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Abstract
In this paper, we present a new nonsmooth Newton-type algorithm for solving the
generalized complementarity problem based on its reformulation as a system of non-
linear equations using a one-parametric family of complementarity functions. We
demonstrate, under suitable hypotheses, that this algorithm converges locally and q-
quadratically. In addition, we show numerical experiments that allow us to see the
good performance of the proposed algorithm.
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1 Introduction

Let F : Rn → R
n, (F1(x), . . . , Fn(x)) and G : Rn → R

n, (G1(x), . . . ,Gn(x))

be continuously differentiable functions. The generalized complementarity problem
(GCP (F,G)) is to find a solution of the following system of equations and inequalities

Fi (x) ≥ 0, Gi (x) ≥ 0, Fi (x)Gi (x) = 0, ∀i = 1, . . . , n. (1)

Hevert Vivas, Rosana Pérez, and Carlos A. Arias contributed equally to this work.

B Hevert Vivas
hevivas@unicauca.edu.co

Rosana Pérez
rosana@unicauca.edu.co

Carlos A. Arias
carlosarias@unicauca.edu.co

1 Department of Mathematics, Universidad del Cauca, Calle 5 No. 4-70, 190003,
Cauca Popayán, Colombia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01581-2&domain=pdf


552 Numerical Algorithms (2024) 95:551–574

Particular cases of GCP(F,G), of great interest due to its numerous applications, are
the linear complementarity problem (F(x) = Mx + q, M ∈ R

n×n and G(x) = x)
[1–5] nonlinear complementarity problem (G(x) = x) [2–4] and implicit comple-
mentarity problem (G(x) = x − E(x), with E a continuously differentiable function
[5–8].

As in the particular casesmentioned previously, theGCP(F,G) can be reformulated
as the following system of nonlinear equations,

�(x) = (ϕ(F1(x),G1(x)), . . . , ϕ(Fn(x),Gn(x))T = 0, (2)

where� : Rn → R
n and ϕ : R2 → R.The last one is called complementarity function

and satisfies that ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. From this equivalence,
we conclude two facts. First, the trace of ϕ by the intersection with the xy-plane is
the curve formed by the non negative x and y semi-axes which is nonsmooth, and
therefore, ϕ and � are nonsmooth functions [9]. Second, x∗ solves GCP(F,G) if
only if �(x∗) = 0 which guarantees that solving the generalized complementarity
problem is equivalent to solve its reformulation.

Alternatively, if� : Rn → R denotes the natural merit function defined by�(x) =
1
2 �(x)T�(x), then we may rewrite the generalized complementarity problem as the
following unconstrained minimization problem

Minimize �(x). (3)

x ∈ R
n

Observe that any solution to (2) is a global minimizer of � in R
n . Reciprocally, any

local solution x of (3) such that �(x) = 0 is a solution of (2).
Nonsmooth Newton-type methods are popular ones to solve nonlinear complemen-

tarity problems [2, 10–12]. They use the concept of generalized Jacobian [13]. Some
of them have been extended to generalized complementarity problems [14, 15].

In this paper, we consider the reformulation (2) with ϕ = ϕλ, the one-parametric
family of complementarity functions introduced in [12], defined by

ϕλ(a, b) =
√

(a − b)2 + λab − a − b , λ ∈ (0, 4) . (4)

Thus, we may rewrite the nonlinear system of equations (2) as �λ (x) = 0 and the
minimization problem (3) as

Minimize �λ(x) = 1
2 ‖�λ(x)‖22 , (5)

x ∈ R
n

whose objective function is continuously differentiable [12].
We chose the family ϕλ for two reasons. First, because its relationship with the two

probably most prominent complementarity functions: Fischer function [2, 16] and
the Minimum function [17] defined by ϕ(a, b) = √

a2 + b2 − a − b and ϕ(a, b) =
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min{a, b}, respectively. Observe that, for λ = 2, ϕλ reduces to the Fischer function
and, when λ tends to 0, ϕλ converges to a multiple of the Minimum function.

The second reason is that, as far as we know, the family has not been used in
connection with the generalized complementarity problem, only the particular case
λ = 2 (Fischer function) was used in [15] to propose a generalized Newton-type
method to solve theGCP (F,G), and theminimum functionwas used in [14] to analyze
a local convergence of Levenberg-Marquardt type-method for the GCP(F,G).

In this paper, we analyze and extend to generalized complementarity problems, the
properties of the operator �λ investigated in [12] for the particular case of nonlinear
complementarity, andwe present a new nonsmoothNewton-type algorithm for solving
the GCP (F,G) based on its reformulation as a system of nonlinear equations using
a one-parametric family of complementarity functions. We demonstrate, under suit-
able hypotheses, that this algorithm converges locally and q-quadratically. We show
numerical tests that allow us to see the good performance of the new algorithm.

We organize this article as follows. In Section2, we recall some definitions and
results from nonsmooth analysis which we use in the document. We also extend some
definitions of regularity to generalized complementarity. In Section3, we analyze
properties of the operator �λ as extensions of those investigated in [12] for nonlinear
complementarity. In Section4, we present the algorithm and convergence results. In
Section5, we present the analysis of the numerical performance of the algorithm
proposed. Finally, In Section6, we present some conclusions.

2 Preliminaries

We recall some definitions and results from nonsmooth analysis which we use in this
work.

Definition 1 [18]. Let K : Rn → R
n be a locally Lipschitzian function and let DK be

the set where K is differentiable. For all x ∈ R
n, the set given by

∂BK (x) =
{
lim
k→∞ K ′(xk) ∈ R

n×n : lim
k→∞ xk = x, xk ∈ DK

}
(6)

is known as the generalized B-Jacobian of K at x.

Definition 2 The convex hull of ∂BK (x) is called the generalized Jacobian of K at x,

denoted ∂K (x).

Usually, the set ∂K (x) is difficult to compute. An alternative is the following
overestimation [13],

∂K (x)T ⊆ ∂K1(x) × · · · × ∂Kn(x), (7)

where the right side, for short ∂C K (x) is called C-subdifferential of K at x [19], and
it is the set of matrices in R

n×n whose i th column is the generalized gradient of the
i th component of the function K .
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Definition 3 [20].A locallyLipschitz continuous and directionally differentiable func-
tion K : Rn → R

n is called semismooth at a point x ∈ R
n if

Hd − K ′(x; d) = o(‖d‖)

holds for every d → 0 and every H ∈ ∂K (x + d) and, in addition

lim
H∈ ∂K (x+th

′
), h

′→h, t→0+

{
Hh

′}
(8)

exists for any h ∈ R
n, and strongly semismooth at x ∈ R

n if

Hd − K ′(x; d) = O(‖d‖2)

holds for every d → 0, and every H ∈ ∂K (x + d). Here, K ′(x; d) denotes the
usual directional derivative of K at x in the direction d.

