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Abstract
We study the issue of numerically solving the nonnegative inverse eigenvalue prob-
lem (NIEP). At first, we reformulate the NIEP as a convex composite optimization
problem on Riemannian manifolds. Then we develop a scheme of the Riemannian lin-
earized proximal algorithm (R-LPA) to solve the NIEP. Under some mild conditions,
the local and global convergence results of the R-LPA for the NIEP are established,
respectively. Moreover, numerical experiments are presented. Compared with the Rie-
mannianNewton-CGmethod in Z. Zhao et al. (Numer.Math. 140:827–855, 2018), this
R-LPAowns better numerical performances for large scale problems and sparsematrix
cases, which is due to the smaller dimension of the Riemannian manifold derived from
the problem formulation of the NIEP as a convex composite optimization problem.
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1 Introduction

The nonnegative inverse eigenvalue problem (NIEP) is a special kind of inverse eigen-
value problems which has been explored extensively in the literature and plays a key
role in various areas such as control design, linear complementarity problems,Markov
chains, and graph theory; see [2, 3, 9, 10, 19, 28] and references therein. Recall that a
matrix A ∈ R

n×n is said to be a nonnegative matrix if its entries are all greater than
or equal to zero, that is, A ∈ R

n×n+ . An n-tuple (λ1, λ2, · · · , λn) ∈ C
n is said to be a

realizable spectrum for nonnegative matrix if there is a matrix A ∈ R
n×n+ such that its

eigenvalues are λ1, λ2, · · · , λn . Then the NIEP is formulated as follows:

Given (λ1, λ2, · · · , λn) a realizable spectrum for nonnegative matrix,
find a nonnegative matrix A such that its eigenvalues are λ1, λ2, · · · , λn.

(1.1)

Since (λ1, λ2, · · · , λn) is a realizable spectrum, {λ1, λ2, · · · , λn} is closed under com-
plex conjugation. Without loss of generality, one can assume

λ2i−1 = ai+bi
√−1, λ2i = ai−bi

√−1, i = 1, · · · , s; λi ∈ R, i = 2s+1, · · · , n,

where ai , bi ∈ Rwith bi �= 0 for all i = 1, · · · , s. Define the following block diagonal
matrix

Λ := blkdiag(λ[2]
1 , · · · , λ[2]

s , λ2s+1, · · · , λn) with each λ
[2]
i :=

[
ai bi
−bi ai

]
.

LetO(n) denote the set of all orthogonalmatrices, i.e.,O(n) := {U ∈ R
n×n | UTU =

In×n}, and set

V := {V ∈ R
n×n | Vi j = 0 for all (i, j) satisfying i ≥ j or Λi j �= 0}. (1.2)

Then A is a solution of (1.1) if and only if A = U (Λ + V )UT with (U , V ) ∈
R
n×n × R

n×n being a solution of the following inclusion problem

(U , V ) ∈ O(n) × V and U (Λ + V )UT ∈ R
n×n+ ; (1.3)
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see [28]. To solve problem (1.3), Zhao et al. [28] constructed a mapping Θ : Rn×n ×
O(n) × V → R

n×n by

Θ(W ,U , V ) := W �W −U (Λ+V )UT for each (W ,U , V ) ∈ R
n×n ×O(n)×V,

(1.4)
where W � W is the Hadamard product of W and W . Thus, solving problem (1.3) is
equivalent to solving the following nonlinear matrix equation on the product manifold
R
n×n × O(n) × V

Θ(W ,U , V ) = 0. (1.5)

Zhao et al. [28] proposed a Riemannian inexact Newton-CGmethod for solving equa-
tion (1.5) and established its global convergence results under the assumption that the
derivative operator of Θ is surjective at a cluster point. Note that the dimension of the
underlying spaceRn×n ×O(n)×V of equation (1.5) is n2 + n(n−1)

2 +dimV (cf. [28]).
The Riemannian inexact Newton-CG method, as remarked in [28], has the following
drawbacks or limitations:

– If the derivative operator at a cluster point is a sparse matrix, then it may fail to be
surjective.

– In large scale cases, numerical tests illustrate that Newton-CGmethod spendsmost
of computing times for solving the involved subproblem by CG method.

Observe that problem (1.3) is recast equivalently as the following optimization
problem on the Riemannian manifold M := O(n) × V:

min
(U ,V )∈M f p(U , V ) := 1

p
dp(U (Λ + V )UT ,Rn×n+ ) (1.6)

(assuming that problem (1.3) is solvable), where p ≥ 1 and dp(·,Rn×n+ ) is the distance
function of the set Rn×n+ . Note also that the target function f p in problem (1.6) is of
the special compositional structure with a convex outer function h : Rn×n → R and
a smooth inner function F : M → R

n×n , that is, f p = h ◦ F with h and F defined
respectively by h(·) := 1

pd
p(·,Rn×n+ ) and

F(U , V ) := U (Λ + V )UT for each (U , V ) ∈ M = O(n) × V. (1.7)

Based on its special compositional structure, the development of efficient and rapid
optimization algorithms for convex composite optimization problem on linear spaces
such as Gauss-Newton method, Prox-descent algorithm and linearized proximal algo-
rithms (LPAs) has been made with a great deal of attention; see [6, 11, 14, 15, 17, 25]
and references therein.

With these observations, we develop a new type of efficient algorithms, i.e., Rie-
mannian linearized proximal algorithms (R-LPA), to solve problem (1.3) by extending
the LPA type algorithms of [14] in linear spaces to the Riemannian manifold setting.
More precisely, we propose a R-LPA (i.e., Algorithm 4 in Section 4) together with its
globalized version R-GLPA (i.e., Algorithm 5 in Section 4) to solve problem (1.6).
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Under a quasi-regular like condition for F given by (1.7), superlinear local conver-
gence of the R-LPA is established (see Theorem 3 in Section 4). Furthermore, the
global convergence of the R-GLPA is also provided (see Theorem 4 in Section 4).
Notice that the dimension of the underlying manifold O(n) × V of the optimization
problem (1.6) is n(n−1)

2 + dimV which is n2 less than that of (1.5). With utilizing this
important property, numerical tests for the R-LPA and the R-GLPA are implemented.
Compared with the Riemannian Newton-CG algorithm (R-NCGA), the R-GLPA has
the following advantages:

– The R-GLPA costs less CPU time than the R-NCGA. This merit appears more
clearly for large scale problems.

– For sparse matrix cases, the R-GLPA is much more efficient than the R-NCGA.

To furnish the tools to establish our main results, we study first in Section 3 the
R-LPAs for general convex composite optimization problems on Riemannian mani-
folds. We establish local and global convergence results of the algorithms under the
assumptions of local weak sharp minima of order p for outer function and the quasi-
regularity condition for the inner function. The study of this issue is of independent
interest. Applying the obtained results in Section 3 to the NIEP, we obtain in Sec-
tion 4 a R-LPA, together with its global version, to solve the NIEP and establish their
convergence results.

The organization of the present work is summarized as follows. We deal with
the notation and preliminary results used in the present paper in Section 2, while in
Section 3, the general forms of R-LPA for original convex composite optimization
problems on Riemannian manifolds are proposed and their local and global conver-
gence results are established under the assumptions of local weak sharp minima of
order p and the quasi-regularity condition. In Section 4, we apply this general R-LPA
to solve the NIEP and establish both local and global convergence results. Numerical
experiments are reported in Section 5. The last section summarizes the conclusions.

2 Notation and preliminary results

We recall some notation and notions about smooth manifolds used in the present paper
which are standard; see for example [8, 12]. Let M be a smooth complete connected
n-dimensional Riemannian manifold with the Levi-Civita connection ∇. Let x ∈ M ,
and let TxM denote the tangent space at x to M . Let 〈·, ·〉x be the scalar product on
TxM with the associated norm ‖ · ‖x , where the subscript x is sometimes omitted.
Let T M = ⋃

x∈M TxM be the tangent bundle of M , which is naturally a manifold.
For any two points x, y ∈ M , let c : [0, 1] → M be a piecewise smooth curve
connecting x and y. Then the arc-length of c is defined by l(c) := ∫ 1

0 ‖c′(t)‖dt , and
the Riemannian distance from x to y by d(x, y) := infc l(c), where the infimum is
taken over all piecewise smooth curves c : [0, 1] → M connecting x and y. Thus, the
Riemannian distance d(·, ·) induces the original topology on M . For a smooth curve c,
a vector field X is said to be parallel along c if ∇c′V = 0. In particular, if c′ is parallel
along itself, then c is called a geodesic; thus, a smooth curve c is a geodesic if and only
if ∇c′c′ = 0. A geodesic c : [0, 1] → M joining x to y is minimal if its arc-length
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equals its Riemannian distance between x and y. By the Hopf-Rinow theorem [8],
(M, d) is a complete metric space, and there is at least one minimal geodesic joining
x to y for any points x and y.

Let Y be a Banach space or a Riemannian manifold. We use BY (x, r) and BY [x, r ]
to denote respectively the open metric ball and the closed metric ball at x with radius
r , that is,

BY (x, r) := {y ∈ Y | d(x, y) < r} and BY [x, r ] := {y ∈ Y | d(x, y) ≤ r}.

