
Numerical Algorithms (2023) 94:765–787
https://doi.org/10.1007/s11075-023-01519-8

ORIG INAL PAPER

New proximal bundle algorithm based on the gradient
sampling method for nonsmooth nonconvex optimization
with exact and inexact information

N. Hoseini Monjezi1 · S. Nobakhtian2

Received: 30 August 2022 / Accepted: 17 February 2023 / Published online: 25 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we focus on a descent algorithm for solving nonsmooth nonconvex opti-
mization problems. The proposed method is based on the proximal bundle algorithm
and the gradient sampling method and uses the advantages of both. In addition, this
algorithm has the ability to handle inexact information, which creates additional chal-
lenges. The global convergence is proved with probability one. More precisely, every
accumulation point of the sequence of serious iterates is either a stationary point if
exact values of gradient are provided or an approximate stationary point if only inex-
act information of the function and gradient values is available. The performance of
the proposed algorithm is demonstrated using some academic test problems. We fur-
ther compare the new method with a general nonlinear solver and two other methods
specifically designed for nonconvex nonsmooth optimization problems.

Keywords Proximal bundle method · Gradient sampling · Inexact information ·
Nonsmooth optimization · Nonconvex optimization

Mathematics Subject Classification (2010) 90C26 · 49J52 · 65K05

1 Introduction

There exists a wide collection of practical problems involving nonsmooth functions
with inexact information and nonconvex characteristics. However, most nonsmooth
solution methods are only designed to solve problems with exact data and are strongly

B S. Nobakhtian
nobakht@math.ui.ac.ir

1 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box: 19395-5746, Tehran, Iran

2 Department of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics,
University of Isfahan, Isfahan, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01519-8&domain=pdf
http://orcid.org/0000-0003-1431-0520
http://orcid.org/0000-0003-2488-7892

766 Numerical Algorithms (2023) 94:765–787

based on the convexity of functions. In this paper, we introduce a new numerical
method to solve an unconstrained optimization problem with a nonsmooth and non-
convex objective function that is able to handle both exact and inexact information.

Over the last decades, several numerical methods have been developed based on the
Clarke subdifferential for solving nonsmooth optimization problems. The subgradient-
type methods are the simplest methods for convex optimization [24, 34] which are
further generalized for nonconvex problems [2, 3, 5, 29, 37]. The bundle-type methods
were first introduced for convex problems [25] and have been developed over the
years for nonconvex problems [11–13, 17, 19, 20, 27, 30, 32]. The discrete gradient
algorithm is considered as a derivative free method to solve nonconvex problems [1].
Trust region algorithms are among the most popular methods for smooth optimization
problems and have been developed for nonsmooth optimization [14, 33]. In [6, 23, 36]
the gradient sampling (GS) algorithm is proposed for solving nonsmooth nonconvex
optimization problems.

Inexact information has been considered in subgradient methods for the convex
optimization in [22] and for the nonconvex case in [35]. Inexact information of function
and subgradient values in convex bundle methods returns to [21], where vanishing
noise is considered, that is evaluations need to be asymptotically tightened. Inexact
information with nonvanishing perturbations in bundle methods has been studied in
[8, 12, 13, 18, 30].

The bundle andGS algorithms belong to themost attractivemethods forminimizing
nonsmooth nonconvex problems. Bundle algorithms need to calculate a single subgra-
dient at each iteration. The information already generated in previous iterations is kept
in the bundle and using this information, a piecewise linear model for the objective
function is generated at each iteration. Then by solving a quadratic program, a new
candidate descent direction is obtained that either creates a descent in the objective
function or finds new information that modifies the next model. On the other hand,
GS algorithms do not need to calculate subgradients by the user. At each iteration, GS
methods calculate the gradients at the current point and at some randomly generated
nearby points. Then by solving a quadratic program, an ε-steepest descent direction
is obtained. A standard Armijo line search along this direction produces a candidate
for the next iterate and only needs to be perturbed to remain in the set of differen-
tiable points of the objective function. The perturbation is random and small enough
to preserve the Armijo sufficient descent property.

