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Abstract

This work develops the Milstein scheme for commutative stochastic differential equa-
tions with piecewise continuous arguments (SDEPCAs), which can be viewed as
stochastic differential equations with time-dependent and piecewise continuous delay.
As far as we know, although there have been several papers investigating the conver-
gence and stability for different numerical methods on SDEPCAs, all of these methods
are Euler-type methods and the convergence orders do not exceed 1/2. Accordingly,
we first construct the Milstein scheme for SDEPCAs in this work and then show its
convergence order can reach 1. Moreover, we prove that the Milstein method can
preserve the stability of SDEPCAs. In the last section, we provide several numerical
examples to verify the theoretical results.
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1 Introduction

Differential equations with piecewise continuous arguments (EPCAs) are well used
in control theory and some biomedical models ([1-4]). A typical EPCA is of the form

X (t) = ft, x(®), x(h(1))),

where the argument /4 (¢) has intervals of constancy. A potential application of EPCAs
is the stabilization of hybrid control systems with feedback delay [1]. In recent years,
some scholars further developed the theory of stabilization for hybrid stochastic differ-
ential equations by feedback control based on discrete-time state observations ([5, 6]),
and this theory is actually based on the stability of the hybrid stochastic differential
equation with piecewise continuous arguments (SDEPCA)

dx(®) = (f(x@),r@), 1) +ulx([t/T]7), r (1), 1))dr + g(x(1), r (1), )dw ().

Therefore, the properties of SDEPCAs have received more and more consideration.

However, most of SDEPCAs do not have explicit solutions; hence, it is extremely
important to solve them by numerical methods. Moreover, in order to achieve the
required accuracy in many real-world problems, the development of higher-order
numerical methods is necessary. But to our knowledge, the numerical methods cur-
rently developed for global Lipschitz continuous or highly nonlinear SDEPCAs are
all Euler or Euler-type methods (such as the split-step theta method, the tamed Euler
method, the truncated Euler method), and the convergence orders of all of these meth-
ods do not exceed one-half (see, e.g., [7-12]). Therefore, the main aim of this work is
to construct a higher-order numerical scheme for SDEPCAs.

The Milstein scheme is a well-known numerical scheme for stochastic ordinary
differential equations (SODEs) with a strong order of convergence one ([13—19]).
Several scholars have further derived and analyzed the Milstein scheme for stochastic
delay differential equations (SDDEs) [20-29]. However, most of these papers only
consider the stochastic differential equations with constant delay [20-28], while an
SDEPCA can be viewed as a stochastic differential equation with time-dependent
delay, and the delay function is piecewise continuous and not differentiable. Therefore,
it is worthwhile to construct the Milstein scheme for SDEPCAs.

In this work, we construct the Milstein scheme for SDEPCAs following the
approach used by Kloeden et al. for SODEs [14] and SDDEs [29] and prove that
the Milstein solution also converges strongly with order one to the exact solution of
commutative SDEPCAs. It is worth mentioning that the Milstein scheme constructed
in this paper contains only the derivatives of the coefficients f and g; to the first
component, which is different from the ones derived in the existing publications.

Moreover, whether the numerical method can preserve the stability of the exact
solution is also an important criterion for the goodness of the numerical method [30—
33]. Therefore, we also consider the stability of the Milstein method in this paper.
The rest of this work is arranged as follows. Some basic lemmas and preliminaries are
introduced in the second section. The Milstein scheme is developed, and its uniform
boundedness in p-th moment is obtained in Sect. 3. Then, the strong convergence order
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of the Milstein method is proved in Sect.4. The mean square exponential stability of
the Milstein method is given in Sect. 5. Finally, several illustrative examples are given.

2 Notations and preliminaries

Throughout this paper, unless otherwise specified, we will use the following notations.
|x| denotes the Euclidean vector norm, and (x, y) denotes the inner product of vectors
x, y. If Ais a vector or matrix, its transpose is denoted by AT. If A is a matrix, its trace
norm is denoted by |A| = /trace(ATA). For two real numbers a and b, we will use
a VvV b and a A b for the max {a, b} and min {a, b}, respectively. N := {0, 1,2, ..., }.
[-] denotes the greatest-integer function.

Moreover, let (2, F, {F;};>0 , P) be a complete probability space with a filtration
{Fi}>0 satisfying the usual conditions (i.e., it is right continuous and Fp con-
tains all P-null sets), and let E denote the expectation corresponding to PP. Denote
by LP([0, T]; R") the family of all R"-valued, F;-adapted processes {f(f)}o<;<7
such that fOT | f()|Pdt < oo, a.s. Denote by LP ([0, co); R™) the family of process
{f(®)};>0 such that forevery T > 0, { f (1) }g<, <7 € LP ([0, T]; R").

Let B(t) = (B'(r), ..., B(t))" is a d-dimensional Brownian motion defined on
the probability space (2, F, {F;};50 , P); we consider the following SDEPCA:

d
dx(t) = f(x(2), x([z]))dr + Zgj(X(t),X([t]))dBj(f) (D
j=1
ont > 0 with initial data x (0) = xo € R”, where x () = (x1(t), x2(), ..., x,(1))T €

R", f:R"xR" - R", g; :R"xR*" - R", j =1,2,...,d. The definition of the
exact solution for (1) is as follows.
Definition 1 [34] An R”-valued stochastic process {x(t), t > 0} is called a solution
of (1) on [0, 00), if it has the following properties:

e {x(t),t > 0} is continuous and F;-adapted;

o {f(x(@), x([1])} € L1([0, 00); R") and {g; (x(1), x([1]))} € L2([0, 00); R™);

e (1)is satisfied on each interval [n, n+ 1) C [0, co) with integral end points almost

surely.

A solution {x(t),t > 0} is said to be unique if any other solution {x(z),t > 0} is
indistinguishable from {x(¢), t > 0}, that is,
P{x(t) = x(¢) for allt > 0} = 1.

We assume that the coefficients of (1) satisfy the following conditions.

Assumption 2.1 Suppose f(x,y) and g;(x,y) are continuously twice differentiable
in x € R" with derivatives bounded as follows: for constant M > 0

32 f(x,y)
3Xk8xi

2
07gj(x,y) <M
anaxi -

f(x,y) y 0gj(x,y) y
Xy 0xy
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holds forall x,y e R", k,i =1,2,...n,and j = 1,2, ...,d, where

af(x,w:(afl(x,y) Ifotry) afnoc,y))T

dxy dxy dxy 0x
0gj(x,y) _ (3g1;(x,y) Bg2i0e,y)  dgn )\’
Xk axy  Oxx 7 Oxp ’

22fxr,y) _ 0 (af(x,y)) _ <82f1<x,y) azfn(x,y))T

Xk OX; ax; Xk axkdx; 0 Oxpox;

Pgije,y) B (0gi(x. )\ _ (e y)  9gni(xy) r
X 0x; 0x; - '

dx; Xk axidx; 0 Oxxdx;

Remark 1 Under Assumption 2.1, for all x, y, x € R",
If e, y) — FE NIV Igi(x,y) — g (%, »)| < Mlx — %, 2)

where M = /nM.