We often omit the subscript Y if no confusion occurs.
For each x ∈ M , the exponential map at x , expx : TxM → M is well-defined on

TxM . Recall a constant related to a point x ∈ M : the injectivity radius rinj(x)

rinj(x) := sup
{
r > 0 : expx (·) is a diffeomorphism on B(0, r) ⊂ TxM

}
.

Let c : R → M be a smooth curve and let Pc,·,· denote the parallel transport along c,
which is defined by

Pc,c(b),c(a)(u) = X(c(b)), ∀a, b ∈ R and u ∈ Tc(a)M,

where X is the unique smooth vector field satisfying ∇c′(t)X = 0 and X(c(a)) = u.
In particular, we write Px,y for Pc,x,y in the case when c is the minimizing geodesic
and no confusion arises.

We recall from [1, p. 55] the notion of retraction on M .

Definition 1 A C∞ mapping R : T M → M is said to be a retraction on M if the
following assertion holds for each x ∈ M (Rx denotes the restriction of R to TxM):

Rx0 = x , and DRx0 = ITx M , where ITx M denotes the identity mapping on TxM .

Remark 1 The exponential map is a special retraction on M (cf. [1, p. 56]).

Let R be a retraction on M . Let x̄ ∈ M and r > 0. For simplicity, write

A(x̄, r) := {(y, u) ∈ T M | y ∈ B(x̄, r) and ‖u‖ < r}

and

Â(x̄, r) := {(y, u) ∈ T M | y ∈ B(x̄, r), ‖u‖ < r

and Ry(tu) ∈ B(x̄, r) for each t ∈ [0, 1]}.

Since R is C∞, for each x̄ ∈ M , there exist μx̄ > 0 and rx̄ > 0 such that

d(y, Ryu) ≤ μx̄‖u‖ for each (y, u) ∈ A(x̄, rx̄ ). (2.1)

If R is the exponential map, then (2.1) holds with μx̄ = 1.
Let F : M → R

m be continuously differentiable. We recall the notion of Lipschitz
continuity for the gradient DF . Let U ⊆ M be such that for any two points x, y ∈ U
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there is a uniqueminimal geodesic connecting x and y. ThenDF is said to be Lipschitz
continuous on U with modulus L > 0, if

‖DF(y) − DF(x)Px,y‖ ≤ Ld(x, y) for each x, y ∈ U. (2.2)

DF is said to be local Lipschitz continuous at x̄ if there exists 0 < r < rinj(x̄) and
Lr > 0 such that DF is Lipschitz continuous on B(x̄, r) with modulus Lr .

We close this section with the following useful lemma.

Lemma 1 Let x̄ ∈ M. Suppose thatDF is local Lipschitz continuous at x̄ . Then, there
exist r > 0 and L > 0 such that for any (x, u) ∈ Â(x̄, r) it holds that

‖F(Rxu) − F(x) − DF(x)u‖ ≤ L

2
‖u‖2. (2.3)

Proof By Lipschitz continuous assumption, there exist 0 < r < rinj(x̄) and Lr > 0
such that

‖DF(y)Py,x − DF(x)‖ ≤ Lrd(x, y) for each x, y ∈ B(x̄, r). (2.4)

By (2.1), without loss of generality, we assume that there is μx̄ > 0 such that

d(x, Rxu) ≤ μx̄‖u‖ for each (x, u) ∈ A(x̄, r).

Let L1 := sup(x,u)∈Â(x̄,r) ‖DF(Rxu)‖. Then by (2.4), one can check that L1 < +∞.
Since R is C∞, there exists L2 > 0 such that ‖DRxu − PRxu,xDRx0‖ ≤ L2‖u‖ for
any (x, u) ∈ Â(x̄, r). Let L = L1L2 + Lrμx̄ . Then r , L are the desired ones. Indeed,
fix (x, u) ∈ Â(x̄, r). Note that

‖DF(Rxu)DRxu − DF(Rxu)PRxu,x‖ = ‖DF(Rxu)(DRxu − PRxu,xDRx0)‖
≤ L1L2‖u‖

(due to DRx0 = ITx M ) and

‖DF(Rxu)PRxu,x − DF(x)‖ ≤ Lrd(x, Rxu) ≤ Lrμx̄‖u‖.

Thus, by triangle inequality, we have that

‖DF(Rxu)DRxu − DF(x)‖ ≤ L‖u‖. (2.5)

Note further that

F(Rxu) − F(x) − DF(x)u =
∫ 1

0
DF(Rx (tu))DRx (tu)udt − DF(x)u.
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This, together with (2.5), implies that

‖F(Rxu) − F(x) − DF(x)u‖ ≤
∫ 1

0
‖DF(Rx (tu))DRx (tu) − DF(x)‖dt‖u‖

≤
∫ 1

0
Lt‖u‖dt‖u‖.

Hence, (2.3) is seen to hold.

3 Riemannian linearized proximal algorithms
and convergence analysis

Throughout the whole section, we always assume that p ∈ [1, 2), unless otherwise
specified. In this section, we shall study an inexact Riemannian linearized proximal
algorithm to solve the general convex composite optimization problem on a manifold
M :

min
x∈M f (x) := h(F(x)), (3.1)

where the outer function h : Rm → R is convex, and the inner function F : M →
R
m is continuously differentiable. The local convergence results of the algorithm are

established under the assumptions of the local weak sharp minima of order p for
the outer function h and the quasi-regular condition for the inner function F . We
also develop a globalization version for the algorithm by virtue of the backtracking
line-search, and establish its convergence result.

We proceed with the (inexact) linearized proximal mapping and some basic prop-
erties. Associated to (3.1), we denote by hmin and C the minimum value and the set
of minima for the function h respectively, that is,

hmin := min
y∈Rm

h(y) and C := arg min
y∈Rm

h(y). (3.2)

Let v > 0 and x ∈ M . The linearized proximal mapping hx,v : TxM → R is defined
by

hx,v(d) := h(F(x) + DF(x)d) + 1

2v
‖d‖2 for each d ∈ TxM . (3.3)

Associated to problem (3.1), we consider the inclusion

F(x) ∈ C, (3.4)

where C ⊆ R
m is defined by (3.2). For x ∈ M , let Γ (x) be defined by

Γ (x) := {d ∈ TxM : F(x) + DF(x)d ∈ C}. (3.5)

The following lemma presents some useful properties of the linearized proximal
mapping.
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Lemma 2 Let v > 0 and ε≥ 0, and let x ∈ M satisfying Γ (x) �= ∅ and d ∈ TxM
such that hx,v(d) ≤ inf

y∈Tx M
hx,v(y) + ε. Then the following statements hold:

(i) ‖d‖2 ≤ d2(0, Γ (x)) + 2vε,
(ii) h(F(x) + DF(x)d) ≤ hmin + 1

2v d
2(0, Γ (x)) + ε.

Proof Let d̃ ∈ Γ (x) and recall the definition of hx,v . Then one has by assumption that

h(F(x) + DF(x)d) + 1

2v
‖d‖2 ≤ h(F(x) + DF(x)d̃) + 1

2v
‖d̃‖2 + ε.

Since h(F(x) + DF(x)d̃) = hmin (see (3.2) and (3.5)), it follows that

h(F(x) + DF(x)d) + 1

2v
‖d‖2 ≤ hmin + 1

2v
‖d̃‖2 + ε.

Taking the infimum for d̃ over Γ (x) on the right-hand side of the above inequality,
we obtain

h(F(x) + DF(x)d) + 1

2v
‖d‖2 ≤ hmin + 1

2v
d2(0, Γ (x)) + ε, (3.6)

or equivalently,

1

2v
‖d‖2 ≤ hmin − h(F(x) + DF(x)d) + 1

2v
d2(0, Γ (x)) + ε.

Thus, (i) is seen to hold because hmin − h(F(x) +DF(x)d) ≤ 0 (by the definition of
hmin in (3.2)). Furthermore, (ii) follows from (3.6) directly. The proof is complete.

3.1 Riemannian linearized proximal algorithm

In view of practical computation, it could be very expensive to exactly solve the
subproblem (3.3) in each iteration. In this section, we first extend the inexact version
of the linearized proximal algorithm in linear space setting (i.e., [14, Algorithm 19]) to
the Riemannian manifold settings for solving problem (3.1), where inf

d∈Tx M
hx,v(d) is

only solved approximately in each iteration (with progressively better accuracy), and
study its local convergence behavior. In the following Riemannian linearized proximal
algorithm for solving (3.1), we always assume that

0 < θ < 1, K > 0, α > 2 and 0 < v ≤ v < +∞.

To establish the local convergence of Algorithm 1, we need the following two
important notions: one is about weak sharp minima while the other is about quasi-
regular point. The concepts ofweak sharpminimawere introduced byBurke and Ferris
[7], and have been extensively studied and widely used to analyze the convergence

123



Numerical Algorithms (2023) 94:1819–1848 1827

Algorithm 1
Choose an initial point x0 ∈ M and d−1 ∈ Tx0M and set k := 0.
Step 1. Choose v ≤ vk ≤ v and 0 ≤ εk ≤ K‖dk−1‖α .
Step 2. If h(F(xk )) = inf

d∈Txk M
hxk ,vk (d), then stop.

Step 3. If h(F(xk )) ≤ inf
d∈Txk M

hxk ,vk (d) + εk , then we set εk := θεk and go back to Step 3.

