X0 is the unique solution of
the following system

{
Ẏ (t) = A Y (t) + Y (t) B − C0, t ∈ [t0, T]
Y (t0) = 0.

Consequently, we may first solve the previous differential equation to get Y (t) and
then deduce the solution X(t) = Y (t) + X0 of the differential equation (1). Thus, in
the rest of this section, we will consider that X0 = 0 as an initial condition in (1)

To obtain approximate solutions to the algebraic Sylvester equation (2), one can
use the block Arnoldi method in which we consider approximate solutions that have
the following form

X̃m = V
A
m Ỹm, (13)

where V
A
m is the orthonormal Krylov basis generated by applying m iterations of

Algorithm 2 to the pair (A,C). Let R̃m be the algebraic residual given by

R̃m = C − (
A X̃m + X̃m B

)
. (14)

123

Numerical Algorithms (2024) 96:449–488 459

The correction Ỹm , is obtained by imposing the Petrov-Galerkin condition

(VA
m)T R̃m = 0m s×s .

Thus, taking into account the relations (9)–(11) and (13), it follows that Ỹm is the
solution of the reduced Sylvester equation

H
A
m Y + Y B = Cm,

where HA
m = (VA

m)T AV
A
m and Cm = (VA

m)T C . Note that from Algorithm 2, we also
get that C = V

A
m Cm . Now, if σ(HA

m) ∩ σ(−B) = ∅, then the previous Sylvester
equation admits a unique solution which can be obtained by a direct method [4, 19].
In addition, from the relations (9)-(11), the residual R̃m satisfies the following relation

R̃m = −V A
m,s Ỹm . (15)

According to [33, 35], the following approximation to e(t−t0) A X̃∗ holds

e(t−t0) A X̃∗ � V
A
m e(t−t0)HA

m (VA
m)T X̃m .

It follows, that an approximate solution Xm(t), for t ∈ [t0, T], to the exact solution
X∗(t) of the differential Sylvester matrix equation (1) may be obtained by

Xm(t) = −V
A
m e(t−t0)HA

m (VA
m)T X̃m e(t−t0) B + X̃m .

Taking into account (13), it follows that

Xm(t) = V
A
m Ym(t), t ∈ [t0, T], (16)

where
Ym(t) = −e(t−t0)HA

m Ỹm e(t−t0) B + Ỹm, t ∈ [t0, T]. (17)

This matrix function satisfies the following result.

Proposition 5 The matrix function Ym(t) given by (17) is the unique solution of the
reduced differential Sylvester matrix equation

{
Ẏ (t) = H

A
m Y (t) + Y (t) B − Cm, t ∈ [t0, T]

Y (t0) = 0.
(18)

Proof The derivative of the matrix function Ym(t) as given by (17) is

Ẏm(t) = −e(t−t0)HA
m

(
H

A
m Ỹm + Ỹm B

)
e(t−t0) B, t ∈ [t0, T].

123

460 Numerical Algorithms (2024) 96:449–488

On the other hand, we have

H
A
m Ym(t) + Ym(t) B − Cm = −e(t−t0)HA

m

(
H

A
m Ỹm + Ỹm B

)
e(t−t0) B

+H
A
m Ỹm + Ỹm B − Cm, t ∈ [t0, T].

Thus, it follows that

Ẏm(t) −
(
H

A
m Ym(t) + Ym(t) B − Cm

)
= 0,

and additionally, Ym(t) satisfies the initial condition Ym(t0) = 0. ��
Remark 3 Proposition 5 shows that another way to obtain an approximation of Ym(t)
can be the resolution of the projected and reduced differential equation (17) by using
an adequate numerical ODE solver such as Runge–Kutta or BDF solvers. We recall
that such technique was used in [20, 21]. In our proposed method, we do not use
such approach, but instead, we solve the reduced corresponding algebraic equation
by taking into account the approximations (16) together with the relation (17).

Now, let Rm(t) be the residual associated to the approximate solution Xm(t), i.e.,

Rm(t) = Ẋm(t) − (A Xm(t) + Xm(t) B − C), t ∈ [t0, T]. (19)

The following proposition gives an expression for this residual.

Proposition 6 The residual for the differential equation is given by

Rm(t) = −V A
m,s Ym(t) (20)

= V A
m,s e

(t−t0)HA
m Ỹm e(t−t0) B + R̃m, (21)

where R̃m is the algebraic residual given in (14). Moreover

(VA
m)T Rm(t) = 0m s×s, ∀t ∈ [t0, sT]. (22)

Proof Replacing, in (19), Xm(t) by its expression given by (16), we get

Rm(t) = V
A
m Ẏm(t) − AV

A
m Ym(t) − V

A
m Ym(t) B + C .

Then, using (9), we obtain

Rm(t) = V
A
m Ẏm(t) −

(
V

A
m H

A
m + V A

m,s

)
Ym(t) − V

A
m Ym(t) B + V

A
m Cm .

= V
A
m

(
Ẏm(t) −

[
H

A
m Ym(t) + Ym(t) B − Cm

])
− V A

m,s Ym(t).

123

Numerical Algorithms (2024) 96:449–488 461

As Ym(t) is the solution of (18), we then get (20). Now, according to (17), we obtain

Rm(t) = V A
m,s e

(t−t0)HA
m Ỹm e(t−t0) B − V A

m,s Ỹm .

Finally, from (15), we get (21) and then the relation (22) follows immediately. ��
Note that if HA

m and B are stable, i.e., all the eigenvalues of HA
m and B belong to

the half part of C whose real part is negative. It follows that,

lim
T→+∞ e(T−t0)HA

m = 0m s×m s and lim
T→+∞ e(T−t0) B = 0s×s .

Then, using (21), we get
lim

T→+∞ Rm(T) = R̃m .

Now, let In addition and as done in the previous section, we consider the differential
error Em given by

Em(t) = X∗(t) − Xm(t), ∀t ∈ [t0, T].
We recall that Xm(t) and X∗(t) are the approximate and exact solutions to the

differential equation, respectively. The following result gives an error estimate for the
error norm Em .

Theorem 2 Suppose that m steps of the block Arnoldi process were run and let
Zm(t) := e(t−t0)HA

m Ỹm e(t−t0) B, then the following error estimate holds

‖Em(t)‖ ≤
(
e(t−t0)(‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

)
(r Am + ‖zAm(t)‖), ∀t ∈ [t0, T].

It follows that

‖Em‖∞ ≤
(
eΔT (‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

)
(r Am + ‖zAm‖∞),

where r Am = ‖R̃m‖ = ‖H A
m+1,m Ym‖ and zAm(t) = H A

m+1,m Zm(t), with Ym, Zm(t)

are the matrices of size s × s formed by the s last rows of Ỹm and Zm(t), respectively.

Proof From (19) and the differential Sylvester matrix equation (1), we have

Ėm(t) = Ẋ∗(t) − Ẋm(t) = A
(
X∗(t) − Xm(t)

) + (
X∗(t) − Xm(t)

)
B − Rm(t),

with Em(t0) = 0. Thus, the function Em(t) satisfies the following differential Sylvester
matrix equation

{
Ėm(t) = A Em(t) + Em(t) B − Rm(t), t ∈ [t0, T]
Em(t0) = 0.

123

462 Numerical Algorithms (2024) 96:449–488

So, Em(t) may be written by the following integral formula

Em(t) = −
∫ t

t0
e(t−s) A Rm(t) e(t−s) B ds.

Passing to the norm, for all t ∈ [t0, T], we get

‖Em(t)‖ ≤
∫ t

t0
‖e(t−s) A Rm(t) e(t−s) B‖ ds ≤ ‖Rm(t)‖

∫ t

t0
‖e(t−s) A‖ ‖e(t−s) B‖ ds.

As, ‖eα M‖ ≤ eα‖M‖ for α ≥ 0 and M = A or M = B, we obtain that, for all
t ∈ [t0, T],

‖Em(t)‖ ≤ ‖Rm(t)‖
∫ t

t0
e(t−s) (‖A‖+‖B‖) ds.

This gives after integration that, for all t ∈ [t0, T] we have

‖Em(t)‖ ≤
(
e(t−t0) (‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

)
‖Rm(t)‖.

Then using (21) and the triangular inequality, we get

‖Em(t)‖ ≤
(
e(t−t0) (‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

)
(r Am + ‖zAm(t)‖), f orallt ∈ [t0, T].

Finally, the desired result is obtained by passing to the uniform norm. ��
Now, we point out that (20) provides a cheap formula for computing at each node

tk the norm rm,k := ‖Rm(tk)‖ of the residual associated to the approximate solution
Xm,k := Xm(tk). This formula avoids computingmatrix vector products with the large
coefficient matrix A since we have

rm,k := ‖Rm(tk)‖ = ‖H A
m+1,m (E(s)

m)T Ym,k‖ = ‖H A
m+1,m Ym,k‖, (23)

where Ym,k = (E
(s)
m)T Ym,k is the matrix of size s × s formed by the last s rows of the

matrix Ym,k := Ym(tk).