Proof For any x, y, x € R”, according to the mean value theorem of vector-valued
function (see [35]), we have

'8f(i+9(x—i),y)‘ B}
|x — X|

[fx,y) = f(x, 0] = ox
" afE 40 —3), ] .
=1 g Jx — X|
k=1 Yk
<J/nM|x — x|,

where 6 € (0, 1), aféfc’y) = <3fz(x,y)>lk’ I,k =1,2,...,n.In the same way, we

dx
can also get
lgj(x, ») — g (X, V)| < V/nM|x — X|.
The proof is completed. O

Assumption 2.2 There exists a positive constant L such that

[fe,y) = fe, Vg, y) —gj(x, Y| < Lly — ¥l 3)

forallx,y,y e R".

Remark2 Under Assumptions 2.1 and 2.2, there exist a constant L > 0 such that f
and g;, j =1, ..., d satisfy the following linear growth condition:

|f e, IV Igj e, I < LA+ x| + [yD) “)

for all x, y € R".
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Proof By (2) and (3), using the fundamental inequality |a + b| < |a| + |b|, one can
obtain

Lf G 1 <[f (e, y) = fO, I+ 10, y) = £(0,0)| +[£(0,0)]
<M|x = 0|+ Lly = 0] + | f(0,0)|
<(M + L +1£0,0D(1 + x| + [y]).

Similarly, it can also be proved that
lgj (e, I < (M + L +1g;(0,0))(1 + |x| + [y)).

LetL =M+ L+|f(0,0)] + Z’}L] |g; (0, 0)]; the proof is completed. O

Based on Theorem 1 in [36], one can obtain the existence and uniqueness of the
exact solution for (1) on the interval [n, n 4 1), Vn € N, then the following existence
and uniqueness of the solution holds on the whole time interval [0, co) according to
the continuity. For more details, one can also see Theorem 3.1 in [34]. Moreover, the
proof of the following boundedness can be found in [37].

Lemma 2.3 Under Assumptions 2.1 and 2.2, there is a unique global solution x(t) to
(1) on t > 0 with initial data x(0) = xo. Moreover, for any p > 2, there is a positive
constant C such that

E sup |x(1)|” <C, VT > 0.
1€[0,T]

Lemma24 [15, 38] Let Zy,...,Zy : Q@ — R, N € N be F/B®R)-measurable
mapping with E|Z,|P < oo foralln =1,2,..., N and withE(Z,+11Z1, ..., Zy) =
Oforalln=1,2,..., N — 1. Then,

1
1Z1+ -+ Zallr < CpUIZ1N2s + -+ 11 Zall70) 2,

for every p € [2, 00), where || - ||r = (E| - |P)\/P, Cp is a constant depend on p but
independent of n.

3 The Milstein scheme

Let us now define the Milstein scheme for (1). Set A = 1/m be a given step size with
integer m > 1, and let the grid points #; be defined by #x = kA(k =0, 1,...). For
x,yeR" j,r=1,2,...,d,define

n
j ag (x’ )’)
Lig (x,y) = _Elgij(x’y)%f’
im

try u .
I,j(k)sz 1/ dB" (v)dB/ (u).
179 174
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In this work, we only consider the SDEPCAs with diffusion coefficients g; satisfies
the so-called commutativity condition L/ g, (x, y) = L"g i, ), #ET

Since for arbitrary k € N, there always exists € Nand! =0, 1,2,...,m — 1 such
that k = sm + [, the discrete Milstein solution X;;,4+; =~ X (fs;+1) 1S defined by

d
Xsm+i+1 = Xsmtt + [ Ksm1, Xsm) A+ Zgj (Xsm+1> Xsm) Astm+l

j=1
d .
+ D LI g (Xgmts Xm)Irj(sm + 1), )
j.r=1

where Xg = x(0) = xp, ABSJm_H = Bj(tsm-‘rl-‘rl) - Bj(tsm+l)- Due to Irj(k) +
Ijr(k) = AB,f A By forr # j, (5) can also be written as

d

Xsmti+1 = Xsm+1 + [ Xsm1, Xsm) A + Zgj (Xsmti, Xsm) AB;,n+l
j=l1

d d
1 . ; 1 .
+5 Z L]gr (X.rm-Ha Xxm)AstﬂmJﬁlAB;m_H - 5 Z ngj (Xxm-H, va)A(6)
j.or=1 j=1
Let
o
X = Y Xemttltgsrtmisn @ =0, @

sm+1=0

The continuous version of scheme (5) is given by
r ~ d ot _ _ )
X(1) = Xo +/O F (X @), X([ul))du + Z_/O g (X (), X([ul))dB’ (u)
j=1

d t . - - .
+ | Lig (X, X([u])AB" (u)dB’ (u), ®)
0

j.r=1

where AB"(u) = B"(u) — B"([u/A]A). It can be verified that X (tg,+;) =

X(tsm+l) = Xsm+l-
Throughout this paper, let C be a generic constant that varies from one place to
another and depends on p, but independent of A.

Theorem 3.1 Let Assumptions 2.1 and 2.2 hold. Then, for any A € (0, 1] and p > 2,
the Milstein scheme (5) has the following property:

sup E|Xg,ulP <C, VT > 0.

Ofth»l <T
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Proof Forany T > 0, tyy4i4+1 € [0, T],s e N,/ =0,1,--- ,m— 1, according to (8),
one has

Xsm+i+1 =X Cgm+i+1)

tsmti+1 _ _ d Ism+1+1 _ _ .
X+ [ . X+ Y [ g XauniasT w
1, /'_1 tsm

sm

d sm+i+1 _ _ .
+ Z / L/ g (X (), X([u])) AB" w)dB’ (u).
jor=1 Ism
By the inequality (3"}, |a;|)? < nP~a;|P, p > 1, we have

p
ElXsmii+11? < 477 B X [P +477'E

Ism+1+1 _ _
/ S X ), X([u]))du
tsm

p

Lsm+i+1 _ _ .
f 8j (X (), X([ul))dB’ (u)
tsm

d
+@E)"' YR
j=1

d
+(@dryP! Z E

jir=1

P

.9

txm+ . - - .
/ - L7 gy (X (u), X([ul)) AB" (w)dB/ (u)
1,

sm

According to Holder’s inequality and the Burkholder-Davis-Gundy (B-D-G)
inequality, we can deduce that