Definition 4 [12]. The function K : Rn → R
n is class LC1, if it is differentiable and

its derivative is locally Lipschitz continuous.

Definition 5 [10] The function K : Rn −→ R
n is B-differentiable at x, if it is direc-

tionally differentiable at x and

K (x + h) − K (x) − K ′(x, h) = o(‖h‖). (9)

Moreover, K is B-differentiable of degree 2 en x if and only if

K (x + h) = K (x) + K ′(x; h) + O(‖h‖2). (10)

Furthermore, the directional derivative K ′(·, ·) is semicontinuous of degree 2 in
x [10] if there exists a constant L and a neighborhood N of x such that for all
x + h ∈ N ,

∥∥K ′ (x + h, h) − K ′ (x, h)
∥∥ ≤ L ‖h‖2 . (11)

The following two lemmas will be useful in determining the rate of convergence of
our algorithm.

Lemma 1 (Lemma 2.2 [10]) Suppose that K : Rn → R
m is directionally differen-

tiable at a neighborhood of x. The following statements are equivalent:

(1) K is semismooth at x.

(2) K ′(·, ·) is semicontinuous at x.

(3) for any H ∈ ∂K (x + h), h −→ 0, Hh − K ′(x; h) = o(‖h‖).
Lemma 2 (Lemma 2.3 [10]) Suppose that K : Rn → R

m is directionally differen-
tiable at a neighborhood of x. The following statements are equivalent:

(1) K is semicontinuous of degree 2 at x.
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(2) for any H ∈ ∂K (x + h), h −→ 0, Hh − K ′(x; h) = O(‖h‖2).
If (1) or (2) holds, then K is B-differentiable of degree 2 at x.

Next, we define the concepts of BD-regularity and R-regularity in general-
ized complementarity context. For this, we consider a solution x∗ of GCP(F,G)
and the following index sets, α∗ = {i ∈ I : Fi (x∗) > 0 = Gi (x∗)} , β∗ =
{i ∈ I : Fi (x∗) = 0 = Gi (x∗)} and γ∗ = {i ∈ I : Fi (x∗) = 0 < Gi (x∗)} .

Definition 6 [4]. Let x∗ be a solution of GCP(F,G).

1. If all matrices H ∈ ∂B�(x∗) are nonsingular, x∗ is called a BD-regular solution.
2. Let F ′(x∗) be nonsingular and K = G ′(x∗)F ′(x∗)−1. If the submatrix1 Kαα is

nonsingular and the Schur-complement of K ,

Kββ − KβαK
−1
αα Kαβ ∈ R

|β|×|β|

is a P-matrix,2 x∗ is called an R-regular solution.

Observe that for the particular case G(x) = x, the Definition 6 is reduced to the
one of BD-regularity and R-regularity for nonlinear complementarity.

Following [12], we will use the notation fλ(a, b) for the first term on the right side
of (4).

Lemma 3 [12]. Let fλ : R2 → R defined by

fλ(a, b) =
√

(a − b)2 + λab, λ ∈ (0, 4). (12)

There exists a constant cλ ∈ (0, 2) such that ‖∇ fλ(a, b)‖2 ≤ cλ, for all nonzero
vector (a, b) ∈ R

2.

Finally, we next present a characterization of the class of P-matrices for nonlinear
complementarity, which will be useful later.

Proposition 1 (Proposition 2.7 [12]) A matrix of the form Da + DbN is nonsingular
for all positive (negative) semidefinite diagonal matrices Da, Db ∈ R

n×n such that
Da + Db is positive (negative) definite if and only if N ∈ R

n×n is a P-matrix.

3 The operator 8�

As we mentioned earlier, properties of the operator �λ were investigated in detail in
[12] for the reformulation of nonlinear complementarity problem (i.e., when G(x) =
x.). In this section, we verify that these properties are easily extend to generalized
complementarity problem.

The following lemma and corollary give upper bounds for the partial derivatives of
the function fλ, defined by (12), which will be used in later results.

1 Let A = (ai j ) ∈ R
m×n . Aαβ is the one with elements ai j such that i ∈ α and j ∈ β.

2 A matrix M ∈ R
n×n is a P-matrix if for every nonzero vector z there is an index j ∈ {1, . . . , n} such

that z j [M z] j > 0.
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Lemma 4 The partial derivatives of the function fλ are bounded from above by 1, for
all nonzero vector (a, b) ∈ R

2.

Proof Wemust prove that for all nonzero vector (a, b) ∈ R
2, the following inequalities

are satisfied:
∂ fλ(a, b)

∂a
≤ 1 and

∂ fλ(a, b)

∂b
≤ 1. (13)

The first inequality was proved in [9]. Analogously, we prove the second below. From
the inequality λa2(λ − 4) ≤ 0, adding 4(a − b)2 + 4λab and after some algebraic
manipulations, we obtain the inequalities

4(a − b)2 + 4λab + λ2a2 − 4λa2 ≤ 4 f 2λ (a, b)

4(a − b)2 − 4λa(a − b) + λ2a2 ≤ 4 f 2λ (a, b)

[−2(a − b) + λa]2 ≤ 4 f 2λ (a, b)

which implies that | −2(a − b) + λa | ≤ 2 fλ(a, b) > 0, then

∣∣∣∣
−2(a − b) + λa

2 fλ(a, b)

∣∣∣∣ ≤ 1,

thus

−1 ≤ −2(a − b) + λa

2 fλ(a, b)
≤ 1.

Therefore, we obtain the second inequality in (13). ��
Corollary 1 The partial derivatives of the function fλ satisfy the inequality

∂ fλ(a, b)

∂a
+ ∂ fλ(a, b)

∂b
< 2,

for all nonzero vector (a, b) ∈ R
2.

Proof From Lemma 4, ∂ fλ(a,b)
∂a + ∂ fλ(a,b)

∂b ≤ 2. We assume that the equality holds.