Step 4. Calculate dk ∈ Txk M such that hxk ,vk (dk ) ≤ inf
d∈Txk M

hxk ,vk (d) + εk .

Step 5. Set xk+1 := Rxk dk and update k := k + 1. Go back to Step 1.

properties of many algorithms; see [6, 17, 26, 27] and references therein. One natural
extension of these concepts is that of weak sharp minima of order p (p ≥ 1) (see [4,
13, 18, 23] and references therein): item (b) in the following definition was introduced
by Studniarski andWard [23]. The other is about the quasi-regularity condition which
provides a local bound on the set Γ (x). Recall that C is given by (3.2).

Definition 2 Let S ⊆ R
m , η > 0 and p ≥ 1. C is said to be

(a) the set of weak sharp minima of order p for h on S with modulus η if

η dp(y,C) ≤ h(y) − hmin for each y ∈ S; (3.7)

(b) the set of local weak sharp minima of order p for h at ȳ ∈ C if there exist ε > 0
and ηε > 0 such thatC is the set of weak sharp minima of order p for h onB(ȳ, ε)
with modulus ηε .

Definition 3 Let x̄ ∈ M . Then, x̄ is said to be

(a) a regular point for (3.4) if

ker(DF(x̄)∗) ∩ (C − F(x̄))� = {0},

whereDF(x̄)∗ is the conjugate operator of DF(x̄) and (C−F(x̄))� is the negative
polar of C − F(x̄) and defined by (C − F(x̄))� := {y : 〈y, c − F(x̄)〉 ≤
0, for each c ∈ C}.

(b) a quasi-regular point for (3.4) if there exist r > 0 and βr > 0 such that

d(0, Γ (x)) ≤ βr d(F(x),C) for each x ∈ B(x̄, r) (3.8)

(and so Γ (x) �= ∅ for each x ∈ B(x̄, r)).

Remark 2 The notions of quasi-regular point and regular point were introduced and
applied to establish the local convergence rate of the GNM for problem (3.1) in linear
space setting, respectively, inLi andNg [15], andBurke andFerris [6],which have been
extended to Riemannian setting in [24]. Furthermore, any regular point of inclusion
(3.4) is a quasi-regular point (cf. [24, Proposition 4.1]).

The following lemma is about a useful property of the composition of a function,
satisfying theweak sharpminima of order p, and a continuously differentiable function
on M .
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Lemma 3 Let S ⊆ R
m, η > 0 and p ≥ 1. Let C be the set of weak sharp minima of

order p for h on S with modulus η. Let L > 0, r > 0 and let x̄ ∈ M. Suppose that
DF is Lipschitz continuous on B(x̄, r) with modulus L. Then, for all x, y ∈ B(x̄, r)
with y = Rxu and (x, u) ∈ Â(x̄, r) such that F(x) + DF(x)u ∈ S, it holds that

d(F(y),C) ≤ 1

2
L‖u‖2 + η

− 1
p (h(F(x) + DF(x)u) − hmin)

1
p . (3.9)

Proof By Lemma 1 and (3.7), it follows that

d(F(y),C) ≤ ‖F(y) − F(x) − DF(x)u‖ + d(F(x) + DF(x)u,C)

≤ 1
2 L‖u‖2 + η

− 1
p (h(F(x) + DF(x)u) − hmin)

1
p .

The proof is complete.

Now we are ready to establish the following main theorem about local convergence
of sequences generated by Algorithm 3.1. Our analysis, without loss of generality,
focuses only on the special case when the stepsizes are chosen to be a constant, that
is, vk ≡ v, unless otherwise specified, as the corresponding convergence results for
the general case can be established similarly.

Theorem 1 Let x̄ ∈ M be such that x̄ is a quasi-regular point for (3.4) and F(x̄) ∈ C.
Suppose that C is the set of local weak sharp minima of order p for h at F(x̄) and
DF is local Lipschitz continuous at x̄ . Then, for any δ > 0, there exist rδ ∈ (0, δ)
and r1 > 0 such that any sequence {xk} generated by Algorithm 1 with initial point
x0 ∈ B(x̄, rδ) and ‖d−1‖ ≤ r1, stays in B(x̄, δ) and converges to some point x∗

satisfying F(x∗) ∈ C at a rate of q := min
{

α
2 , 2

p

}
.

Proof Note by assumption that there exist β, η, δ̄ and L ≥ 1 such that (2.3) holds with
δ̄ in place of r ,

d(0, Γ (x)) ≤ βd(F(x),C) for each x ∈ B(x̄, δ̄) (3.10)

and
ηdp(y,C) ≤ h(y) − hmin for each y ∈ B(F(x̄), δ̄). (3.11)

Recalling from (2.1), we assume that there exists μx̄ > 0 such that

d(y, Ryu) ≤ μx̄‖u‖ for each (y, u) ∈ A(x̄, δ̄) (3.12)

(choose smaller δ̄ if necessary). Furthermore, sine F is continuously differentiable on
M , without loss of generality, we assume that

‖DF(x)‖ ≤ L for each x ∈ B(x̄, δ̄). (3.13)
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Let δ > 0 be arbitrary. Without loss of generality, one may assume that

δ ≤ min

{
δ̄

2(μx̄ + 1)L
,
1

2

(
1

32vK

) 1
α−2
}

and β

(
Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)

≤ 1

2
√
2
. (3.14)

Set rδ := δmin{1, 1
2βL } and r1 :=

(
δ2

8vK

) 1
α
. We claim that rδ and r1 are as desired. To

do this, let x0 ∈ B(x̄, rδ), d−1 ∈ Tx0M with ‖d−1‖ ≤ r1, and let {xk}, together with
{dk}, be a sequence generated by Algorithm 1 with initial point x0. Then,

d(F(x0),C) ≤ ‖F(x0) − F(x̄)‖ ≤ Ld(x0, x̄) ≤ δ

2β
. (3.15)

This, together with (3.10), implies that

d(0, Γ (x0)) ≤ δ

2
. (3.16)

Since d0 satisfies Step 4 of Algorithm 1, Lemma 2(i) is applicable to concluding that

‖d0‖ ≤
(
d2(0, Γ (x0)) + 2vK‖d−1‖α

) 1
2 ≤

√
2

2
δ (3.17)

(noting ‖d−1‖ ≤ r1 =
(

δ2

8vK

) 1
α
). We shall show by induction that the following

estimates hold for each i = 0, 1, 2, . . . :

d(xi , x̄) < (2μx̄ + 1)δ(< δ̄), d(F(xi ),C) ≤ δ

β

(
1

2

)qi+i

and

‖di‖ ≤ 2δ

(
1

2

)qi+i

(< δ̄). (3.18)

Note first that (3.18) holds for i = 0 (thanks to the choice of x0, (3.15) and (3.17)).
Next, assume that (3.18) holds for each i ≤ k − 1. Then it follows from (3.12) that

d(xk, x̄) ≤ μx̄

k−1∑
i=0

‖di‖ + d(x0, x̄) ≤ 2μx̄δ

k−1∑
i=0

(
1

2

)qi+i

+ δ < (2μx̄ + 1)δ. (3.19)

Since xk−1 ∈ B(x̄, (2μx̄ + 1)δ), one has from (3.13) that

‖F(xk−1) + DF(xk−1)dk−1 − F(x̄)‖ ≤ ‖F(xk−1) − F(x̄)‖ + L‖dk−1‖
≤ 2(μx̄ + 1)Lδ < δ̄
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(due to (3.14)). Hence Lemmas 3 and 2(ii) are applicable to conclude that

d(F(xk),C) ≤ L
2 ‖dk−1‖2 +

(
1
η

) 1
p
(h(F(xk−1) + DF(xk−1)dk−1) − hmin)

1
p

≤ L
2 ‖dk−1‖2 +

(
1

2ηv

) 1
p (

d2(0, Γ (xk−1)) + 2vK‖dk−2‖α
) 1
p .

(3.20)
We now claim that

d(F(xk),C) ≤ δ

β

(
1

2

)qk+k

. (3.21)

In fact, if k = 1, then, (3.20), together with (3.16), (3.17) and the choice of d−1,
implies that

d(F(x1),C) ≤ L
2 ‖d0‖2 +

(
1

2ηv

) 1
p (

d2(0, Γ (x0)) + 2vK‖d−1‖α
) 1
p

≤ L
2

(√
2
2 δ
)2 +

(
1

2ηv

) 1
p
((

δ
2

)2 + δ2

4

) 1
p

= 1
4 Lδ2 +

(
1

2ηv

) 1
p ( 1

2δ
2
) 1
p ,

and so (3.21) is established because

1

4
Lδ2 +

(
1

2ηv

) 1
p
(
1

2
δ2
) 1

p = δ

4

(
1

2

) 1
p −1

((
1

2

)1− 1
p

Lδ + 2

(
1

2ηv

) 1
p

δ
2−p
p

)

≤ δ

8β
≤ δ

β

(
1

2

)q+1

,

where the first inequality is true by (3.14) and the facts that
( 1
2

) 1
p −1 ∈ [1,√2) (noting

p ∈ [1, 2)). Now we consider the case when k ≥ 2. Then, noting the following
elementary inequality:

(a + b)r ≤ ar + br for any a ≥ 0, b ≥ 0 and r ∈ (0, 1], (3.22)

one has, from (3.20) and the induction assumption that (3.18) holds for each i ≤ k−1,
that

d(F(xk),C) ≤ L
2 ‖dk−1‖2 +

(
1

2ηv

) 1
p
(
d

2
p (0, Γ (xk−1)) + (2vK )

1
p ‖dk−2‖

α
p

)

≤ L
2 (2δ)2

( 1
2

)2(qk−1+k−1)

+
(

1
2ηv

) 1
p
(

δ
2
p
( 1
2

) 2
p (qk−1+k−1) + (2vK )

1
p (2δ)

α
p
( 1
2

) α
p (qk−2+k−2)

)
.