Tsm4141 _ _
ElXomais1 [P < CE|XM|P+C<(1+1)A>P‘IIE] " G, X ()| du

Lsm

p— d Lsm+1+1 _ _ »
FC(+ DAY ZIE/ g (X ), X([u])|” du
/':1 Tsm

p— d Tsm+1+1
Fo(+ DAY > IE/

jor=1 Jhm

L7 g (X (w), X(uD)AB )| du

! Lsm+i+1

CEIXanl? + € B [ 1 s Ko d

i=0 Tsm+i

IA

d 1

Tsm+i+1
P [

j:l i=0 Tsm+i

d 1

+C Z ZE/t.tnx+i+l

jor=1i=0 vlm+i

. p
LI g Xomis Xs) AB" )] du

1 d 1
< CE[Xgnl” + CAY Elf Xomtir Xsm)I? + CAY D "Bl Xomtir Xsm)|”
i=0 Jj=1i=0
d ! . Ism+i+1 u p
+C Z Z]E‘L]gr(xsm-#iv Xsm)lpf E / dBr(U) du, (10)
jor=1i=0 Lsmti Ism+i
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in the last inequality we use the fact that L & (Xsm+ir Xsm) is Fy,, ,-measurable,
while AB"(u) = B"(u) — B (tyn+i) is Fy,,;-independent. Applying the B-D-G
inequality again, together with (4), we can arrive at

/
Elxs'm+l+l|p = C]Elxsmlp +CA <l +1+ ZEIXsm+i|p + U+ 1)E|X5m|p)
i=0

d ! . Tsm4i+1 P
+C Y D EIL g (Xgmin Xom)|” / A% du

jor=1i=0 lsm+i
l
< CE|Xem|” + C+ CAY E|Xgn1il” + CE|Xn|”

i=0
d l n p
2 08r Xsmis Xsm)
+CA2+1 Z ZE ngj(xstris Xsm)% (11)
Jj,r=1i=0 k=1
According to Assumption 2.1 and (4), one can obtain
!
E|Xsmii+1l” < CE|Xgnl” +C+ CA Y E|Xsmyil”
i=0
d | n
1,2
+CdMPn? IA 7+l Z Z ZE ’gkj(Xan»i, Xsm)‘p
j=1i=0 k=1

I
CE|Xgm|” + C + CA Y E|Xnyil?
i=0

IA

1
+CA*MPnP LAST! (l + 14 ElXgmyil” + U+ 1)E|Xsm|”>
i=0

l
CE|Xgm|” + C + CA Y ElXgnyil? (12)
i=0

IA

By the discrete Gronwall inequality, we have
E|Xgms14117 < C(1+ E|Xom|P)e DA,

hence
1+ E[Xgnti14117 < CA +E|Xsm|P).

In particular, take / = m — 1, it is easy to see that

1+ E|X(A‘+l)m|p = C(l +]E|Xsm|p)-
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Then,
ElXsmii4117 < CA+E[Xgn|?) < CCA+E[X—pml?) < -+ < CTHA+[XolP).
Consequently, for any T > 0, t,41 € [0, T], one can deduce that

E|Xsml” < CHN 1+ [XolP) < C.

The proof is completed. O

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold. Then, for any T > 0, A € (0, 1] and
p=2

sup E[X(1) — X(1)|P < CAP/?, sup E|X()|P < C.
O=<t=T 0<t<T

Proof For any ¢ € [0, T'], there are always s € Nand/ =0, 1, ..., m — 1 such that
t € [tsm+1, tsm+1+1), by (7) and (8), one has

t P

f(Xsm+l s Xsm)du

Ism+1

EIX(t) — X(@)|? <3P7'E

p

d '
+3p_1]E Z/ gj(Xsm-':-l’Xsm)dBj(u)
j 1 tsm+1
d l . . p
+3E| Y / LI g Xyt Xom) AB” (u)ABI (u)
12

jor=1 sm+l

Similar to the process of (9)-(12), applying Holder’s inequality, the B-D-G inequal-
ity, Assumption 2.1, (4), and Theorem 3.1, one can arrive at

d
ElX(@) - X(t)lp SCAP]E |f(Xsm+ls Xsm)lp + CA% Z]E |gj(Xsm+lv Xsm)|p

j=1
u
/ dB" (v)
jor=1 Tsm+1

fCAp(l + ]E|Xsm+l|p + IE'|Xxm|p) + CA%(I + E|Xsm+l|]'7 + IE|Xsm|p)

d n p
38r (Xsm-1, Xom)
+CAP Y B gk (Xomgt, Xm) —— o 25 Sg”;k -

jor=1lk=1

d t 4
p—2 i
+CAIT Z E|ngr(Xsm+l, Xsm)lp/ E du

Tsm+1

d n

<CA (1 +E|Xgnst]” + ElXem|”) + CAP Y 3" E g Xomet. Xom)|”
jor=1k=1

<CA% (14 E[Xgps1l” + ElX;nl?)
<CA?%.
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Moreover, it is easy to see that

EIX(@)|P < 2P 'EIX ()7 + 2P 'EIX () — XOP <277 sup  E|Xgmul? +CAT < C.

O0=tgm =T

4 Strong convergence rate of the Milstein scheme

In the following, we sometimes use the notation (®); to denote the i-th component
of ® € R". Let ¢ : R" x R" — R” be twice differentiable with respect to the first
component, then according to the Taylor formula,

n -
- dp(x,y) _ -
P, y) —pE. y) =Y %(x —X)i + R(@)(x —X)
i o
for x, y, x € R", where

p(E +0(x — %), y)
3x,‘3xj'

(x = X)i(x —X);,

1 n
R@)x—5) =2 >

i,j=1
with @ € (0, 1). Note that X ([t]) = X([r]) for all + > 0, hence

XO=X@)i+R@)X0)—X@) (13)

dp(X X
(X (1), X (D)= (R (). (1)) = Zw

i=1
with

- 1« 9%p(X 6(X(t) — X)), X - -
R(X() — Xty = 5 32 TEEOLOCOZTO XD () — xayyx0 — k0.

dx;0x
i j=1 L

Applying (7) and (8), let k (t) = [t/ A]A, one has

(X(1) = X(1))i = . ﬁ (X (u), X ([u])du + Z / . ik (X (), X ([u))dB" ()
K (t K (t

d ¢ _ _
+ Y[ (e, X)), AB st w.

k,r=1 K ()
Define
(X X ! _ _
R)(X(0) = X(1)) = R(p)(X(0) — X (1)) + Z w f [ i@, K
1 t

dp(X(1), X !

+Zw Z f ()( 8 (X, X([u))) AB'()dB* W), (14)
1 K(t

i=1 k,r=1
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which gives
P(X(0), X([1) — ¢(X (1), )_f([t]))

dp(X X([ _ _
-y M Z / |, kK. X1uast
K(t

i=1
+R(p)(X (1) — X (1)). (15)
Lemma 4.1 Let Assumptions 2.1 and 2.2 hold. Then, for any T > 0, A € (0, 1], and
p=2
E[R(p)(X (1) — X(1))|” VE[R(p)(X (1) — X(1))|” < CAP, Vi € [0, T]

foro=f,g;,j=12,...,d
Proof Take ¢ = f, for any ¢ € [0, T'], using Holder’s inequality, one has

EIR(f)(X(t) — X(1)I?