By Lemma 4, we have that ∂ fλ(a,b)
∂a = 1 and ∂ fλ(a,b)

∂b = 1, then ‖∇ fλ(a, b)‖2 = 2

which contradicts Lemma 3. Therefore, ∂ fλ(a,b)
∂a + ∂ fλ(a,b)

∂b < 2. ��
The following lemma gives a compact expression for the gradient of the compo-

nent functions of �λ, where ϕλ is differentiable. This expression will be useful to
characterize the generalized Jacobian matrices of �λ in x.

Lemma 5 Let �λ,i (x) = ϕλ(Fi (x),Gi (x)) for i ∈ {1, 2 . . . , n}, such that
(Fi (x),Gi (x)) �= (0, 0). Then the gradient of �λ,i (x) at x is given by

∇�λ,i (x) = (ai (x) − 1)∇Fi (x) + (bi (x) − 1)∇Gi (x), (14)
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where

ai (x) = 2 (Fi (x) − Gi (x)) + λGi (x)

2
√

(Fi (x) − Gi (x))2 + λFi (x)Gi (x)
(15)

bi (x) = −2 (Fi (x) − Gi (x)) + λFi (x)

2
√

(Fi (x) − Gi (x))2 + λFi (x)Gi (x)
· (16)

Proof Let x ∈ R
n such that (Fi (x),Gi (x)) �= (0, 0). Therefore, �i and ϕλ are

differentiable at x. Moreover, ∇�λ,i (x) = ∇ϕλ(Fi (x),Gi (x)). After some algebraic
calculations using the Chain rule, we have that

∇�λ,i (x) = ∇ϕλ(Fi (x),Gi (x)) =

⎡
⎢⎢⎢⎢⎣

(ai (x) − 1)
∂Fi (x)

∂x1
+ (bi (x) − 1)

∂Gi (x)

∂x1
...

(ai (x) − 1)
∂Fi (x)

∂xn
+ (bi (x) − 1)

∂Gi (x)

∂xn

⎤
⎥⎥⎥⎥⎦

,

from which it follows immediately that

∇�λ,i (x) = (ai (x) − 1)∇Fi (x) + (bi (x) − 1)∇Gi (x),

where ai (x) and bi (x) are given by (15) and (16), respectively. ��
The following result extends the Proposition 2.5 in [12] to generalized comple-

mentarity. It gives an overestimation of the generalized Jacobian of �λ at x.

Proposition 2 For all x ∈ R
n, we have

∂�λ(x) ⊆ Da(x)F ′(x) + Db(x)G ′(x),

where Da(x) = diag (a1(x) − 1, . . . , an(x) − 1) and Db(x) = diag(b1(x) − 1,
. . . , bn(x) − 1) are diagonal matrices, with ai (x) and bi (x) given by (15) and (16),
if (Fi (x),Gi (x)) �= (0, 0), and by

ai (x) = ξi , bi (x) = χi , for all (ξi , χi ) ∈ R
2 such that ‖(ξi , χi )‖ ≤ √

cλ,

if (Fi (x),Gi (x)) = (0, 0), where cλ is the constant from Lemma 3.

Proof From (7) and by Lipschitz continuity of �λ, we have

∂�λ(x)T ⊆ ∂�λ,1(x) × · · · × ∂�λ,n(x),

where�λ,i is the i th component function of�λ and ∂�λ,i (x) denotes the generalized
gradient of �λ,i at x.

If (Fi (x),Gi (x)) �= (0, 0), the function �λ,i is continuously differentiable.
Therefore the generalized gradient ∂�λ,i (x) is the set whose only element is the
gradient of �λ,i at x, which by Lemma 5 is given by

∂�λ,i (x) = {(ai (x) − 1)∇Fi (x) + (bi (x) − 1)∇Gi (x)∇Gi (x)}, (17)
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where ai (x) and bi (x) are given by (15) and (16), respectively.
If (Fi (x),Gi (x)) = (0, 0) then �λ,i is not differentiable at x and therefore, for

H ∈ ∂B�λ,i (x), we have
H = lim

xk→x
∇�λ,i (xk), (18)

where {xk} is a sequence of points in D�λ,i such that xk → x, when k → ∞. Thus,
by Lemma 5, for each xk ∈ D�, the i th row of gradient from �λ,i at xk is given
by

∇�λ,i (xk) = (ai (xk) − 1)∇Fi (xk)T + (bi (xk) − 1)∇Gi (xk)T . (19)

Since the limit in (19) exists, ∇�λ,i , F and G are continuously differentiable at xk
and from (18), we have

H = lim
xk→x

[(ai (xk) − 1) ∇Fi (xk) + (bi (xk) − 1) ∇Gi (xk)]

= (ξi − 1)∇Fi (x) + (χi − 1)∇Gi (x),

where ξi = lim
xk→x

ai (xk) and χi = lim
xk→x

ai (xk). On the other hand, for each k,

(ai (xk), bi (xk))T = ∇ fλ((Fi (xk), (Gi (xk)), (20)

where fλ, is defined by (12). By Lemma 4, for each i = 1, . . . , n and for each
k ∈ N , ‖∇ fλ((Fi (xk), (Gi (xk))‖2 ≤ cλ; so

lim
k→∞ ‖∇ fλ((Fi (xk), (Gi (xk))‖2 ≤ cλ.

Therefore, ‖(ξi , χi )‖ ≤ √
cλ. For the above, the statement of the lemma follows

easily. ��
The following result generalizes the Proposition 2.6 in [12] to the case where G is

any continuously differentiable function. Furthermore, it guarantees that the diagonal
elements ai (x) − 1 and bi (x) − 1 defined in Proposition 2 are nonpositive (namely
for those indices for which (Fi (x),Gi (x)) = (0, 0)).

Proposition 3 Any H ∈ ∂�λ(x) can be written in the form

H = (Da − I )F ′(x) + (Db − I )G ′(x), (21)

where (Da − I ) and (Db − I ) are negative semidefinite diagonal matrices such that
Da + Db − 2I is negative definite.

Proof It is analogous to the proof of Proposition 2.6 in [12], taking into account that
we must use Proposition 2. ��

The next proposition gives a new characterization of the class of P-matrices in the
context of generalized complementarity. It reduces to the one presented in [12] for
nonlinear complementarity when G is the identity function.
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Proposition 4 Let Da and Db be positive (negative) semidefinite diagonal matrices
such that Da + Db is positive (negative) definite, and M, N ∈ R

n×n, with M non-
singular. The matrix DaM + DbN is nonsingular if and only if NM−1 ∈ R

n×n is a
P-matrix.