Finally, we end this section by summarizing in Algorithm 3 our proposed method
that is the block Arnoldi combined with the constant solution method (BA-CSM)
applied for full-rank differential Sylvester equations

4.3 Low-rank case

Now, we consider the case where both A and B are large matrices. Here, we assume
that the derivative Ẋ(t0) of X at t0 is low-rank and given under the factored form

123

Numerical Algorithms (2024) 96:449–488 463

Algorithm 3 Block Arnoldi Constant Solution Method (BA-CSM) (Full-rank case).
1: Input: The matrices A, B, C , the initial and final times t0, T , a tolerance tol > 0, a maximum number

of iterations Mmax , a step-size parameter p and N the number of nodes in the time discretization.
2: Output Xm,1, . . . , Xm,N , where Xm,k = Xm (tk), (1 ≤ k ≤ N)

3: Compute δT = (T − t0)/N .
4: for m = 1, . . . , Mmax do
5: Compute V A

m to update the orthonormal basis VA
m =

[
V A
1 , . . . , V A

m

]
and get the m-th block of HA

m

by applying Algorithm 2 to (A,C);
6: if m is a multiple of p then
7: Compute: Cm = (VA

m)T C .
8: Solve the reduced Sylvester equation: HA

m Ỹm + Ỹm B = Cm .

9: for k = 1, . . . , N do
10: Compute tk = tk−1 + δT .

11: Compute Ym,k := Ym (tk) = −e(tk−t0)H
A
m Ỹm e(tk−t0) B + Ỹm .

12: Compute rm,k = ‖H A
m+1,m Ym,k‖.

13: end for
14: Compute rmax = max{rm,1, . . . , rm,N }
15: if rmax < tol then
16: go to line 20;
17: end if
18: end if
19: end for
20: for k = 1, . . . , N do
21: The approximate solution Xm,k at time tk is Xm,k = V

A
m Ym,k .

22: end for

Ẋ(t0) = −E FT where E ∈ R
n×r and F ∈ R

s×r and X(t) is the exact solution of
(1). Then, Ẋ(t0) = −E FT = A X0 + X0 B −C , thus E FT = C − (A X0 + X0 B).
As in the full-rank case, it follows that the matrix function given by Y (t) = X(t)− X0
is the unique solution of the following system

{
Ẏ (t) = A Y (t) + Y (t) B − E FT , t ∈ [t0, T]
Y (t0) = 0.

Accordingly, we can first solve the previous differential equation to get Y (t) and
subsequently deduce the solution X(t) = Y (t) + X0 of the differential equation (1).
Thus, in the rest of this section, we took X0 = 0 as an initial condition and assume
that C is factored in the form C = E FT .

To obtain approximate solutions to the low-rank algebraic Sylvester equation (2),
we can use the block Arnoldi method in which we consider approximate solutions that
have the form

X̃m = V
A
m Ỹm (VB

m)T , (24)

where V
A
m , V

B
m are the orthonormal matrices obtained by running m iterations of

Algorithm 2 applied to the pairs (A, E) and (BT , F) respectively.
Enforcing the following Petrov-Galerkin condition

(VA
m)T R̃m V

B
m = 0m r×m r ,

123

464 Numerical Algorithms (2024) 96:449–488

to the algebraic residual R̃m given by

R̃m = E FT − (A X̃m + X̃m B). (25)

Multiplying (25) on the left by (VA
m)T and on the right by V

B
m and taking into

account relations (9)–(11) and (24), it follows immediately, that Ỹm is the solution of
the reduced projected Sylvester equation

H
A
m Y + Y (HB

m)T = Em FT
m , (26)

where H
A
m = (VA

m)T AV
A
m , H

B
m = (VB

m)T BT
V

B
m are the m r × m r upper block

Hessenberg matrices generated by the block Arnoldi process and Em = (VA
m)T E ,

Fm = (VB
m)T F . Note that from Algorithm 2, we also get that E = V

A
m Em and

F = V
B
m Fm . Here also, if σ(HA

m)∩σ(−H
B
m) = ∅, then equation (26) admits a unique

solutionwhich can be computed using a standard directmethod such as those described
in [4, 19]. Using the relation (9)–(10) and from the relations (24)–(26), we get

R̃m = −V A
m,r Ỹm (VB

m)T − V
A
m Ỹm (V B

m,r)
T , (27)

where V A
m,r = V A

m+1 H
A
m+1,m (E

(r)
m)T and V B

m,r = V B
m+1 H

B
m+1,m (E

(r)
m)T . We also

notice that, according to [33, 35], an approximation to e(t−t0) A X̃∗e(t−t0) B may be
obtained as

e(t−t0) A X̃∗ e(t−t0) B � V
A
m e(t−t0)HA

m (VA
m)T X̃m V

B
m e(t−t0) (HB

m)T (VB
m)T .

Then, it follows, that an approximate solution Xm(t) to the exact solution X∗(t) of
the differential Sylvester matrix equation (1) may be given by

Xm(t) = −V
A
m e(t−t0)HA

m (VA
m)T X̃m V

B
m e(t−t0) (HB

m)T (VB
m)T + X̃m .

Taking into account (24) gives that

Xm(t) = V
A
m Ym(t) (VB

m)T , t ∈ [t0, T], (28)

where
Ym(t) = −e(t−t0)HA

m Ỹme
(t−t0) (HB

m)T + Ỹm, t ∈ [t0, T]. (29)

As in the full-rank case, we have the following proposition.

Proposition 7 The matrix function Ym(t) given by (29) is the unique solution of the
reduced differential Sylvester matrix equation

{
Ẏ (t) = H

A
m Y (t) + Y (t) (HB

m)T − Em FT
m , t ∈ [t0, T]

Y (t0) = 0.
(30)

123

Numerical Algorithms (2024) 96:449–488 465

Proof The derivative of the matrix function Ym(t) as given by (29) is

Ẏm(t) = −e(t−t0)HA
m

(
H

A
mỸm + Ỹm(HB

m)T
)
e(t−t0) (HB

m)T , t ∈ [t0, T].

On the other hand, we have

H
A
m Ym(t) + Ym(t) (HB

m)T − Em FT
m =

−e(t−t0)HA
m

(
H

A
m Ỹm + Ỹm (HB

m)T
)
e(t−t0) (HB

m)T

+H
A
m Ỹm + Ỹm (HB

m)T − Em FT
m .

Thus, it follows that

Ẏm(t) − H
A
m Ym(t) − Ym(t) (HB

m)T + Em FT
m = 0.

Moreover, Ym(t) satisfies the initial condition Ym(t0) = 0. ��
Next, the following proposition gives a useful expression of the residual which is
defined, in the low-rank case, by

Rm(t) = Ẋm(t) − (A Xm(t) + Xm(t) B − E FT), t ∈ [t0, T]. (31)

Proposition 8 The residual for the differential equation is given by

Rm(t) = −V A
m,r Ym(t) (VB

m)T − V
A
m Ym(t) (V B

m,r)
T , (32)

= V A
m,r Zm(t) (VB

m)T + V
A
m Zm(t) (V B

m,r)
T + R̃m, (33)

where Zm(t) = e(t−t0)HA
m Ỹm e(t−t0) (HB

m)T and R̃m is the algebraic residual given by
(25). In addition,

(
V

A
m

)T
Rm(t)VB

m = 0m r×m r , ∀t ∈ [t0, T]. (34)

Proof Using the definition (31) of the residual Rm(t) and replacing Xm(t) by its
expression given in (28), we get

Rm(t) = V
A
m Ẏm(t) (VB

m)T − AV
A
m Ym(t) (VB

m)T − V
A
m Ym(t) (VB

m)T B + E FT .

Now, using the algebraic relation (9) in which M is replaced either by A or by B,
we obtain

Rm(t) = V
A
m Ẏm(t) (VB

m)T −
(
V

A
m H

A
m + V A

m,r

)
Ym(t) (VB

m)T

−V
A
m Ym(t)

(
(HB

m)T (VB
m)T + (V B

m,r)
T
)

+ V
A
m Em FT

m (VB
m)T .

123

466 Numerical Algorithms (2024) 96:449–488

This may be arranged as following

Rm(t) = V
A
m

(
Ẏm(t) − H

A
m Ym(t) − Ym(t)(HB

m)T + Em FT
m

)
(VB

m)T

−V A
m,r Ym(t) (VB

m)T − V
A
mYm(t) (V B

m,r)
T .

Taking into account (30), we get (32). The relation (33) follows by replacing Ym(t)
by its expression (29) and taking into account (27). Finally, (34) is straightforward
since VA

m and V
B
m are orthogonal matrices. ��

Similarly to the full-rank case, let us remark that if HA
m and H

B
m are stable, then

lim
T→+∞ Rm(T) = R̃m .

Let Em(t) = X∗(t)−Xm(t) be the error at the stepm. As in the previous subsection,
we have the following error estimates.

Theorem 3 Suppose that m steps of the block Arnoldi process were run and let
Zm(t) := e(t−t0)HA

m Ỹm e(t−t0) (HB
m)T . Then, we have the following error estimate:

||Em(t)|| ≤
(
e(t−t0)(‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

) √(
r Am + ‖zAm(t)‖)2 + (

r Bm + ‖zBm(t)‖)2, ∀t ∈ [t0, T].

It follows that

||Em ||∞ ≤
(
eΔT (‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

) √(
r Am + ‖zAm‖∞

)2 + (
r Bm + ‖zBm‖∞

)2
,

where r Am = ‖H A
m+1,m Ym‖, r Bm = ‖Ŷm (HB

m+1,m)T ‖, zAm(t) = H A
m+1,m Zm(t) and

zBm(t) = Ẑm(t) (HB
m+1,m)T .

The matrices Ym, Zm(t) are of size r × r and are formed by the last r rows of Ỹm
and Zm(t) respectively while the matrices Ŷm, Ẑm are of size r × r and are formed by
the last r columns of Ỹm and Zm(t), respectively.

Proof As previously done in the proof of Theorem 2, we obtain by similar arguments
that, for all t ∈ [t0, T] we have

‖Em(t)‖ ≤
(
e(t−t0) (‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

)
‖Rm(t)‖.