1 & 2f(X 0(X () — X)), X _ _ P
=E\52 FX@)+0(X(@) ) ([t]))(X(t)—X(t))i(X(t)—X(t)),

=1 Bx,-ax,
2 _ _ _ P
<p2(r=D Z g2 FX@) +0X @) — X)), X([1]) (X(0) — RO (X @) — X)),
Py dx;0x,
82 2\ 1/2
<n20=D Z FX@) +0X(@) — X)), X([1]
P dx; 0xy
x (EIX () = Xeil*?) "™ 1 @) = K@), 7).
By Assumption 2.1 and Lemma 3.2, one can obtain that
- _ 1/2
E[R(f)(X(t) = X(0)|” < n*P MP (]EIX(I) - X(t)l‘“’) < CAP. (16)

Moreover, recall that forany ¢ € [0, T], there alwaysexists € Nand/ =0, 1,...,m—
1 such that ¢ € [tsn+1, tsm+i+1), Which gives k (t) = t,;,,4;, hence

EIR(S)(X(@) — X@)I?
P

dx;

i=1 fsm+1

< 3PIEIR(H)(X (1) — X(1)IP +377'E Fi(X @), X([ul))du

Bf(X(t) X([1])
pRRACEICE S

i=l1 k,r=1 Z"”“

p

437 1E Lrg (X (w), ’_‘([”]))>i AB (u)dB* ()

P

n
3 f Xsm+i, Xsm) [*
Z % fi(X.g-m+1, Xom)du
i

i=l1 Tsm+1

= 3" 'EIR(/)(X(1) = X(1)I” +377'E

P

n d t
ar-ig |30 AL Kot Xom) / (L4 Xt Xom)) AB (03B 0| . (17)

i=1 dx; k=1 Y tsm+
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Using Assumption 2.1, Holder’s inequality, (4) and Theorem 3.1, one can deduce that

p

n
d0f(X , X !
E Z M JiXsmais Xgm)du

i=1 axi Ism-+1

n

Jdf(X , X !

npil Z E ‘ f( w Sm) ﬁ(XS’""rl’ Xsm)du
i=1 dxi

nf~ lM”ZIE
t

nP =P AP Zn«:/ i Xamst. Xon)? du

i=1 Ism+1

p

IA

T+l

p

IA

JiXsmis Xgm)du

Tsm+1

IA

IA

t
car! / (1 + ElXon 117 + E|X,nl?)du
Lsm+1

CAP. (18)

IA

Similarly, applying Assumption 2.1 and the B-D-G inequality, it yields

p

Zaf (X”"“’ Xom) Z / (L gr(xsm%xsm>)iAB’<u>dB’<(u)

i=1 k=17 tsm+l

n t P
< nP e Omr Y Z E / (L*er Ko, Xom)) AB" (0dB* @0
i=1 k=1 |/l :
n d 5 t
= w1 mr Y S A E [ (L s X)), A8 @)
i=1 k=1 fom+1 '
u p
< Ay Z/ E|(L* e Komsts Xom)) | E/ dB" ()| du. (19)
Lsm+1

i=1k,r=1""tsm+l

According to the definition of Lkgr (Xsm+1, Xsm), using Assumptions 2.1, 2.2, and
Theorem 3.1, we can know that

p
E ‘(Lkgr (Xsm+1, Xsm)>i ‘

IA

. 2p 1/2
(E ‘L gr(Xsm+la va)‘ )

2\ 1/2

agr (Xsm+ly Xsm)
ax,-

n
E Z 8ik Xsmais Xsm)

i=1

IA
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n 1/2
2p—1
n-z MP (ZE|gik(Xsm+ls Xsm)|2p>

<
i=1
) 5\ 1/2
= C (1 +ElXon sl +ElXom )
< C. (20)
Substituting (20) into (19), with the help of B-D-G inequality again, we can obtain
that
" f Kymsts Xom) o [ ’
Y == / (L*gr Ko, Xom)) AB" (0dB* )
i=1 i k=1 fsm+ l
p—2 d t u P
< CA™2 Z/ IE/ dB" (v)| du
r=1 Lsm+1 Lsm+1
< CAP. (21)
Combining (16), (17), (18), and (21) yields
EIR(f)(X(1) = X(1)|? < CAP, Vi €[0,T].
Repeating the process above, we can also prove
EIR(g/)(X (1) — X(0))I” VEIR(g))(X(t) — X(1)|P < CAP, Vi €0, T]
forall j =1,2,...,d. O

Theorem 4.2 Let Assumptions 2.1 and 2.2 hold. Then, for any A € (0, 1] and p > 0,

E sup |[x(r) — X(@)|? < CAP, VT > 0.
0<t<T

Proof For any t € [0, T] and p > 2, according to (1) and (8), using It6’s formula, we
can arrive at

t —1 d
() = X(0)|P < /0 ple@) — X @)~ ((x(u) — X ()" F(u)+ pT > |Gj<u>|2) du

j=1

d t i
+3 /0 plx@) — X@IP 2 () — X @) G ;()dB! (u),
j=1

where

F(u) = f(x), x([ul) — £(Xw), X([ul)),

d
G () = g;(x(), x([u]) — g; (X (), X ([u]) — Y L/ g (X (u), X([u])) AB (u).

r=1
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Then, for any 77 € [0, T],

0<t<T

6
E sup |x(t) = X" <) A, (22)
i=l

where

T
Ay =pE /0 Ix() — X(O1P 2 (x(1) — XO)T (f (x(0), x([1]D) — f(X (1), X ([1]))) dt,

Ty _ —
As =pE /0 Ix() — X(O)1P 72 (x(t) — X(O)T (F(X (), X([1]) — f(X(0), X([1]))) dt,

T) d
A3 =p(p— DE /0 () = XO1P2 Y g (), x([1) — g (X (1), X)) P,

j=1

Ty d — _
Ay =p(p - I)E./O lx(t) = X(1)|7~2 Z gj(X(®), X([t]) — g, (X(r), X([+]))

j=1
d 2
— Y LIg (X(t), X)) AB' (1)] dt,
r=1
d t
As=p 3B sup [ v = X1 ) - X@)T
j=1 0<t<T, JO
x (g (e, x([u]) — g (X (), X([u]))) dB (u),
d '
As=p) E sup / be() — X (@)|P~2 (x(u) — X ()"
j=1 0<t<T, JO

d
x (g,- (X (), X(lul)) — g (X (), X([u]) = Y L7 g-(X(w), X([u]) AB" <u>)dB-f ).

r=1

Applying Young’s inequality, (2) and (3), it is easy to get that

T
Al < PEfo Ix (1) — X1 f (@), (D) — F(X (@), X([eD)| de

IA

T T
(p— I)E./o lx(t) — X (®)|7dt -HE/O Lf(e(@), x([tD) = f(X (@), X([])I” dr

T T
CIE/ 1 Ix() —X(z)|1’dz+c1E/ 1 Ix([1]) — X ([e])|Pdt
0 0

IA

IA

O0<u<t

T
C/ l <IE sup |x(u)—X(u)|p) dr. (23)
0
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Similarly, we can also get

d T
As=p(p—1)) E /0 () = X ()P 721g; (x(0), x([1])) — g; (X (1), X ([1])[*dr

J=1

d Ti
< (p-Dp-2) ZE/O x(r) — X(0)|7dr

=1

d T
+2(p = 1) ZE/O |2 (x(0), x([1]) — g; (X (1), X ([1])]” dr

j=1

T
< c/ 1 (IE sup |x(u) — X(u)lp) dr. (24)
0

O<u<t
Next, we give an estimation for A4. According to (15), we have

g/ (X0, X (1)) — g;(X(®), X([1])