In this paper, we propose a minimization algorithm that combines the advantages
of the GS algorithm [23] and the redistributed proximal bundle method [11, 12, 15,
16]. Following the same idea as GS algorithms, we calculate gradients and keep the
information in a bundle using the technique of bundle methods. In the following, we
use usual concepts in bundle methods, such as “serious iterate” and “null iterate”.
We recall that a trial point is called a serious iterate if it decreases sufficiently the
objective function, otherwise it is called a null iterate. In each iteration, gradients are
required to be calculated at the current point and at some randomly generated nearby
points. Using this information, a piecewise linear model is generated and a candidate
descent direction is obtained by solving a quadratic program. Note that either the new
direction reduces the objective function and a serious point is obtained, or we have a
null point and the piecewise linear model must be improved. We need to perturb the

123

Numerical Algorithms (2023) 94:765–787 767

null and serious iterates in the set of differentiable points of the objective function.
Unlike bundle methods, after computation a new serious iterate the bundle is emptied
and contrary to GS methods no line search procedure is employed.

We are interested in the situation where for a given point only inexact information
of the function and subgradient (gradient) values is available. Nonvanishing pertur-
bations are considered in both function and subgradient (gradient) values and should
be bounded. We highlight that the proposed algorithm works completely the same
trend for both exact and inexact information and it does not require any additional
procedure to handle inexact information. Moreover, the global convergence is proved
under mild conditions. More precisely, we show that if the number of serious iterates
is finite and the exact gradient values (inexact function and gradient values) are pro-
vided, then with probability one the latest serious iterate is stationary (approximate
stationary). On the other hand, if an infinite number of serious iterates is obtained,
then with probability one every accumulation point of this sequence is stationary in
the exact case and approximate stationary in the inexact case.

There are two other works where inexact information is studied in bundle methods
for nonconvex single objective problems [12, 30]. The algorithm in [30] utilizes the
downshift mechanism to deal with the nonconvexity of the objective function, while
similar to ourwork themethod in [12] uses the redistributedproximal bundle algorithm.
Although these three research works use the bundle method with inexact information,
their algorithms and convergence techniques are quite different. Moreover, to the best
of our knowledge, inexact information inGSmethods has never been studied explicitly
before.

The remainder of the paper is organized as follows. In Section 2, we review some
basic definitions and results from nonsmooth analysis. In Section 3, the details of the
new algorithm are provided and its convergence is presented in Section 4. Results of
computational experience are reported in Section 5 and, finally, concluding remarks
are given in Section 6.

2 Preliminaries

Throughout the paper, we use the following notations and definitions. Suppose that
R
n defines the n-dimensional Euclidean space. We denote by 〈u, v〉 = ∑n

i=1 uivi the
inner product of two vectors u, v ∈ R

n and by ‖ · ‖ the standard Euclidean norm. For
x ∈ R

n and ε > 0, B(x, ε) (B̄(x, ε)) is an open (closed) ball of the radius ε centered
at x .

The function f : Rn → R is convex if f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y),
for all x, y ∈ R

n and λ ∈ [0, 1]. The subdifferential of a convex function f at x is
given by ∂c f (x) := {ξ ∈ R

n| f (y) ≥ f (x) + 〈ξ, y − x〉, ∀y ∈ R
n}. For any ε ≥ 0,

the ε-subdifferential [28] of a convex function f at x is defined as

∂ε f (x) := {ξ ∈ R
n| f (y) ≥ f (x) + 〈ξ, y − x〉 − ε, ∀y ∈ R

n}. (1)

123

768 Numerical Algorithms (2023) 94:765–787

A function f : Rn → R is said to be locally Lipschitz of rank L > 0 at x ∈ R
n if

for some ε > 0 we have | f (y)− f (z)| ≤ L‖y − z‖ for all y, z ∈ B(x, ε). The Clarke
directional derivative of f at x in the direction d is defined by

f ◦(x; d) := lim sup
y→x
α↓0

f (y + αd) − f (y)

α
.

