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Abstract
The parameterized block splitting (PBS) is a convergent and efficient iterative method
to solve the large complex symmetric linear systems. In this paper, by using PBS
iterative technique, the Newton equation is approximately solved, then we establish
the modified Newton-PBS iterative method to solve the complex nonlinear systems
whose Jacobian matrices are large, sparse, and complex symmetric. Subsequently,
the local convergence analysis are explored under appropriate conditions. Ultimately,
we apply the new method and several known methods to experimental numerical
examples, and experimental results verify the superiority and efficiency of our new
method. Especially, in terms of CPU time and iteration steps, our method is obviously
better.
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1 Introduction

Supposing that function F : D ⊂ C
n → C

n is nonlinear and continuously differen-
tiable, we consider solving the following nonlinear equations of large sparse complex
systems:

F(v) = 0, (1.1)

where F = (F1, · · · , Fn)T with Fi = Fi (v), i = 1, 2, · · · , n, v = (v1, · · · , vn)
T .

The Jacobian matrix F ′(v) of function F(v) can be expressed in the following form:

F ′(v) = W (v) + iT (v), (1.2)

which is large, sparse and complex symmetric.W (v), T (v) ∈ R
n×n are real, symmet-

ric, and positive semi-definite matrices, but at least one of them is positive definite.
Moreover, i = √−1 stands for imaginary unit. Theoretically, nonlinear systems (1.1)
can exist in many engineering applications such as quantum mechanics, nonlinear
waves, chemical reactions, mechanical engineering, and turbulence; we can refer to
the literature [1–5].

From the previous literature [6, 7], the most commonly used method for solving
nonlinear systems is the Newton method.We can get the solution of Eq. 1.1 by solving
the following Newton equation:

F ′(vk)dk = −F(vk), k ≥ 0, dk = vk+1 − vk, (1.3)

F ′(vk) is a Jacobian matrix in the formula. When the scale of problem (1.1) gradually
increases, due to the fact that linear equations (1.3) must be exactly solved at each
iterative step, the Newton method is regarded as expensive and difficult. In order to
overcome the difficulty and accelerate the speed, an inexact Newton method [8,9] is
developed, because it is unnecessary to seek the inverse of the Jacobian matrix. Then,
we can get the following inexact calculation formula:

‖F ′(vk)dk + F(vk)‖ ≤ ηk‖F(vk)‖, k ≥ 0, (1.4)

here, ηk ∈ [0, 1) is commonly called forcing term which is used to control the level
of accuracy. Subsequently, some internal and external iterative methods produced by
the combination of inexact Newton method and linear iterative methods are proposed
[10–13].

In order to solve nonlinear systems (1.1) more efficiently, Darvish and Barati pro-
posed the following modified Newton method [14]:

{
uk = vk − F ′(vk)−1F(vk),

vk+1 = uk − F ′(vk)−1F(uk), k = 0, 1, 2, · · · .
(1.5)

Compared with the inexact Newton method, it only requires one more step of cal-
culation, which can further improve convergence speed and convergence order. For
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this reason, the modified Newton method has been the mainstream to solve the non-
linear systems so far [15–17]. Especially, for solving the generalized absolute value
equations, Newton-based matrix splitting method has been gradually studied [18].

For different types of nonlinear systems, in order to improve the efficiency and
speed of solving them, we take the modified Newton method as the outer iteration and
find the appropriate linear method as the inner iteration. In fact, if we take the modified
Newton method as an external iteration for nonlinear systems (1.1), it is equivalent to
our focus on finding an efficient method to solve the following linear equation:

Av = b, A = W + iT , (1.6)

where A ∈ C
n×n is a complex matrix,W , T ∈ R

n×n are real, symmetric, and positive
semi-definite matrices, but at least one of them is positive definite, and v, b ∈ C

n are
complex vectors.

As early as 2003, the Hermitian/skew-Hermitian splitting (HSS) method [19] was
proposed by Bai et al. for solving the complex symmetric non-Hermitian positive-
definite Jacobian linear systems. Subsequently, HSS-type method was deeply studied
and developed by some scholars [20–27]. Massive efficient iteration methods such as
the modified HSS (MHSS) [28], the preconditioned modified HSS (PMHSS) [29, 30],
the generalization of preconditioned MHSS (GPMHSS) [31], the double-parameter
GPMHSS (DGPMHSS) (A32), the lopsided PMHSS (LPMHSS) [33], new HSS
(NHSS) [34], a parameterized variant of the NHSS [35], and the parameterized and
preconditioned variant of NHSS (PPNHSS) [36] were gradually obtained. Besides,
Hezari et al. cleverly created a scale-splitting (SCSP) iteration method [37]. Soon
after, Zheng et al. introduced a double-step scale splitting (DSS) [38] method. On the
previous basis, the two-parameter two-step SCSP (TTSCSP) [39] method was estab-
lished by Salkuyeh and Siahkolaei. Moreover, Wang et al. proposed the combination
method of real part and imaginary part (CRI) [40], which is similar to DSS.

To solve the large sparse complex nonlinear systems (1.1) with symmetric Jacobian
matrices more quickly and efficiently, some internal and external iterative meth-
ods based on the modified Newton method have been developed. In 2013, Wu et
al. constructed the modified Newton-HSS method [41]. Afterwards, the modified
Newton-DGPMHSS (MN-DGPMHSS) [42], the modified Newton-SHSS [43], and
the modified Newton double-parameter modified generalized HSS (MN-DMGHSS)
[44] methods were gradually discussed. Subsequently, Wu et al. developed the mod-
ified Newton double-step scale splitting (MN-DSS) [45] and the modified Newton
fixed-point iteration adding the asymptotical error (MN-FPAE) [46] again. Nearly 2
years, the successive overrelaxation (SOR) method has been favored by scholars, then
the generalized SOR (GSOR), the accelerated GSOR (AGSOR), the preconditioned
GSOR (PGSOR), and the modified SOR-like [47] methods were further produced.
Under the circumstance, Xiao et al. developed the modified Newton-GSOR (MN-
GSOR) method and modified Newton-AGSOR (MN-AGSOR) method [48, 49], and
the modified Newton-PGSOR method was put forward by Wu et al. [50].
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The complex linear system (1.6) is essentially a special case of generalized saddle
point problem [51]. For saddle point problems with complex symmetric systems, a
shift-splitting (SS) iterative method was presented by Zheng and Ma [52]. In [53], the
parameterized rotated SS (PRSS) iteration method was built. Soon after, a symmetric
block triangular splitting (SBTS) iteration method was introduced, then its precondi-
tioned version were devised by Zhang et al. [54]. According to the existing literature,
it is obvious that we have to handle complex arithmetic in the CRI iteration method,
which may reduce the efficiency of the algorithm and increase the time cost. Moti-
vated by the disadvantage, a new block splitting (NBS)method [55]was established by
Huang. It has the same upper bound of the spectral radius of iteration matrices of CRI;
nevertheless, the new method avoids complex arithmetic. Meanwhile, Huang cleverly
put forward the parameterized BS (PBS) [55] by utilizing the parameter accelerating
technique to NBS.

Based on the motivation of improving computational efficiency and broadening
the scope of the problems which can be solved, we consider whether we can use the
modified Newton method to solve the large sparse complex nonlinear systems (1.1)
to obtain modified Newton equations (1.5), then we use the efficient PBS method
to further solve equations (1.5), so as to reduce the number of iterative steps of the
method, improve the efficiency of the algorithm, and shorten the algorithm time. Sowe
construct themodifiedNewton-PBSalgorithmanddirectly use the numerical examples
in practice to verify the performance of the algorithm. The numerical experimental
results show that the algorithm is efficient and feasible, and we have made significant
progress and improvement in bothCPU time and iteration steps,which is great practical
significance for solving engineering problems. Moreover, we find that the parameters
of the algorithm are relatively stable. More specifically, even when the problem scale
is large in practice, we can still quickly find the optimal parameters and obtain the
numerical solution of the problem.

Throughout the full paper, the symbol ‖�‖ represents the 2-norm of vectors or
matrices and spectral radius of matrix is expressed by ρ(�).

The framework of the rest of our paper is organized as follows. In Sect. 2,
we mainly declare the essence of PBS method, when it is used to solve com-
plex linear symmetric systems. In Sect. 3, we describe the modified Newton-PBS
method for solving complex nonlinear symmetric systems. In Sect. 4, under appro-
priate conditions, the local convergence of the modified Newton-PBS method is
verified. In Sect. 5, several concise numerical examples demonstrate the feasibility
and efficiency of our method. In Sect. 6, some brief conclusions and prospects are
presented.

2 The parameterized block splitting (PBS) method

Firstly, set A = W + iT , v = y + i z and b = m + in, then the complex symmetric
linear system (1.6) can be expanded into the following form:

Av = (W + iT ) (y + i z) = (m + in) , (2.1)
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where W , T ∈ R
n×n are real, symmetric, and positive semi-definite matrices, but

at least one of them is positive definite, and y, z,m, n ∈ R
n . Therefore, it can be

expressed in the equivalent real two-by-two form:

Av =
(
W −T
T W

)(
y
z

)
=

(
m
n

)
. (2.2)

Next, we focus on solving linear equation (2.2) with PBS method.