(X ¥ 4.t
=y W Zf( ) ik (X (), X ([u])dB* () + R(g))(X (1) — X (1)).
! k=17KU

i1
Recall that L/ gx (x, y) = LFg;(x, y), we have
n

3g;(X(1), X([1])) < [ o .
2 dx; k; gik(X (), X ([u]))dB" (u)

i=1 K (1)

d n - _
L 8gi(X(0), X '
=33 e (R, X 28 (’: LR R

k=1 i=1 0xi ()

t

=Y LX), X(t)) | dB*w)

k=1 k()
d . - —_
= Z L ge(X (1), X([t)ABX(1). (25)
k=1

Hence,

d
g (X(1), X([1]) — g;(X(), X(1]) = Y L/ g (X (1), X([11) AB* (1)
k=1

+ R(g)(X (1) — X (1)), (26)
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and then

T d ~
Ay = p(p— 1)]]‘:/ [x(2) —X(I)Ip_zz }R(gj)(X(t) - X(t))|2dt

0

j=1
d T d T B
<=0E=2XE [0 -x0ra+20 -0 E [ |Re)xo - xo) @
j=1 j=1
T T _ _
< CIE/ lx(2) —X(z)|"dt+C/ E|R(g;))(X () — X(0)|" dr
0 0
T
< cf <IE sup |x(u) — X(u)P) dr + CAP. 27
0 O<u<t

Using the B-D-G inequality, fundamental inequality 2ab < a’ + b2, (2), and (3),
one sees that

1

d T 2
As< CYE ( /0 be(t) = X ()PP g (x (1), x([1]) — g (X (1), X<[r]>>|2dz)
j=1

1

d Ti 1
< CZE (O sup lx() — X(t)l”/0 lx(1) — X(O172|g; (x(0), x([t])) *gj(X(t)sX([’])”zdt)
= <t<Th
1
< gE sup [x(t) — X(1)|”

0<t<T,

d T
+ CZE/(; le() = X172 1g; (e(@), x([1]) — g (X (©), X ([]))|*de
j=1

IA

1 I
—E sup |x(t)7X(t)\p+CIE/ |x(t) — X()|Pdt
8 o<r=7y 0

T
0

d
+ CZE/ lgj (x(0), x(I1]) — g; (X (1), X ([1]))|Pdt
j=1

0<t<T} O<us<t

T
< éIE sup |x(r) — X(@)|P +c/ ' ( sup E|x(u)—X(u)|P) dr. (28)
0

Applying the B-D-G inequality again, with the help of (26) and Lemma 4.1, it can
be derived that

d ' _ ~ ]
As= p)oE sup /0 () — X @)~ R (g)(X () — X ()|dB (u)
=1 0=t=Ti

2

IA

d T ~ ~
CY E (fo () = XOPP?R(g)(X (1) — X(r>>|2dt)
j=1
%

IA

d T _ _
CZE( sup |x(r>—X(z)|”/0 |x(r>—X(t>|l’2|R<g,»>(X(r)—X<r)>2dr)

=1 \0=t=Ti

@ Springer



Numerical Algorithms (2024) 96:417-448 433

d T

1 ! _ _

< gEosup X)) = X®IP +C) Efo lx(1) — X" 2| R(g))(X (1) — X (1))|*dt
<t=<T =1

T
< l]E sup |x(r) — X(@)|? +C]E/ 1 |x() — X()|Pdt
8 0<t<T 0
d T _ _
+c Z/O EIR(g))(X (1) — X(1))|Pdr
j=1
1 h
< -E sup |x(t)—X(t)|p+C/ (IE sup |x(u)—X(u)|1’> dr + CAP. 29)
8 0<t<T 0 0<u<t

In the following, we give an estimation for A;. According to (15),

FX@, X[tD) — fF(X@), X[1]) = ¢(X (1), X([t]) + R(FH(X (1) — X (1)),
where

n > S d
o Af(X@), X ! o
$Rw), Ky ==y LEOXUD) 57 | £ K, X@)ast @,
i=1 ! k=1"KU
Using Holder’s inequality and Lemma 4.1, one has

Ty — _
Ay = pE/O (@) = X017 (x(0) = XO)T (f(X @), X([1]) — £ (X (@), X([1]))) dt

T\ _ _
B+ PE/O lx(t) = X1 R(H)X (1) — X(0))|dt

<
T T _ _
<B+(p- 1)IE/ |x () —X(t)l”dt+f E[R(f)(X(t) — X(1))|7dt
0 0
T
<B+(p-— 1)/ 1 (IE sup |x(u)—X(u)P) dr + CAP, (30)
0 O<u<t

where

T _ _
B = P]E/(; (1) = X772 (x (1) — X (1) ¢ (X (1), X([1])dt.

According to the Young inequality, it is easy to arrive at

Th _ _
B SPE( sup |X(t)—X(t)|p*2/O (X(f)—X(l))Tqﬁ(X(f),X([l]))dl)

0<t<T)
P
2

T _ _
S%E sup [x(t) — X(1)|” + CE ( f (x(0) = X()T (X (1), X([t]))dt)
0

0=<t<T
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Taking the difference between (1) and (8), one has
x(t) — X(t)

t
=x(k (1)) — X(k(1)) + /( )(f(X(u), x([ul) = f(X @), X((u]))du
K (t

d ) ] . _
+ Z/() (gj(x(u),x([u])) — g (X)), X([ul)) — Z Lig, (X (u), X([u]))AB’(m) 4B, ().
i=1 K (1

r=1

where k(1) = [t/A]A, then
5
B < Iy sup |x(t) — X(0)|” + > B; 31)
8 0<i<T, P

with

T _ _ 5
B; =CE (/(; (k1) — Xk ONTPX (@), X([l]))dt)

[

T ' T _
—CE fo (/ ()(f(x(u),x([u]))—f(X(u),X([u])))du) ¢><X<r>,xqz])>dz}
K(r

NI

T
3 =CE ( (f(X(u),X([u]))—f(f((u),f([u])))du) PX(), f((m))dr}
. T 5
By =CE A (Z / " (g @), x([uD) — g;(X ), X((u]))) dB; (u)) (X, X([tl))dt]
j:1 K(t

Tl
{ A (Z / (&) (X, X (1) = g (X, X((u)
j=17K

. — — T — - 2
—ZL’gr(X(u),X([u]))AB’(u))dBj(u)> ¢(X(l),X([t]))dt} .

r=1

Let N = [T}/A],

S

Ism+i+1

B = CE< Z / (x(x(r))—X(x(r)))qu(X(r),X([r]))dr)
smA1=0 " tsm+

B

P
2

T1 _ B
+ CE </ (X(K(f))—X(K(f)))Tfﬁ(X(f%X([f]))df>

(T1)