From (33) and (27), we get

Rm(t) = V A
m,r

(
Zm(t) − Ỹm

)
(VB

m)T + V
A
m

(
Zm(t) − Ỹm

)
(V B

m,r)
T .

As the n × n matrices V A
m,r

(
Zm(t) − Ỹm

)
(VB

m)T and VA
m

(
Zm(t) − Ỹm

)
(V B

m,r)
T

are F-orthogonal, namely

〈V A
m,r

(
Zm(t) − Ỹm

)
(VB

m)T |VA
m

(
Zm(t) − Ỹm

)
(V B

m,r)
T 〉 = 0.

123

Numerical Algorithms (2024) 96:449–488 467

Therefore,

‖Rm(t)‖2 =
∥∥∥V A

m,r

(
Zm(t) − Ỹm

)
(VB

m)T
∥∥∥2 +

∥∥∥VA
m

(
Zm(t) − Ỹm

)
(V B

m,r)
T
∥∥∥2 .

Now, using the triangular inequality, we get that for all t ∈ [t0, T], we have
∥∥∥V A

m,r

(
Zm(t) − Ỹm

)
(VB

m)T
∥∥∥ ≤ r Am + ‖zAm(t)‖,

and similarly, we also have

∥∥∥VA
m

(
Zm(t) − Ỹm

)
(V B

m,r)
T
∥∥∥ ≤ r Bm + ‖zBm(t)‖.

which completes the proof. ��

To continue the description of the present method, we notice that (32) enables us to
check if ‖Rm(t)‖ < tol -where tol is some fixed tolerance-, without having to
compute extra products involving the large matrices A and B. More precisely, we
have

‖Rm(t)‖ =
√

‖H A
m+1,m (E

(r)
m)T Ym(t)‖2 + ‖Ym(t)E(r)

m (HB
m+1,m)T ‖2. (35)

We end this subsection by recalling that in the case of large-scale problems, and as
suggested in [24, 39], it is important to get the approximate solution Xk := Xm(tk) at
each time tk as a product of two low-rank matrices. If Yk = V Σ WT is the singular
value decomposition of Yk , where Σ = diag[σ1, σ2, . . . , σm r] is the diagonal matrix
of the singular values of Yk sorted in decreasing order, then by considering Vl and Wl

the m r × l matrices of the first l columns of V and W corresponding respectively
to the l singular values of magnitude greater than some tolerance τ , we get for each
k = 1, . . . , N

Xk ≈ Z A
k (Z B

k)T ,

where Z A
k = V

A
m Vl Σ

1/2
l and Z B

k = V
B
m Wl Σl

1/2.

The block Arnoldi combined with the constant solution method (BA-CSM) for
solving the differential Sylvester matrix equation, in the case where C is low-rank,
i.e., C = EFT , is summarized in Algorithm 4.

Before investigating the performance and efficiency of the different algorithms
described previously, we will show in the next section, how to construct a differential
Sylvester equation which have a known exact solution.

123

468 Numerical Algorithms (2024) 96:449–488

Algorithm 4 Block Arnoldi Constant Solution Method (BA-CSM) (Low-rank case).
1: Input: The matrices A, B, E , F , the initial and the final times t0, T , a tolerance tol > 0, a maximum

number of iterations Mmax , a step-size parameter p, the number N of nodes in the time discretization
and the tolerance τ for the truncated SVD.

2: Output Xm,1, . . . , Xm,N , where Xm,k := Xm (tk), (1 ≤ k ≤ N)

3: Compute δT = (T − t0)/N .
4: for m = 1, . . . , Mmax do
5: Compute V A

m and V B
m to update the orthonormal basesVA

m =
[
V A
1 , . . . , V A

m

]
,VB

m =
[
V B
1 , . . . , V B

m

]
and get the m-th blocks of HA

m and HB
m by applying Algorithm 2 to (A, E) and (BT , F) respectively;

6: if m is a multiple of p then
7: Compute: Em = (VA

m)T E and Fm = (VB
m)T F .

8: Solve the reduced Sylvester equation: HA
m Ỹm + Ỹm (HB

m)T = Em FT
m .

9: for k = 1, . . . , N do
10: Compute tk = tk−1 + δT .

11: Compute Ym,k := Ym (tk) = −e(tk−t0)H
A
m Ỹm e(tk−t0) (HB

m)T + Ỹm .

12: Compute rm,k =
√

‖H A
m+1,m (E

(r)
m)T Yk‖2 + ‖Yk E(r)

m (HB
m+1,m)T ‖2.

13: end for
14: Compute rmax = max{rm,1, . . . , rm,N }
15: if rmax < tol then
16: go to line 20;
17: end if
18: end if
19: end for
20: for k = 1, . . . , N do
21: Compute the SVD of Yk , i.e., Yk = U Σ WT where Σ = diag[σ1, . . . , σmr] and σ1 ≥ . . . ≥ σmr ;
22: Find l such that σl+1 ≤ τ < σl and let �l = diag[σ1, . . . , σl];
23: Form Z A

k = V
A
m Ul Σ

1/2
l and Z B

k = V
B
m Wl Σ

1/2
l ;

24: The approximate solution Xm,k at time tk is Xm,k ≈ Z A
k (Z B

k)T .
25: end for

5 Two constructed benchmark examples

In this section, we construct two examples of Sylvester (or Lyapunov) differential
systems for which we give an explicit formula for computing the unique solution.
The main idea behind such a construction is to have at hand a differential equation
for which we have a reference solution to which we can compare the approximate
solutions delivered by the different proposed methods. It should be noted that both of
the two constructed benchmark examples can be used in large-scale cases, as can be
seen in the following subsections.

5.1 A benchmark example based on nilpotent matrices

In this first example, we construct a differential Sylvester matrix equations for which
the unique exact solution is explicitly known. To the best of our knowledge, this
construction is new and has never been proposed before, in the literature. Moreover,
we derive two formulas for the exact solution. The first one is based on the integral
formula while the second one is based on the constant solution approach.

123

Numerical Algorithms (2024) 96:449–488 469

Let p0 ≥ 3 be a small integer, n0, s0 two other integers and K , R ∈ R
p0×p0 be two

nilpotent matrices of index p0 (K p0 = Rp0 = 0p0). Let also n = p0 n0, s = p0 s0
and A0 ∈ R

n0,×n0 , B0 ∈ R
s0,×s0 , X0,C ∈ R

n×s . For two real numbers α and β, we
consider the matrices

A = α In + A0 ⊗ K , B = β Is + B0 ⊗ R. (36)

Then, for any real t and for any matrix X of size n × s, we can check that:

et AXet B =
(p0−1∑

i=0

p0−1∑
j=0

t i+ j Li, j (X)
)
e(α+β) t ,

where Li, j (X) = 1

i ! j ! (A
i
0 ⊗ Ki)X(B j

0 ⊗ R j).

Assuming that α + β < 0, then the unique solution X̃∗ of the algebraic Sylvester
matrix equation A X + X B = C is given by the formula (see [32]),

X̃∗ = −
∫ +∞

0
et A C et B dt .

Straightforward calculations give

X̃∗ =
p0−1∑
i=0

p0−1∑
j=0

(−1)i+ j

(α + β)i+ j+1Ci, j ,

where Ci, j = Li, j (C) = 1

i ! j ! (A
i
0 ⊗ Ki)C(B j

0 ⊗ R j). Then, using formula (6), the

unique solution of the differential Sylvester matrix equation (1) is the matrix function
X∗(t) given by

X∗(t) = e(t−t0) A (X0 − X̃∗) e(t−t0) B + X̃∗.

It follows that

X∗(t) =
p0−1∑
i=0

p0−1∑
j=0

[
(t − t0)

i+ j e(α+β) (t−t0) Li, j (X0 − X̃∗) + (−1)i+ j

(α + β)i+ j+1 Li, j (C)

(37)
Conversely, we may check that the matrix function given by (37) is a solution of

the differential Sylvester equation satisfying the given initial condition. This leads to
note that the condition α + β < 0 is in fact superfluous.

We may also obtain the solution X∗(t) of the differential Sylvester matrix equation
by using the integral formula (3), since we have

X∗(t) = e(t−t0) A X0 e
(t−t0) B −

∫ t

t0
e(t−u) A C e(t−u) B du.

123

470 Numerical Algorithms (2024) 96:449–488

It follows that,

X∗(t) =
p0−1∑
i=0

p0−1∑
j=0

[
(t − t0)

i+ j e(α+β) (t−t0) Li, j (X0) − Ii+ j (t) Li, j (C)
]
, (38)

where the scalar functions Ik(t) are given by Ik(t) =
∫ t

t0
(t − u)k e(α+β) (t−u) du. The

expression of the functions Ik(t) are obtained by recursion. Indeed, we have

I0(t) = 1

α + β

(
e(α+β) (t−t0) − 1

)
,

and for k ≥ 1 by parts integration, we have

Ik(t) = 1

α + β

(
(t − t0)

k e(α+β) (t−t0) − k Ik−1(t)
)
.

Then, we may show by induction that, for all k ≥ 0, we have

Ik(t) = k!
(α + β)k+1

(k∑
�=0

(−1)�
(α + β)� (t − t0)�

�! e(α+β)� (t−t0) − (−1)k
)
.

Before ending this subsection, let us remark that in this benchmark example, the
matrix C is arbitrary and then can also be taken in the low-rank form C = E FT ,
where E ∈ R

n×r and F ∈ R
s×r .