2.1 The PBSmethod for solving linear systems

Inspired by the ideological essentials of transformed matrix iteration (TMIT) method
[56], Huang considers multiplying the following matrix block left to

Z =
(
I ζ I
0 I

)
to linear systems (2.2), ζ is a positive constant. We obtain

ZAv =
(

ζT + W ζW − T
T W

) (
y
z

)
=

(
m + ζn

n

)
= Zb := b̃. (2.3)

Let B =
(
I I
0 α I

)
, we rewrite the vector v as follows:

(
y
z

)
=

(
I I
0 α I

) (
ỹ
z̃

)
=

(
I I
0 α I

)
ṽ = Bṽ, (2.4)

where α is a positive constant. By substituting Eq. (2.4) into (2.3), we can get

(
ζT + W ζW − T

T W

) (
I I
0 α I

) (
ỹ
z̃

)
=

(
ζT+W (ζα + 1)W + (ζ − α)T

T αW+T

)(
ỹ
z̃

)

=
(
m + ζn

n

)
. (2.5)

Denote

Ã =
(

ζT + W (ζα + 1)W + (ζ − α)T
T αW + T

)
, (2.6)

then (2.2) can be expressed as

Ãṽ :=
(

ζT + W (ζα + 1)W + (ζ − α)T
T αW + T

) (
ỹ
z̃

)
= b̃. (2.7)

Define the following splitting form of the coefficient matrix Ã that

Ã =
(

ζT + W 0
T αW + T

)
−

(
0 −[(ζα + 1)W + (ζ − α)T ]
0 0

)
= Mζ,α − Nζ,α ,
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the expression of matrices Mζ,α, Nζ,α are defined by the above equation. Based on
the theoretical analysis, the parameterized block splitting (PBS) iteration method for
solving (2.2) has been obtained:

(
ζT + W 0

T αW + T

)(
ỹk+1

z̃k+1

)
=

(
0 −[(ζα + 1)W + (ζ − α)T ]
0 0

) (
ỹk
z̃k

)
+

(
m + ζn

n

)
.

(2.8)
Thereupon, the PBS iteration method is described as follows.

Algorithm 1 The PBS method for solving linear systems (2.2).

1. Given an initialized ṽ0 = (ỹT0 , z̃T0 )
T ∈ C

2n , where ỹ0, z̃0 ∈ R
n .

2. Compute ṽk+1 = (ỹTk+1, z̃
T
k+1)

T
for k = 0, 1, 2, · · · via the following procedure until vk =

(yk
T , zk

T )
T
meets the stopping criterion:

⎧⎨
⎩

(ζT + W )ỹk+1 = −[(ζα + 1)W + (ζ − α)T ]̃zk + m + ζn,

(αW + T )̃zk+1 = −T ỹk+1 + n,

yk+1 = ỹk+1 + z̃k+1, zk+1 = α̃zk+1.
(2.9)

Wherein α and ζ are positive constants.
Apparently, in the first two sub-systems of equations (2.9), the coefficient matrices

are positive definite, so we can use Cholesky factorization and GMRES methods to
solve these sub-systems directly. In a simplified equation (2.8), the PBS method can
be rewritten as the following expression:

(
ỹk+1
z̃k+1

)
= Qζ,α

(
ỹk
z̃k

)
+ Gζ,α

(
m + ζn

n

)
= Qk+1

ζ,α

(
ỹ0
z̃0

)

+
k∑

i=0

Qi
ζ,αGζ,α

(
m + ζn

n

)
, k = 0, 1, 2, · · · , (2.10)

where

Qζ,α =
(

ζT + W 0
T αW + T

)−1 (
0 −[(ζα + 1)W + (ζ − α)T ]
0 0

)
, (2.11)

and

Gζ,α =
(

ζT + W 0
T αW + T

)−1

. (2.12)

The matrix Qζ,α is called the iteration matrix of PBS method. Obviously, Qζ,α and
Gζ,α satisfy

Qζ,α = M−1
ζ,αNζ,α, Gζ,α = M−1

ζ,α. (2.13)
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Remark 2.1 It is known that the spectral radius determines the convergence speed of
the corresponding iteration method. Refer to the [55, Theorem 3.1]; the spectral radius
of the iterative matrix Qζ,α satisfies

ρ(Qζ,α) = μi [(αζ + 1) + (ζ − α)μi ]
(α + μi )(ζμi + 1)

≤ μmax[(αζ + 1) + (ζ − α)μmax]
(α + μmin)(ζμmin + 1)

, (2.14)

with μi is the eigenvalue of the matrix W−1T , μmax and μmin are the maximum and
minimum eigenvalues, respectively. If the PBS iteration method is convergent, then
parameters ζ and α satisfy

2ζ ≥ α > 0, or 0 < 2ζ < α ≤ 2ζ + 2(2ζ 2 + 1)

μmax
.

3 Themodified Newton-PBSmethod

In the section, for solving the complex nonlinear systems (1.1), we establish the mod-
ified Newton-PBS method. Firstly, let us define some symbols for convenience.

For any vector or matrix v, denote the symbol:

v̂ =
(
Re(v)

Im(v)

)
,

where Re(v) and Im(v) represent its real and imaginary parts, respectively.
Function F(v) is expressed as follows:

F(v) = M(v) + i N (v).

Similarly, M(v) = Re(F(v)) and N (v) = Im(F(v)). Then, the Jacobian matrix of
F(v) can be written as follows:

F ′(v) = W (v) + iT (v);

here, W (v) = Re(F ′(v)), T (v) = Im(F ′(v)), and W (v), T (v) ∈ R
n×n are real

symmetric and positive semi-definite matrices, but at least one of them is positive
definite. Without losing generality, we often assume that W (v) is positive definite.

We establish the modified Newton-PBS method by using PBS method to solve the
following modified Newton equations:

{A(vk)dk = −H(vk), vk+ 1
2

= dk + vk,

A(vk)hk = −H(vk+ 1
2
), vk+1 = hk + vk+ 1

2
, k = 0, 1, 2, · · · ,

(3.1)

where

A(v) :=
(
W (v) −T (v)

T (v) W (v)

)
, (3.2)
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and

H(v) :=
(
M(v)

N (v)

)
.

We rewrite dk and hk as follows:

dk =
(
yk
zk

)
=

(
I I
0 α I

) (
ỹk
z̃k

)
=

(
I I
0 α I

)
d̃k = Bd̃k, (3.3)

hk =
(
pk
qk

)
=

(
I I
0 α I

)(
p̃k
q̃k

)
=

(
I I
0 α I

)
h̃k = Bh̃k, (3.4)

Multiply the matrix Z left on the two equations of (3.1), respectively. We can get

{
ZA(vk)dk = Ã(vk)d̃k = −ZH(vk) = −H̃(vk),

ZA(vk)hk = Ã(vk )̃hk = −ZH(vk+ 1
2
) = −H̃(vk+ 1

2
),

(3.5)

with Ã =
(

ζT (vk) + W (vk) 0
T (vk) αW (vk) + T (vk)

)
−

(
0 −[(ζα + 1)W (vk) + (ζ − α)T (vk)]
0 0

)

and H̃(vk) =
(
M(vk) + ζN (vk)

N (vk)

)
, k = 0, 1, 2, · · · .

Fromequations (2.8) and (3.5), the next iterate vk+1 can be approximately generated
as follows:

Mζ,α

(
ỹk+1
z̃k+1

)
= Nζ,α

(
ỹk
z̃k

)
−

(
M(vk) + ζN (vk)

N (vk)

)
. (3.6)

For convenience, we uniformly refer to the modified Netown-PBS method as MN-
PBS method in the rest of the text. Then, we can directly get the MN-PBS method.
The algorithm process is as follows.

According to equations (2.10) and (3.5), d̃k,lk and h̃k,mk have the following uniform
expressions:

d̃k,lk = −
lk−1∑
j=0

Q j
ζ,α(vk)Gζ,α(vk)H̃(vk),

h̃k,mk = −
mk−1∑
j=0

Q j
ζ,α(vk)Gζ,α(vk)H̃(vk+ 1

2
),

where

Qζ,α(v) =
(

ζT (v) + W (v) 0
T (v) αW (v) + T (v)

)−1 (
0 −[(ζα + 1)W (v) + (ζ − α)T (v)]
0 0

)
,
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Algorithm 2 The MN-PBS method for solving nonlinear systems (1.1)
1. Given an initialized v0 ∈ D. Set two positive constant sequences {lk }∞k=0, {mk }∞k=0 and real positive

constants ζ, α, tol.
2. While ‖H(vk )‖ ≥ tol‖H(v0)‖, for k = 0, 1, · · · create:

2.1 Set d̃k,0 = (ỹTk,0, z̃
T
k,0)

T
, where ỹk,0 = 0, z̃k,0 = 0.

2.2 For l = 0, 1, · · · , lk − 1, the PBS method is used to solve the first equation of (3.5).

⎧⎨
⎩

(ζT (vk ) + W (vk ))ỹk,l+1 = −[(ζα + 1)W (vk ) + (ζ − α)T (vk )]̃zk,l − M(vk ) − ζN (vk ),

(αW (vk ) + T (vk ))̃zk,l+1 = −T (vk )ỹk,l+1 − N (vk ),

yk,l+1 = ỹk,l+1 + z̃k,l+1, zk,l+1 = α̃zk,l+1,

then order the dk,lk = (yk,lk
T , zk,lk

T )
T
to satisfy

‖H(vk ) + A(vk )dk,lk ‖ ≤ σk‖H(vk )‖ for some σk ∈ [0, 1).

2.3 Set v
k+ 1

2
= vk + dk,lk .

2.4 ImplementH(v
k+ 1

2
).

2.5 Set h̃k,0 = ( p̃Tk,0, q̃
T
k,0)

T
, where p̃k,0 = 0, q̃k,0 = 0.

2.6 For m = 0, 1, · · · ,mk − 1, the PBS method is used to solve the second equation of (3.5).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ζT (vk ) + W (vk )) p̃k,m+1 = −[(ζα + 1)W (vk ) + (ζ − α)T (vk )]̃qk,m − M(v
k+ 1

2
) − ζN (v

k+ 1
2

),

(αW (vk ) + T (vk ))q̃k,m+1 = −T (vk ) p̃k,m+1 − N (v
k+ 1

2
),

pk,m+1 = p̃k,m+1 + q̃k,m+1, qk,m+1 = αq̃k,m+1,

then obtain the hk,mk = (pk,mk
T , qk,mk

T )
T
such that

‖H(v
k+ 1

2
) + A(vk )hk,mk ‖ ≤ σ̄k‖H(v

k+ 1
2
)‖ for some σ̄k ∈ [0, 1).

2.7 Set vk+1 = v
k+ 1

2
+ hk,mk .