(3.23)
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Noting by 2vK ≤ 1
16 (2δ)

2−α(that is, δ ≤ 1
2

( 1
32vK

) 1
α−2 by (3.14)), we have that

(2vK )
1
p (2δ)

α
p ≤

(
1

16
(2δ)2−α

) 1
p

(2δ)
α
p =

(
1

2
δ

) 2
p

, (3.24)

and also note that

2(qk−1 + k − 1) ≥ qk + k,
2

p
(qk−1 + k − 1) ≥ qk + k − 1

and
α

p
(qk−2 + k − 2) ≥ qk + k − 2

(as q = min{α
2 , 2

p }, α > 2, p ∈ [1, 2] and k ≥ 2). It follows from (3.23) that

d(F(xk),C) ≤ L
2 (2δ)2

( 1
2

)qk+k +
(

1
2ηv

) 1
p
(

δ
2
p
( 1
2

)qk+k−1 + ( 12δ)
2
p
( 1
2

)qk+k−2
)

= 2δ

(
Lδ +

(
1

2ηv

) 1
p
(

δ
2−p
p + ( 12 )

2
p −1

δ
2−p
p

)) ( 1
2

)qk+k

≤ 2δ

(
Lδ + 2

(
1

2ηv

) 1
p
δ
2−p
p

) ( 1
2

)qk+k

< δ
β

( 1
2

)qk+k
,

where the last inequality holds because, by (3.14), Lδ+2
(

1
2ηv

) 1
p
δ
2−p
p ≤ 1

2
√
2β

< 1
2β .

Hence (3.21) is established. Thus, by (3.10), we have that

d(0, Γ (xk)) ≤ βd(F(xk),C) < δ

(
1

2

)qk+k

. (3.25)

In view of step 5 of Algorithm 3.1, it follows from Lemma 2(i) that

‖dk‖ ≤
(
d2(0, Γ (xk)) + 2vK‖dk−1‖α

) 1
2 ≤ d(0, D(xk)) + (2vK )

1
2 ‖dk−1‖ α

2

(thanks to (3.22)). Then, by (3.25) and the induction assumption that (3.18) holds for
i = k − 1, it follows that

‖dk‖ ≤ δ

(
1

2

)qk+k

+ (2vK )
1
2 (2δ)

α
2

(
1

2

) α
2 (qk−1+k−1)

.
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Since α
2 (qk−1 + k − 1) ≥ qk + k − 1 (as α

2 ≥ q ≥ 1) and since (2vK )
1
2 (2δ)

α
2 ≤ 1

2δ

by (3.24) (with 2 in place of p), it follows that

‖dk‖ ≤ δ

(
1

2

)qk+k

+ δ

2

(
1

2

)qk+k−1

= 2δ

(
1

2

)qk+k

. (3.26)

Hence, combining (3.19), (3.21) and (3.26), one checks that (3.18) holds for i = k and
so for each i = 0, 1, 2, · · · . Consequently, {xk} is a Cauchy sequence, and converges
to a point x∗, which, by (3.18), satisfies that F(x∗) ∈ C , and

d(xk, x
∗) ≤

+∞∑
i=k

‖di‖ ≤ 4δ

(
1

2

)qk+k

.

Therefore, {xk} converges to x∗ at a rate of q
(
= min

{
α
2 , 2

p

})
, and the proof is

complete.

In the case when each εk = 0, we obtain the following exact R-LPA:

Algorithm 2
Choose an initial point x0 ∈ M and set k := 0.
Step 1. Choose v ≤ vk ≤ v.
Step 2. If h(F(xk )) = inf

d∈Txk M
hxk ,vk (d), then stop.

Step 3. Calculate dk ∈ Txk M such that hxk ,vk (dk ) = inf
d∈Txk M

hxk ,vk (d).

Step 4. Set xk+1 := Rxk dk and update k := k + 1. Go back to Step 1.

Then, the following corollary follows directly from Theorem 1 which shows the
local convergence results of any sequence generated by Algorithm 2.

Corollary 1 Suppose that all assumptions of Theorem 1 hold. Then, for any δ > 0,
there exists rδ ∈ (0, δ) such that any sequence {xk} generated by Algorithm 2 with
initial point x0 ∈ B(x̄, rδ), stays in B(x̄, δ) and converges to some point x∗ satisfying
F(x∗) ∈ C at a rate of 2

p .

3.2 Globalized Riemannian linearized proximal algorithm

By virtue of the backtracking line-search, this subsection is to propose a global version
of Algorithm 2 and establish its global convergence theorem. The globalized Rieman-
nian linearized proximal algorithm presented below is an extension of [14, Algorithm
17] to the Riemannian manifold settings.

The following proposition shows that any cluster point of a sequence generated by
Algorithm 3 is a stationary point. Recall that F is continuously differentiable on M .
For a convex function g : Rn → R, the subdifferential of g at x ∈ R

n is defined by

∂g(x) := {ξ ∈ R
n : g(y) ≥ g(x) + 〈ξ, y − x〉, for each y ∈ R

n}.
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Algorithm 3
Choose an initial point x0 ∈ M , 0 < c < 1, 0 < γ < 1 and set k := 0.
Step 1. Calculate dk by Steps 1-3 in Algorithm 2.
Step 2. Find tk which is the maximum value of γ s for s = 0, 1, · · · , such that

h(F(Rxk γ
sdk )) − h(F(xk )) ≤ cγ s (hxk ,vk (dk ) − h(F(xk ))

)
. (3.27)

Step 3. Set xk+1 := Rxk tkdk and update k := k + 1. Go back to Step 1.

Proposition 1 Let {xk} be a sequence generated by Algorithm 3 and assume that {xk}
has a cluster point x̄ such that DF is local Lipschitz continuous at x̄ . hen, x̄ is a
stationary point: 0 ∈ DF(x̄)∗ ◦ ∂h(F(x̄)), and F(x̄) ∈ C if x̄ is a regular point of
inclusion (3.4).

Proof By [14, Remark 16], it remains to show that 0 ∈ DF(x̄)∗ ◦ ∂h(F(x̄)). To
proceed, let {xki } be a subsequence of {xk} such that limi→∞ xki = x̄ . Let {dki } be the
associated sequence generated by Algorithm 3. For each ki , there is uki ∈ Tx̄ M such
that xki = expx̄ uki . Since uki → 0 and D expx̄ 0 = ITx̄ M , without loss of generality,
we assume that (Dexpx̄ uki )

−1 exists for each ki and {‖(Dexpx̄ uki )
−1‖} is bounded.

For each ki , write wki := (Dexpx̄ uki )
−1dki . Noting that for each i ,

1

2v
‖dki ‖2 ≤ hxki ,v(dki ) − hmin ≤ h(F(xki )) − hmin,

and h(F(·)) is continuous, one has that {dki } is bounded and so

{wki } is bounded. (3.28)

Set d̄ := arg min
d∈Tx̄ M

hx̄,v(d). By the definition of hx,v(·) and the isometry Pxki ,x̄ , we

obtain

hxki ,v(dki ) − hx̄,v(d̄) ≤ h(F(xki ) +DF(xki )Pxki ,x̄ d̄) − h(F(x̄) +DF(x̄)d̄). (3.29)

For each ki , write Δki := hxki ,v(dki ) − h(F(xki )). Then, by the definition of dki , we
have that

h(F(xki ) + DF(xki )dki ) − h(F(xki )) ≤ Δki ≤ 0. (3.30)

We assert that
lim

i→+∞ Δki = 0. (3.31)

Granting this, one has that

h(F(x̄)) = lim
i→+∞ h(F(xki )) = lim

i→+∞ hki ,v(dki ), (3.32)

and then letting i → ∞ in (3.29), by (3.32) and the fact that h, F,DF, P·,x̄ are
respectively continuous at x̄ , one can check that

h(F(x̄)) = lim
i→+∞ hki ,v(dki ) ≤ hx̄,v(d̄).

123



1834 Numerical Algorithms (2023) 94:1819–1848

Combining this with the definitions of d̄ and hx̄,v yields that d̄ = 0. This, together
with the optimal condition applied to hx̄,v(·), gives that 0 ∈ DF(x̄)∗ ◦ ∂h(F(x̄)).

Now we apply [5, Theorem 2.4] to show that (3.31) holds. To do this, for each ki ,
write Dki := {wki }. Define F̂x̄ (·) := F ◦ expx̄ (·). Fix ki . Then, it follows from the
definition of uki and (3.30) that

h(F̂x̄ (uki ) + DF̂x̄ (uki )wki ) − h(F̂x̄ (uki )) = h(F(xki ) + DF(xki )dki ) − h(F(xki ))

≤ Δki ≤ 0

and so
[0 ∈ Dki ] ⇐⇒ [wki = 0] ⇐⇒ [dki = 0] ⇐⇒ [Δki = 0].