5.2 A benchmark example based on the spectral decomposition

The secondbenchmark example is inspired by the paper byBehr et al, see [5].However,
unlike the techniques described in [5], we do not assume that the matrix coefficients
are diagonalizable, and instead we propose a technique based on a truncated (partial)
spectral decomposition of the matrix coefficients.

In the following, given a square matrix M of size n and a rank qM�n, the partial
spectral decomposition of rank qM associated with M that we consider is the one
given byM UM = UM DM where DM = diag(μ1,, μqM) is the qM ×qM diagonal
matrix formed by theqM largestmagnitude eigenvalues ofM andUM is the rectangular
matrix of size n × qM whose columns are the corresponding eigenvectors. We recall
that, in Matlab, the coefficients DM and UM are obtained via the instruction [UM ,
DM]=eigs(M , qM).

5.2.1 Sylvester differential case

Here, we assume the existence of two partial spectral decomposition of rank qA � n
and qB � s associated to A and BT respectively. Thus, there exists two rectan-
gular matrices UA and UB of size n × qA and s × qB and two diagonal matrices

123

Numerical Algorithms (2024) 96:449–488 471

DA = diag[α1, . . . , αqA] and DB = diag[β1, . . . , βqB] of size qA ×qA and qB ×qB
respectively, such that AUA = UA DA and BT UB = UB DB . Moreover, we assume
that the condition αi + β j �= 0 holds for all 1 ≤ i ≤ qA and for all 1 ≤ j ≤ qB .
Then, letting E1 of size qA × r , F1 of size qB × r be two given block vectors and

Q =
(

1

αi + β j

)
1≤i≤qA
1≤ j≤qB

, it is obvious to see, that

Ỹ ∗ = Q � (E1F
T
1),

is the unique solution of the following algebraic Sylvester equation DA Z + Z DB =
E1FT

1 .
Using the constant solution method, we get that the unique solution Y ∗(t) of the

linear differential system

{
Ẏ (t) = DA Y (t) + Y (t) DB − E1FT

1
Y (t0) = 0,

(39)

is given by
Y ∗(t) = −e(t−t0) DA Ỹ ∗ e(t−t0) DB + Ỹ ∗.

As DA and DB are diagonal matrices, then

e(t−t0) DA = diag[e(t−t0) α1 , . . . , e(t−t0) αqA] and e(t−t0) DB

= diag[e(t−t0) β1 , . . . , e(t−t0) βqB].

It follows that, the unique solution of the differential system (39) is given by

Y ∗(t) = (−G(t) + Q) � (E1 F
T
1) = H(t) � (E1 F

T
1), (40)

where the matrix-valued functions G(t) and H(t) are given by

G(t) =
(
e(t−t0) (αi+β j)

αi + β j

)
1≤i≤qA
1≤ j≤qB

and H(t) = −G(t) + Q =
(
1 − e(t−t0) (αi+β j)

αi + β j

)
1≤i≤qA
1≤ j≤qB

.

Now, multiplying the differential equation in (39), on the left by UA and on the right
by UT

B and using the fact that AUA = UA DA and BT UB = UB DB , we get

UA Ẏ (t)UT
B = AUA Y (t)UT

B +UA Y (t)UT
B B − (UA E1)(UB F1)

T .

Consequently, if E = UA E1 and F = UB F1, then the following Sylvester differ-
ential system {

Ẋ(t) = A X(t) + X(t) B − EFT

X(t0) = 0,
(41)

123

472 Numerical Algorithms (2024) 96:449–488

has X∗(t) = UA Y ∗(t)UT
B as the unique solution. From (40), we have

X∗(t) = UA

(
H(t) � (E1 F

T
1)

)
UT

B . (42)

Furthermore, let us notice that the algebraic Sylvester equation A X+X B = E FT

has as unique solution the matrix X̃∗ given by

X̃∗ = UA

(
Q � (E1 F

T
1)

)
UT

B .

5.2.2 Lyapunov differential case

Let A be a large sparse matrix of size n × n, M be a real symmetric definite positive
matrix of size n × n and q � n a small integer. Next, we consider the truncated
spectral decomposition of order q of the pair (A, M) given by AU = M U D where
D = diag[α1, . . . , αq] of size q × q is a diagonal matrix containing the q first
largest magnitude eigenvalues of M−1A and U of size n × q whose columns are the
corresponding eigenvectors. Let also E1 be a full-rank block vector of size q × r with
r � n.

Let us also consider the following q × q differential system:

{
Ẏ (t) = D Y (t) + Y (t) D − E1 ET

1
Y (t0) = 0.

(43)

Then, its associated algebraic equation D Z+Z D = E1 ET
1 has as unique solution

Ỹ ∗ = Q � (E1 ET
1), where the matrix Q is given by Q =

(
1

αi + α j

)
1≤i, j≤q

.

Using the constant solution method, we verify that Y ∗(t) = −e(t−t0)DỸ ∗e(t−t0)D +
Ỹ ∗, is the unique solution of the linear system (43). In addition, as D is diagonal, then
e(t−t0) D = diag[e(t−t0) α1 , . . . , e(t−t0) αq] and the unique solution is given by

Y ∗(t) = (−G(t) + Q) � (E1 E
T
1) = F(t) � (E1 E

T
1), (44)

where the matrix-valued functions G(t) and F(t) are

G(t) =
(
e(t−t0) (αi+α j)

αi + α j

)
1≤i, j≤q

and H(t) = −G(t) + Q =
(
1 − e(t−t0) (αi+α j)

αi + α j

)
1≤i, j≤q

.

Now, left and rightmultiplying the differential equation in (43) byM U andUT MT

respectively, we get

M U Ẏ (t)UT MT = M U D Y (t)UT MT + M U Y (t) DUT MT − F FT ,

123

Numerical Algorithms (2024) 96:449–488 473

where the block vector F = M U E1 is of size n×r . Now, as AU = M U D, then we
get that X∗(t) = U Y ∗(t)UT is the unique solution the following Lyapunov matrix
differential equation

{
M Ẋ(t) MT = A X(t) MT + M X(t) AT − F FT

X(t0) = 0.
(45)

Finally, we note that from (44), we get

X∗(t) = U
[
H(t) � (E1 E

T
1)

]
UT . (46)

We end this subsection by recalling that generalized differential Lyapunov matrix
equations of kind (45) are used to define optimal controls for a finite element dis-
cretization of a heat equation, see [5, 9]. We also note that the last differential system
(45) is equivalent to the following one:

{
Ẋ(t) = ÃX(t) + X(t) ÃT − EET

X(t0) = 0,
(47)

where Ã = M−1 A and E = U E1.

6 Numerical experiments

In this section, a serie of numerical tests is presented to examine the performance and
potential of Algorithms 1, 3 and 4. We have compared our proposed method which
is based on relation (6) with those based on the integral formula (3) and described
in [21, 38]. We recall that the algorithms described in the two cited previous papers
only provide an approximate solution at the final time T and moreover they only
deal with the case of low-rank differential equations. Thus, we modified Algorithm
1 and Algorithm 4 proposed in [21] and [38] respectively, so that they provide an
approximate solution Xm,k = Xm(tk) at each node tk of the discretization of the time
interval [0, T] as it is the case in Algorithm 4. Moreover, we have drafted other codes
based on the integral formula (3) and equivalent to Algorithms 1 and 3.

It should be noted that in all the examples given here, we suppose that the matrix
X0 appearing in the initial condition of (1) is equal to zero, i.e., X0 = 0n×s . Fur-
thermore, we consider different time intervals [t0, T] where t0 = 0 is fixed once and
for all, while T is indicated in each example. The time interval [0, T] is divided into
sub-intervals of constant length δT = T

N where N is the number of nodes. All the
numerical experiments were performed using MATLAB and have been carried out on
an Intel(R) Core(TM) i7 with 2.60 GHz processing speed and 16 GBmemory. In order
to implement the different algorithms described in this work, we used the following
MATLAB functions:

– expm: it allows to calculate the exponential of a square matrix. This function is
based on a scaling and squaring algorithm with a Padé approximation [25].

123

474 Numerical Algorithms (2024) 96:449–488

– lyap: it allows to solve Sylvester or Lyapunovmatrix equations. For our purposes,
the instruction lyap(A,B,-C) delivers the matrix X solution of the algebraic
Sylvester equation A X + X B = C .

– integral: it allows to calculate numerically an integral, using the arguments
“ArrayValued” and “true.”

– eigs: it allows to calculate numerically the partial spectral decomposition of a
couple of sparse matrices.

Furthermore, we precise that when the constant solution or integral formula meth-
ods are combined with the block Arnoldi process to obtain an approximate solution to
the differential equation, the iterations were stopped as soon as the dimension of the
Krylov subspace generated by the block Arnoldi process reaches a maximum value
m = Mmax = 110 or as soon as the maximal norm rmax computed by the algo-
rithm is lower than 10−10 μ where μ = ‖A‖ + ‖B‖ + ‖C‖ in the full-rank case and
μ = ‖A‖+‖B‖+‖E‖ ‖F‖ in the low-rank case. We also mention that in the numer-
ical examples, the right-hand side C or its factors E and F were generated randomly.

To compare the performances of the constant solution method (in short CS or CS-
BAwhen combined with the block Arnoldi process) with those of the Integral Formula
method (in short IF or IF-BAwhen combined with the block Arnoldi process or IF-GA
when combined with the global Arnoldi process), we used the following comparison
criteria:

– TR: the time ratio between the cpu-time of a Constant Solution (CS) based method
and an Integral Formula (IF) based method is defined by

TRMCMI = cpu − time(MC)

cpu-time(MI)
, (48)

where MC ∈ {CS, CS-BA} stands for one of the methods based on the constant
solution approach andMI∈ {IF, IF-BA, IF-GA} denotes one of themethods
based on the integral formula.