Proof Clearly,

DaM + DbN =
(
Da + DbNM−1

)
M . (22)

⇒)We assume that DaM+DbN is nonsingular. SinceM is nonsingular (hypothe-
ses), then from (22), we have that Da + DbNM−1 is also nonsingular and by
proposition 1, NM−1 is a P-matrix.
⇐) If NM−1 is a P-matrix, proposition 1 guarantees that the matrix Da +
DbNM−1 is nonsingular. Using this fact in (22) and recalling that M es non-
singular, we conclude that DaM + DbN is also nonsingular.

��
The following theorem gives a sufficient condition to guarantee the nonsingularity

of the elements of the generalized Jacobian of �λ in a solution x∗ of the GCP(F,G).

Theorem 1 If x∗ is an R-regular solution of the GCP(F,G) then all the matrices in
the generalized Jacobian ∂�λ(x∗) are nonsingular.

Proof Let H ∈ ∂�λ(x∗) be fixed but arbitrary. By proposition 2, there are diagonal
matrices Da = Da(x∗) and Db = Db(x∗) such that

H = DaF
′(x∗) + DbG

′(x∗). (23)

Since x∗ is anR-regular solution of theGCP(F,G),wehave that F ′(x∗) is nonsingular.
Thus, from (23), we have

H = HF ′(x∗)−1 = Da + DbG
′(x∗)F ′(x∗)−1 = Da + DbK ,

where K = G ′(x∗)F ′(x∗)−1. From here, the proof can be carried out in essentially
the same way as the one for Theorem 2.8 in [12]. ��
Corollary 2 If x∗ is an R-regular solution of the GCP(F,G) then x∗ is also a BD-
regular solution.

Proof Let x∗ be anR-regular solution of theGCP(F,G). Then all matrices in ∂�λ(x∗)
are nonsingular. Since ∂B�λ(x∗) ⊆ ∂�λ(x∗), we have that if H ∈ ∂B�λ(x∗) then
H is nonsingular. Therefore x∗ is a BD-regular solution of the GCP(F,G). ��

The following theorem guarantees the semismoothness of�λ and gives a sufficient
condition for its strong semismoothness.

Theorem 2 The following propositions are fulfilled:

1. �λ is semismooth.
2. If F and G are class LC1 then �λ is strongly semismooth.
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Proof The proof is analogous to one given in [12] in the nonlinear complementarity
context, and it is an immediate consequence of the fact that ϕλ is strongly semismooth.

��
Finally, we present the following result whichwill be very useful in the next section.

Theorem 3 The function�λ is continuously differentiablewith∇�λ(x) = HT�λ(x),

for any H ∈ ∂�λ(x).

Proof Using proposition 3 and properties of the familyϕλ [12], the proof is practically
the same as the one for proposition 3.4 in [21]. ��

4 Algorithm and convergence results

In this section, we present a new global nonsmooth Newton-type algorithm to solve
the GCP(F,G) and some convergence results of this algorithm.

Algorithm 1
Require: x0, λ ∈ (0, 4), ρ > 0, σ ∈ (0, 1/2), p > 2, ε ≥ 0.
Ensure: Approach to the solution of the system (2).
1: while ‖∇�λ(xk )‖ ≤ ε do
2: Select an element Hk in ∂B�λ(xk ) and find dk such that

Hkdk = −�λ(xk ). (24)

3: if (24) is not solvable or
∇�λ(xk )

T dk > −ρ‖dk‖p (25)

then
4: dk = −∇�λ(xk ).

5: end if
6: Compute tk = max{2−ik : ik = 0, 1, . . .} such that

�λ(xk + tk dk ) ≤ �λ(xk ) + σ tk∇�λ(xk )
T dk (26)

7: xk+1 = xk + tk dk .
8: end while

Remark 1 The algorithm proposed uses in each iteration the matrix H defined in (21)
which in turn uses the Jacobian matrices of F and G. It can be seen as an extension
of the algorithm proposed in [15] to all members of the family of complementary
functions ϕλ defined in (12).

Remark 2 TheAlgorithm 1 differs from the proposed in [15], not only in the comple-
mentarity function but also in the linear search. Our algorithm uses the one-parametric
family of complementarity functions defined in (4) and its linear search guarantees
that the step satisfies the Armijo condition [22] while the other algorithm uses the
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Fischer function and its linear search guarantees that the step satisfies the Goldstein
conditions [22].

Remark 3 From the previous Remark, Algorithm 1 can be seen as a generalization
of algorithm proposed in [15] to the family of complementarity functions (4), and
comparing their linear search, Algorithm 1 is less restrictive than the other.

For Algorithm 1, we develop its global convergence theory. For this purpose, we
present two lemmas that will be useful in proving the convergence theorems of Algo-
rithm 1 and in which a characterization of the accumulation points of the sequence
{xk} generated by Algorithm 1 is given.

Theorem 4 Each of the accumulation points of the sequence {xk} generated byAlgo-
rithm 1 is a stationary point of �λ.

Proof Let x∗ be an accumulation point of the sequence {xk} generated by the Algo-
rithm 1. If for an infinite set of indices J , the direction given by Step 4 of the algorithm
( dk = −∇�λ(xk), for all k ∈ J ) then any limit point of the subsequence {xk}J is a
stationary point of �λ [23].

We assume, without losing generality, that dk is given by (24). We will prove that
for all k, there are positive constants m and M such that

m ≤ ‖dk‖ ≤ M . (27)

Let k be any index of the sequence generated by Algorithm 1. Since dk is given by
(24), we have Hkdk = −�λ(xk) then

‖�λ(xk)‖ ≤ ‖Hk‖ ‖dk‖ , (28)

for a vector norm ‖ · ‖ . Clearly ‖Hk‖ �= 0, otherwise, by Theorem 3 we would have
that ∇�λ(xk) = 0; that is, xk would be a stationary point of �λ and Algorithm 1
would stop. Thus, from (28), we have the inequality

‖�λ(xk)‖
‖Hk‖ ≤ ‖dk‖ . (29)

We suppose that x∗ is not a stationary point of �λ(∇�λ(x∗) �= 0). If for an infinite
set of indices J , {‖dk‖}J → 0, when k → ∞ then since the generalized Jacobian is
compact, Hk is bounded and from (28), we get, {‖�λ(xk)‖}J → 0

Now, by the continuity of �λ and by taking the limit k → ∞ in (29), we obtain
�λ(x∗) = 0 so∇�λ(x∗) = 0 which contradicts that x∗ is not a stationary point. Then
{‖dk‖} cannot converge to 0. Therefore there exists m > 0 such that m ≤ ‖dk‖ , for
all k.