The subset ofRn where the objective function f is differentiable is defined asD :=
{x ∈ R

n, f is differentiable at x}, and the Clarke subdifferential of f at any point x
is given by ∂ f (x) = conv{lim j→∞ ∇ f (y j), y j → x, y j ∈ D}, and it coincides
with the convex subdifferential for every convex function. Each element ξ ∈ ∂ f (x)
is called a subgradient of f at x . It is well-known that ∂ f (x) is a nonempty convex
compact set in Rn . Further, the Clarke subdifferential ∂ f (x) is upper semicontinuous
at every x ∈ R

n .
The function f : Rn → R is regular at x provided that f is locally Lipschitz at x

and admits directional derivatives f ′(x; d) at x for all d, with f ′(x; d) = f ◦(x; d).
Hence, every regular function is locally Lipschitz.

Let f : R
n → R be a locally Lipschitz function. A point x∗ ∈ R

n is called a
stationary point of f if 0 ∈ ∂ f (x∗). If x∗ is a local minimizer of f , then x∗ is a
stationary point of f . Therefore, the stationary condition is a necessary condition for
local minimizers.

3 The gradient sampling proximal bundle algorithm

In this section, a new algorithm based on the combination of the GS algorithm [23]
and the redistributed proximal bundle methods [11, 12, 15, 16] is introduced to solve
nonsmooth nonconvex unconstrained optimization problems. Consider the following
optimization problem

min
x∈Rn

f (x), (2)

where f : Rn → R is locally Lipschitz, but possibly nonsmooth and nonconvex.
In various types of real-world applications, calculating the exact values of the

objective function and/or its subgradient (gradient) can be very expensive or sometimes
impossible. In these optimization problems, only approximations of function values
and/or subgradient (gradient) values are accessible. It particularly happens when f is
given by some optimization problems, e.g., f (x) = maxt∈T F(t, x).

The definition of inexact information for the function value is simple. For a given
point x and a noise tolerance δ ≥ 0, the approximate value for f (x), which is
denoted by f̂ (x), is defined as | f̂ (x) − f (x)| ≤ δ. On the other hand, the defini-
tion of approximate subgradients is more complicated. When the objective function
f is convex, the approximation of subgradients in the convex bundle methods refers
to the ε-subdifferential ∂ε f (·). Its beneficial property is that, 0 ∈ ∂ε f (x̄) implies
f (x̄) ≤ minx∈Rn f (x) + ε. In this text, we deal with locally Lipschitz functions,
which without convexity we can not expect a tool with the similar global convergence

123

Numerical Algorithms (2023) 94:765–787 769

property. Therefore, we are working with the following natural approximate subdif-
ferential for locally Lipschitz functions ∂ f (·) + B̄(0, ε). In what follows, we present
our motivation for this choice. A point x∗ ∈ R

n is called an approximate stationary
point of f if 0 ∈ ∂ f (x∗) + B̄(0, ε). If x∗ is a local minimizer of f (·) + ε‖ · −x∗‖,
then x∗ is an approximate stationary point of f , which means that x∗ is a stationary
point of a small perturbation of f , i.e., f (·) + ε‖ · −x∗‖. Therefore, at a point x , an
element g ∈ R

n approximates within tolerance θ ≥ 0 some subgradients of f at x if
g ∈ ∂ f (x) + B̄(0, θ). Hence, when the function f is differentiable at x , we use the
approximate gradient ∇̂ f (x) = ∇ f (x) + v, where v ∈ B̄(0, θ).

Assume that the algorithm is at the k-th outer iteration and at the 	-th inner itera-
tion. Moreover, suppose that xk ∈ R

n is the latest serious iterate. Motivated by the GS
method, we assume that f is differentiable at xk . Consider B(xk, ε) as the sample
ball with the radius ε	 > 0. Let xk0 = xk and choose m ∈ N points {xkj }mj=1 indepen-

dently and uniformly from B(xk, ε) ∩ D. Since the locally Lipschitz function f is
almost everywhere differentiable, this step is successful with probability one. Since
the algorithm is at 	-th inner iteration, we have 	 null iterates in hand. Therefore, the
index set is defined by

Lk
	 : = Lk

0 ∪ {m + 1,m + 2, . . . ,m + 	}
= {0, 1, 2, . . . ,m} ∪ {m + 1,m + 2, . . . ,m + 	} = {0, 1, 2, . . . ,m + 	}.