– RDN: the relative difference norm between XCS−BA and X I F−BA which are the
approximate solutions delivered by the constant solution and the integral formula
methods respectively when they are combined the block Arnoldi process.

RDNCS−BA
IF−BA = max

k=0,1,...,N

‖XCS−BA
k − X I F−BA

k ‖
‖X I F−BA

k ‖ .

We point out that this criteria is used when the exact solution of the differential
Sylvester equation is not available.

– REN: the relative error norm between the exact solution and an approximate solu-
tion obtained either by a constant solution based algorithmor by an integral formula

123

Numerical Algorithms (2024) 96:449–488 475

based algorithm.More precisely, letting X Ref be the reference solution computed
by (37), (38), (42) or (46), we define the following quantities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RENCS−BA = max
k=0,1,...,N

‖XCS−BA
k − X Ref

k ‖
‖X Ref

k ‖
,

RENI F−BA = max
k=0,1,...,N

‖X I F−BA
k − X Ref

k ‖
‖X Ref

k ‖
RENI F−GA = max

k=0,1,...,N

‖X I F−GA
k − X Ref

k ‖
‖X Ref

k ‖

(49)

Before describing the different numerical tests we performed, we mention that, to
generate the exact solution given by (37) in the first benchmark example, we chose
p0 = 3 and we considered different values for the parameters α, β as well as different
matrices A0, B0. On the other hand the matrices K and R are fixed and are once and
for all, as follows

K =
⎡
⎣ 3 8 −19

−1 −5 11
0 −1 2

⎤
⎦ , R =

⎡
⎣ 1 1 1

0 0 0
−1 0 −1

⎤
⎦ .

6.1 Experiment 1

In this first example, the numerical tests are done with moderate size matrices A
and B. We compare the solution provided by our proposed constant solution method
implemented via Algorithm 1 with the one obtained using the integral formula (3) as
well as with the solutions given by some classical ODE’s solvers from Matlab. The
solvers ode15s, ode23s, ode23t, and ode23tb are usually used for stiff ODE’s, while
the other solvers ode45, ode23, and ode113 are used for non stiff ODE’s. Note that
since some ODE solvers behave similarly and in order not to overload the plots, we
only give the results obtained with the four methods ode15s, ode23s, ode23tb, and
ode45.

Experiment 1.1 In the following experiment, we consider the time intervals [0, T]
with T is either T = 1 with the number of nodes is N = 10 or T = 10 with the
number of nodes is N = 50 which means that the step time is δT = 0.1 when T = 1
while δT = 0.2 when T = 10. Here, we consider the matrices A0 =gallery(‘leslie,’
n0), B0 = gallery(‘minij,’ s0) with n0 = 50 and s0 = 10 and the coefficient matrices
A, B of the differential Sylvester equations are generated by (36), as explained in
the benchmark example. The parameters α, β are equal to −2 and −1 respectively.
As the matrices K , R are those given at the beginning of Section 6, the size of the
matrices A, B are now n = 150 and s = 30, respectively. Here, we point out that the
solution computed by Algorithm 1 and those computed by the Algorithm based on
integral formula or issued by the Matlab ODE solvers are compared to the exact one

123

476 Numerical Algorithms (2024) 96:449–488

Fig. 1 Experiment 1.1: comparison of the relative error norm. The reference solution is given by (37)

given in (37) which is considered as the reference solution Xre f . Thus, in the plots,
we represent the behaviour of the norm of the relative error

tk → ‖Xk − X Ref
k ‖

‖X Ref
k ‖

as a function of tk where tk = k δT . The obtained plots and results are reported in
Fig. 1 and Table 1 respectively.

Experiment 1.2 Here, we give the results when solving a differential Lyapunov
matrix equation. We consider the time interval [0, T] with T = 10 and the number
of nodes N = 50 which means that the step time is δ = 0.2. Two test matrices are
considered which are A = A1=-gallery(‘lehmer,’ n) and A = A2=-gallery(‘minij,’
n)with n = 70. Note that in the present test, the reference solution is the one obtained
via a partial spectral decomposition of rank qA = 15. More precisely, the reference
solution X Ref is the one given by (46) for the particular case M = In . The obtained
plots and results are reported in Fig. 2 and Table 2 respectively.

The analysis of results obtained in Experiments 1.1 and Experiments 11.2 shows
on the one hand that the CS and IF methods return the best results in terms of the error
norm. The ode45 solver is the best among the otherMatlab solvers, but its performance
does not match that of the CS and IF methods. On the other hand, by comparing the
time ratios between CS and IF which are

– TRIFCS = 12.578

0.203
� 61 for (T , N) = (1, 10) and TRIFCS = 75.703

0.718
� 105 for

(T , N) = (10, 50), in Experiment 1.1.

Table 1 The obtained CPU times (in seconds) in Experiment 1.1

(T , N) Method CSM IFM ode15s ode23s ode23tb ode45

(1, 10) 0.203 12.578 43.546 750.756 108.484 0.343

(10, 50) 0.718 75.703 78.984 1574.980 226.016 0.390

123

Numerical Algorithms (2024) 96:449–488 477

Fig. 2 Experiment 1.2: comparison of the relative error norm. The reference solution is given by (46)

– TRIFCS = 49.650

0.453
� 109 for A = A1 and TRIFCS = 59.546

0.515
� 115 for A = A2, in

Experiment 1.2,

we clearly see that CS is faster than IF because the former avoids using a quadrature
formula as it is the case for the later.

6.2 Experiment 2

In this set of numerical tests, the experiments are done with a relatively large matrix A
and a moderate size matrix B. We compare the performances of Algorithm 3 -which
implements the CS-BA method- and the equivalent algorithm based on the integral
formula combined with the block Arnoldi (IF-BA).

Experiment 2.1. The matrices A and B are obtained from the centered finite dif-
ference discretization of the operators

⎧⎪⎨
⎪⎩
LA(u) = Δu − f A

∂u

∂x
− gA

∂u

∂ y
− ha u

LB(u) = Δu − fB
∂u

∂x
− gB

∂u

∂ y
− hB u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions
where

f A(x, y) = (x + 10 y2), gA(x, y) =
√
2 x2 + y2, hA(x, y) = x2 − y2,

Table 2 The obtained CPU times (in seconds) in Experiment 1.2

(A) Method CSM IFM ode15s ode23s ode23tb ode45

A1 0.453 49.656 40.484 544.0314 127.438 1.25

A2 0.515 59.5469 45.593 688.984 126.594 40.2344

123

478 Numerical Algorithms (2024) 96:449–488

Table 3 The obtained times ratio TR and relative difference norms RDN in Experiment 2.1

Test Problem T = 1, N = 10 T = 2, N = 20
n s TRIF−BA

CS−BA RDNCS−BA
IF−BA TRIF−BA

CS−BA RDNCS−BA
IF−BA

900 9 141 8.111e−15 186 1.887e−14

2500 9 163 1.868e−14 276 3.682e−14

900 25 164 6.329e−15 187 1.248e−14

2500 25 177 1.723e−14 186 2.499e−14

and

fB(x, y) = 10 x y + 1, gB(x, y) = e−x2−y2 , hA(x, y) = 1

1 + x2 + y2
.

To generate the coefficient matrices A and B, we used the fdm_2d_matrix function
from the LYAPACK toolbox [34] as following A=fdm_2d_matrix(n0, f A,gA,hA) and
B=fdm_2d_matrix(s0, fB ,gB ,hB) where n0 and s0 are the number of inner grid points
in each direction when discretizing the operators LA and LB respectively. This gives
A ∈ R

n×n , B ∈ R
s×s with n = n20 and s = s20 .

We examine the performances of CS-BA and IF-BA for four choices of n0 and s0
which are (n0, s0) = (30, 3), (n0, s0) = (50, 3), (n0, s0) = (30, 5) and (n0, s0) =
(50, 5). The considered time intervals are [0, T] where T = 1 and N = 10 or T = 2
and N = 20. This means that the step time is always δT = 0.1. In Table 3, we reported
the time ratio (TR) and the relative difference norm (RDN) between the CPU-time of
CS-BA and IF-BA.

Experiment 2.2. In this test, we took A0 =gallery(‘hanowa,’ 1500, −5) and B0 =
gallery(‘leslie,’ 6) from the Matlab gallery and transform them into A et B of sizes
n = 4500 and s = 18 respectively by using (36) in which we took α = −7 and
β = −5. The obtained results for different time intervals which are summarized in
Table 4 include the time ratio TR and the relative error norms RENCS−BA, RENI F−BA

between the approximate solutions XCS−BA, X I F−BA given by CS-BA and IF-BA
respectively and the XExact the exact solution computed by (37).

6.3 Experiment 3

We describe and report here the results of numerical experiments carried out when
solving large-scale low-rank differential Sylvester or Lyapunov equations. The per-
formance of CS-BA is compared with that of IF-BA. The test matrices come either
from the centred finite difference discretization of the operators LA and LB defined
in the previous experiment, or from the Florida suite sparse matrix collection [15].
The invoked matrices for our tests from this collection are: pde900, pde2961, cdde1,
Chem97ZtZ, thermal, rdb5000, sstmodel, add32 and rw5151.

Experiment 3.1 (a). In this example, the numerical results are those obtained from
solving differential Sylvester equations. The time interval is fixed to [0, 1], (T = 1).