3. End.

and

Gζ,α =
(

ζT (v) + W (v) 0
T (v) αW (v) + T (v)

)−1

,

then dk,lk = Bd̃k,lk , hk,mk = Bh̃k,mk can be gotten.
Consequently, the MN-PBS method is restructured into the following form:

{
vk+ 1

2
= vk − ∑lk−1

j=0 BQ j
ζ,α(vk)Gζ,α(vk)H̃(vk),

vk+1 = vk+ 1
2

− ∑mk−1
j=0 BQ j

ζ,α(vk)Gζ,α(vk)H̃(vk+ 1
2
), , k = 0, 1, 2, · · · .

(3.7)

Define the following matrix splitting:

Ã(v) = Mζ,α(v) − Nζ,α(v),
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with

Mζ,α(v) =
(

ζT (v) + W (v) 0
T (v) αW (v) + T (v)

)
,

Nζ,α(v) =
(
0 −[(ζα + 1)W (v) + (ζ − α)T (v)]
0 0

)
.

Obviously, the following relationships hold

Qζ,α(v) = Mζ,α(v)−1Nζ,α(v), Gζ,α(v) = Mζ,α(v)−1, (3.8)

and

Ã(v)−1 = (Mζ,α(v)−Nζ,α(v))−1 = (Gζ,α(v)−1(I − Qζ,α(v)))−1 = (I − Qζ,α(v))−1Gζ,α(v).

(3.9)
Then, the equivalent form of Eq. (3.7) can be obtained:

{
vk+ 1

2
= vk − B(I − Qζ,α(vk)

lk )Ã(vk)
−1H̃(vk),

vk+1 = vk+ 1
2

− B(I − Qζ,α(vk)
mk )Ã(vk)

−1H̃(vk+ 1
2
), k = 0, 1, 2, · · · .

(3.10)

4 Local convergence of themodified Newton-PBSmethod

In this section, we mainly derive the local convergence of the modified Newton-PBS
method. All the derivation processes and results are carried out under the Hölder
continuous condition, which is weaker than Lipschit z continuity hypothesis. Before
theoretical derivation, several necessary definitions and lemmas should be introduced.

Definition 4.1 Amapping F : D ⊂ C
n → C

n is nonlinear, if existing a linear operator
B ∈ L(Rn,Rn) satisfies

lim
s→0

1

s
‖F(v + sh) − F(v) − sBh‖ = 0.

for any h ∈ C
n , then F is Gateaux differentiable (or G-differentiable) at an interior

point v of D. Simultaneously, F : D ⊂ C
n → C

n is said to be G-differentiable on an
open set D0 ⊂ D, if it is G-differentiable at any point in D0.

Lemma 4.1 For matrices P, Q ∈ C
n×n and suppose P is nonsingular satisfying

‖P−1‖ ≤ ε. If ‖P − Q‖ ≤ τ and ετ ≤ 1, then Q is also nonsingular. And

‖Q−1‖ ≤ ε

1 − ετ
.

Before we start the proof, some basic conditions are established. Presume that
function F : D ⊂ C

n → C
n is continuous and G-differentiable in the neighborhood

D0 ⊂ D, which is centered on v∗ ∈ D. Its Jacobian matrix F ′(v) is continuous and
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symmetric, and it can be expressed in the form of the block two-by-two like formula
(3.2). In addition, N(v∗, r) stands for an open ball centered at v∗ with radius of r > 0
, and F(v∗) = 0.

Assumption 4.1 Presume that v∗ ∈ D0 and for arbitrary v ∈ N(v∗, r) ⊂ D0, all the
following conditions are established.

(A1) (The Bounded Condition) There are positive constants δ and γ , satisfying

max
{‖W (v∗)‖, ‖T (v∗)‖

} ≤ δ and ‖A(v∗)−1‖ ≤ γ.

(A2) (The Hölder Condition) There are nonnegative constants Rw and Rt , for the
index p ∈ (0, 1], satisfying

‖W (v) − W (v∗)‖ ≤ Rw‖v − v∗‖p,

‖T (v) − T (v∗)‖ ≤ Rt‖v − v∗‖p.

Based on Assumptions 4.1,we establish the local convergence theoremof theMN-
PBSmethod.To ensure the convergence of theMN-PBSmethod,we set the appropriate
radius r of the neighborhoodN(v∗, r) and give the restrictions of behavior of function
F at solution point v∗.

Lemma 4.2 Assumption 4.1 holds, set R := Rw + Rt , if r ∈ (
0, 1/(γ R)

1
p
)
, and p ∈

(0, 1], A(v) is nonsingular. For any v, u ∈ N(v∗, r) ∈ D0, the following inequalities
hold:

‖A(v) − A(v∗)‖ ≤ R‖v − v∗‖p,

‖A(v)−1‖ ≤ γ

1 − γ R‖v − v∗‖p
,

‖H(u)‖ ≤ R

p + 1
‖u − v∗‖p+1 + 2δ‖u − v∗‖,

‖u − v∗ − A(v)−1H(u)‖ ≤ γ

1 − γ R‖v − v∗‖p

(
R

p + 1
‖u − v∗‖p + R‖v − v∗‖p

)
‖u − v∗‖.

Proof We can obtain directly from the Hölder condition

∥∥A(v) − A(v∗)
∥∥ =

∣∣∣∣
∣∣∣∣
(
W (v) − W (v∗) T (v∗) − T (v)

T (v) − T (v∗) W (v) − W (v∗)

)∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
(
W (v) − W (v∗) 0

0 W (v) − W (v∗)

)∣∣∣∣
∣∣∣∣

+
∣∣∣∣
∣∣∣∣
(

0 T (v∗) − T (v)

T (v) − T (v∗) 0

)∣∣∣∣
∣∣∣∣

= ‖W (v) − W (v∗)‖ + ‖T (v) − T (v∗)‖
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≤ Rw‖v − v∗‖p + Rt‖v − v∗‖p

= R‖v − v∗‖p.

Furthermore, we can be obtained

‖A(v∗)−1(A(v∗) − A(v))‖ ≤ ‖A(v∗)−1‖‖A(v∗) − A(v)‖
≤ γ R‖v − v∗‖p < 1,

due to A(v∗)−1 is nonsigular, and by making use of Lemma 4.1, we can get

‖A(v)−1‖ ≤ ‖A(v∗)−1‖
1 − ‖A(v∗)−1(A(v∗) − A(v))‖

≤ γ

1 − γ R‖v − v∗‖p
.

Since

H(u) = H(u) − H(v∗) − A(v∗)(u − v∗) + A(v∗)(u − v∗)

=
∫ 1

0
(A(v∗ + t(u − v∗)) − A(v∗))dt(u − v∗) + A(v∗)(u − v∗),

from the bounded condition, we have

∥∥A(v∗)
∥∥ ≤

∣∣∣∣
∣∣∣∣
(
W (v∗) 0

0 W (v∗)

)∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣
(

0 −T (v∗)
T (v∗) 0

)∣∣∣∣
∣∣∣∣

= ‖W (v∗)‖ + ‖T (v∗)‖
≤ 2δ,

consequently

∥∥H(u)
∥∥ ≤ ∥∥ ∫ 1

0
(A(v∗ + t(u − v∗))) − A(v∗))dt((u − v∗)

∥∥ + ∥∥A(v∗)(u − v∗)
∥∥

≤
∫ 1

0

∥∥A(v∗ + t(u − v∗))) − A(v∗)
∥∥dt((u − v∗) + ∥∥A(v∗)

∥∥∥∥(u − v∗)
∥∥

≤
∫ 1

0
R‖t(u − v∗)‖pdt((u − v∗) + 2δ‖u − v∗‖ ≤ R

p + 1
‖u − v∗‖p+1 + 2δ‖u − v∗‖.

For the last equation, let’s make a transformation

u − v∗ − A(v)−1H(u)

= −A(v)−1(H(u) − H(v∗) − A(v∗)(u − v∗) + A(v∗)(u − v∗) − A(v)(u − v∗))

= −A(v)−1
( ∫ 1

0
(A(v∗ + t(u − v∗)) − A(v∗))dt(u − v∗) + (A(v) − A(v∗))(u − v∗)

)
,
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then

‖u − v∗ − A(v)−1H(u)‖
≤ ∥∥A(v)−1

∥∥( ∫ 1

0
‖(A(v∗ + t(u − v∗)) − A(v∗))‖dt(u − v∗) + ‖A(v) − A(v∗)‖‖u − v∗‖

)

≤ γ

1 − γ R‖v − v∗‖p

(
R

p + 1
‖u − v∗‖p + R‖v − v∗‖p

)
‖u − v∗‖.

The proof of Lemma 3.2 is completed. �
Theorem 4.1 Suppose r ∈ (0, r0), ensure that the assumptions are consistent with
Lemma 4.2, set r0 := min1≤ j≤3{r j }, meanwhile

r1 =
(

1

[2(1 + 1
α
)(1 + 1

ζ
)γ ][(1 + α)Rw + (2 + ζ )Rt ]

) 1
p

,

r2 =
(

τθ(
2(1 + 1

α
)(1 + 1

ζ
)γ

)(
[(ζα + 1) + (1 + τθ)(1 + α)]Rw + [(ζ − α) + (1 + τθ)(2 + ζ )]Rt

)) 1
p

,

r3 =
(
1 − 2δγ [(τ + 1)θ]ν∗

4γ R

) 1
p

,

in the expression ν∗ = min{l∗,m∗}, l∗ = lim inf
k→∞ lk, m∗ = lim inf

k→∞ mk, and the con-

stant ν∗ such that

ν∗ > �− ln(2δγ )

ln((τ + 1)θ)
�,

where the smallest integer not less than the corresponding real number is represented
by the symbol �·�, and τ ∈ (

0, 1−θ
θ

)
is a predetermined constant, besides

θ ≡ θζ,α(v∗) = ‖Qζ,α(v∗)‖ ≤ μmax[(αζ + 1) + (ζ − α)μmax]
(α + μmin)(ζμmin + 1)

≡ ϑζ,α(v∗) < 1,

with μmax and μmin are the maximum and minimum eigenvalues of W (v∗)−1T (v∗),
and 2ζ ≥ α > 0, or 0 < 2ζ < α ≤ 2ζ + 2(2ζ 2+1)

μmax
. Then, for any v ∈ N(v∗, r) ⊂ N0,

and sequences {lk}∞k=0, {mk}∞k=0 of positive integers, the iteration sequence {vk}∞k=0
generated by the MN-PBS method is well-defined and converges to v∗. In addition,
the following inequalities can be proved theoretically.

lim sup
k→∞

‖vk − v∗‖ 1
k ≤ g(r p0 ; v∗)2,

here

g(t p; �) = γ

1 − γ Rt p

(
3Rt p + 2δ[(τ + 1)θ ]�

)
≤ g(r p0 ; ν∗) < 1.
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in the formula t ∈ (0, r) and � > ν∗. Under such conditions, it holds that

‖Qα,ζ (v)‖ ≤ (τ + 1)θ < 1.