On the other hand, if ‖dk‖ were not bounded above then, since p > 2 and∇�λ(xk)
is bounded, we have

lim
k→∞

‖∇�λ(xk)‖ cos θ

‖dk‖p−1 = 0,
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where θ is the angle between ∇�λ(xk) and dk . Equivalently

lim
k→∞

∇�λ(xk)T dk
‖dk‖p

= 0,

which contradicts (25). Then there exists M > 0 such that ‖dk‖ ≤ M .

Finally, since (25) is satisfied at each iteration and �λ is continuously differen-
tiable, {�λ(xk+1) − �λ(xx )} → 0 when k → ∞, which implies by (25), that{
σ2−ik‖∇�λ(xk)‖dk

} → 0, therefore

{
2−ik‖∇�λ(xk)‖dk

}
→ 0. (30)

Now, we want to show that 2−ik is bounded away from 0. Suppose the contrary. Then,
subsequencing if necessary, we have that {2−ik } → 0, so that at each iteration the
stepsize is reduced at least once and (26) gives

�λ(xk + 2−(ik−1)dk) − �λ(xk)
2−(ik−1)

> σ∇�λ(xk)T dk . (31)

From (27), we can assume that {dk} → d �= 0, and passing to the limit at (31), we
obtain

∇�λ(x∗)T d ≥ σ∇�λ(x∗)T d (32)

in addition, by (25), we have

∇�λ(x∗)T d ≤ −ρ‖dk‖p < 0, (33)

which contradicts (32) since σ ∈ (0, 1/2). Thus, we can assume that the sequence
{2−ik } is bounded from 0. On the other hand, (25) and (30) imply that {dk} → 0,
which contradicts (27). Therefore, ∇�λ(x∗) = 0. That is, x∗ is a stationary point of
�λ. ��
Theorem 5 If x∗ is an isolated accumulation point of the sequence {xk} generated by
Algorithm 1. Then the sequence converges to x∗.

Proof Let {xk} be the sequence generated by Algorithm 1 and x∗ an isolated accu-
mulation point of the sequence. By Theorem 4, x∗ is a stationary point of the convex
function �λ then x∗ is an isolated global minimizer of �λ.

Let � be the set of accumulation points of {xk} . Then � �= ∅ since x∗ ∈ �. we
define

δ =
{
dist(x∗;�\ {x∗}) i f �\ {x∗} �= ∅
1 i f � = {x∗} .

δ > 0 since x∗ is an isolated accumulation point. Now, if

�1 = {
y ∈ R

n : dist( y;�) ≤ δ/4
}
,
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then exist k such that xk ∈ �1 for all k ≥ k. If

K = {k ∈ N : dist(xk; x∗) ≤ δ/4}

(K is obviously not empty because x∗ is a limit point of the sequence) then {xk}K ⊂
B (x∗; δ/4) .

Since all points of the subsequence {xk}K belong to the compact set B (x∗; δ/4) and
all its limit points are also limit points of {xk} ,weconclude that {xk}K converges to x∗.
Furthermore, because ∇�λ(x∗) = 0, the Theorem 4 guarantees that {‖∇�λ(xk)‖}K
converges to zero, which by (25) implies that the sequence {dk} converges to the zero
vector. Thus, for all ε, there exists k1 ∈ N such that if k ∈ K and k ≥ k1 ≥ k, then
‖dk‖ ≤ ε. Particularly, for ε = δ/4 we have ‖dk‖ ≤ δ/4.

Let k2 ∈ K such that k2 ≥ k1. By Algorithm 1, we have that

xk2+1 = xk2 + tk2dk2

with tk2 ∈ (0, 1] , whereby
∥∥xk2+1 − xk2

∥∥ ≤ ∥∥dk2
∥∥ ≤ δ/4. Thus,

dist(x∗;�\ {x∗}) ≤ dist(xk2+1;�\ {x∗}) + ∥∥x∗ − xk2+1
∥∥

≤ dist(xk2+1;�\ {x∗}) + ∥∥x∗ − xk2
∥∥+ ∥∥xk2 − xk2+1

∥∥
≤ dist(xk2+1;�\ {x∗}) + δ/4 + δ/4.

That is,

dist(xk2+1;�\ {x∗}) ≥ dist(x∗;�\ {x∗}) − δ/2 ≥ δ − δ/2 = δ/2,

consequently, xk2+1 /∈ �1\B (x∗; δ/4) and since xk2+1 ∈ �1 then xk2+1 ∈
B (x∗; δ/4) ; that is, k2 + 1 ∈ K and since (k2 + 1) > k1, then, using induction
k2 ∈ K , for all k2 > k1, which implies that xk ∈ B (x∗; δ/4) , for all k2 > k1. Thus,
{xk} converges to x∗. ��
Theorem 6 Let x∗ be an accumulation point of the sequence {xk} generated by Algo-
rithm 1 such that x∗ is an R-regular solution of GCP(F,G). Then, the sequence {xk}
converges to x∗, the search direction dk is given by the solution of the linear system
(24) eventually, and the full stepsize tk = 1 is accepted for all k sufficiently large.

Proof By hypothesis, x∗ is an R-regular solution of the GCP(F,G) and byCorollary
2, x∗ is also a BD-regular solution then the Proposition 3 in [8] guarantees that x∗
is an isolated accumulation point Therefore, the sequence {xk} converges to x∗ by
Theorem 5.

Since {xk} converges to a BD-regular solution of the system �λ(x) = 0 then for k
large enough, Hk is nonsingular, therefore the system (24) always has solution [10].
Let’s see that it satisfies the inequality

∇�λ(xk)T dk ≤ −ρ1‖dk‖2, (34)
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for some ρ1 > 0.
From (24),

‖dk‖ ≤
∥∥∥H−1

k

∥∥∥ ‖�λ(xk)‖ . (35)

Furthermore, Since ∇�λ(xk) = HT
k �λ(xk) and Hkdk = −�λ(xk), we get

∇�λ(xk)T dk = −‖�λ(xk)‖2. (36)

Combining (35) and (36), we have

∇�λ(xk)T dk ≤ −‖dk‖2
N 2 , (37)

where N is an upper bound of
∥∥∥H−1

k

∥∥∥ (which exists by Lemma 2.6 of [10]). Taking

ρ1 = 1/N 2 in (37), we get (34). Since the sequence {‖dk‖} converges to 0. From (34)
it follows that (25), holds for any p > 2 and any positive constant ρ.