Note by the definition of dki and the optimal condition (applied to hxk ,v(·)) that

[dki = 0] ⇐⇒ [0 ∈ DF(xki )
∗ ◦ ∂h(F(xki ))] ⇐⇒ [0 ∈ DF̂x̄ (uki )

∗ ◦ ∂h(F̂x̄ (uki ))]

(noting that DF̂x̄ (uki ) = DF(xki )◦Dexpx̄ uki and D expx̄ uki is invertible). Thus, one
has

[0 ∈ Dki ] ⇐⇒ [Δki = 0] ⇐⇒ [0 ∈ DF̂x̄ (uki )
∗ ◦ ∂h(F̂x̄ (uki ))].

Then, conditions (a)-(c) in [5, (2.2)] hold for uki , wki , F̂x̄ in place of xi , di , f and so
{uki } can be regarded as a sequence generated by algorithm [5, (2.1)]. Note further that
{wki } is bounded by (3.28). Therefore, [5, Theorem 2.4] is applicable to concluding
that (3.31) holds. The proof is complete.

We now establish in the following theorem a global superlinear convergence result
for Algorithm 3 under the assumptions of local weak sharp minima of order p and the
quasi-regular condition.

Theorem 2 Let {xk} be a sequence generated by Algorithm 3 and assume that {xk}
has a cluster point x̄ such that x̄ is a quasi-regular point for (3.4), C is the set of local
weak sharp minima of order p for h at F(x̄) ∈ C andDF is local Lipschitz continuous
at x̄ .

Proof Firstly, we show the following claim.
Claim For any subsequence {xki } such that xxi → x̄ , there exist i0 ∈ N and τ > 0

such that

h(F(Rxki
dki ))) − hmin ≤ τd2(0, Γ (xki )) for each i ≥ i0. (3.33)

To do this, fix a subsequence {xki } such that xxi → x̄ . Then, by the continuity of F ,
it follows that

F(xki ) → F(x̄) and d(F(xki ),C) → 0. (3.34)

Noting by the assumptions, there exist β, η, δ̄ and L ≥ 1 such that (2.3) holds with δ̄

in place of r ,

η dp(z,C) ≤ h(z) − hmin for each z ∈ B(F(x̄), δ̄), (3.35)
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d(0, Γ (x)) ≤ β d(F(x),C) for each x ∈ B(x̄, δ̄). (3.36)

Combining (3.34) and (3.36), we apply Lemma 2(i) to obtain that

d(0, Γ (xki )) → 0 and ‖dki ‖ → 0. (3.37)

Thus, there exists an integer i0 such that, for all i ≥ i0, the following inequalities hold:

d(xki , x̄) <
δ̄

2
, ‖dki ‖ <

δ̄

2
, (3.38)

and

‖F(Rxki
dki ) − F(x̄)‖ < δ̄, ‖F(xki ) + DF(xki )dki − F(x̄)‖ < δ̄. (3.39)

Then, it follows from Lemmas 2(ii) that

h(F(Rxki
dki ))−hmin ≤ h(F(Rxki

dki ))−h
(
F(xki ) + DF(xki )dki

)+ 1

2v
d2(0, Γ (xki )).

(3.40)
Without loss of generality, we assume that h is Lipschitz continuous on B(F(x̄), δ̄)
with Lipschitz constant l (using a smaller δ̄ if necessary). Then, by (3.39) and (3.38),
we conclude from Lemmas 1 and 2(i) that

h(F(Rxki
dki ))−h

(
F(xki )+DF(xki )dki

) ≤ l‖F(Rxki
dki ))−F(xki ) − DF(xki )dki ‖

≤ Ll

2
d2(0, Γ (xki )),

and so it follows from (3.40) that

h(F(Rxki
dki ))) − hmin ≤ τd2(0, Γ (xki )),

where τ := Ll
2 + 1

2v < +∞. Thus the claim is seen to hold.
Secondly, we show that there exists δ > 0 such that the following implication holds

for any k:
d(xk, x̄) < δ �⇒ tk = 1. (3.41)

Suppose on the contrary that, there exist a sequence {δi } ⊆ (0, 1) with δi ↓ 0 and a
subsequence {ki } ⊆ N such that xki ∈ B(x̄, δi ) and tki �= 1. Then, xki → x̄ and, for
each ki ,

h(F(Rxki
dki )) − h(F(xki ))>c

(
h
(
F(xki )+DF(xki )dki

)+ 1

2v
‖dki ‖2−h(F(xki ))

)
.

(3.42)
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Note by the above claim that there exist i0 and τ > 0 such that (3.33) holds. This,
together with (3.42), implies that

hmin − h(F(xki )) + τd2(0, Γ (xki )) ≥ h(F(Rxki
dki ))) − h(F(xki ))

> c(h(F(xki ) + DF(xki )dki )

+ 1

2v
‖dki ‖2 − h(F(xki )))

≥ c

(
hmin + 1

2v
‖dki ‖2 − h(F(xki ))

)
.

Hence

(1 − c)
(
hmin − h(F(xki ))

)+ τd2(0, Γ (xki )) ≥ c

2v
‖dki ‖2 > 0, (3.43)

(noting that dki �= 0 by (3.42)). On the other hand, applying (3.35) and (3.36), we
conclude that

(1 − c)
(
hmin − h(F(xki ))

) ≤ (c − 1)ηβ−pdp(0, Γ (xki )).

Hence it follows from (3.43) that

0 < (c − 1)ηβ−p + τd2−p(0, Γ (xki )).

Since d(0, Γ (xki )) → 0 (see (3.37)) and that p < 2, we arrive at (by taking the limit)
0 < (c− 1)ηβ−p, which is clearly a contradiction. Thus, we establish the implication
(3.41) for some δ > 0.

Finally, we show that {xk} converges to x̄ at a rate of 2
p . Let δ > 0 be such that

the implication (3.41) holds for any k. Then, by Corollary 1, there exists rδ ∈ (0, δ)
such that any sequence {x̃k} generated by Algorithm 2 with initial point x̃0 ∈ B(x̄, rδ)
stays in B(x̄, δ). Since x̄ is a cluster point of {xk}, there exists integer j0 such that
d(x j0 , x̄) < rδ . Let x̃0 := x j0 ∈ B(x̄, rδ), and let {x̃k} be generated by Algorithm 2
with x̃0 being the initial point. Then we have that d(x̃k, x̄) < δ for any k = 0, 1, 2, · · ·
and {x̃k} is convergent. Moreover, since d(x j0 , x̄) < rδ ≤ δ, it follows from (3.41)
that t j0 = 1. This means that x̃1 and x j0+1 are the same. Hence d(x j0+1, x̄) < δ, and
we further have that t j0+1 = 1. Inductively, we conclude that tk = 1 for all k ≥ j0.
Thus {xk}k≥ j0 coincides with {x̃k} and so is convergent (to x̄) at a rate of 2

p (as so is
{x̃k} as noted earlier). Therefore the proof is complete.

4 The NIEP

This section is devoted to applying the R-LPA type algorithms to solve the NIEP (1.1).
Recall that O(n) is an orthogonal Stiefel manifold (cf. [1]). Hence, O(n) × V is a
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product manifold where V is given by (1.2). Let p ≥ 1. As mentioned in Section 1,
solving the NIEP (1.1) is equivalent to solving (3.1) with

⎧⎨
⎩

M := O(n) × V,

F(U , V ) := U (Λ + V )UT for each (U , V ) ∈ O(n) × V,

h(A) := 1
pd

p(A,Rn×n+ ) for each A ∈ R
n×n;

(4.1)

or equivalently,
min

(U ,V )∈O(n)×V
f p(U , V ) := h(F(U , V )). (4.2)

Note that F is analytic on O(n) × V (cf. [28]). Below, we recall a retraction R on
O(n) × V and the differential of F ; see [1, 28] for more details. To proceed, let
(U , V ) ∈ O(n) × V . The tangent space at (U , V ) to O(n) × V is given by

T(U ,V )(O(n) × V) = TUO(n) × TVV,

where TUO(n) and TVV are tangent spaces at U and V to O(n) and V , respectively,
and defined by

TUO(n) := {UΩ| ΩT = −Ω, Ω ∈ R
n×n} and TVV = V.

Let R : T (O(n)×V) → O(n)×V be the retraction such that for each (U , V ) ∈ O(n)×
V , the restriction of R to (U , V ), that is, R(U ,V ) : T(U ,V )(O(n) ×V) → O(n) ×V , is
given by

R(U ,V )(ξU , ηV ) := (RU ξU , RV ηV ) for each (ξU , ηV ) ∈ T(U ,V )(O(n) × V), (4.3)

where RU , RV are retractions at O(n) and V , respectively, and defined by

{
RU (ξU ) : = qf(U + ξU ) for each ξU ∈ TUO(n);
RV (ηV ) : = V + ηV for each ηV ∈ TVV.