Proof According to the previous literature, the convergence of the algorithm mainly
depends on the spectral radius of the iterative matrix Qζ,α(v). Moreover, the spectral
radius of Qζ,α(v) needs to be less than 1 to make the algorithm converge.

According to the previous derivation, we know

Ã(v∗) =
(
I ζ I
0 I

)
A(v∗)

(
I I
0 α I

)
,

then

‖Ã(v∗)−1‖ =
∥∥∥∥

(
I I
0 α I

)−1 ∥∥∥∥‖A(v∗)−1‖
∥∥∥∥

(
I ζ I
0 I

)−1 ∥∥∥∥
=

∥∥∥∥
(
I − 1

α
I

0 1
α
I

) ∥∥∥∥‖A(v∗)−1‖
∥∥∥∥

(
I − 1

ζ
I

0 I

) ∥∥∥∥
≤ (1 + 1

α
)(1 + 1

ζ
)γ.

From the bounded conditions and identities (3.8), (3.9), the result can be get

‖Mζ,α(v∗)−1‖ = ‖(I − Qζ,α(v∗))Ã(v∗)−1‖
≤ (

1 + ‖Qζ,α(v∗)‖
)‖Ã(v∗)−1‖

≤ 2(1 + 1

α
)(1 + 1

ζ
)γ, (4.1)

under the Hölder condition, we can get

‖Mζ,α(v∗) − Mζ,α(v)‖

≤
∥∥∥∥

(
ζT (v∗) + W (v∗) 0

T (v∗) αW (v∗) + T (v∗)

)
−

(
ζT (v) + W (v) 0

T (v) αW (v) + T (v)

)∥∥∥∥
=

∥∥∥∥
(

ζ(T (v∗) − T (v)) + W (v∗) − W (v) 0

T (v∗) − T (v) α(W (v∗) − W (v)) + T (v∗) − T (v)

)∥∥∥∥
≤ ‖ζ(T (v∗) − T (v)) + W (v∗) − W (v)‖ + ‖T (v∗) − T (v)‖ + ‖α(W (v∗) − W (v)) + T (v∗) − T (v)‖
≤ (2 + ζ )‖T (v∗) − T (v)‖ + (1 + α)‖W (v∗) − W (v)‖
≤ (1 + α)Rw‖v − v∗‖p + (2 + ζ )Rt ‖v − v∗‖p . (4.2)

Consequently, according to Lemma 1, the following conclusion holds:

‖Mζ,α(v)−1‖ ≤ ‖Mζ,α(v∗)−1‖
1 − ‖Mζ,α(v∗)−1‖‖Mζ,α(v∗) − Mζ,α(v)‖

123



Numerical Algorithms (2024) 96:333–368 347

≤ 2(1 + 1
α
)(1 + 1

ζ
)γ

1 − [2(1 + 1
α
)(1 + 1

ζ
)γ ][(1 + α)Rw‖v − v∗‖p + (2 + ζ )Rt‖v − v∗‖p] ;

hence, we need inequality hold:

[2(1 + 1

α
)(1 + 1

ζ
)γ ][(1 + α)Rw‖v − v∗‖p + (2 + ζ )Rt‖v − v∗‖p] ≤ 1,

then the following inequality is correct:

‖v − v∗‖p ≤ 1

[2(1 + 1
α
)(1 + 1

ζ
)γ ][(1 + α)Rw + (2 + ζ )Rt ]

,

since r < r1, so the above results hold. The same can be obtained

‖Nζ,α(v∗) − Nζ,α(v)‖
≤

∥∥∥∥
(
0 −[(ζα + 1)W (v∗) + (ζ − α)T (v∗)]
0 0

)
−

(
0 −[(ζα + 1)W (v) + (ζ − α)T (v)]
0 0

)∥∥∥∥
≤ ‖(ζα + 1)(W (v) − W (v∗))‖ + ‖(ζ − α)(T (v∗) − T (v))‖
≤ (ζα + 1)Rw‖v − v∗‖p + (ζ − α)Rt‖v − v∗‖p.

For arbitrary v ∈ N(v∗, r) ∈ D0, if

‖Qζ,α(v)‖ ≤ ‖Qζ,α(v) − Qζ,α(v∗)‖ + ‖Qζ,α(v∗)‖ ≤ τθ + θ < 1,

holds, then we need to prove

‖Qζ,α(v) − Qζ,α(v∗)‖ ≤ τθ.

Then,

‖Qζ,α(v) − Qζ,α(v∗)‖
= ‖Mζ,α(v)−1Nζ,α(v) − Mζ,α(v∗)−1Nζ,α(v∗)‖
= ‖Mζ,α(v)−1Nζ,α(v)−Mζ,α(v)−1Nζ,α(v∗)+Mζ,α(v)−1Nζ,α(v∗)−Mζ,α(v∗)−1Nζ,α(v∗)‖
= ‖Mζ,α(v)−1(Nζ,α(v) − Nζ,α(v∗)) + (Mζ,α(v)−1 − Mζ,α(v∗)−1)Nζ,α(v∗)‖
= ‖Mζ,α(v)−1(Nζ,α − Nζ,α(v∗)) + (Mζ,α(v)−1Mζ,α(v∗) − I )Qζ,α(v∗)‖
≤ ‖Mζ,α(v)−1‖

(
‖(Nζ,α(v) − Nζ,α(v∗)) + (Mζ,α(v∗) − Mζ,α(v))Qζ,α(v∗)‖

)

≤ ‖Mζ,α(v)−1‖
(

‖Nζ,α(v) − Nζ,α(v∗)‖ + ‖Mζ,α(v∗) − Mζ,α(v)‖‖Qζ,α(v∗)‖
)

≤

(
(1 + 1

α
)(1 + 1

ζ
)γ

)(
(ζα + α + 2)Rw‖v − v∗‖p + (2 + 2ζ − α)Rt‖v − v∗‖p

)
1 − [(1 + 1

α
)(1 + 1

ζ
)γ ][(1 + α)Rw‖v − v∗‖p + (2 + ζ )Rt‖v − v∗‖p] . (4.3)
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Hence,
(
2(1 + 1

α
)(1 + 1

ζ
)γ

)(
(ζα + α + 2)Rw‖v − v∗‖p + (2 + 2ζ − α)Rt‖v − v∗‖p

)
1 − [2(1 + 1

α
)(1 + 1

ζ
)γ ][(1 + α)Rw‖v − v∗‖p + (2 + ζ )Rt‖v − v∗‖p] ≤ τθ, (4.4)

then we can get

‖v − v∗‖p ≤ τθ(
2(1+ 1

α
)(1+ 1

ζ
)γ

)(
[(ζα + 1) + (1 + τθ)(1 + α)]Rw + [(ζ −α) + (1+τθ)(2+ζ )]Rt

) .

(4.5)

So when r < min{r1, r2}, for arbitrary v ∈ N(v∗, r), the inequality ‖Qα,ζ (v)‖ ≤
(τ + 1)θ < 1 holds.

Next, we mainly analyze the error of the obtained iteration sequence {v}k}∞k=0.
Firstly, we know

Ã(vk)
−1 = B−1A(vk)

−1Z−1 =
(
I I
0 α I

)−1

A(vk)
−1

(
I ζ I
0 I

)−1

,

H̃(vk) = ZH(vk) =
(
I ζ I
0 I

)
H(vk),

then

Ã(vk)
−1H̃(vk) = B−1A(vk)

−1Z−1ZH(vk) = B−1A(vk)
−1H(vk). (4.6)

From Eqs. (3.10) and (4.7) and Lemma 4.2, the following equation can be obtained:

‖v
k+ 1

2
− v∗‖ = ∥∥vk − v∗ − B(I − Qζ,α(vk )

lk )Ã(vk )
−1H̃(vk )

∥∥
= ∥∥vk − v∗ − B(I − Qζ,α(vk )

lk )B−1A(vk )
−1H(vk )

∥∥
≤ ∥∥vk − v∗ − A(vk )

−1H(vk )
∥∥ + ∥∥B‖.∥∥Qζ,α(vk )

∥∥lk .
∥∥B−1∥∥.

∥∥A(vk )
−1H(vk )

∥∥
≤ ∥∥vk − v∗ − A(vk )

−1H(vk )
∥∥ + ∥∥Qζ,α(vk )

∥∥lk .
∥∥A(vk )

−1H(vk )
∥∥

≤ γ R(p + 2)

(p + 1)(1 − γ R‖vk − v∗‖p)
‖vk − v∗‖p+1

+ γ [(τ + 1)θ]lk
1 − γ R‖vk − v∗‖p

(
R

p + 1
‖vk − v∗‖p+1 + 2δ‖vk − v∗‖

)

≤ γ R(p + 2) + γ R[(τ + 1)θ]lk
(p + 1)(1 − γ R‖vk − v∗‖p)

‖vk − v∗‖p+1 + 2δγ [(τ + 1)θ]lk ‖vk − v∗‖
1 − γ R‖vk − v∗‖p

≤ γ

1 − γ R‖vk − v∗‖p
(
R(p + 2 + [(τ + 1)θ]lk )

p + 1
‖vk − v∗‖p + 2δ[(τ + 1)θ]lk

)
‖vk − v∗‖

≤ γ

1 − γ R‖vk − v∗‖p
(
3R‖vk − v∗‖p + 2δ[(τ + 1)θ]lk

)
‖vk − v∗‖

= g(‖vk − v∗‖p; lk )‖vk − v∗‖.
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Obviously, when 0 < p < 1, t ∈ (0, r0) and � > ν∗, the function g(t p; �) =
γ

1−γ Rt p
(
3Rt p + 2δ[(τ + 1)θ ]�)

is strictly monotonically decreasing with the increase
of independent variable �. In addition, the function g(t p; �) takes partial derivative of
t :

∂g(t p; �)

∂t
= γ pRt p−1[3 + 2γ δ[(τ + 1)θ ]�]

(1 − γ Rt p)2
> 0.