Finally, let’s see that the full step size is achieved; that is, ik = 0. First, �λ is class
LC1 byTheorem 2.3 in [12]. With this hypothesis and Theorem 3.2 in [3] guarantees
that, starting from a certain k, tk = 1. ��

Finally, we present a result that guarantees the rate of convergence of algorithm.

Theorem 7 If x∗ is an accumulation point of the sequence {xk} generated by Algo-
rithm 1, such that x∗ is an R-regular solution of the GCP(F,G) then the sequence {xk}
generated by Algorithm 1 converges q-superlinearly to x∗. In addition, if �λ is an
LC1 mapping then the convergence rate is q-quadratic.

Proof Since x∗ is R-regular and by Lemma 2.6 of [10], Hk is nonsingular and∥∥∥H−1
k

∥∥∥ ≤ N , for some positive constant N ; so, tk = 1 is accepted from a certain

value of k, the sequence {xk} is well defined and

xk+1 = xk − H−1
k �λ(xk).

Subtracting x∗ and using a norm ‖ · ‖ , we have

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ − H−1

k �λ(xk)
∥∥∥ .

After some algebraic manipulations, we obtain

‖xk+1 − x∗‖ =
∥∥∥xk − x∗ − H−1

k �λ(xk)
∥∥∥

≤
∥∥∥H−1

k

[
�λ(xk) − �λ(x∗) − �′

λ(x∗; xk − x∗)
]∥∥∥ (38)

+
∥∥∥H−1

k

[
Hk(xk − x∗) − �′

λ(x∗; xk − x∗)
]∥∥∥ .
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To bound the two terms on the right side in (38), we must take into account that �λ is
semismooth (Theorem 2) and, therefore it is directionally differentiable. Then, from
(9), ∥∥�λ(xk) − �λ(x∗) − �′

λ(x∗; xk − x∗)
∥∥ = o ‖xk − x∗‖ ,

and by Lemma 1,

∥∥Hk(xk − x∗) − �′
λ(x∗; xk − x∗)

∥∥ = o ‖xk − x∗‖ ,

using the last two equalities and since
∥∥∥H−1

k

∥∥∥ ≤ N in (38), we conclude

‖xk+1 − x∗‖ = o ‖xk − x∗‖ , (39)

which shows that the sequence {xk} converges q-superlinearly to x∗.
Now,we assume that�λ is an LC1 mapping. Then, byTheorem 2, it is also strongly

semismooth at x∗. Moreover, the directional derivative �′
λ(·, ·) is semi-continuous of

degree 2 [2]. Then, from (11) and by Lemma 2, we have

∥∥Hk(xk − x∗) − �′
λ(x∗; xk − x∗)

∥∥ = O ‖xk − x∗‖2

and
∥∥�λ(xk) − �λ(x∗) − �′

λ(x∗; xk − x∗)
∥∥ = O ‖xk − x∗‖2 . Hence, from (38),

‖xk+1 − x∗‖ = O ‖xk − x∗‖2 ,

which shows that the sequence {xk} converges q-quadratically to x∗. ��

5 Numerical experiments

In this section, we analyze the numerical performance of theAlgorithm 1 proposed in
Section 4, which we call Algorithm NG, and compare it with the algorithm proposed
in [15] that we call Algorithm NGS. Moreover, we incorporate to Algorithm NG
the dynamic procedure to update, at each iteration, the parameter λ proposed in [12],
obtaining a new algorithm that we callAlgorithmNGD, which we also compare with
the two previous ones.

The algorithms were implemented inMatlab� R2019a and tested on a computer
with an AMDSempron (tm) processor of 2.21GHz. The parameters are the following:
ε = 10−4, N = 100, ρ = 10−8, p = 2.1 and σ = 10−4.

We did four types of experiments. First, we compare the performance of the Algo-
rithms NGD and NGS in terms of iterations number and CPU time. Second, we
analyze the global performance of Algorithms NGD and NGS. Third, we analyze
the behavior of Algorithm NG in terms of iterations number for different values of
λ. Finally, in the fourth experiment, we compare the Algorithms NG and NGD.

The experiments were carried out with seven problems. Below, we describe each
of them, its solutions and the starting points used. For simplicity, we denote en as the
vector of ones of order n.
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Problem 1 [24]. F is the Kojima-Shindo function, and G is the identity function.
Thus, the GCP(F,G) reduces to a nonlinear complementarity problem. Explicitly
F,G : R4 → R

4 are defined by

F(x) =

⎛
⎜⎜⎝
3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x22 + x1 + 10x3 + 2x4 − 2
3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9

x21 + 3x22 + 2x3 + 3x4 − 3

⎞
⎟⎟⎠ and G(x) = x .

The solutions are x∗ = (1, 0, 3, 0) and x∗ =
(√

6/2, 0, 0, 1/2
)

and the start-

ing points are x1 = (0, 0, 0, 0) , x2 = (1, 0, 1, 0) , x3 = (1, 0, 0, 0) ,

x4 = (0, 1, 1, 0) .

Problem 2 [15]. The functions F,G : R2 → R
2 are defined by

F(x) =
(
x21
x22

)
and G(x) =

(
x21 + 10
x22 + 1

)
.

The unique solution is x∗ = (0, 0) and the starting points are x1 = (10, 1) , x2 =
100e2, x3 = 1000e2 and x4 = 10000e2.

Problem 3 [5]. The functions F,G : R2 → R
2 are defined by

F(x) =
( − 100

3 + 2x1 + 8
3 x2

−22.5 + 2x2 + 5
4 x1

)
and G(x) =

(
15 − x2
20 − x1

)
.

The solutions are x∗ = (10, 5) and x∗ = (20, 15) . The starting points are x1 =
(0, 0) , x2 = (5, 0) and x3 = (11, 0) .

Problem 4 [5]. This is an implicit complementarity problem where the functions
F,G : R4 → R

4 are defined by F(x) = Ax + b and G(x) = x − h(x), where
A = tr idiag(−1, 2,−1), b = e4 and hi (x) = −0.5 − xi .