Bz

@ Springer



Numerical Algorithms (2024) 96:417-448

435
Set

Ism+1+1 — —
Zsm+1+1 Z/ + (k)= X @) X (), X([D)dt, sm+1+1=1,....N,
Ism+1

it is easy to know that E(Zy,, 1142121, Z2,
1,..

cois Zsmti+1) =0forall sm + 1+ 1 =
., N — 1, then for p > 4, by Lemma 2.4, we have

p
N-1 bl N-1 3\ 2
Bii <C| Y Zumun| <C cp< > |Zsm+z+1|i,,/z>
sm—+I1=0 Lp/2 sm~+1=0
N-1
p_ L
<CN1 ! Z IE|Zsm+l+l|2
sm—+I1=0
p_q N-1 Tsm+i+1 T _ _ %
=CN+~ Z E/ (x(k (1)) — X(k (1)) @(X(2), X([£]))ds
smA-1=0 Tsm+1
N-1 p
P_q P sm+1+1 P _ _ P
<CT A% Y E / (e (1) = X (e ()|2 1¢(X @), X([1]1))] > de
sm+1=0 tsm+i

T J4 J4 = = 4
<CE fo xe@) = X el (a¥ 19X @), X@)IF ) ar

T T;
<CE / x((0) = X(e(©)[Pdr + CAY f CEl¢(R (), X([)|Pdr.
0 0

Applying Assumption 2.1, the fundamental inequality (}_7_; a;)? <n?~' Y7 al,
(4) and Lemma 3.2, for any ¢ € [0, T1],

n

- - d t
3 S EO.XED) 5 / gix(X(w), X(uD)dB* @
P ax; k=1 k()

n d B ~ t P
Mf’(nd>”’1ZZE(lgw(X(t)J([f]))lﬂ / 4t )
K(t

i=1 k=1
t 2p %
/ dB*(u)
k(1)
1
t 2p\ 2
/ dB* )
K(t)

Elgp(X (1), X(1])]” =E

p

IA

d

MPnPdP! Yy (Elge(X @), X))t (E

IA

k=1

I\

C(1+EIX0* + E\er]))\“ﬁ (E

1
2
CA*? (1 + sup E|X(u)|2p>

O<u<t

IA

IA

CA*%.

(32)
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Hence,

O<u<t

T
B §C/ (E sup |x(u)—X(u)|”>dt~|—CAp.
0

According to Holder’s inequality, we can get that

T

By sCA‘z’—lEf(T) (e (T1)) — X (e (T)| % ¢ (X (), X([1]))] 2
k(Tq

<E <IX(K(T1)) — X(K(Tl))|g .CA5-! /

T

16 (X (1), X([rlm’z’dt)
(Ty)
1 7 B . , 2
SgElx(K(TO) — Xk (T))|? + CAPT’E (/ lp (X (1), X([t]))|2dt)

(1)

1 I _ _
<-E sup [x(r) — X(1)|” + CAP~! / El¢ (X (1), X([1])|Pdt
0<t<T; k(T1)

1
<-E sup |x(t) — X(@®)|? + CA?P.

0<t<T

Therefore, one can obtain

T
By < Bi1+ Bz < éE sup |x(t)—X(t)|p+CAp+C/ (E sup |x(u)—X(u)|p> dr. (33)
0

0<r<Ty O<u<t

Using Holder’s inequality and (32), together with (2)-(3), one can arrive at

T, t % _ _ P
Bz e[| G - rorw. xaona] - jeko. ko] a
K(t
T : N L o
= o (][ ew. st - rocw. x@unad ) (oo, xaen))
K(t
» T t P %
< caf [T (e] [ e stu - roce. xaama ) o
K(t
) T t %
< caf [T (ar e [ - X + 15 = X@uDian) o
0 k(1)
p (0 :
< CA?/ (A”E sup |x(u)—X(u)|”) dr
0 O<u<t
T
< carvc | <IE sup |x(u)—X(u)|p> dr. (34)
0 O<u<t
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Similarly,

P

2 v s p
(X (@), X([1]))]2dr

T

t
/ ( )(f(X(u), X([u]) — f(X ), X([u])))du
K (t

B3 SCE/
0

» T
§CAT1E/
0

r T
§CM*1E/
0

1 t _ _ P _ — P
(/( ) | f(X @), X ([u]) — f(X ), X([u]))lg du) | (X (1), X([r])|2ds
K(t

1 t _ P _ _ P
(/( ) | X (u) — X(M)\[2 du) ¢ (X (1), X([r])|2ds
K(t

T t » 2] 2 B _ 1
SCA%—I/O {E(/()}X(u)—ff(u)!wu) } {Elp(X@), X([)IP}? dr
K(t

3p—2 (N ! 3
3 -
<CA™ 3 / {/ E|X@w) — X du} dr.
0 k(1)

It follows from Lemma 3.2 that

T

3p—2 P2
BngAT/ A7 dr < CAP. 35)

0

Using Holder’s inequality and the B-D-G inequality again, with the help of (32), yields

VA
T, d t : _ _ P
Bi< CE fo 3 / (810 x (@) — g5 XG0, X)) aB@)| 1950, XeD)
j=1 K (t
d T, ' PN 3
< CZ/O (E‘/()(g_,-(x(u»x([u]))—gj(X(m,xqu])))dB(u) )
]:I K(t
x (El¢ (X (1), X(D)|P)? dr
P < p=2 ! 3
=iy [ (ATE/ |g,-<x<u>,x<[u1)>—g,-(X(u>,X<[uD>|”du> dr
j=1 k(1)
p1 (T ! 2
< ca [ (IE/ (|x<u>—X(u>|”+\x<[u1)—X([u1>>|”>du) ar
0 k(1)
» [0 %
< CAT/ <E sup |x(u)—X(u)|"’) dr
0 0<u<t
T
< cAP+C / (IE sup |x(u)—X(u)|p> dar. (36)
0 0<u<t
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By (26), (32) and Lemma 4.1, we have

T\ d [ _
ps=cs[ Y[ | Rep(xX® — X018
j:1 K(t
T
(e
0

T/, _ : C\?
f (AT/ E|R(g)H(X() — X)) du) de
0 0

< CAP’. (37)

P

(X (1), X ([1]))|* dt

1
P\ 2 _ _ 1
) (El¢ (R (1), X([)I7)? dr

IA
a
.'M&

! o -
f( ) R(g;)(X(t) — X (1))dB; (u)
K(t

IA

Q

%
M=

Combining (31) and (33)—(37), it yields

0=r<T O<u<t

1 n
B < ZE sup |x(t) — X(@)|P + CAP + C/ <E sup |x(u) — X(u)|p> dr.
0
Substituting this into (30), one has

T
As < %E sup |x(t)—X(t)|[’+CA”+C/ 1 (IE sup |x(u) —X(u)v’) dr. (38)
0

0<t=<T 0<u<t

Combining (22)—(24),(27)-(29), and (38), we have

Ty
E sup |x(t) — X@®)|? < CA?P +Cf (]E sup |x(u) — X(u)l”) dt, VT, € [0, T].
0

0=r=Th O<u<t
Consequently, it can be deduced from the Gronwall inequality that

E sup |x(t) — X(1)|? < CAPeT < CAP, p >4,
0<t<T

Furthermore, for any g € (0, 4), by Holder’s inequality,

q
E sup |x(t) — X0 =E< sup IX(I)—X(t)|>

0<t<T 0<t<T
qa
p
<|E sup |x(t) —X(®)"
0<t<T
<CA1.
The proof is completed. O
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5 Stability analysis of the Milstein method

In this section, we investigate the exponential stability of the Milstein method for (1).
Throughout this section, we shall assume that (1) has a unique global solution for
any given initial data xo. Firstly, we suppose that f(0,0) =0and g;(0,0) =0, j =
1,...,d and give the following two definitions of stability.