Easy to get that the function g(t p; �) is strictly monotonically increasing with respect
to the independent variable t .

Set variables ν∗ = min{l∗,m∗}, l∗ = lim inf
k→∞ lk, m∗ = lim inf

k→∞ mk , if the inequality

g(‖vk − v∗‖p; lk) ≤ γ

1 − γ Rr p

(
3Rr p + 2δ[(τ + 1)θ ]ν∗

)
= g(r p; ν∗) < 1

holds for any vk ∈ N(v∗, r). That

r p ≤ 1 − 2γ δ[(τ + 1)θ ]ν∗

4γ R
,

then

2γ δ[(τ + 1)θ ]ν∗ ≤ 1, r ≤
(
1 − 2γ δ[(τ + 1)θ ]ν∗

4γ R

) 1
p

.

Consequently, when r < r3,

‖vk+ 1
2

− v∗‖ < ‖vk − v∗‖.

The same inequality can be obtained

‖vk+1 − v∗‖ = ∥∥v
k+ 1

2
− v∗ − B(I − Qζ,α(vk )

mk )Ã(vk )
−1H̃(v

k+ 1
2

)
∥∥

= ∥∥v
k+ 1

2
− v∗ − B(I − Qζ,α(vk )

mk )B−1A(vk )
−1H(v

k+ 1
2

)
∥∥

≤ ∥∥v
k+ 1

2
− v∗ − A(vk )

−1H(v
k+ 1

2
)
∥∥ + ∥∥Qζ,α(vk )

∥∥mk .
∥∥A(vk )

−1H(v
k+ 1

2
)
∥∥

≤ γ

1 − γ R‖vk − v∗‖p
(

R

p + 1
‖v

k+ 1
2

− v∗‖p + R‖vk − v∗‖p
)

‖v
k+ 1

2
− v∗‖

+ γ [(τ + 1)θ]mk

1 − γ R‖vk − v∗‖p
(

R

p + 1
‖v

k+ 1
2

− v∗‖p+1 + 2δ‖v
k+ 1

2
− v∗‖

)

≤ γ R

1 − γ R‖vk − v∗‖p
(
1 + [(τ + 1)θ]mk

p + 1
‖v

k+ 1
2

− v∗‖p+1
)

+ γ

1 − γ R‖vk − v∗‖p
(
R‖vk − v∗‖p + 2δ[(τ + 1)θ]mk

)
‖v

k+ 1
2

− v∗‖

≤ γ g(‖vk − v∗‖p; lk )
1 − γ R‖vk − v∗‖p ‖vk − v∗‖

×
(
g(‖vk − v∗‖p; lk )p

(
1 + [(τ + 1)θ]mk

) + 1 + p

p + 1
R‖vk − v∗‖p + 2δ[(τ + 1)θ]mk

)

≤ γ g(‖vk − v∗‖p; lk )
1 − γ R‖vk − v∗‖p ×

((
2g(‖vk − v∗‖p; lk )p + 1

)
R‖vk − v∗‖p + 2δ[(τ + 1)θ]mk

)
‖vk − v∗‖
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≤ γ g(‖vk − v∗‖p; lk )
1 − γ R‖vk − v∗‖p ×

(
3R‖vk − v∗‖p + 2δ[(τ + 1)θ]mk

)
‖vk − v∗‖

≤ g(‖vk − v∗‖p; lk )g(‖vk − v∗‖p;mk )‖vk − v∗‖
< g(r; ν∗)2‖vk − v∗‖ < ‖vk − v∗‖.

For arbitrary v0 ∈ N(v∗, r), g(r; ν∗) < 1 holds, so the inequality is correct

0 ≤ ‖vk+1 − v∗‖ < ‖vk − v∗‖ < · · · < ‖v0 − v∗‖ < r .

Therefore, the iteration sequence {vk}∞k=0 iswell-defined, and it converges to v∗. Due to
‖vk+1−v∗‖ < g(r0; ν∗)2‖vk −v∗‖, then the inequality ‖vk −v∗‖ < g(r0; ν∗)2k‖v0−
v∗‖ is true, it is equivalent to

‖vk − v∗‖ 1
k < g(r0; ν∗)2‖v0 − v∗‖ 1

k ,

so lim
k→∞ sup ‖vk − v∗‖ 1

k ≤ g(r p0 ; v∗)2 holds, when k → ∞.

The proof of Theorem 4.1 is completed. �
Corollary 4.1 Under the condition of Theorem 4.1, the iteration sequence {vk}∞k=0
generated by the MN-PBS method converges to v∗. For any v ∈ N(v∗, r) ⊂ D0 and
sequences {lk}∞k=0, {mk}∞k=0 of positive integers, the convergence rate of MN-PBS is
super-linear if

lim
k→∞ sup ‖Qζ,α(vk)

ν∗‖ = 0,

where ν∗ = min{l∗,m∗}, l∗ = lim inf
k→∞ lk, m∗ = lim inf

k→∞ mk .

Proof Similar to the proof of Theorem 5.1 in reference [57], we omit the proof. �
Corollary 4.2 Under the condition of Theorem 4.1, the iteration sequence {vk}∞k=0
generated by the MN-PBS method converges to v∗. For any v ∈ N(v∗, r) ⊂ D0 and
sequences {lk}∞k=0, {mk}∞k=0 of positive integers, the convergence order is of MN-PBS
at least of 1 + 2p if

‖Qζ,α(vk)
ν∗‖ = O(F(vk)

p),

where ν∗ = min{l∗,m∗}, l∗ = lim inf
k→∞ lk, m∗ = lim inf

k→∞ mk .

Proof Similar to the proof of Theorem 5.2 in reference [57], we omit the proof. �

5 Numerical examples

In the section, we enumerate two complex nonlinear equations that often appear in
practice, and we use MN-PBS and some previously known methods to obtain their
numerical solutions, then we compare the experimental results to verify the efficiency
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and feasibility of our method. The previously known methods we have implemented
includeMN-DGPMHSS,MN-GSOR,MN-AGSOR,MN-DSS, andMN-FPAE,which
use the modified Newton method as external iteration and DGPMHSS, GSOR,
AGSOR, DSS, and FPAE as internal iteration, respectively. In order to ensure the
reliability of the results, we not only compared their internal and external iteration
steps, but also compared the CPU time consumption of the algorithm. The optimal
parameters of each method and the details of algorithm results are listed in the fol-
lowing tables for comparison and reference. It is worth mentioning that the numerical
experimental results of all methods of each example are carried out with MATLAB
Version R2021a on a computer, and the hardware conditions of the computer include
a windows had 1.30 GHz Intel Core i7-1065G7 CPU and 16.00 GB RAM, and the
accuracy of the machine is eps = 2.22 × 10−16.

We have listed the detailed experimental results of numerical examples in the fol-
lowing table. From the table, we can clearly get error estimates, outer and internal
iteration steps, and CPU time in seconds of each method. For convenience, we abbre-
viate error estimates, outer and internal iteration steps, and CPU time as REST, OT
Step and IT Step, and CPUT(s), respectively. For Examples 5.1 and 5.2, the external
iteration stopping criterion of all methods needs to be satisfied:

||H(vk)||2||H(v0)||2 ≤ 10−10.

The stop tolerances of inner iteration σk and σ̄k in two steps of all methods are set to
σ . Then, the following inequalities hold:

‖H(vk) + A(vk)dk,lk‖
‖H(vk)‖ ≤ σ,

‖H(vk+ 1
2
) + A(vk)hk,mk‖

‖H(vk+ 1
2
)‖ ≤ σ.

Example 5.1 Firstly, consider the following nonlinear systems:

⎧⎨
⎩

vt − (α1 + iβ1)(vxx + vyy) + κv = −(α2 + iβ2)v
4
3 , in (0, 1] × �,

v(0, x, y) = v0(x, y), in �,

v(t, x, y) = 0, on (0, 1] × ∂�,

where (x, y) ∈ � = (0, 1)×(0, 1), and its boundary is represented by ∂�. For Exam-
ple 5.1, we set the original conjecture point v0 = 1; we select values of parameters
α1 = 1, α2 = −1, β1 = β2 = 0.5, and κ is a positive constant, which controls the
magnitude of the reaction term. In order to reflect the numerical experimental results
better, we choose several different values for κ . We wield the central finite difference
scheme to discretize the grid of the partial differential equations, in which the equidis-
tant grid is selected�t = h = 1/(N +1), then we can acquire the following nonlinear
equation as form (1.6)

F (v) = Dv + (α2 + iβ2)h�tψ(v) = 0, (5.1)
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with

D = h(1 + κ�t)In + (α1 + iβ1)
�t
h (AN ⊗ IN + IN ⊗ AN ),

ψ(v) = (v
4
3
1 , v

4
3
2 , ..., v

4
3
n )T ,

where the vector v = (v1, v2, ..., vn)
T , and AN is a tridiagonal matrix satisfying

AN = tr idiag(−1, 2,−1) ∈ RN×N ,n = N×N ,⊗ is used to represent theKronecker
product, and N is a positive integer representing the scale of the problem.

Firstly, before discussing the comparison of numerical results, we need to explore
the process of selecting the optimal parameters ζ, α. As for the selection of the optimal
parameters of the method with only one parameter, Bai et al. have carried out relevant
theoretical research in the previous documents. However, there is no complete theo-
retical derivation for the optimal selection of two parameters. Therefore, we can only
choose an optimal parameter by numerical means.