123

Numerical Algorithms (2024) 96:449–488 479

Table 4 The obtained times
ratio TRCS−BA

IF−BA and relative error

norms RENCS−BA , RENI F−BA

in Experiment 2.2. with N = 10

T TR RENCS−BA RENI F−BA

1 11 4.825e−11 4.143e−12

5 20 1.849e−11 9.097e−12

10 30 1.244e−11 3.387e−12

50 1329 7.852e−13 1.621e−11

100 1230 7.802e−13 1.432e−11

The number of nodes is N = 10 which gives a step time δT = 0.1. The matrices
A ∈ R

n×n and B ∈ R
s×s come from the discretization of the operators LA and

LB . As indicated previously, the coefficients of the right-hand side E, F ∈ R
n×r

are randomly generated. The obtained results for different sizes n, s and ranks r are
summarized in Table 5.

Experiment 3.1 (b).Here, we consider two different time intervals [0, T] for T = 1
and T = 10 in which the number of sub-intervals is always N = 10. The matrix A is
from the Florida sparse matrix collection.We consider the particular case B = AT and
F = E and report the results obtained when solving low-rank differential Lyapunov
equations. The obtained results for r = 2, r = 5 or r = 10 are displayed in Table 6.

Experiment 3.2 (a).Here,we consider A0=pde2961 and B0=pde900 and transform
them into A et B of sizes n = 8883 and s = 2700 respectively by using (36). In order
to confirm the influence of the rank r and/or length T of the time interval, on the
performances of the CS and IF methods, we report in Table 7 the results obtained for
two cases: case 1: (α, β) = (−3,−1) and case 2: (α, β) = (−0.7,−0.4). For each
case, we choose T from the set {2, 5, 10} and took N = 10 for T = 2, N = 20 for
T = 5 and N = 40 for T = 10. The rank r of the factors E and F is equal to r = 5,
r = 10 or r = 20.

We notice that inmost of tests, bothmethodsmanage to provide a good approximate
solution and that theCPU time is in favor of theBA-CSmethod. However, we observed
that for small values of α and β and when the values of r and T are large, the BA-IF
method failed to converge within a reasonable time. The non-convergence is indicated
by “−−−.”

Table 5 The obtained times ratio TRCS−BA
IF−BA and relative difference norms RDNCS−BA

IF−BA in Experiment 3.1
(a)

Test Problems
n0 = 40, s0 = 20 n0 = 30, s0 = 30 n0 = 50, s0 = 50
n = 1600, s = 400 n = 900, s = 900 n = 2500, s = 2500

r TRCS−BA
IF−BA RDNCS−BA

IF−BA TRCS−BA
IF−BA RDNCS−BA

IF−BA TRCS−BA
IF−BA RDNCS−BA

IF−BA

2 82 2.528e−14 78 5.819e−14 78 1.354e−13

5 145 1.906e−14 136 1.201e−13 159 1.931e−13

10 170 7.256e−14 219 2.067e−14 156 1.383e−13

20 193 2.647e−14 138 6.153e−14 252 2.205e−13

123

480 Numerical Algorithms (2024) 96:449–488

Ta
bl
e
6

T
he

ob
ta
in
ed

tim
es

ra
tio

T
R
C
S
−B

A
I
F
−B

A
an
d
re
la
tiv

e
di
ff
er
en
ce

no
rm

s
R
D
N
C
S
−B

A
I
F
−B

A
in

E
xp

er
im

en
t3

.1
(b
)

Te
st
Pr
ob
le
m
s

A
=
-c
dd

e1
A
=
-C

he
m
97

Z
tZ

A
=
-p
de
29

61
A
=
th
er
m
al

A
=
rd
b5

00
0

n
=

96
1

n
=

25
41

n
=

29
61

n
=

34
56

n
=

50
00

T
r

T
R
C
S
−B

A
I
F
−B

A
R
D
N
C
S
−B

A
I
F
−B

A
T
R
C
S
−B

A
I
F
−B

A
R
D
N
C
S
−B

A
I
F
−B

A
T
R
C
S
−B

A
I
F
−B

A
R
D
N
C
S
−B

A
I
F
−B

A
T
R
C
S
−B

A
I
F
−B

A
R
D
N
C
S
−B

A
I
F
−B

A
T
R
C
S
−B

A
I
F
−B

A
R
D
N
C
S
−B

A
I
F
−B

A

2
6.
8

3.
98

8e
−1

5
12

5.
46

5e
−1

5
1.
6

2.
78

4e
−1

5
1.
4

4.
29

5e
−1

5
14

7.
86

3e
−1

3

1
5

17
1.
03

2e
−1

4
18

8.
37

6e
−1

5
6.
5

8.
63

9e
−1

5
2.
3

7.
38

6e
−1

5
42

2.
89

2e
−1

3

10
44

1.
43

0e
−1

4
50

1.
26

8e
−1

4
13

1.
38

6e
−1

4
6.
1

9.
44

2e
−1

5
83

4.
43

4e
−1

3

2
47

2.
81

5e
−1

4
15

8.
19

0e
−1

5
12

1.
00

2e
−1

4
2.
5

3.
59

2e
−1

5
57

3.
48

2e
−1

3

10
5

68
1.
48

3e
−1

4
30

1.
00

2e
−1

4
38

2.
91

1e
−1

4
10

4.
63

1e
−1

5
13

5
1.
37

4e
−1

2

10
73

2.
91

0e
−1

4
11

0
1.
25

3e
−1

4
57

2.
71

3e
−1

4
25

7.
49

7e
−1

5
25

5
1.
61

7e
−1

2

123

Numerical Algorithms (2024) 96:449–488 481

Table 7 The obtained times ratio TRCS−BA
IF−BA and relative error norms RENCS−BA and RENI F−BA in

Experiment 3.2 (a)

α = −3, β = −1 α = −0.7, β = −0.4
T r TRCS−BA

IF−BA RENCS−BA RENI F−BA TRCS−BA
IF−BA RENCS−BA RENI F−BA

2 5 1.277 4.777e−14 4.720e−14 1.234 2.641e−11 2.641e−11

10 1.118 5.147e−14 5.049e−14 1.139 3.022e−11 3.022e−11

20 3.858 5.473e−14 5.311e−14 2.331 3.401e−11 3.400e−11

5 5 1.292 4.358e−14 4.251e−14 1.160 2.343e−11 2.343e−11

10 1.371 4.639e−14 4.507e−14 1.124 2.728e−11 2.728e−11

20 4.230 4.984e−14 4.855e−14 −−− 3.148e−11 −−−
10 5 1.237 4.358e−14 4.251e−14 1.093 2.343e−11 2.343e−11

10 1.399 4.639e−14 4.507e−14 83.424 2.728e−11 2.728e−11

20 3.974 4.984e−14 4.855e−14 −−− 3.148e−11 −−−

Experiment 3.2 (b). In this last set of experiments, we compare the performances
of the CS and IF methods when they are applied to the solution of low-rank differ-
ential Lyapunov equations. Unlike the previous series of tests, we did not generate a
discretization for the interval [0, T] and only calculated the approximation X(T) at
the final time, where T = 10. Similarly, the rank of C = E ET does not vary and is
r = 20. For each experiment with a matrix A0 -which is taken from the Florida sparse
matrix collection [15]-, we considered four values for the scalar α that was used in
the generation of the benchmark example. The size n0 of each matrix A0, the size n
of the benchmark matrix A as well as the obtained results are reported in Table 8.

6.4 Experiment 4

Here, we compare three methods which are the constant solution method based
on the block Arnoldi process (CS-BA), the Integral Formula method based on
the block Arnoldi (IF-BA) [20, 21] and the Integral Formula method based
on the global Arnoldi process (IF-GA) [38]. We illustrate the performance of
the compared methods when they are applied to solve the generalized differ-
ential Lyapunov system (47) according to the construction given in Sect. 5.2.
We point out that this example is derived from a finite-element discretization
of a heat equation and is taken from [5, 9]. The matrices A and M are the
rail matrices from the Suite Sparse Matrix Collection [15] and we consider
the choices: (A,M)=(rail_1357_A, rail_1357_E) (A,M)=(rail_5177_A,rail_5177_E)
and (A,M)=(rail_20209_A,rail_20209_E). Each of the preceding matrices is of size
n × n with n = 1357, 5177, 20209 respectively. The number of nodes for the time
interval [0, T] is fixed and is N = 10. The approximate solution delivered by each
method is compared to the reference solution given by (46) which corresponds to
the partial spectral decomposition of rank q = 25. The obtained results for different
values of the rank r of the right-hand side E ET (r ∈ {5, 10, 20}) and different values
of T (T ∈ {1, 5, 50, 500, 5000}) are summarized in Tables 9, 10 and 11.