Definition 2 The SDEPCA (1) is said to be exponentially stable in mean square if
there exist positive constants A and H; such that for any given initial value xo € R",

Elx(r)|* < Hilxol?e ™, Vi >0.

Definition 3 For a given step-size A > 0, the Milstein method is said to be exponen-
tially stable in mean square if there exist positive constants y and H» such that for any
given initial value xp € R”,

2 2 _ykA
E| Xkl < Halxo|"e™Y

forall k € N.

Remark 3 Under Assumptions 2.1, 2.2, and f(0,0) = g;(0,0) = 0, similar to the
Remark 2, it follows

|f G, W1V g (e, I < L(x| + [yD) (39)

for all x, y € R", where L=M+ L, M, and L are defined in Assumptions 2.1 and
2.2.

Let ¢ = (g1,82,---,8a4), we assume the following condition holds to obtain the
stability.

Assumption 5.1 Assume that there are positive constants .1 > Ay > 0 such that

1
(o f )+ 51800 P < —hale? +ialy, Va,y € R
By Theorem 4.1 in [7], we can obtain the exponentially stability in the mean square
of (1).

Theorem 5.2 Let Assumption 5.1 holds. Then, (1) is exponentially stable in mean
square, i.e.,
Elx()* < Hilxol?e™, Vi 20,

where & = —logr(1) and Hy = r(1)™" with r(1) = 22 + (1 — 2)e™2"1,
To obtain the stability of the Milstein method, we introduce the following lemmas

(for details of the proofs, see [7]).
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Lemma 5.3 Let 75,41 be a sequence of numbers, s,m € N,1 =0,1,...,m — 1. If
there are constants « > 3 > 0 such that 1 — a A > 0 and

Zsmi+1 < (I —aA)zgmar + BAZgm,

Zsm+1 = <E + (1 — é) eo‘(lJrl)A) Zsm-
o o

Lemma 5.4 Assume that o, B are two positive constants. If « > f, then for all t > 0,

we have
O<E+<l—é>e_m < 1.
o o

then

Let K = nd*(d? + 2)M2L? + 2L%, o = 20; — KA, B =20 + KA, T'(m) =
g + (1 — g) e, where M and L are defined in Assumptions 2.1 and Remark 3,

respectively. Then, we obtain the exponential stability of the Milstein method.

Theorem 5.5 Let Assumptions 2.1, 2.2, and 5.1 hold. Then, for any step-size 0 < A <
A A1, the Milstein scheme (5) is exponentially stable in mean square, i.e.,

2 2 _yka
E|Xk|” < Halxo|7e™”

forallk € N, where Hy = ﬁ, y = —logI'(m),

Al—A2 s 2
K ) lf')"l SK’

A= M= JA2—K
(MI—{M) A ( ] ! ) otherwise.

K

Moreover, lima_,o y = A, where A is defined in Theorem 5.2.
Proof Forany s € N,/ =0,1,...,m — 1, according to (6), using Assumption 5.1,
E|X.Ym+l+1 |2 :]Elxsm—kl‘z + ]Elf (Xxm-Hs Xxm) |2A2 + ]Elg (Xsm+ls Xsm) ABsm+l|2
+ Eleerl |2 + 2]E(Xsm+ls f (Xsm+lv Xsm) A>
+ 2]E<Xsm+l + f (Xsm—}—l’ Xsm) A, 8 (Xan—ls Xsm) ABsm+1)

+ Z]E(Xsm-H + f (Xsm+17 Xsm) A+ 8 (Xsm-Hv Xsm) ABSI"+[7 va+l)7 (40)
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where
d d
Hyp g1 = Z LI g (Xmi1. Xem) AB,,  ABL, ./ — ZLfg,»(XsmH,Xsm)A
] r=1 j'=1
| d
=5 Z L/ gr(Xsm-',-l, Sm)ABaerlABsm—H
j,r=1 Hér

l\.)

1 .
Py Zngj(Xsm+l» Xsm) ((ABsm_H)z - A) .

Note that L’ g, (Xsm+1, Sm) is F3,,,,-measurable, AB;m o and AB] 4y are Fromat

independent; moreover, ABY 4 and AB{ ., are independent, and using the funda-

mental 1nequallty, we can arrive at

2
E|me+l|2 57 Z E)L 8r(Xsm+1, rm)ABsm_HABstrl)

Jor=lj#r

ZIE )L 85 (Kot Xom) ((ABL,,)? - A)F

d
d? .
<5 Y B g (ynsr, X PEIAB),  PEIAB, P
jor=1,j#r

QU

d
+5 D BILY g (Xomst. Xen) PENAB],, ) — AP
j=1

Recall the definition of L/ gr(x, y), using Assumption 2.1 and (39), we have

2

n
EIL! g (Xsm+i» Xsm)|2 =K IZI: 8ij (Xsm+1, Xsm) o

2
SHMZE ‘g/ (Xsm-i-la va)|
<M L2 (B Xgmrt | + B Xsm]?).
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Hence,
d .
E|Hynyl* < nd®MP*L* )" (BIXgniil* + E|XonDEIABL,  PEIAB], 7
Jor=1,j#r
d .
+ndM*L* Y (B|Xgm1* + E| X DE(ABL, , )* — Al
j=1

nd* M?L*(E| X gn41|* + E|Xgn|?) A?