As usual in the bundle methods, already generated information is used to obtain a
piecewise linear model for the objective function. Here by using the sampling points
and combined with the bundle technique, the piecewise linear model is defined. If the
objective function is convex, the piecewise linear model is stated as a lower approx-
imation for it [28]. In our case f is locally Lipschitz and therefore it is possibly
nonconvex. Hence motivated by the presented method in [11, 12, 15, 16], we use the

augmented function as fηk	
(d, xk) := f (xk +d)+ ηk	

2 ‖d‖2, where ηk	 ∈ R is a positive
parameter, that adjusted dynamically. Since we handle with inexact information the
augmented objective function with the approximate function value is considered, i.e.,

f̂ηk	
(d, xk) := f̂ (xk + d) + ηk	

2 ‖d‖2.
The inexact function and gradient values at xkj are defined as f̂ (xkj) = f (xkj) − δkj

and ∇̂ f (xkj) = ∇ f (xkj) + vkj , where vkj ∈ B(0, θkj) for all j ∈ Lk
	 , 	 and k. Note that

δkj can be positive or negative, so the true function value can be either overestimated or

underestimated, however θkj is nonnegative. In addition, both noise terms are assumed

to be bounded, thus there exist δ̄ > 0 and θ̄ > 0 such that |δkj | ≤ δ̄ and 0 ≤ θkj ≤ θ̄ for

all j ∈ Lk
	 and 	, k ∈ N. It is worth mentioning that the noise terms and their bounds

are generally unknown and we do not assume any link between δ̄ and θ̄ .
The piecewise linear model for the augmented function f̂ηk	

is formed at the 	-th
iteration as follows:

M	(d, xk) := f̂ (xk) + max
j∈Lk

	

{−ckj + 〈ξ kj , d〉}, (3)

123

770 Numerical Algorithms (2023) 94:765–787

where for all j ∈ Lk
	 we have ekj = f̂ (xk) − f̂ (xkj) − 〈∇̂ f (xkj), x

k − xkj 〉, ckj =
ekj + ηk	b

k
j , ξ

k
j = ∇̂ f (xkj) + ηk	(x

k
j − xk), bkj = ‖xkj−xk‖2

2 and the bundle is defined as

Bk
	 := ⋃

j∈Lk
	

{(∇̂ f (xkj), e
k
j , b

k
j , x

k
j − xk

)}
. Our aim is to keep ckj nonnegative, for

all j ∈ Lk
	 . For this purpose, we take

ηk	 ≥ max{ max
j∈Lk

	\{0}
−2ekj

‖xkj − xk‖2 , ω} + ω, (4)

whereω > 0 is a positive constant. By using (4), for all j ∈ Lk
	\{0}, we have ckj = ekj +

ηk	
2 ‖xkj − xk‖2 ≥ ω

2 ‖xkj − xk‖2 ≥ 0. On the other hand, for xk0 = xk we obtain ck0 = 0.

Therefore, ckj ≥ 0 for all j ∈ Lk
	 . Since the latest serious iterate is one of the bundle

points, it follows that M	(0, xk) = f̂ (xk) +max j∈Lk
	
{−ckj } = f̂ (xk). In addition, by

(3) and M	(0, xk) = f̂ (xk) we deduce M	(d, xk) ≥ M	(0, xk) + 〈ξ kj , d〉 − ckj for all

j ∈ Lk
	 and d ∈ R

n . Using the definition of the ε-subdifferential in (1), we obtain

ξ kj ∈ ∂ckj
M	(0, x

k), ∀ j ∈ Lk
	. (5)

To generate the candidate descent direction dk	 , our bundle method chooses a prox-
imal parameter μk

	 > 0 and solves the following quadratic problem

min
d∈Rn

M	(d, xk) + μk
	

2
‖d‖2. (6)

Clearly dk	 is unique, since the objective function is strictly convex. Set

vk	 := M	(d
k
	 , xk) − f̂ (xk). (7)

If dk	 = 0, then vk	 = 0 and the algorithm stops. Therefore, we assume dk	 �= 0.