123

482 Numerical Algorithms (2024) 96:449–488

Ta
bl
e
8

T
he

ob
ta
in
ed

tim
es

ra
tio

T
R
C
S
−B

A
I
F
−B

A
an
d
re
la
tiv

e
er
ro
r
no

rm
s
R
E
N
C
S−

B
A
an
d
R
E
N
IF

−B
A
in

E
xp

er
im

en
t3

.2
(b
)

Te
st
Pr
ob
le
m
s

A
0
=
cd
de
1

A
0
=
pd

e2
96

1
A
0
=
ss
tm

od
el

n 0
=

96
1,
n

=
28

83
n 0

=
29

61
,n

=
88

83
n 0

=
33

45
,n

=
10

03
5

α
T
R
C
S−

B
A

IF
−B

A
R
E
N
C
S−

B
A

R
E
N
IF

−B
A

T
R
C
S
−B

A
I
F
−B

A
R
E
N
C
S−

B
A

R
E
N
IF

−B
A

T
R
C
S
−B

A
I
F
−B

A
R
E
N
C
S−

B
A

R
E
N
IF

−B
A

−5
5.
12

4.
33

e−
14

3.
76

e−
14

2.
27

2.
14

e−
14

1.
18

e−
14

1.
82

3.
43

e−
12

9.
82

e−
13

−1
−−

−
5.
81

e−
12

−−
−

10
87

.5
5.
37

e−
12

1.
26

e−
12

20
0.
43

6.
45

e−
14

6.
23

e−
14

−0
.5

−−
−

4.
58

e−
10

−−
−

54
4.
31

4.
60

e−
10

1.
01

e−
11

63
7.
17

5.
23

e−
12

2.
69

e−
13

−0
.1

−−
−

8.
23

e−
07

−−
−

−−
−

1.
19

e−
07

−−
−

−−
−

3.
38

e−
08

−−
−

Te
st
Pr
ob
le
m
s

A
0
=
th
er
m
al

A
0
=
ad

d3
2

A
0
=
rw

51
51

n 0
=

34
56

,n
=

10
36

8
n 0

=
49

60
,n

=
14

88
0

n 0
=

51
51

,n
=

15
45

3

α
T
R
C
S
−B

A
I
F
−B

A
R
E
N
C
S−

B
A

R
E
N
IF

−B
A

T
R
C
S
−B

A
I
F
−B

A
R
E
N
C
S−

B
A

R
E
N
IF

−B
A

T
R
C
S
−B

A
I
F
−B

A
R
E
N
C
S−

B
A

R
E
N
IF

−B
A

−5
1.
53

2.
03

e−
12

1.
03

e−
12

1.
48

5.
17

e−
15

3.
90

e−
15

1.
37

5.
44

e−
15

4.
85

e−
15

−1
1.
69

2.
78

e−
14

2.
56

e−
14

1.
45

8.
00

e−
15

1.
29

e−
15

1.
22

2.
91

e−
14

2.
50

e−
14

−0
.5

1.
58

1.
20

e−
13

1.
05

e−
13

1.
55

5.
77

e−
15

1.
74

e−
15

39
1.
43

1.
44

e−
13

1.
29

e−
13

−0
.1

27
7.
88

1.
12

e−
10

6.
94

e−
11

1.
71

1.
26

e−
14

2.
46

e−
15

−−
−

7.
47

e−
11

−−
−

123

Numerical Algorithms (2024) 96:449–488 483

Table 9 The obtained times ratio TRCS−BA
IF−BA and relative error nnorms RENCS−BA and RENI F−BA in

Experiment 4 with A and M from the set rail_1357

rail_1357
T r RENCS−BA RENI F−BA TRCS−BA

I F−BA RENI F−GA TRCS−BA
I F−GA

1 5 6.18e−15 5.44e−15 1.97 3.50e−12 4.97

10 3.41e−15 4.81e−15 1.94 4.37e−12 3.27

20 8.66e−15 8.75e−15 7.14 1.75e−12 4.79

5 6.17e−15 7.12e−15 1.39 2.75e−13 2.78

10 3.51e−15 6.61e−15 1.38 4.37e−12 3.15

20 5.23e−15 7.10e−15 8.58 6.41e−13 4.08

5 6.05e−15 2.16e−14 1.46 2.78e−13 3.03

10 3.41e−15 2.11e−14 1.32 4.05e−14 3.92

20 5.23e−15 2.07e−14 9.61 1.91e−14 4.01

5 6.05e−15 1.11e−13 1.74 3.13e−13 3.35

10 3.41e−15 1.43e−13 1.69 1.43e−13 4.78

20 5.23e−15 1.34e−13 15.65 1.35e−13 5.78

5 6.05e−15 6.19e−13 1.86 6.77e−13 4.09

10 3.41e−15 5.91e−13 2.27 5.99e−13 5.14

20 5.23e−15 5.59e−13 15.51 5.61e−13 5.22

Table 10 The obtained times ratio TRCS−BA
IF−BA and relative error nnorms RENCS−BA and RENI F−BA in

Experiment 4 with A and M from the set rail_5177

rail_5177
T r RENCS−BA RENI F−BA TRCS−BA

I F−BA RENI F−GA TRCS−BA
I F−GA

1 5 1.11e−10 1.11e−10 1.13 5.04e−08 1.41

10 8.22e−15 8.79e−15 1.05 3.07e−11 1.47

20 2.81e−15 3.50e−15 1.46 1.11e−13 1.92

5 1.11e−10 1.11e−10 0.98 5.04e−08 1.17

10 8.22e−15 2.48e−14 1.01 5.30e−14 1.50

20 2.80e−15 2.22e−14 1.55 1.41e−13 1.88

5 1.11e−10 1.11e−10 1.04 5.04e−08 1.19

10 8.22e−15 1.05e−13 1.04 1.14e−13 1.50

20 2.80e−15 1.02e−13 1.74 1.27e−13 1.95

5 1.11e−10 1.11e−10 1.03 5.04e−08 1.21

10 8.22e−15 1.00e−12 1.04 1.00e−12 1.48

20 2.80e−15 9.76e−13 2.04 9.82e−13 1.98

5 1.11e−10 1.11e−10 1.03 5.94e−08 1.23

10 8.22e−15 5.15e−12 1.06 5.15e−12 1.52

20 2.75e−15 4.96e−12 2.29 4.97e−12 2.09

123

484 Numerical Algorithms (2024) 96:449–488

Table 11 The obtained times ratio TRCS−BA
IF−BA and relative error nnorms RENCS−BA and RENI F−BA in

Experiment 4 with A and M from the set rail_20229

rail_20229
T r RENCS−BA RENI F−BA TRI F−BA

CS−BA RENI F−GA TRI F−GA
CS−GA

1 5 4.64e−15 8.33e−15 1.57 3.31e−07 1.68

10 7.74e−15 9.25e−15 1.48 4.73e−09 1.78

20 2.40e−15 5.02e−15 1.45 8.71e−09 2.06

5 4.50e−15 5.12e−14 1.55 3.31e−07 1.63

10 7.74e−15 5.01e−14 1.56 4.73e−09 1.86

20 2.49e−15 4.68e−14 1.54 8.72e−09 2.14

5 4.50e−15 2.59e−13 1.50 3.31e−07 1.54

10 7.74e−15 2.55e−13 1.52 4.73e−09 1.73

20 2.40e−15 2.51e−13 1.48 8.72e−09 1.88

5 4.50e−15 3.13e−12 1.52 3.31e−07 1.52

10 7.74e−15 3.10e−12 1.40 4.73e−09 1.58

20 2.40e−15 3.05e−12 1.55 8.72e−09 2.01

5 4.50e−15 3.72e−11 1.49 3.31e−07 1.53

10 7.74e−15 3.69e−11 1.20 4.73e−09 1.51

20 2.40e−15 3.65e−11 1.56 8.72e−09 2.03

The analysis of the results reported in the previous tables and those of other exper-
iments that are not reported here shows that the CS-BA method takes less time than
IF-BA or IF-GA methods. In some cases, the time ratio can reach or exceed two. The
relative errors for the CS-BA method remains satisfactory even when the matrix A
and the observation interval [0, T] are very large. Some loss of precision is observed
in the two other methods, especially, when th parameters n, r and T become more and
more large, see for instance Table 11 with n = 20229, r = 20 and T = 5000.

6.5 Experiment 5

In this last experiment, we basically check Proposition 3 and Theorem 3. We show
how numerically the approximation error for the solution of the algebraic equationwill
affect the overall approximation error for the solution of the differential equation. For
this end, we consider the final time interval T = 2000 and the Sylvester differential
equation with matrix coefficients A = rail_5177 and B = rail_1357, the right-hand
side matrix is C = UA E1 FT

1 (UB)T where UA and UB are the matrices obtained in
the partial-rank spectral decomposition of A and BT as explained in subsection 5.2.1.
Thus, the algebraic error is Ẽm = X̃∗ − X̃m = UA (Q � (E1 FT

1)) (UB)T − V
A
m Ym ,

where Ym is the desired approximate solution of the projected Sylvester equation. In
addition, using (42), the differential error at the time t = tk is Em(tk) = X∗(tk) −
Xm(tk) = UA (H(tk)� (E1 FT

1)) (UB)T −V
A
m Ym,k , where Ym,k is the approximation

at t = tk of the projected differential equation. According to Proposition 3, we should

123

Numerical Algorithms (2024) 96:449–488 485

Fig. 3 Experiment 5: Curve illustrating the inequality given in Proposition 3

have
||Em(t)|| ≤ (1 + et (||A||+||B||))||Ẽm ||, ∀t ∈ [0, T].

In Fig. 3, we plot the points Mk(tk, ak)) for k = 0, . . . , N = 50, where

ak = ||Em(tk)||
(1 + etk (||A||+||B||))||Ẽm || .

We also plot the curve of the cubic spline interpolating the points Mk . We observe
that, in fact the inequality given in the Proposition 3 is too large and is not optimal.
In this test example, the plot in Fig. 3 indicates also that there is a positive constant
0 < C1 < 10−6 such that the following inequality holds

||Em ||∞ ≤ C1 (1 + eT (||A||+||B||))|| Ẽm ||.