Secondly, we can acquire the optimal parameters of eachmethod in detail for Exam-
ple 5.1 from Table 1. In order to ensure the credibility of the numerical experimental
comparison results, in the experimental example, we choose the unified parameters
for all methods. Three values are selected for parameter N , namely 25, 26, 27, and
κ = 1, 10, 200. The tolerance of inner iteration σ is specified as 0.1, 0.2, 0.4.
In order to show the optimal performance of each method, we select the param-
eters in Table 1 to obtain error estimates, outer and internal iteration steps, and
CPU time. The specific experimental information of all methods for Example 5.1
are listed in Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10, then we have made a detailed
comparison.

Thirdly, we can obviously find that MN-PBS method outperforms all other known
modified Newton in terms of the CPU time and the number of internal and external
iteration steps from Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10. In addition, it is obvious from
Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10 that when the problem scale N changes, whether
it is the number of internal and external iteration steps or CPU time, our method has
greater advantages.

Furthermore, we can see from Table 1 that with the change of the problem scale
N in the systems, the optimal parameters of MN-PBS are very stable, which will
determine the optimal parameters faster for the application of practical examples.

Example 5.2 Consider the complex nonlinear Helmholtz equation:

−�v + κ1v + iκ2v = −ev,

where κ1, κ2 are real coefficient functions. The independent variable v satisfies homo-
geneous Dirichlet boundary conditions in the square � = [0, 1] × [0, 1]. Similar to
Example 5.1, we use the equidistant grid with step �t = h = 1/(N + 1) at each
temporal step of the implicit scheme to discretize the nonlinear systems. Then, the
following nonlinear equation format will be obtained:

F (v) = Dv + φ(v) = 0, (5.2)
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Table 2 Numerical results of the modified Newton methods for σ = 0.1andκ = 1

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 7.8802 × 10−11 0.144311 4 28

MN-GSOR 1.5406 × 10−11 0.062711 3 10

MN-AGSOR 1.9644 × 10−11 0.067146 3 9

MN-DSS 1.0118 × 10−12 0.134404 4 16

MN-FPAE 5.2089 × 10−11 0.167721 4 31

MN-PBS 9.3189 × 10−11 0.043350 3 6

N = 26 MN-DGPMHSS 4.7213 × 10−11 0.959257 4 31

MN-GSOR 5.6142 × 10−11 0.591532 3 9

MN-AGSOR 2.3619 × 10−12 0.600614 3 9

MN-DSS 8.9131 × 10−11 0.856905 4 19

MN-FPAE 5.1761 × 10−11 0.788058 4 31

MN-PBS 3.4152 × 10−13 0.517466 3 8

N = 27 MN-DGPMHSS 2.3172 × 10−11 17.638865 4 32

MN-GSOR 6.0596 × 10−11 13.830030 3 9

MN-AGSOR 1.4726 × 10−11 14.752944 3 7

MN-DSS 9.6873 × 10−11 19.130416 4 26

MN-FPAE 2.3577 × 10−11 17.951598 4 32

MN-PBS 7.2341 × 10−11 6.773656 2 6

Table 3 Numerical results of the modified Newton methods for σ = 0.1 and κ = 10

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 8.5773 × 10−11 0.105498 4 29

MN-GSOR 6.6005 × 10−11 0.062289 3 9

MN-AGSOR 1.7309 × 10−11 0.064995 3 9

MN-DSS 1.7000 × 10−11 0.085320 4 16

MN-FPAE 5.9690 × 10−11 0.082215 4 31

MN-PBS 7.7975 × 10−11 0.044994 3 6

N = 26 MN-DGPMHSS 3.4095 × 10−12 1.335736 5 60

MN-GSOR 5.4899 × 10−11 0.594764 3 9

MN-AGSOR 7.6879 × 10−12 0.587939 3 8

MN-DSS 9.9539 × 10−11 0.909900 4 20

MN-FPAE 5.0021 × 10−11 0.802096 4 31

MN-PBS 2.6375 × 10−13 0.523284 3 8

N = 27 MN-DGPMHSS 2.2921 × 10−11 21.642412 4 32

MN-GSOR 5.9964 × 10−11 13.906540 3 9

MN-AGSOR 2.1036 × 10−11 13.617142 3 7

MN-DSS 2.2546 × 10−11 15.893385 4 32

MN-FPAE 2.3432 × 10−11 17.624799 4 32

MN-PBS 6.5088 × 10−11 6.841126 2 6
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Table 4 Numerical results of the modified Newton methods for σ = 0.1andκ = 200

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 8.8973 × 10−11 0.112221 4 32

MN-GSOR 2.7979 × 10−11 0.062446 3 10

MN-AGSOR 9.2899 × 10−11 0.055711 3 7

MN-DSS 3.2225 × 10−11 0.138523 5 39

MN-FPAE 7.2088 × 10−11 0.081159 4 31

MN-PBS 1.4729 × 10−13 0.045833 3 8

N = 26 MN-DGPMHSS 9.4755 × 10−11 1.017040 4 31

MN-GSOR 3.9669 × 10−11 0.577671 3 9

MN-AGSOR 1.2859 × 10−11 0.571199 3 8

MN-DSS 1.0085 × 10−11 1.216121 5 40

MN-FPAE 5.5641 × 10−11 0.782422 4 31

MN-PBS 7.3279 × 10−11 0.350362 2 6

N = 27 MN-DGPMHSS 6.3573 × 10−11 22.386015 4 31

MN-GSOR 4.9103 × 10−11 15.226103 3 9

MN-AGSOR 7.4412 × 10−11 13.904789 3 8

MN-DSS 1.9021 × 10−11 19.346818 5 43

MN-FPAE 4.8090 × 10−11 18.421113 4 32

MN-PBS 2.2187 × 10−11 6.628693 2 6

Table 5 Numerical results of the modified Newton methods for σ = 0.2andκ = 1

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 4.0794 × 10−11 0.131778 5 30

MN-GSOR 2.2060 × 10−12 0.079172 4 11

MN-AGSOR 6.4897 × 10−11 0.063156 3 10

MN-DSS 3.6615 × 10−11 0.098494 4 15

MN-FPAE 8.0488 × 10−11 0.097139 5 29

MN-PBS 9.3189 × 10−11 0.043569 3 6

N = 26 MN-DGPMHSS 4.5258 × 10−11 1.161346 5 30

MN-GSOR 9.3864 × 10−12 0.767480 4 10

MN-AGSOR 1.5505 × 10−11 0.583685 3 9

MN-DSS 9.3721 × 10−12 1.116826 5 20

MN-FPAE 7.8075 × 10−11 0.935007 5 29

MN-PBS 3.4658 × 10−11 0.532702 3 6

N = 27 MN-DGPMHSS 9.9614 × 10−11 41.567987 5 29

MN-GSOR 1.0731 × 10−11 16.655726 4 10

MN-AGSOR 1.3044 × 10−11 19.593636 4 8

MN-DSS 7.5336 × 10−11 17.883278 5 29

MN-FPAE 7.5228 × 10−11 20.091986 5 29

MN-PBS 1.2191 × 10−11 9.509694 3 6
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Table 6 Numerical results of the modified Newton methods for σ = 0.2andκ = 10

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 9.4559 × 10−11 0.122092 5 29

MN-GSOR 2.8621 × 10−11 0.080296 4 11

MN-AGSOR 1.2679 × 10−12 0.068469 3 11

MN-DSS 9.6514 × 10−11 0.086448 4 15

MN-FPAE 8.5943 × 10−11 0.097068 5 29

MN-PBS 7.7975 × 10−11 0.043121 3 6

N = 26 MN-DGPMHSS 9.6374 × 10−11 1.135188 5 29

MN-GSOR 9.0884 × 10−12 0.788057 4 10

MN-AGSOR 1.6675 × 10−11 0.608389 3 9

MN-DSS 4.0988 × 10−11 1.146924 5 20

MN-FPAE 3.6302 × 10−11 0.999195 5 30

MN-PBS 3.2373 × 10−11 0.515128 3 6

N = 27 MN-DGPMHSS 4.6967 × 10−11 28.516426 5 30

MN-GSOR 1.0619 × 10−11 18.373564 4 10

MN-AGSOR 1.9277 × 10−11 15.028722 3 9

MN-DSS 7.4899 × 10−11 20.337011 5 29

MN-FPAE 3.5388 × 10−11 21.748752 5 30

MN-PBS 1.1915 × 10−11 9.925258 3 6

Table 7 Numerical results of the modified Newton methods for σ = 0.2andκ = 200

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 1.5948 × 10−11 0.151061 6 35

MN-GSOR 7.3662 × 10−13 0.103026 5 10

MN-AGSOR 2.8882 × 10−12 0.072338 4 8

MN-DSS 2.6674 × 10−11 0.146275 6 36

MN-FPAE 5.3981 × 10−11 0.105886 6 29

MN-PBS 2.3108 × 10−11 0.043192 3 6

N = 26 MN-DGPMHSS 3.0958 × 10−11 1.354175 6 33

MN-GSOR 4.8395 × 10−12 0.815533 4 11

MN-AGSOR 2.3078 × 10−11 0.773675 4 8

MN-DSS 6.9309 × 10−11 1.429176 6 40

MN-FPAE 9.7378 × 10−11 1.009643 5 29

MN-PBS 1.5769 × 10−11 0.554260 3 6

N = 27 MN-DGPMHSS 5.1662 × 10−11 29.112601 6 31

MN-GSOR 8.7771 × 10−12 18.728520 4 10

MN-AGSOR 1.0865 × 10−11 19.713357 4 8

MN-DSS 5.6400 × 10−11 24.150648 6 44

MN-FPAE 7.8501 × 10−11 22.474799 5 29

MN-PBS 4.3426 × 10−11 6.970027 2 6
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Table 8 Numerical results of the modified Newton methods for σ = 0.4andκ = 1

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 5.6979 × 10−11 0.151924 7 28