By uniqueness of dk	 as the solution of Problem (6), we get M	(dk	 , xk) + μk
	

2 ‖dk	 ‖2 <

M	(0, xk) + μk
	

2 ‖0‖2 = M	(0, xk) = f̂ (xk). On the other hand, since
μk

	

2 ‖dk	 ‖2 ≥ 0,
we have M	(dk	 , xk) < f̂ (xk) and so vk	 < 0.

Problem (6) can be rewritten in the following smooth form

min
d∈Rn ,v∈R v + μk

	

2
‖d‖2

〈ξ kj , d〉 − ckj ≤ v, ∀ j ∈ Lk
	.

(8)

123

Numerical Algorithms (2023) 94:765–787 771

The quadratic dual problem of (8) is formulated as follows:

min
λ j≥0,∀ j∈Lk

	

1

2μk
	

‖
∑

j∈Lk
	

λ jξ
k
j ‖2 +

∑

j∈Lk
	

λ j c
k
j

∑

j∈Lk
	

λ j = 1.
(9)

By using the relationship between the primal and dual solutions, if λ j for all j ∈ Lk
	

solve Problem (9), then we have vk	 = −
(

1
μk

	

‖∑
j∈Lk

	
λ jξ

k
j ‖2 + ∑

j∈Lk
	
λ j ckj

)
and

dk	 = − 1
μk

	

∑
j∈Lk

	
λ jξ

k
j .

If xk + dk	 satisfies the descent test

f̂ (xk + dk) ≤ f̂ (xk) + mLvk	 , (10)

where 0 < mL < 1, then we have a new serious iterate and set xk+1 = xk + dk	 .
This implies that the function value obtained at this serious iterate is significantly
better than the function value at the previous serious point. We just only need to
perturb the point xk+1 in D. Otherwise, when the condition (10) is not satisfied,
we set xkm+	+1 = xk + dk	 and perform a null step and the model will be modified
by adding new information to the bundle. As we have done in the previous case,
if xkm+	+1 /∈ D, then we replace it with any point in D which satisfies in some
conditions (we exactly state the necessary conditions in the algorithm). Then, we
will augment the piecewise linear model M	(·, xk) and generate M	+1(·, xk). For this
purpose, the cutting plane with respect to xkm+	+1 should be added in the model. This
is done by updating the index set and the bundle, i.e., Lk

	+1 = Lk
	 ∪ {m + 	 + 1} and

Bk
	+1 = Bk

	

⋃{(∇̂ f (xkm+	+1), e
k
m+	+1, b

k
m+	+1, d

k
m+	+1)} and defineM	+1(d, xk) :=

f̂ (xk) + max j∈Lk
	+1

{−ckj + 〈ξ kj , d〉}.
When after a fixed serious iteration, the algorithm executes a number of null iter-

ations without calculating a new serious iterate, there are two possibilities. The first
possibility is that the piecewise linear model is not a good approximation of the objec-
tive function. Most bundle methods try to correct this situation by adding new null
iterates’ information to the bundle in order to improve the model function. The second
possibility is that the algorithm is close to a stationary point. GS algorithms try to
overcome this situation by reducing the sample radius. In this paper, we try to use the
ideas of both methods. For this purpose, first we try to improve the piecewise linear
model by adding the information of new null iterates. We consider a counter (denoted
by nnull) to account the number of null iterations and choose an upper bound maxnull
for it. If the null steps have been already performed the maximum number of times,
i.e., nnull = maxnull, the algorithm may close to a stationary point. To investigate this
issue, we reduce the radius of the sample ball and continue the algorithm. It is worth
mentioning that although sample size m ≥ n + 1 is required in most GS methods
[6, 7, 23], we have no condition for m here. In numerical experiences, maxnull is

123

772 Numerical Algorithms (2023) 94:765–787

chosen equal to 2n, because according to the numerical results in [6, 7] it yields faster
convergence and good numerical results.