The solution is x∗ = (−0.9, −1.2,−1.2, −0.9) and the starting points are x1 =
(0, 0, 0, 0) , x2 = −0.5e4 and x3 = −e4.

Problem 5 [8]. The functions F,G : R5+ → R
5 are defined by

G(x) = F(x) = c+ L
1
b x

1
b −

⎛
⎜⎜⎜⎝

5000
5∑

i=1
xi

⎞
⎟⎟⎟⎠

1
γ

⎛
⎜⎜⎜⎜⎝
e5 − 1

γ

(
5∑

i=1
xi

) x

⎞
⎟⎟⎟⎟⎠

,

where c = (10, 8, 6, 4, 2)T , b = (1.2, 1.1, 1, 0.9, 0.8)T , L = 5e5, and γ = 1.1.
In this problem all operations are component-wise.

The solution is x∗ = (15.4293, 12.4986, 9.6635, 7.1651, 5.1326)T and the start-
ing points are x1 = e5, x2 = 10e5 and x3 = 20e5.
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Problems 6 and 7 [25]. The functions F,G : Rn → R
n are defined by

F(x) = Ax + q + Γ (x) and G(x) = x − Υ (x),

where A ∈ R
n×n, q = (−1, 1, . . . , (−1)n) ∈ R

n, Υ (x) = (
x31 , x

3
2 , . . . , x

3
n

)
and

Γ (x) = (
x21 , x

2
2 , . . . , x

2
n

)
.

The solution for both problems is x∗ = en and the starting points are x1 =
(1, 0.6, 1, 0.6, . . .) , x2 = 5en and x3 = 15en .

For Problem 6, we define as in [25]:

A = tr idiag(−I , S,−I ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S −I 0 . . . 0 0
−I S −I . . . 0 0
0 −I S . . . 0 0
...

...
...

...
...

...

0 0 0 . . . S −I
0 0 0 . . . −I S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with

S = tr idiag(−1, 4,−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
0 −1 4 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 4 −1
0 0 0 . . . −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
m×m .

For Problem 7, the matrix A is defined by A = tr idiag(−1.5I , S,−0.5I ), with
S = tr idiag(−1.5, 4,−0.5).

The results of the experiments are presented in Fig. 1 and Tables 1, 2, and 3 with
the following information: number of the test problem (Prob), starting point (SP),
number of iterations (k), CPU time (CPU), value of the objective function at the final
iteration (�), success rate (S), divergence (− ).

5.1 Experiment 1

In this experiment, we compared the Algorithms NGD and NGS in terms of number
of iterations, the CPU time and the accuracy at the solution. In Table 1, we report the
results obtainedwhen executing the algorithms to solve each of the problems described
above.

In this table, the notation 6 (n) and 7 (n), in the first column, means that the algo-
rithms were executed to solve the Problems 6 and 7, for n = m2, with m = 8 and
m = 10.

From the Table 1, we see that for problems 1 to 4, the algorithms have a similar
behavior in terms of number of iterations and CPU time, with a slight CPU time
advantage of the Algorithm NGD. However, when we compare the value of the merit
function, �(x), in the final iteration, Algorithm NGD reached, in 90% of the cases,
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Fig. 1 Performance of the Algorithm NG for different values of λ

a value lower than that reached by Algorithm NGS. In some cases, the difference in
these values was of the order of 10−5; this suggests that Algorithm NGD probably
gives a better approximation to the solution of GCP(F,G) by about same number
of iterations as Algorithm NGS. For the remaining Problems (5, 6 and 7), the NGS
Algorithm didnot converge,while theNGDAlgorithm did. Furthermore, it converges
in few iterations, with an acceptable CPU time.

On the other hand, this experiment shows us that the λ-dynamic strategy imple-
mented in Algorithm NGD takes advantage when the iterations are close of the
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Table 1 Results for the algorithms NGD and NGS

NGD NGS
Prob SP k CPU � k CPU �

1 x1 12 1.1 1.2 × 10−10 12 1.5 3.8 × 10−8

x2 5 0.4 1.6 × 10−11 5 0.7 5.8 × 10−10

x3 6 0.5 1.4 × 10−8 6 0.6 1.8 × 10−7

sx4 12 1.1 1.9 × 10−12 – – –

2 x1 14 0.5 1.4 × 10−6 13 0.5 2.8 × 10−6

x2 17 0.6 3.1 × 10−6 17 0.6 1.5 × 10−6

x3 24 1.3 1.3 × 10−6 23 0.8 2.6 × 10−6

x4 24 0.9 1.8 × 10−6 23 0.9 3.6 × 10−6

3 x1 5 0.2 1.1 × 10−6 5 0.3 1.6 × 10−6

x2 5 0.3 1.5 × 10−6 5 0.2 3.9 × 10−6

x3 5 0.3 2.1 × 10−10 5 0.2 2.3 × 10−8

4 x1 6 0.3 2.4 × 10−12 6 0.3 7.5 × 10−7

x2 5 0.2 2.7 × 10−10 5 0.2 1.1 × 10−6

x3 5 0.2 3.8 × 10−10 5 0.2 1.7 × 10−6

5 x1 8 0.8 0.0 − − −
x2 4 0.3 0.0 − − −
x3 5 0.4 1.0 × 10−15 − − −

6 (64) x1 6 13.3 3.6 × 10−13 − − −
x2 10 11.9 1.3 × 10−8 − − −
x3 12 14.3 9.1 × 10−10 − − −

6 (100) x1 6 37.26 4.7 × 10−11 − − −
x2 14 41.7 3.2 × 10−12 − − −
x3 13 73.2 4.7 × 10−9 − − −

7 (64) x1 6 17.1 5.5 × 10−13 − − −
x2 10 20.3 3.51 × 10−9 − − −
x3 13 22.4 1.1 × 10−10 − − −

7 (100) x1 6 71.04 5.4 × 10−11 − − −
x2 11 92.4 4.7 × 10−8 − − −
x3 13 101.2 4.3 × 10−10 − − −

solution x∗. Proof of this is the fast decrease in the value of �(x) in the last iter-
ations.