Here qf(A) denotes the Q factor of the QR decomposition of a nonsingular matrix
A ∈ R

n×n in the form of A = QR̃ with Q ∈ O(n) and R̃ an upper triangular matrix
having strictly positive positive diagonal entries (see [1, p. 58–59] for more details).
Now, we present the differential of F . Following [28], the differential DF(U , V ) :
T(U ,V )(O(n) ×V) → TF(U ,V )R

n×n � R
n×n of F at (U , V ) ∈ O(n) ×V is given by

DF(U , V )(ξU , ηV ) := UηVU
T − [U (Λ + V )UT , ξUU

T ]
for each (ξU , ηV ) ∈ T(U ,V )(O(n) × V), (4.4)

where [A, B] = AB − BA is Lie Bracket of A and B.
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Associated to h defined in (4.1), the linearized proximal mapping h(U ,V ),v for fixed
(U , V ) ∈ O(n) × V and v > 0 in (3.3) is reduced to

h(U ,V ),v(d) := 1

p
dp(F(U , V ) + DF(U , V )d,Rn×n+ )

+ 1

2v
‖d‖2 for each d ∈ T(U ,V )(O(n) × V). (4.5)

For the remainder of this section, we assume that 1 < p < 2. Then, solving the
subproblem

min
d∈T(U ,V )(O(n)×V)

h(U ,V ),v(d)

is equivalent to solving the following nonlinear equation due to first order optimality
condition:

G(U ,V ),v(d) := h′
(U ,V ),v(d)

= dp−2(F(U , V ) + DF(U , V )d,Rn×n+ )DF(U , V )∗

◦(I − Π
R
n×n+ )(F(U , V ) + DF(U , V )d) + 2vd

= 0,

where I denotes the identity operator and Π
R
n×n+ is the projection onto Rn×n+ . Inspired

by this, we propose the following algorithm for solving (4.2).

Algorithm 4
(R-LPA) Choose an initial point (U0, V0) ∈ O(n) × V and set k := 0.
Step 1. Choose v ≤ vk ≤ v.
Step 2. If G(Uk ,Vk ),vk (0) = 0, then stop.
Step 3. Calculate dk by solving G(Uk ,Vk ),vk (d) = 0.
Step 4. Set (Uk+1, Vk+1) := R(Uk ,Vk )dk and update k := k + 1. Go back to Step 1.

The corresponding global version of Algorithm 4 is as follows.

Algorithm 5
(R-GLPA) Choose an initial point (U0, V0) ∈ O(n) × V , 0 < c < 1, 0 < γ < 1 and set k := 0.
Step 1. Calculate dk by Steps 1-3 in Algorithm 4.
Step 2. Find tk which is the maximum value of γ s for s = 0, 1, · · · , such that

h(F(R(Uk ,Vk )γ
sdk )) − h(F(Uk , Vk )) ≤ cγ s

(
h(Uk ,Vk ),vk (dk ) − h(F(Uk , Vk ))

)
.

Step 3. Set (Uk+1, Vk+1) := R(Uk ,Vk )tkdk and update k := k + 1. Go back to Step 2.

Remark 3 Clearly, the sequence generated by Algorithm 4 (resp. Algorithm 5) for
solving (4.2) can also be regarded as a sequence generated by Algorithm 2 (resp.
Algorithm 3) for solving (3.1) with (4.1).
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To proceed, associated to problem (4.2), we consider the inclusion

F(U , V ) ∈ R
n×n+ . (4.6)

For ensuring the regularity condition for inclusion (4.6), we will make use of the
Robinson constraint qualification considered in [21, Definition 2]. To do this, as usual,
we use coneA (resp. intA) to denote the conic hull (resp. interior) of a subset A, while
the image of a linear operator T : Rn → R

m is denoted by im T .

Proposition 2 Let (Ū , V̄ ) ∈ O(n) × V be such that F(Ū , V̄ ) ∈ R
n×n+ . Suppose that

the Robinson constraint qualification for (4.6) holds at (Ū , V̄ ):

0 ∈ int{F(Ū , V̄ ) + im DF(Ū , V̄ ) + R
n×n− }. (4.7)

Then (Ū , V̄ ) is a regular point for (4.6).

Proof Since imDF(Ū , V̄ ) is a linear subspace of Rn×n , it follows from (4.7) that

0 ∈ int{im DF(Ū , V̄ ) + R
n×n+ − F(Ū , V̄ )},

and so
imDF(Ū , V̄ ) + cone(Rn×n+ − F(Ū , V̄ )) = R

n×n . (4.8)

Passing to the negative polar and using the basic properties on polars (cf. [16, Lemma
2.1(vii)]), we arrive at

ker(DF(Ū , V̄ )∗) ∩ (Rn×n+ − F(Ū , V̄ ))� = {0}

(noting that (im DF(Ū , V̄ ))� = ker(DF(Ū , V̄ )∗), that is, (Ū , V̄ ) is a regular point
for (4.6). The proof is complete.

The main theorems are as follows, which provide the convergence properties of
Algorithms 4 and 5 for solving (4.2).

Theorem 3 Let (Ū , V̄ ) ∈ O(n) × V be such that F(Ū , V̄ ) ∈ R
n×n+ and (4.7) hold.

Then, for any δ > 0, there exists rδ ∈ (0, δ) such that any sequence {(Uk, Vk)} gener-
ated by Algorithm 4 with initial point (U0, V0) ∈ B((Ū , V̄ ), rδ), stays in B((Ū , V̄ ), δ)

and converges to some point (U∗, V ∗) satisfying F(U∗, V ∗) ∈ R
n×n+ at a rate of 2

p .

Proof Consider (3.1) with (4.1). Then hmin = 0, and C := argminy∈Rn×n h(y) =
R
n×n+ . By Proposition 2, together with Remark 2, (Ū , V̄ ) is a quasi-regular point for

(4.6): F(U , V ) ∈ C . In terms of the definition of h, one sees that C is the set of
local weak sharp minima of order p for h at F(Ū , V̄ ) ∈ C . Finally, DF is local
Lipschitz continuous at (Ū , V̄ ) (noting that F is analytic as mentioned above). Thus,
all assumptions of Theorem 1 are checked and soCorollary 1 is applicable. Thus, thank
to Remark 3, the conclusion is seen to hold by Corollary 1. The proof is complete.

The proof for Theorem 4 below is similar (by applying Theorem 2 instead of
Corollary 1) and so is omitted here.
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Theorem 4 Let {(Uk, Vk)} be a sequence generated by Algorithm 5 and assume that
{(Uk, Vk)} has a cluster point (Ū , V̄ ) ∈ O(n) × V satisfying F(Ū , V̄ ) ∈ R

n×n+ and
(4.7). Then, {(Uk, Vk)} converges to (Ū , V̄ ) at a rate of 2

p .

5 Numerical experiments

In this section, we present the numerical performance of the R-LPA and the R-GLPA
for solving theNIEP (1.1), or equivalently, the convex composite optimization problem
(4.2). To illustrate the efficiency of our algorithm, we compare the R-GLPA with the
Riemannian inexact Newton-CG algorithm (R-NCGA) [28], which is one of typical
state-of-the-art algorithms developed recently for solving the NIEP (1.1). All algo-
rithms are implemented in MATLAB R2020b and the hardware environment is Intel
Core i7-10750H, @2.60 GHz (6 CPUs), 16.00 GB of RAM.

In thenumerical experiments, theNIEP (1.1) is testedwith variousn. Let A� ∈ R
n×n+

be a random dense matrix with each entry generated from the uniform distribution on
the interval (0, 1) or a 1% sparse random matrix, and we choose the eigenvalues of
A� as prescribed spectrum Λ, which is derived from the block diagonal part of the
upper triangular matrix generated by Schur decomposition using the built-in function
schur. Let W ∈ V be such that

Wi j =
{
0, ifi ≥ jorΛi j �= 0,

1, otherwise

The parameters of the R-GLPA and R-NCGA are set as follows:

– R-GLPA: p = 2, vk ≡ 100, K = 1, c = γ = 0.9, θ = 0.5;
– R-NCGA: σ̄max = 0.01, η̄max = 0.1, η̂max = 0.9, θ = 0.9, t = 10−4.

We use the exponential map as the retraction on manifolds for both algorithms. The
starting points (U 0, V 0) (resp. (R0,U 0, V 0)) for the R-GLPA (resp. R-NCGA) in
Sects. 5.1 and 5.2 are generated randomly by the built-in function rand and schur:

R0 � R0 = rand(n, n), [U 0, V ] = schur(R0 � R0,′ real′), V 0 = W � V .

The accuracy of each algorithm is evaluated by the residual (RES) of the associated
convex composite optimization problem:

RES :=
∥∥∥[U∗(Λ + V∗)UT∗ ]−

∥∥∥
F

,

where X− denotes the componentwise negative part of a matrix X ∈ R
n×n , and U∗,

V∗ form the Schur decomposition of the solution estimated by the algorithm. The
semismooth Newton (SN) method [20] is applied to solve the subproblems in the R-
GLPAwhen p = 2.We use the conjugate gradient (CG) method to solve the nonlinear
equations associated to the semismooth Newton method for solving the subproblem
of the R-GLPA and also the subproblem of the R-NCGA. The stopping criteria of the
R-GLPA and R-NCGA are listed as follows:
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– Outer iteration: the number of iterations is greater than 100, or RES < 10−4.
– SN iteration (for R-GLPA): the number of iterations is greater than 50 or

G(Uk ,Vk ),vk (d) < max{θ‖dk−1‖3, 10−4} (sparse case : max{θ‖dk−1‖3, 10−3−(n/10)}).