Now we introduce the gradient sampling proximal bundle algorithm (GSPB) for
solving optimization problem (2).

Algorithm 1 The gradient sampling proximal bundle algorithm.
1: Initialization: Choose the line search parameter mL ∈ (0, 1), the reduction factor με ∈ (0, 1), the

stopping tolerance tol ≥ 0, the initial sample radius ε̄ > 0 and the upper bound maxnull ∈ N. Choose a
starting point x1 ∈ D and calculate f̂ (x1) and ∇̂ f (x1). Set k := 1, nnull := 0, ε0 = ε̄, L1

0 := {0} and
B1
0 := {(∇̂ f (x1), e10, 0, 0)}.

2: Approximate ε–subdifferential by gradient sampling:Set xk0 := xk . Let {xkj }mj=1 be the sample points

independently and uniformly from B(xk , ε0) ∩ D. Calculate f̂ (xkj) and ∇̂ f (xkj) for j = 1, 2, . . . ,m

and set Bk
0 = ∪m

j=0{(∇̂ f (xkj), e
k
j , b

k
j , x

k
j − xk }, Lk

0 := {0, 1, . . . ,m}, 	 = 0 and nnull = 0.

3: New point generation and stopping test: Select ηk
	

> 0 as in (4) and using (3) formulate M	(d, xk).

Select a proximal parameter μk
	

> 0 and by solving the subproblem (6) obtain dk
	
. Compute vk

	
, if

−vk
	

≤ tol, stop.

4: Test serious iterate: If (10) does not satisfy go to Step 5, otherwise we have a serious iterate. If
xk + dk

	
∈ D then set xk+1 = xk + dk

	
. Otherwise (i.e., xk + dk

	
/∈ D), let xk+1 be any point in D

satisfying f̂ (xk+1) ≤ f̂ (xk) +mLvk
	
and ‖xk + dk

	
− xk+1‖ ≤ ε	. Call x

k+1 as a new serious iterate.
Set k = k + 1 and ε0 = ε̄. Go to Step 2.

5: Test null iterate: If xk + dk
	

∈ D, set xkm+	+1 = xk + dk
	
. Otherwise let xkm+	+1 be any point in D

satisfying

f̂ (xkm+	+1) > f̂ (xk) + mLvk	 , (11a)

‖xk + dk	 − xkm+	+1‖ ≤ ε	. (11b)

Improve the piecewise linearmodel by adding the corresponding informationwith xkm+	+1 to the bundle,

that is, Bk
	+1 = Bk

	
∪ {∇̂ f (xkm+	+1), e

k
m+	+1, d

k
m+	+1, b

k
m+	+1)}, Lk

	+1 = Lk
	

∪ {m + 	 + 1} and
nnull = nnull + 1. If nnull = maxnull, set nnull = 1 and go to Step 6. Otherwise set 	 = 	 + 1 and go to
Step 3.

6: Update sample radius: Set ε	+1 = μεε	, 	 = 	 + 1 and go to Step 3.

Some explanations to Algorithm 1 are essential. We note that, along with the stan-
dard gradient sampling [6, 23], the algorithm keeps every iterates xk and xk	 in the set
D. In Step 4, if xk + dk	 /∈ D, xk+1 can be chosen as follows. For i = 1, 2, . . . sample
xk+1 can be found from an uniform distribution on B(xk + dk	 , ε	/i) until xk+1 ∈ D
and (10) holds. By continuity of f this process terminates with probability one. In
Step 5, if xk + dk	 /∈ D, xkm+	+1 can be determined like the previous procedure such
that xkm+	+1 ∈ D, (11a) and (11b) hold.