IA

d
+ndM*L* Y " (B|Xgm11* + E|Xon ) (BIAB,  I* + A* —2AE|AB], 1%
j=1
nd*(@d* + 2)M*L*(E| X g1 * + E| X[ A% (41)

IA

In addition, using the independence again, one has

]E<Xsm+l + f (Xsm+ly Xsm) A, Hsn1+l>

d
1 . .
= 2E<Xsm+l + [ Ksm+t, Xsm) A, Z ngr(xsm—b—lv Xsm)Astm+[AB£m+l>
Jir=L.j#r
d

1 . .
+2]E<Xsm+l + f Xsm+t, Xsm) A, Z ngj (Xsmti, Xsm) ((AB§m+1)2 - A)>
Jj=1

E {(Xsm+l +f (Xsm+1, Xsm) A)T ngr (Xsm+l, stn)AB!m+lAB_:m+[}

I
N =
=

jor=Lj#r

E{ ot + f Komsts Xom) BT L g Xomst, Xen) (BB, )7

+
N =
=

1

~
Il

E {(Xsm+l + f KXsmat> Xsm) A)T ngj (Xsm+1s Xsm)A}

|
N =
M=

1

- 0. (42)

-
I

@ Springer



Numerical Algorithms (2024) 96:417-448 443

Similarly,

E(g (Xsm+l’ Xsm) ABsm-%—l, me+l)

d T g
1 . .
= E]E (Z 8k (Xsm+1> Xsm) ABfm.H) Z ngr (Xsm+ls XS)?I)ABSJm+]AB;m+I
k=1 j.or=1,j#r
I d Ta _
+3E <Z & Xomt, Xom) AB§n1+z) > g KXot Xonw) ((ABL, ) = A)
k=1 j=1
1 - : -
= E S sk Komst Xom) T LI g (Xomat. Xeu) AB,  AB] L ABL,
k,j.or=1,k#j#r
1 a -
+EE Z 8j Xsm+1, Xsm)TLJgr (Xsm+1, Xsm)(AstmH)ZAB;mH
Jor=1.j#r
1 - -
+§]E Z 8r (Xsm-Ha Xsm)TL] 8r (Xsm+lw Xsm)ABSJerl(AB;er/)Z
Jj.r=1,j#r
1 - »
+3EL D o Kot Xon)™ L7 ot Xon) ((AB], )" = ) AB,, .
k.j=1
—0. (43)
Moreover, it is easy to know that
E(Xsma1 + f Xomais Xsm) A, & Xgmat, Xom) ABgmqr) = 0. 44)

Substituting (41)—(44) into (40), using (39) and Assumption 5.1, one can obtain that

E|Xsmti411* =ElXgmii* + Elf Ksmrt. Xsm) P A% +Elg Xgms1. Xgm) ABgmyi|*
+nd®(d* + 2)M*L* | Xgm 11]* + El Xon|*) A
+ 2B Xsm i1 [ Kmtt: Xom) A)
=E| Xy ? + (nd*(@ + DML +20L7) B\ X + El Xy ) A2

1
+2AE <(Xsm+l9 f (Xsm+l: Xsm)) + Elg (Xsm+ls Xsm) |2>

<E|Xgmt1]* + K E Xsmi* + ElXgm|*) A2 = 20 E| X gt P A + 200E | X g |* A
= (1 = aM)E|Xyppi* + BAE| Xy |

Since A < A, we have o > B>0and 1 — oA > 0, by Lemma 5.3, yields
E|Xsmti411* < T+ DE| Xom|*.
where (0 + 1) = (£ + (1= £) e~ ®+D4). 1n particular, if | = m — 1, it follows

EIX (st 1yml* < Tm)E|[X g |*.
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Therefore

E|Xgmti+11* <D+ DE| X
<O + DT ME|X 5 1ym|*

<I'(l + DI (m)*|x0|°.

According to Lemma 5.4, we know that I'(/ + 1) € (0, 1) forall/ =0, 1,...,m — 1.
Hence,

radg+1
]E|Xsm+l+l|2 < ( ) e(sm+l+l)A]ogl"(m)|xO|2

~['(m)(+DA
< 1 e(s;n+l+l)Alog F(m)|xO|2
~I(m) '
Let H) = Lm) > 1,y = —logI'(m) > 0, we can get that
E|Xx|? < Hye V" |xo|?, Vk € N.
Furthermore,
li = — lim logT’
Jimyy == fim,log T m)
= — lim log <é + <1 — é) e‘“)
A—0 o o
A2 A\ o
=—log| — - —= !
£ (M * ( M) ¢
=A\.
The proof is completed. O

6 Numerical examples

In this section, two numerical examples are given to show the convergence rate obtained
in the previous section.

Example 1 In this example, we consider the scalar SDEPCA
dx(z) = 2x([¢t])dt — x(¢)dB(t)

on ¢ > 0 with the initial value xo = 1, B(#) is a scalar Brownian motion. We generate
3000 different Brownian paths. Let 7 = 1, Fig. 1 depicts p-th moment errors E|x (1) —
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10° 10°
0
10
L S e S
L < v e
X P S
= 2 = F T
x 10 ] X
w B o)
=3 5 107
o o
107 — E —
----- reference line with slope =1 6 -~ reference line with slope =2
— reference line with slope =2 10 — reference line with slope =4
the Euler scheme the Euler scheme
[~#—the Milstein scheme —>—the Milstein scheme
104 -2 ‘-1 0 10‘8 -2 .-1 0
10 10 10 10 10 10
log(4) log(A)

Fig.1 Log-log plot of errors against step sizes (left: p = 2; right: p = 4)

X, |P as a function of the step size A in log-log plot, where we use the numerical
solutions produced by Euler and Milstein methods with step sizes 273 24 275 26,
and 277 The simulation using the Euler scheme with step size A = 2719 is regarded
as the “true solution.” It can be seen from Fig. 1 that the convergence order of the
Euler method is around %, while the convergence order of the Milstein method is close
to 1.

Example 2 1n the following, we consider the 2-dim SDEPCA

dxy (1) = (=x1(t) + $x2(t) + sin(xy ((£1)))dr + (x1(£) + x2([1]) + cos(x2 ([1))dB (1),
dxa(r) = (5x1(1) — x2(1) + cos(x1 ([11)))dt + (sin(x1 (1)) + x2([1]1)dB (1)

on ¢ > 0 with the initial value xo = (1, 2)T. We use the numerical solution of the
Euler method with step-size A = 2715 a5 the “exact solution,” and the step sizes for
numerical solutions are taken to be 2_4, 273 277, 2_8, and 2. The convergence
rates for Euler and Milstein methods are shown in Fig. 2.

10! " 10!
10°
= 10° £
& & 107
" >-<
o g
ﬁ X
- g 10?
L 10 o
----- reference line with slope =0.5 5 - reference line with slope =1
— reference line with slope =1 10 — reference line with slope =2,
the Euler scheme the Euler scheme
—*—the Milstein scheme ——the Milstein scheme
-2 -4
10 10
102 107 10° 10 107 10°
log(A) log(a)

Fig.2 Log-log plot of errors against step sizes (left: T =3, p = l;right: T =2, p = 2)
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100¢

_"_A=2—4
“—A=2"
A=2-6

EX_ [P
sm+|

Fig.3 The mean square stability of the Milstein solutions for (45)

Example 3 In this example, we consider the stability of the Milstein method for the
following scalar SDEPCA

dx(t) = (—x(t) + ix([z‘]))dt + %x(t)dB(t) (45)

ont > O withtheinitial value xg = 10.Itiseasytogetthatn =d =1, M =1, L = 4—{,
hence L = M + L = % and K = %. On the other hand, we can obtain that

A= %, A = % by Assumption 5.1. Since )L% = % < K, according to Theorem 5.5,
A= M;{)‘z = % Therefore, we choose three step sizes A = 274275 and 2% to

show the stability of the Milstein method. The mean square stability of the numerical
solutions can be observed from Fig. 3.
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