– CG iteration:

– R-GLPA: RES of CG iteration is smaller than 10−4 (sparse matrix cases:
10−3−(n/10)) or the number of iterations is greater than 1000;

– R-NCGA: (2.9) and (2.10) in [28] are satisfied or the number of iterations is
greater than n2.

5.1 Numerical performance of the R-GLPA

In our numerical tests, we repeat our experiments over 50 different starting points. For
the dense matrix case of the NIEP (1.1), the results of averaged CPU time, averaged
number of outer iterations (IT for short) and the averaged RES, are listed in Table 1.

We observe from Table 1 that both algorithms own a small averaged RES which
means they converge to a solution. The R-GLPA costs less time than the R-NCGA
under each scale of the problem determined by n from 10 to 1000, and the advantage
is more obvious in the large scale cases. However, from the convergence result in
[28] we know that R-NCGA converges quadratically while the R-GLPA converges
only linearly when p = 2 from our theoretical analysis in the previous section. The
phenomenon can be illustrated by Fig. 1which shows the RES on every outer iterations
for n = 100 and n = 1000, respectively. The random initial points especially in the
large scale case make the R-NCGA take several iterations at the initial stage, and
consequently even with a higher accuracy requirement (RES < 10−8), the iteration
complexity of the R-GLPA is better than that of the R-NCGA. Hence, only when
starting from a sufficiently precise local initial point, the quadratical convergence rate
of the R-NCGA may show its power.

Table 1 Numerical results of the NIEP (dense matrix case)

Algorithm R-GLPA R-NCGA
n CPU time IT RES CPU time IT RES

10 0.0011 s 2.0 9.4608e-07 0.0049 s 5.0 1.8157e-06

50 0.0253 s 2.8 2.9268e-06 0.0387 s 6.0 8.3712e-05

100 0.2587 s 3.1 1.0647e-05 0.3444 s 6.2 5.6637e-05

200 2.1883 s 3.3 4.3251e-05 2.8080 s 7.0 4.1385e-06

400 20.708 s 3.3 1.3122e-05 40.478 s 7.3 5.4843e-05

600 96.263 s 3.5 9.2702e-06 157.79 s 7.6 2.8425e-06

800 167.35 s 3.6 1.4139e-05 381.32 s 7.8 1.3212e-05

1000 276.98 s 3.8 1.3872e-05 765.56 s 8.0 2.1365e-05
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Fig. 1 RES — the number of outer iterations

In addition, Fig. 2 explicitly shows the CPU time consumed by the R-GLPA and
R-NCGA when the dimension n varies. The cost of CPU time of the R-NCGA grows
more rapidly than that of the R-GLPA with the increasing dimension n, which implies
that the R-GLPA performs better for large scale problems due to the smaller dimension
of the manifold determined by the problem formulation.

Finally, Table 2 lists the numerical results (also averaged by 50 random trials) of
the R-GLPA and R-NCGA for the 1% sparse random matrices. It is observed that
the R-GLPA is much more efficient than the R-NCGA in the sparse matrix case. It is
due to the convergence theorem of the R-NCGA requiring the surjective assumption
on the differential of a smooth mapping (associated to the NIEP) at the cluster point
generated by the R-NCGA (see [28, Assumption 1]), which is likely to be satisfied in
the dense matrix case but would fail in the sparse matrix case (see [28, Remark 3.9]);
while the assumption for our convergence theorem of the R-GLPA is less restrictive
than that of the R-NCGA.

0 200 400 600 800 1000
The dimension n

0

100

200

300

400

500

600

700

800

C
P

U
 ti

m
e 

(s
ec

on
ds

)

R-GLPA
R-NCGA

Fig. 2 CPU time — the dimension n
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Table 2 Numerical results of the NIEP (sparse matrix case)

Algorithm R-GLPA R-NCGA
n CPU time IT RES CPU time IT RES

10 0.0033 s 9.0 9.9508e-05 0.1394 s 91.0 9.9289e-05

20 0.0246 s 12.2 9.1468e-05 1.0532 s 98.0 9.8319e-05

50 0.3079 s 16.0 6.7647e-05 N/Aa

80 1.7453 s 20.5 9.8251e-05 N/A

100 3.8023 s 25.0 8.3122e-05 N/A

aN/A means that the algorithm cannot approach the solution within the tenfold CPU time of that cost by
the R-GLPA

In a word, it is revealed from the above numerical results that the R-GLPA is an
efficient and robust algorithm for solving the NIEP (1.1), especially for the large scale
problems.

5.2 Simulation of verification for the Robinson constraint qualification

From Theorems 3 and 4 we know that the Robinson constraint qualification (4.7) is
important to derive the convergence result of the R-GLPA as well as the R-LPA. One
sufficient condition ensuring (4.7) at (Ū , V̄ ) ∈ O(n) × V is that F(Ū , V̄ ) ∈ R

n×n++
(i.e., the derivedmatrix is elementwise strictly positive).We conduct in this subsection
the simulation study to verify (4.7) at a cluster point when numerically solving the
NIEP (1.1) by the R-GLPA.

Table 3 shows the result of numbers of the final step (i.e., reaching stopping criteria)
satisfying F(Ufinal, Vfinal) ∈ R

n×n++ for 100 replicates in various dimension scenario,
where the given eigenvalues are derived from positive ground truth random matrices
with elements generated from the standard uniform distribution on the open interval
(0, 1) (i.e., rand(n, n)).

From the simulation results in Table 3 we observe that when the eigenvalues are
generated from sufficient positivematrices (e.g., rand(n, n)+0.5 or rand(n, n)+1.0),
the condition (4.7) holds with high probability at the final step.

Table 3 Frequency of satisfaction of the condition (4.7) for 100 replicates

Ground truth n = 2 n = 5 n = 10 n = 20 n = 50

rand(n, n) + 0.0 92 69 40 12 2

rand(n, n) + 0.1 91 83 65 37 5

rand(n, n) + 0.2 93 90 80 71 54

rand(n, n) + 0.5 89 92 97 98 99

rand(n, n) + 1.0 96 99 100 100 100
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5.3 Illustrative examples

This subsection is devoted to several numerical examples of the NIEP (1.1) to illustrate
Theorems 1–4 for different cases: Example 1 provides the case when the assumptions
of Theorems 3 and 4 (and so Theorem 1 and Theorem 2) are satisfied; Example 2
does the case when neither the assumptions of Theorem 3 nor those of Theorem 4 are
satisfied, while Example 3 does the case when the assumptions of Theorem 2 are not
satisfied.

Example 1 Consider the NIEP (1.1) with n := 2, λ1 := 1 and λ2 := 2. Take Ū :=(
1 0
0 1

)
, V̄ :=

(
0 0
0 0

)
. Then F(Ū , V̄ ) =

(
1 0
0 2

)
. By (4.4), one deduce that

im DF(Ū , V̄ ) =
{(

0 a + b
b 0

) ∣∣∣∣ a, b ∈ R

}
.

Thus,

F(Ū , V̄ ) + im DF(Ū , V̄ ) + R
2×2− =

{(
1 + c1 a + b + c2
b + c3 2 + c4

) ∣∣∣∣ a, b ∈ R, c1, c2, c3, c4 ∈ R−
}

.

From this, one checks by definition that

(
0 0
0 0

)
∈ int{F(Ū , V̄ ) + im DF(Ū , V̄ ) + R

2×2− },

that is, the Robinson constraint qualification (4.7) is satisfied at (Ū , V̄ ). Then assump-
tion of Theorem 3 is satisfied and so we apply Theorem 3 to concluding that for any
δ > 0, there exists rδ ∈ (0, δ) such that any sequence {(Uk, Vk)} generated by the
R-LPA with initial point (U0, V0) ∈ B((Ū , V̄ ), rδ), stays in B((Ū , V̄ ), δ) and con-
verges to some point (U∗, V ∗) satisfying F(U∗, V ∗) ∈ R

n×n+ at a rate of 2
p . In fact,

we conduct 100 numerical experiments of the R-LPA with each initial point randomly
generated by

U0 =
(

sin(π
2 + θ) cos(π

2 + θ)

− cos(π
2 + θ) sin(π

2 + θ)

)
and V0 =

(
0 t
0 0

)
,

where θ and t satisfy the standard uniform distribution on (−π
2 , π

2 ) and (−1, 1),
respectively. The numerical results show that for each generated sequence {(Uk, Vk)},
the relative error