In this experiment, we may also illustrate Theorem 3, which is more precise then
Proposition 3 and which states that we should have

||Em(t)|| ≤
(
et(‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

) √(
r Am + ‖zAm(t)‖)2 + (

r Bm + ‖zBm(t)‖)2, ∀t ∈ [0, T],

In Fig. 4,we plot the pointsMk(tk, bk) and the curve of the cubic spline interpolating
the points Mk for k = 1, . . . , N = 50, where

bk = ||Em(tk)|| (||A|| + ||B||)
(etk (||A||+||B||) − 1)

√(
r Am + ‖zAm(tk)‖

)2 + (
r Bm + ‖zBm(tk)‖

)2 .

123

486 Numerical Algorithms (2024) 96:449–488

Fig. 4 Experiment 5: Curve illustrating the inequality given in Theorem 3

In this test example, the plot in Fig. 4 indicates also that there is a positive constant
0 < C2 < 10−12 such that the following inequality holds

||Em ||∞ ≤ C2

(
eΔT (‖A‖+‖B‖) − 1

‖A‖ + ‖B‖

) √(
r Am + ‖zAm‖∞

)2 + (
r Bm + ‖zBm‖∞

)2
.

7 Conclusion

In this work, we proposed a new method for solving differential Sylvester and Lya-
punov matrix equations. Unlike the recent methods proposed in [21, 38], our method
avoids the integral formula, which is very benefit since its allows to reduce the compu-
tational cost. The constant solutionmethod for solving differential Sylvester equations
is related to the solution of the corresponding algebraic equation. As Krylov subspace
methods are a good tool for the approximation of the exponential of matrices as well as
for the solution of algebraic Sylvester (or Lyapunov) matrix equations, it can be seen
that the constant solution method combined with Krylov projection methods is well
suited for the solution of Sylvester (or Lyapunov) differential equations. The drawback
of our method lies in the necessity to satisfy the condition σ(A) ∩ σ(−B) = ∅. The
robustness and efficiency of the proposedmethod have been observed onmany numer-
ical examples including reference examples that we have built. The convergence of
such method is proved and constructive benchmark examples are given. The proposed
method is very efficient for large-scale problems by exploiting projection techniques
on Krylov subspaces. Numerous numerical tests are used to show the effectiveness of
such proposed method, we have reported some of them in a specific section.

123

Numerical Algorithms (2024) 96:449–488 487

Acknowledgements We would like to thank the anonymous reviewer for his comments, criticisms and
suggestions that helped us improve this manuscript.

Author contribution The three authors contributed equally to this work.

Data availability No data sets were generated or analyzed during the current work

Declarations

Competing interests The authors declare no competing interests.

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati equations in control and systems
theory, vol. 3. Birkhauser, Basel, Switzerland (2003)

2. Amato, F., Ambrosino, R., Ariola,M., Cosentino, C., De Tommasi, G.: Finite-time stability and control.
Springer, (2014)

3. Antoulas, A.C.: Approximation of large-scale dynamical systems, vol. 6. Adv. Des. Control. SIAM
Publications, Philadelphia, PA (2005)

4. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation A X + X B = C . Commun. ACM 15(9),
820–826 (1972)

5. Behr, M., Benner, P., Heiland, J.: Solution formulas for differential Sylvester and Lyapunov equations.
Calcolo, p 56–51, (2019)

6. Bellman, R.: Introduction to matrix analysis, volume 6. SIAM publications, Philadelphia, PA, 2nd
edition, 1997, First edition published by McGraw-Hill in (1970)

7. Benner, P., Mena, H.: BDF methods for large-scale differential Riccati equations. 01 (2009)
8. Benner, P.,Mena,H.:Rosenbrockmethods for solvingRiccati differential equations. IEEETransactions

on Automatic Control 58(11), 2950–2956 (2013)
9. Benner, P., Saak, J.: A semi-discretized heat transfermodel for optimal cooling of steel profiles., volume

vol. 45. Lecture Notes of Computer Science and Enginerring, Springer Berlin, (2005)
10. Bouhamidi, A., Hached,M., Heyouni, M., Jbilou, K.: A preconditioned block Arnoldi method for large

Sylvester matrix equations. Numerical Linear Algebra with Applications 20(2), 208–219 (2013)
11. Bouhamidi, A., Jbilou, K.: Sylvester Tikhonov-regularizationmethods in image restoration. J. Comput.

Appl. Math. 206(1), 86–98 (2007)
12. Bouhamidi, A., Jbilou, K.: A note on the numerical approximate solutions for generalized Sylvester

matrix equations with applications. Appl. Math. Comput. 206(2), 687–694 (2008)
13. Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. volume 38, pages 235–243 (1952).

National Academy of Sciences of the United States of America
14. Datta, B.N.: Numerical methods for linear control systems. Academic Press, USA (2004)
15. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw.,

38(1), (2011)
16. Davison, E.: The numerical solution of X = A1X + X A2 + D, X(0) = C . IEEE Trans. Autom.

Control 20(4), 566–567 (1975)
17. El Guennouni, A., Jbilou, K., Riquet, A.: Block Krylov subspace methods for solving large Sylvester

equations. Numerical Algorithms 29, 75–96 (2002)
18. Elbouyahyaoui, L., Heyouni, M., Jbilou, K., Messaoudi, A.: A block Arnoldi method for the solution

of the Sylvester-Observer equation. Electronic Transactions on Numerical Analysis 47, 18–36 (2017)
19. Golub, G., Nash, S., Loan, C.V.: A Hessenberg-Schur method for the problem AX + XB = C . IEEE

Transactions on Automatic Control 24(6), 909–913 (1979)
20. Hached, M., Jbilou, K.: Numerical solutions to large-scale differential Lyapunov matrix equations.

Numerical Algorithms 79, 741–757 (2017)
21. Hached, M., Jbilou, K.: Computational Krylov-based methods for large-scale differential Sylvester

matrix problems. Numerical Linear Algebra with Applications 25(5), e2187 (2018)

123

488 Numerical Algorithms (2024) 96:449–488

22. Hammarling, S.J.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA
Journal of Numerical Analysis 2(3), 303–323 (1982)

23. Heyouni, M.: Extended Arnoldi methods for large low-rank Sylvester matrix equations. Applied
Numerical Mathematics 60(11), 1171–1182 (2010)

24. Heyouni, M., Jbilou, K.: An extended block Arnoldi algorithm for large-scale solutions of the
continuous-time algebraic Riccati equation. Electronic Transactions on Numerical Analysis 33, 53–62
(2009)

25. Higham, N.J.: The scaling and squaring method for the matrix exponential revised. SIAM J. Matrix
Anal Appl 26(4), 1179–1193 (2005)

26. Horn, R.A., Johnson, C.R.: Topics in matrix analysis, volume, 2nd edn. Cambridge University Press,
UK (1994)

27. Hu, D., Reichel, L.: Krylov-subspace methods for the Sylvester equation. Linear Algebra and its
Applications 172, 283–313 (1992)

28. Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations.
SIAM Journal on Numerical Analysis 31(1), 227–251 (1994)

29. Jbilou, K.: ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra
and its Applications 432(10), 2473–2485 (2010)

30. Konstantinov, M., Gu, D.-W., Mehrmann, V., Petkov, P.: Perturbation Theory for Matrix Equations 49,
11 (2004)

31. Kressner, D.: Block variants of Hammarling’s method for solving Lyapunov equations. ACM Trans.
Math. Softw., 34(1), (2008)

32. Lancaster, P.: Explicit solutions of linear matrix equations. SIAM Review 12, 544–566 (1970)
33. Moler, C., Loan, C.V.: Nineteen dubiuos ways to compute the exponential of a matrix, twenty-five

years later. SIAM Review 45(1), 3–000 (2003)
34. Penzl, T.: LYAPACK.AMATLABToolbox for largeLyapunov andRiccati equations,ModelReduction

Problems, and Linear-Quadratic Optimal Control Problems, (2000)
35. Saad, Y.: Numerical solution of large Lyapunov equations. In: in Signal Processing, Scattering and

Operator Theory, and Numerical Methods, Proc. MTNS-89, p 503–511, (1990), Birkhauser
36. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM

J. Numer. Anal. 29(1), 209–228 (1992)
37. Saad, Y.: xIterative methods for sparse linear systems. Society for Industrial and AppliedMathematics,

second edition, (2003)
38. Sadek, E.M., Bentbib, A., Sadek, L., Alaoui, H.: Global extended Krylov subspace methods for large-

scale differential Sylvester matrix equations. J Appl Math Comput 62, 165–177 (2019)
39. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM

Journal on Scientific Computing 29(3), 1268–1288 (2007)
40. Simoncini, V.: Computational methods for linear matrix equations. SIAM Review 58(3), 377–441

(2016)
41. Sorensen, D.C., Zhou, Y.: Direct methods for matrix Sylvester and Lyapunov equations. Journal of

Applied Mathematics 2003(6), 277–303 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	The constant solution method for solving large-scale differential Sylvester matrix equations with time invariant coefficients
	Abstract
	1 Introduction
	2 Preliminaries and notations
	3 The constant solution method for the differential sylvester matrix equation
	4 Block Arnoldi for solving large-scale differential Sylvester matrix equations
	4.1 The block Arnoldi process
	4.2 Full-rank case
	4.3 Low-rank case

	5 Two constructed benchmark examples
	5.1 A benchmark example based on nilpotent matrices
	5.2 A benchmark example based on the spectral decomposition
	5.2.1 Sylvester differential case
	5.2.2 Lyapunov differential case

	6 Numerical experiments
	6.1 Experiment 1
	6.2 Experiment 2
	6.3 Experiment 3
	6.4 Experiment 4
	6.5 Experiment 5

	7 Conclusion
	Acknowledgements
	References