MN-GSOR 3.3238 × 10−12 0.108211 5 10

MN-AGSOR 4.7213 × 10−11 0.072808 4 8

MN-DSS 4.5418 × 10−11 0.123774 7 14

MN-FPAE 4.1760 × 10−12 0.134586 8 32

MN-PBS 9.3189 × 10−11 0.044243 3 6

N = 26 MN-DGPMHSS 6.2467 × 10−11 1.636712 8 29

MN-GSOR 8.6233 × 10−13 0.923287 5 10

MN-AGSOR 2.5821 × 10−11 0.704503 4 8

MN-DSS 8.6539 × 10−11 1.795502 8 22

MN-FPAE 5.0722 × 10−12 1.536892 8 32

MN-PBS 3.4658 × 10−11 0.509995 3 6

N = 27 MN-DGPMHSS 7.3334 × 10−12 29.987529 8 32

MN-GSOR 1.1228 × 10−12 21.538351 5 10

MN-AGSOR 2.5437 × 10−11 15.747004 4 8

MN-DSS 8.8939 × 10−12 23.271966 7 28

MN-FPAE 5.6848 × 10−12 32.896993 8 32

MN-PBS 1.2191 × 10−11 10.136770 3 6

Table 9 Numerical results of the modified Newton methods for σ = 0.4andκ = 10

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 7.4195 × 10−11 0.158589 8 30

MN-GSOR 8.2029 × 10−13 0.105132 5 10

MN-AGSOR 3.8408 × 10−11 0.072292 4 8

MN-DSS 2.5516 × 10−11 0.142697 8 16

MN-FPAE 9.9974 × 10−11 0.117341 7 28

MN-PBS 7.7975 × 10−11 0.044298 3 6

N = 26 MN-DGPMHSS 6.9926 × 10−11 1.600569 8 29

MN-GSOR 8.1753 × 10−13 0.950699 5 10

MN-AGSOR 4.6645 × 10−11 0.755063 4 8

MN-DSS 5.0193 × 10−11 1.792095 8 23

MN-FPAE 4.9230 × 10−12 1.598624 8 32

MN-PBS 3.2373 × 10−11 0.519117 3 6

N = 27 MN-DGPMHSS 9.7811 × 10−12 33.037516 8 29

MN-GSOR 1.0979 × 10−12 22.307950 5 10

MN-AGSOR 3.7478 × 10−11 16.182322 4 8

MN-DSS 1.4996 × 10−11 24.780850 7 28

MN-FPAE 5.6745 × 10−12 31.433724 8 32

MN-PBS 1.1915 × 10−11 9.836060 3 6

123



358 Numerical Algorithms (2024) 96:333–368

Table 10 Numerical results of the modified Newton methods for σ = 0.4andκ = 200

N Method REST CPUT (s) OT Step IT Step

N = 25 MN-DGPMHSS 8.9873 × 10−11 0.157556 8 32

MN-GSOR 7.3662 × 10−11 0.096019 5 10

MN-AGSOR 2.8882 × 10−11 0.074849 4 8

MN-DSS 2.6285 × 10−11 0.179908 9 36

MN-FPAE 7.8463 × 10−11 0.116932 7 27

MN-PBS 2.3108 × 10−11 0.043869 3 6

N = 26 MN-DGPMHSS 5.7600 × 10−11 1.762524 8 32

MN-GSOR 1.0177 × 10−12 1.005718 5 10

MN-AGSOR 2.3078 × 10−11 0.785183 4 8

MN-DSS 1.0988 × 10−11 2.317879 10 40

MN-FPAE 7.6846 × 10−11 1.343046 7 28

MN-PBS 1.5769 × 10−11 0.523234 3 6

N = 27 MN-DGPMHSS 2.7780 × 10−11 37.109959 8 32

MN-GSOR 7.7360 × 10−13 19.822454 5 10

MN-AGSOR 1.0865 × 10−11 21.968407 4 8

MN-DSS 7.1942 × 10−11 41.739029 10 45

MN-FPAE 4.7624 × 10−12 29.418761 8 32

MN-PBS 8.2316 × 10−12 9.508568 3 6

with

D = (BN ⊗ IN + IN ⊗ BN + κ1 In) + iκ2 In,

φ(v) = (ev1 , ev2 , ..., evn )T for the vector v = (v1, v2, ..., vn)
T ,

where BN = 1
h2
tr idiag(−1, 2,−1) ∈ RN×N . The symbol ⊗ denotes Kronecker

product and n = N × N .

Firstly, the original conjecture point is selected as v0 = 0, andwe set the parameters
κ1 = 100, κ2 = −1. The stop tolerances of inner iteration σ is equal to 0.1, 0.2, and
0.4.

In Table 11, we put the optimal parameters of the experimental numerical results of
all methods for Example 5.2. In order to show the optimal performance of all methods,
we select the optimal parameters in Table 11 to compare the experimental numerical
results. For σ = 0.1 of Example 5.2, the specific performances are listed in Table 12.
For σ = 0.2, all experimental data are placed in Table 13. Similarly, in Table 14, we
list the numerical results for σ = 0.4.

From Tables 12, 13, and 14, we can find that our method still has certain advantages
as Example 5.1 through comparison. It is easy for us to find out that the optimal
parameters ζ, α of MN-PBS for Example 5.2 are as stable as Example 5.1, when the
problem size N varies, which shows that it is convenient and easy to select the optimal
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Table 11 The optimal parameters of the modified Newton methods for Example 5.2

Method N = 100 N = 150
σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.1 σ = 0.2 σ = 0.4

MN-GSOR 0.99 0.99 0.99 0.99 0.99 0.99

MN-DSS - - - - - -

MN-FPAE 0.99 1.01 0.98 0.98 0.99 0.98

MN-DGPMHSS (0.93, 1.02) (0.96, 1.04) (0.96, 1.02) (1.01, 1.08) (0.91, 0.96) (0.91, 0.94)

MN-AGSOR (0.98, 0.97) (1.01, 0.98) (0.98, 1.04) (0.99, 0.98) (1.01, 0.98) (0.99, 1.01)

MN-PBS (0.08, 3.24) (0.08, 3.24) (0.08, 3.24) (0.08, 3.24) (0.08, 3.24) (0.08, 3.24)

parameters in the experiment. Moreover, with the change of problem scale N , the
numbers of internal and external iteration steps of MN-PBS maintain 2 and 4, which
shows that our method is extraordinarily stable.

Example 5.3 Solve the complex two-dimensional nonlinear convection-diffusion
equation as follows.

{−(α1 + iβ1)(vxx + vyy) + κv = −(α2 + iβ2)vev, f or (x, y) in �,

v(x, y) = 0, f or (x, y) on ∂�.

The symbol definition here is � = (0, 1) × (0, 1), and its boundary is represented by
∂�, and κ is a positive constant which controls the size of the reaction term. Here, we
take α1 = 1, β1 = 1, α2 = β2 = 0.5. Similarly, we use the equidistant grid with step
�t = h = 1/(N + 1) at each temporal step of the implicit scheme to discretize the

Table 12 Numerical results of the modified Newton methods for σ = 0.1

N Method REST CPUT (s) OT Step IT Step

N = 100 MN-DSS - - - -

MN-DGPMHSS 9.2059 × 10−13 5.784262 5 40

MN-GSOR 9.0744 × 10−13 2.969484 3 6

MN-AGSOR 5.8335 × 10−11 2.976541 3 6

MN-FPAE 3.9544 × 10−12 2.547493 3 6

MN-PBS 8.7414 × 10−11 1.763517 2 4

N = 150 MN-DSS - - - -

MN-DGPMHSS 9.2864 × 10−13 99.631230 5 40

MN-GSOR 9.1015 × 10−13 51.032516 3 6

MN-AGSOR 1.0210 × 10−12 58.106648 3 6

MN-FPAE 9.2391 × 10−11 63.409822 3 6

MN-PBS 8.7131 × 10−11 35.553395 2 4
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Table 13 Numerical results of the modified Newton methods for σ = 0.2

N Method REST CPUT (s) OT Step IT Step

N = 100 MN-DSS - - - -

MN-DGPMHSS 1.4569 × 10−11 6.899301 6 36

MN-GSOR 9.0744 × 10−13 2.993067 3 6

MN-AGSOR 9.8120 × 10−13 2.879692 3 6

MN-FPAE 4.0962 × 10−12 2.743238 3 6

MN-PBS 8.7414 × 10−11 1.746299 2 4

N = 150 MN-DSS - - - -

MN-DGPMHSS 1.5130 × 10−11 141.613043 6 36

MN-GSOR 9.1015 × 10−13 50.139118 3 6

MN-AGSOR 9.8202 × 10−13 56.093875 3 6

MN-FPAE 3.9425 × 10−12 60.746859 3 6

MN-PBS 8.7131 × 10−11 35.145183 2 4

nonlinear systems. Then, the following nonlinear equation format will be obtained:

F (v) = Dv + (α2 + iβ2)h�tφ(v) = 0, (5.3)

with

D = κh�t In + (α1 + iβ1)
�t
h (AN ⊗ IN + IN ⊗ AN ),

φ(v) = (v1ev1 , v2ev2 , ..., vnevn )T for the vector v = (v1, v2, ..., vn)
T ,

Table 14 Numerical results of the modified Newton methods for σ = 0.4

N Method REST CPUT (s) OT Step IT Step

N = 100 MN-DSS - - - -

MN-DGPMHSS 1.4539 × 10−11 9.770582 9 36

MN-GSOR 9.0744 × 10−13 2.749309 3 6

MN-AGSOR 6.8832 × 10−11 2.925869 3 6

MN-FPAE 9.2546 × 10−11 2.844930 3 6

MN-PBS 8.7414 × 10−11 1.761293 2 4

N = 150 MN-DSS - - - -

MN-DGPMHSS 1.5330 × 10−11 146.402580 9 36

MN-GSOR 9.1015 × 10−13 57.893345 3 6

MN-AGSOR 9.9434 × 10−13 56.217798 3 6

MN-FPAE 9.2391 × 10−11 52.416926 3 6

MN-PBS 8.7131 × 10−11 35.298532 2 4
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the definitions of symbols AN , N and ⊗ are consistent with Example 5.1. In addition,
n = N × N .