5.2 Experiment 2

In this experiment, we study the global performance of the Algorithms NGD and
NGS. For this, we tested the algorithms taking one hundred random starting points
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Table 2 Success rate for the
Algorithms NGD and NGS

NGD NGS
Prob k S (%) k S (%)

1 10 96 9 87

2 14 98 14 98

3 6 100 6 97

4 6 100 6 100

5 34 100 35 100

6 (64) 41 98 40 96

6 (100) 23.1 84 24 79

7 (64) 42 94 42 94

7 (100) 25 97 27 95

for each of the five problems. For Problems 1 to 4, we take each component of the
starting points in the interval [−30, 30] and for the remaining problems, the interval
[1, 50]. The results of this experiment are summarized in Table 2, in which k is the
mean of the iterations of the hundred of experiments for each problem.

As we expected, the Algorithm NGD seems to be a robust algorithm. We want to
highlight the performance of our algorithm for the first problem since this is considered
a hard one [12]. In this problem, Algorithm NGD had a success rate of 96% while
its counterpart, Algorithm NGS, had a success rate of 87%, so we can conclude
that the λ-dynamic strategy combined with a linear search less restrictive, such as
an Armijo-type linear search, works very well and can lead to a robust and efficient
algorithm.

5.3 Experiment 3

The above experiments show that the λ-dynamic strategy is a good option to com-
plement the Algorithm NG, but a reasonable question is the following: What is the
performance of this algorithm without λ-dynamic strategy? What is the behavior of
the algorithm when it works with the same value of λ throughout the execution? And
what is the better choice of λ to run the algorithm? In this experiment we investigate
these situations. For this, we tested the algorithm with different values for λ.

In Fig. 1, we show the number of iterations required by the Algorithm NG to solve
each of the five problems when it was executed with 38 values of λ equally spaced in
the interval (0, 4). We observe that Algorithm NG converges in all experiments and
for all values of λ which reflects in a sense, the robustness of algorithm. On the other
hand, we can see that the Algorithm NG had his best performance taking values of λ

at the beginning or at the end of interval (0, 4).
Comparing the results of Fig. 1 with those on Table 1, we can conclude that in all

the experiments, it is possible to find a value of λ for which Algorithm NG is faster
than Algorithm NGS; however, there is no a single value of λ that works well for all
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Table 3 Performance of the Algorithms NG and NGD

NG NGD
Prob SP λB λW kB kW k k

1 x1 (0, 0.4) (3.5, 3.8) 11 19 15 12

x2 (0, 1.7) (3.7, 3.8) 4 20 12 5

x3 (0, 0.9) (3.7, 3.8) 4 22 13 6

x4 (0, 0.4) (3.7, 3.8) 6 21 13.5 12

2 x1 (3.7, 3.8) (0, 1.2) 11 14 12.5 9

x2 (3.5 3.8) (0, 0.2) 15 17 16 12

x3 (3.7, 3.8) (0, 1.0) 21 24 22.5 19

x4 (3.2, 3.8) (0, 1.6) 22 24 23 19

3 x1 (0, 0.7) (3.7, 3.8) 4 8 6 5

x2 (0, 0.7) (3.3, 3.8) 4 7 5.5 5

x3 (0, 0.9) (3.6, 3.7) 4 7 5.5 5

4 x1 (0, 0.1) (2.3, 3.7) 4 7 5.5 6

x2 (0, 0.1) (2.7, 3.7) 4 6 5 5

x3 (0, 0.7) (3.6, 3.7) 4 10 7 5

5 x1 (0, 1.7) (1.7, 3.8) 50 51 50.5 49

x2 (3.3, 3.5) (0, 0.9) 23 28 25.5 29

x3 (3.6, 3.8) (0, 0.5) 32 38 35 39

6 (100) x1 (0, 1.2) (3.4, 3.8) 4 6 5 6

x2 (0.2, 1.6) (3.3, 3.8) 4 6 5 14

x3 (1.2, 1.8) (3.2, 3.8) 4 6 5 13

7 (100) x1 (0.8, 1.3) (3.5, 3.8) 5 14 9.5 6

x2 (0.2, 1, 6) (3.3, 0.9) 4 6 5 11

x3 (1.2, 1.8) (3.3, 0.5) 4 6 5 13

problems; therefore, the λ-dynamic strategy seems to be the best option to complement
the Algorithm NG.

5.4 Experiment 4

In this experiment, we summarize the results obtained in Experiments 1 and 3 for
Algorithms NGD and NG with the aim to compare the best and worst performance
of the Algorithm NG with the one of the Algorithm NGD.

The results are shown in Table 3, where λB indicates the subintervals for which,
taking values of λ into them, the Algorithm NG shows his best behavior, and λW

indicates the subintervals for which the Algorithm NG had his worst behavior. Anal-
ogously, kB and kW are the number of iterations needed for the Algorithm NG in his
best and worst behavior, respectively.
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In Table 3, we observe that, for all problems except Problem 2, it is possible to find
a value of λ for which Algorithm NG solved the corresponding GCP(F,G) in fewer
iterations than Algorithm NGD. However, there is no single value of λ that makes
Algorithm NG perform better than Algorithm NGD in all experiments.

On the other hand, we observe that in general, in the worst case, theAlgorithmNG
needed many more iterations to solve the GCP(F,G) than Algorithm NGD which
increases significantly its average of iterations.

From above observations, we can conclude that when we do not have the best value
of λ for Algorithm NG available, the λ-dynamic strategy is a good option. However,
we made some preliminary tests varying the initial λ in the strategy proposed in [12],
and the results showed us that by making some changes in the initial value of λ,

the Algorithm NGD can have a better performance, so we think that this is an open
problem in this area.

6 Conclusions

In this work, we present a new nonsmooth Newton-type algorithm for solving the gen-
eralized complementarity problem indirectly, reformulating it as a system of nonlinear
equations using a one-parametric family of complementarity functions.

We demonstrate that this algorithm converges locally and q-quadratically. In addi-
tion, we verify that properties of operator �λ, investigated in [12] for the nonlinear
complementarity case, can easily be extended to the generalized complementarity
problem. For this, it was necessary to introduce some new definitions such as the
concepts of BD-regularity and R-regularity in generalized complementarity.

We also present some numerical experiments that show the good performance of
the new algorithm. In particular, these experiments showed that for each problem,
there exists a subinterval of values of λ that give us better performance of Algorithm
NG. For this, we consider important to modify the variation procedure of parameter
λ changing its initial value by one that belongs to some of the subintervals previously
mentioned. We leave this as a future research topic.
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