√
‖(Uk −Uk−1‖2F + ‖Vk − Vk−1)‖2F is less than 10−6 within 10

steps.
Moreover, we also test the R-GLPA as showed in Table 4. From this table, one sees

that the generated sequence numerically converges to (Ū , V̄ ), at which the Robinson
constraint qualification (4.7) is satisfied.
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Table 4 The iterate of Example 1 by the R-GLPA

k Uk Vk F(Uk,Vk) RES

0

(
0.9830 −0.1835
0.1835 0.9830

) (
0 -0.0182
0 0

) (
1.0369 -0.1980
-0.1798 1.9630

)
2.6758e−01

1

(
0.9998 -0.0211
0.0211 0.9998

) (
0 0.0244
0 0

) (
1.0000 0.0033
-0.0211 2.0002

)
2.1113e−02

2

(
1.0000 -0.0035
0.0035 1.0000

) (
0 0.0244
0 0

) (
0.9999 0.0209
-0.0035 2.0001

)
3.5168e−03

3

(
1.0000 -0.0006
0.0006 1.0000

) (
0 0.0244
0 0

) (
1.0000 0.0238
-0.0006 2.0000

)
5.8613e−04

4

(
1.0000 -0.0001
0.0001 1.0000

) (
0 0.0244
0 0

) (
1.0000 0.0243
-0.0001 2.0000

)
9.7681e−05

5

(
1.0000 -0.0000
0.0001 1.0000

) (
0 0.0244
0 0

) (
1.0000 0.0243
-0.0001 2.0000

)
1.6283e−05

6

(
1.0000 -0.0000
0.0001 1.0000

) (
0 0.0244
0 0

) (
1.0000 0.0243
-0.0000 2.0000

)
2.7132e−06

7

(
1.0000 -0.0000
0.0001 1.0000

) (
0 0.0244
0 0

) (
1.0000 0.0243
-0.0000 2.0000

)
4.5226e−07

Table 5 Typical cases for the iterate of Example 2 by the R-GLPA

k Uk Vk F(Uk , Vk ) RES

Case I

0

(
0.7288 -0.6846
0.6846 0.7288

) (
0 -0.0904
0 0

) (
0.9825 -1.0459
-0.9555 1.0172

)
1.4169

1

(
0.9573 -0.2892
0.2892 0.9573

) (
0 0.0895
0 0

) (
0.1425 -0.4717
-0.5612 1.8576

)
7.3312e-01

2

(
0.9996 0.0272
-0.0272 0.9996

) (
0 0.0048
0 0

) (
0.0016 0.0592
0.0544 1.9984

)
0

Case II

0

(
0.8435 -0.5371
0.5371 0.8435

) (
0 -0.0509
0 0

) (
0.6000 -0.9423
-0.8914 1.3999

)
1.2972

1

(
0.9992 -0.0389
0.0389 0.9992

) (
0 -0.0487
0 0

) (
0.0049 -0.1264
-0.0777 1.9949

)
1.4842e-01

2

(
0.9997 -0.0234
0.0234 0.9997

) (
0 -0.0427
0 0

) (
0.0021 -0.0895
-0.0468 1.9978

)
1.0102e-01

3

(
1.0000 0.0028
-0.0028 1.0000

) (
0 -0.0060
0 0

) (−0.0000 -0.0004
-0.0056 2.0000

)
3.3302e-04

4

(
1.0000 0.0029
-0.0029 1.0000

) (
0 -0.0059
0 0

) (
-0.0000 -0.0001
0.0058 2.0000

)
1.1069e-06
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Example 2 Consider the NIEP (1.1) with n := 2, λ1 := 0 and λ2 := 2. Take Ū :=(
1 0
0 1

)
, V̄ :=

(
0 0
0 0

)
. Then F(Ū , V̄ ) =

(
0 0
0 2

)
. By (4.4), one deduce that

im DF(Ū , V̄ ) =
{(

0 a − 2b
−2b 0

) ∣∣∣∣ a, b ∈ R

}
.

Thus, similar to what we have done in Example 1, one checks that

(
0 0
0 0

)
/∈ int{F(Ū , V̄ ) + im DF(Ū , V̄ ) + R

2×2− },

that is, the Robinson constraint qualification (4.7) fails at (Ū , V̄ ). As in Example 1, we
also conduct 100 numerical experiments of the R-LPA with initial points generated

Table 6 The iterate of Example 3

k Uk Vk F(Uk , Vk ) RES

0

⎛
⎝0.9214 0.2643 -0.2849
0.1568 -0.9236 -0.3497
0.3555 -0.2775 0.8925

⎞
⎠

⎛
⎝0 0 -0.2626
0 0 -0.1607
0 0 0

⎞
⎠

⎛
⎝0.9999 -0.8926 -0.3493
0.7623 0.8401 0.6926
0.6178 0.0443 0.1599

⎞
⎠ 9.5862e-01

1

⎛
⎝0.7268 0.3450 -0.5939
0.0918 -0.9057 -0.4138
0.6806 -0.2462 0.6900

⎞
⎠

⎛
⎝0 0 -0.6552
0 0 0.2624
0 0 0

⎞
⎠

⎛
⎝0.8763 -0.7761 -0.2701
0.6211 0.9520 0.6738
1.1267 -0.0971 0.1716

⎞
⎠ 8.2751e-01

2

⎛
⎝ 0.2786 0.4193 -0.8619
-0.1916 -0.8571 -0.4779
0.9391 -0.2987 0.1583

⎞
⎠

⎛
⎝0 0 -1.2147
0 0 0.4612
0 0 0

⎞
⎠

⎛
⎝ 0.3784 -0.5019 -0.3636
-0.1142 0.8490 0.9125
1.7153 -0.1751 0.7687

⎞
⎠ 6.5401e-01

· · · · · · · · · · · · · · ·

30

⎛
⎝ 0.1285 0.0881 -0.9076
-0.4085 -0.8929 -0.1766
0.8198 -0.3766 0.0845

⎞
⎠

⎛
⎝0 0 -4.8435
0 0 2.2723
0 0 0

⎞
⎠

⎛
⎝ 0.4075 -0.1353 -0.0841
-0.0067 0.9730 0.8830
4.5733 -0.0321 0.4061

⎞
⎠ 1.6282e-01

31

⎛
⎝ 0.1388 0.0800 -0.9068
-0.4133 -0.8912 -0.1740
0.8160 -0.3819 0.0961

⎞
⎠

⎛
⎝0 0 -4.8978
0 0 2.3102
0 0 0

⎞
⎠

⎛
⎝ 0.4745 -0.1332 -0.0831
-0.0067 0.9711 0.8848
4.6252 -0.0330 0.3428

⎞
⎠ 1.6062e-01

· · · · · · · · · · · · · · ·

60

⎛
⎝ 0.1072 0.0657 -0.9122
-0.4515 -0.8772 -0.1481
0.8047 -0.4105 0.0700

⎞
⎠

⎛
⎝0 0 -5.7798
0 0 3.0221
0 0 0

⎞
⎠

⎛
⎝ 0.3999 -0.1080 -0.0671
-0.0039 0.9795 0.8851
5.5305 -0.0219 0.4036

⎞
⎠ 1.2912e-01

61

⎛
⎝ 0.1140 0.0608 -0.9118
-0.4538 -0.8762 -0.1471
0.8026 -0.4133 0.0778

⎞
⎠

⎛
⎝0 0 -5.8090
0 0 3.0455
0 0 0

⎞
⎠

⎛
⎝ 0.4517 -0.1071 -0.0667
-0.0032 0.9784 0.8862
5.5611 -0.0219 0.3543

⎞
⎠ 1.2812e-01

· · · · · · · · · · · · · · ·

99

⎛
⎝ 0.0997 0.0495 -0.9141
-0.4814 -0.8639 -0.1311
0.7916 -0.4356 0.0677

⎞
⎠

⎛
⎝0 0 -6.4852
0 0 3.6470
0 0 0

⎞
⎠

⎛
⎝ 0.4384 -0.0920 -0.0568
-0.0023 0.9818 0.8869
6.2848 -0.0170 0.3613

⎞
⎠ 1.0942e-01

100

⎛
⎝ 0.0975 0.0508 -0.9143
-0.4813 -0.8640 -0.1311
0.7920 -0.4353 0.0652

⎞
⎠

⎛
⎝0 0 -6.4892
0 0 3.6511
0 0 0

⎞
⎠

⎛
⎝ 0.4210 -0.0920 -0.0567
-0.0024 0.9822 0.8867
6.2899 -0.0167 0.3780

⎞
⎠ 1.0933e-01
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randomly as in Example 1. The numerical experiments own the same convergence

performance: the relative error
√

‖(Uk −Uk−1‖2F + ‖Vk − Vk−1)‖2F of eachgenerated

sequence {(Uk, Vk)} is less than 10−6 within 10 steps.
When the R-GLPA is tested for two initial points, the numerical results are given

in Table 5 which illustrates that in Case I the R-GLPA terminates at a solution in finite
steps, while in Case II, the R-GLPA numerically converges to (Ū , V̄ ) even at which
the Robinson constraint qualification (4.7) fails.

Example 3 Consider the NIEP (1.1) with n := 3, λ1 := 1 + √−1, λ2 := 1 − √−1
and λ3 := 0. From the numerical results of the R-GLPA for 100 random trials (one of
which is listed in Table 6), we observe that each generated sequence does not converge
to a point (U , V ) such that F(U , V ) is a solution of the NIEP (1.1). This means that
the assumptions of Theorem 2 are not satisfied.

6 Conclusions

The present paper studied the issue of numerically solving the NIEP. At first, we
reformulated the NIEP as a convex composite optimization problem on Riemannian
manifolds. Then we developed a scheme of the R-LPA to solve the NIEP. Under some
mild conditions, we presented the local and global convergence results of the R-LPA,
respectively. Moreover, numerical experiments were provided. Compared with the
Riemannian Newton-CG method in [28], this R-LPA owns better numerical perfor-
mances for large scale problems and sparse matrix cases.
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