In Table 15, we put the optimal parameters of the experimental numerical results
of all methods for Example 5.3. In this example, we choose the value of N as 80 and
120. The parameter κ controlling the size of the reaction item is selected as 10 and
200. The stop tolerances of inner iteration σ are equal to 0.1, 0.2, and 0.4. When α

and ζ are taken as the optimal parameters, the specific performances of all methods
for Example 5.3 are listed in Tables 16, 17, 18, 19, 20, and 21.

From Tables 16, 17, 18, 19, 20, and 21, the comparison results of all experiments
show that MN-PBS has advantages over other methods. The conclusion is consistent
with the previous two examples. And we can find that the optimal parameters α, ζ of
MN-PBS for Example 5.3 are as stable as Example 5.1 and Example 5.2. Moreover,
as the matrix scale becomes larger, our advantages become more obvious. In addition,
with the change of problem scale N , both internal and external iteration steps and
CPU time are always stable.

From the numerical experimental results, we can confirm that when the parameters
ζ, α are numerically optimal, even when the problem scale N increases to 150, the
numbers of internal and external iteration steps of MN-PBSmethod still retain a small
value. However, our method still has some shortcomings, which will be the direction
we need to explore in the future.

Future conjectures are as follows:

• Firstly, we only derive the numerical optimal parameters of MN-PBS method
through numerical experiments, but we have not found the best theoretical parame-
ters.Actually, some known literatures have presented somedetailed and reasonable
discussions about practical formulas for containing an optimal parameter. How-
ever, it is not easy to discuss their optimal values for two parameters, which will
be one of the directions that can be studied in the future.

• Secondly, the selection of parameter ζ in the preconditioning matrix Z has been
inspired by some known literature. How to select the optimal parameter ζ that can
help to improve the efficiency of the method is still the direction we need to study.

• Thirdly, we only give the local convergence analysis of MN-PBS, and its semi-
local convergence is also worth considering and studying, which will enable us to
better obtain the numerical solution through the selection of original points.

• Fourthly, we have consulted a large number of relevant literature on how to select
the tolerance of internal iteration, and there is no theoretical proof or analysis.
Therefore, we still use the numerical selection in the existing literature. How to
select the inner iterative tolerance theoretically is worthy of our in-depth study.

• Finally, deep learning has aroused great interest among scholars, the numerical
methods of partial differential equations are gradually combinedwith deep learning
recently, which provides ideas for the future direction of integrating MN-PBS
method with the current popular direction.
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Table 16 Numerical results of the modified Newton methods for σ = 0.1andκ = 10

N Method REST CPUT (s) OT Step IT Step

N = 80 MN-DGPMHSS 4.3189 × 10−11 2.060768 4 22

MN-GSOR 7.6023 × 10−11 1.568963 3 9

MN-AGSOR 6.9903 × 10−12 1.515759 3 9

MN-DSS 3.4597 × 10−11 1.503651 3 8

MN-FPAE 2.4967 × 10−11 1.995117 4 32

MN-PBS 3.8317 × 10−12 1.322312 3 6

N = 120 MN-DGPMHSS 5.6750 × 10−11 20.251476 6 24

MN-GSOR 7.1992 × 10−11 12.102357 3 9

MN-AGSOR 6.2218 × 10−11 11.805891 3 8

MN-DSS 2.3828 × 10−11 10.832867 3 8

MN-FPAE 2.5515 × 10−11 12.284388 4 32

MN-PBS 2.1059 × 10−12 7.794302 3 6

6 Conclusions

In the paper, by using PBS as internal iteration to solve Newton equations, we obtain
the solution of complex nonlinear system. Consequently, we proposed the modified
Newton parameterized block splitting (MN-PBS) iteration method, and we con-
firmed it is an efficient iterative method for solving complex nonlinear systems with
symmetric Jacobian matrices. For the new presented method, we give the local con-
vergence analysis and proof under appropriate conditions. In Sect. 5, we applied our
new method to practical numerical examples. Compared with MN-DGPMHSS, MN-

Table 17 Numerical results of the modified Newton methods for σ = 0.1andκ = 200

N Method REST CPUT (s) OT Step IT Step

N = 80 MN-DGPMHSS 4.0166 × 10−12 3.147384 5 35

MN-GSOR 6.0383 × 10−11 1.510917 3 9

MN-AGSOR 5.0248 × 10−11 1.412265 3 9

MN-DSS 6.7107 × 10−11 2.253726 4 31

MN-FPAE 5.2018 × 10−11 1.946262 4 31

MN-PBS 7.9777 × 10−11 1.351768 3 6

N = 120 MN-DGPMHSS 5.8761 × 10−11 14.790215 4 31

MN-GSOR 5.9465 × 10−11 18.430753 3 9

MN-AGSOR 7.1302 × 10−11 16.300547 3 9

MN-DSS 5.5783 × 10−11 16.998169 4 31

MN-FPAE 2.4925 × 10−11 38.375541 4 32

MN-PBS 4.4575 × 10−11 7.968622 3 6
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Table 18 Numerical results of the modified Newton methods for σ = 0.2andκ = 10

N Method REST CPUT (s) OT Step IT Step

N = 80 MN-DGPMHSS 5.0853 × 10−11 2.733555 5 30

MN-GSOR 3.4588 × 10−11 1.999012 4 9

MN-AGSOR 1.5444 × 10−12 1.400165 3 9

MN-DSS 1.5874 × 10−11 1.907091 4 8

MN-FPAE 4.9360 × 10−11 2.363457 5 30

MN-PBS 3.8317 × 10−12 1.329859 3 6

N = 120 MN-DGPMHSS 7.6754 × 10−12 20.939155 7 28

MN-GSOR 3.5452 × 10−11 13.149958 4 9

MN-AGSOR 3.4025 × 10−11 11.220533 4 8

MN-DSS 9.0137 × 10−12 13.386575 4 8

MN-FPAE 3.3345 × 10−11 16.308287 5 30

MN-PBS 2.1059 × 10−12 7.936163 3 6

GSOR, MN-AGSOR, MN-DSS, and MN-FPAE methods, the experimental results
show that MN-PBSmethod is not only efficient but also performs well in both the iter-
ation steps and CPU time. Moreover, when the problem size becomes larger, MN-PBS
method can still maintain a small number of internal and external iteration steps and a
small amount of CPU time, and the optimal parameters are almost constant from the
results.

In addition, there are still some problems worth considering. For example, although
the corresponding spectral radius of the iteration matrix Qα,ζ (v) has been determined,
but we still have not determined the theoretical optimal parameters ζ and α, only the

Table 19 Numerical results of the modified Newton methods for σ = 0.2andκ = 200

N Method REST CPUT (s) OT Step IT Step

N = 80 MN-DGPMHSS 8.1037 × 10−11 3.042515 6 31

MN-GSOR 3.0277 × 10−11 1.865526 4 11

MN-AGSOR 8.4382 × 10−11 1.899857 4 8

MN-DSS 9.9578 × 10−11 2.832149 5 30

MN-FPAE 9.1227 × 10−11 2.339996 5 29

MN-PBS 7.9777 × 10−11 1.302343 3 6

N = 120 MN-DGPMHSS v8.6514 × 10−11 17.461697 5 30

MN-GSOR 9.5830 × 10−12 13.985222 4 10

MN-AGSOR 7.4335 × 10−11 12.585885 4 8

MN-DSS 7.8763 × 10−11 16.238791 5 30

MN-FPAE 7.9620 × 10−11 26.955257 5 29

MN-PBS 4.4575 × 10−11 7.694848 3 6
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Table 20 Numerical results of the modified Newton methods for σ = 0.4andκ = 10

N Method REST CPUT (s) OT Step IT Step

N = 80 MN-DGPMHSS 8.2172 × 10−12 3.450756 7 28

MN-GSOR 1.2105 × 10−11 1.897579 4 10

MN-AGSOR 2.6410 × 10−12 1.847811 4 8

MN-DSS 1.5921 × 10−11 1.888319 4 8

MN-FPAE 6.3784 × 10−12 3.855849 8 32

MN-PBS 3.8317 × 10−12 1.319788 3 6

N = 120 MN-DGPMHSS 7.6754 × 10−12 20.939155 7 28

MN-GSOR 1.2453 × 10−11 13.203421 4 10

MN-AGSOR 2.4181 × 10−11 13.505979 4 8

MN-DSS 8.8945 × 10−12 11.565212 4 8

MN-FPAE 6.5040 × 10−12 24.395661 8 32

MN-PBS 2.1059 × 10−12 7.902073 3 6

optimal parameter values of each example are determined by numerical techniques.
Finding the optimal theoretical parameters can be the direction of our future research.
Besides, the choice of preconditioner is uncertain. Even if we choosematrixZ , accord-
ing to the current research literature, how to select the appropriate Z is still worthy
of our in-depth thinking and exploration. Furthermore, our new method may consider
combining it with the current mainstream direction, so as to expand the applicable
scope of our method.

Table 21 Numerical results of the modified Newton methods for σ = 0.4andκ = 200

N Method REST CPUT (s) OT Step IT Step

N = 80 MN-DGPMHSS 3.6138 × 10−11 3.844816 8 32

MN-GSOR 7.3407 × 10−13 2.442852 5 10

MN-AGSOR 8.4382 × 10−11 2.052114 4 8

MN-DSS 3.6797 × 10−11 4.311352 8 32

MN-FPAE 4.1355 × 10−12 3.504335 8 32

MN-PBS 7.9777 × 10−11 1.328748 3 6

N = 120 MN-DGPMHSS 1.8434 × 10−11 25.780741 8 32

MN-GSOR 8.9294 × 10−13 18.215608 5 10

MN-AGSOR 7.4335 × 10−11 13.650219 4 8

MN-DSS 2.9030 × 10−11 22.396249 8 32

MN-FPAE 5.1889 × 10−12 24.448094 8 32

MN-PBS 4.4575 × 10−11 7.620980 3 6
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