Remark 1 In the sequel of this paper, we suppose that {ηk	}	 is bounded. Using (4),
we deduce that ηk	 ≥ 2ω for all 	, therefore we assume that there exists η̄ such that
2ω ≤ ηk	 ≤ η̄ for all 	. Since the value of η̄ is not needed in the performance and
the analysis of the algorithm, this assumption is not restrictive on the implementa-
tion of the algorithm. The boundedness of {ηk	}	 has been considered in [12] for the

123

Numerical Algorithms (2023) 94:765–787 773

unconstrained problems with lower−C1 functions and in [15, 16] for constrained
problems with regular functions. However, we consider this assumption for uncon-
strained optimization problems with locally Lipschitz functions.

4 Global convergence

First, for analytical purposes and motivated by [15, 16, 31], we define the upper
envelope model associated with the cutting planes. Then, as a lemma we state some
of its useful properties. The upper envelope model is a helpful tool to prove the global
convergence.

Consider a given point x ∈ R
n . Suppose that B̄(x, ε̄) is a fixed closed

ball such that it contains all possible trial steps y+. Set B(x) := {y+| y+ ∈
B̄(x, ε̄), y+ is a trial point}. The upper envelope model M↑(·, x) : Rn → R for the
objective function f is defined as

M↑(d, x) := f̂ (x) + sup
2ω≤η≤η̄, y+∈B(x), ξ∈∂ f (y+)+B(0,θ̄)

{my+,ξ,η(d, x)},

and η̄ is determined in Remark 1. The plane my+,ξ,η(y, x) is the cutting plane at the
serious iterate x and the trial step y+ as following

my+,ξ,η(d, x) := −ω

2
‖y+ − x‖2 + 〈ξ + η(y+ − x), d〉.

The boundedness of B̄(x, ε̄) and the definition of η imply that M↑(·, x) is defined
everywhere. Some useful properties of the upper envelope model M↑(·, x) are stated
in Lemma 1. The proof of this lemma follows immediately from the proof of
[16, Lemma 5] for unconstrained problems (only item (iv) needs to be modified).

Lemma 1 Suppose that f : Rn → R is a locally Lipschitz function, then:

(i) M↑(·, x) is a convex function.
(ii) M	(·, x) ≤ M↑(·, x), ∀	.
(iii) M↑(0, x) = f̂ (x).
(iv) ∂cM↑(0, x) ⊆ ∂ f (x) + B̄(0, θ̄).

Now we examine the convergence properties of Algorithm 1. We consider various
cases that may be happened during its execution.

Theorem 1 Assume that f is locally Lipschitz, tol = 0 and μk
	 > 0, for all k and 	.

If Algorithm 1 stops with a finite number of iterations, then with probability one the
latest serious iterate xk is an approximate stationary point of Problem (2).

Proof According to the assumptions, Algorithm 1 stops and this happens at Step
3 with −vk	 ≤ 0. Since we always have −vk	 ≥ 0, we conclude that −vk	 = 0.

123

774 Numerical Algorithms (2023) 94:765–787

By definition −vk	 = 1
μk

	

‖∑
j∈Lk

	
λ jξ

k
j ‖2 + ∑

j∈Lk
	
λ j ckj and using μk

	 > 0, we

deduce
‖

∑

j∈Lk
	

λ jξ
k
j ‖2 = 0, and

∑

j∈Lk
	

λ j c
k
j = 0. (12)

By (5) we have ξ kj ∈ ∂ckj
M	(0, xk), and consequently M	(d, x) ≥ M	(0, xk) +

〈ξ kj , d〉 − ckj for all j ∈ Lk
	 and d ∈ R

n . Taking into account that λ j ≥ 0 and
∑

j∈Lk
	
λ j = 1, we get M	(d, xk) ≥ M	(0, xk) + 〈∑ j∈Lk

	
λ jξ

k
j , d〉 − ∑

j∈Lk
	
λ j ckj .

By M	(0, xk) = f̂ (xk) and Lemma 1 (ii)-(iii), we conclude that M↑(d, xk) ≥
M↑(0, xk) + 〈∑ j∈Lk

	
λ jξ

k
j , d〉 − ∑

j∈Lk
	
λ j ckj . Using (12) and Lemma 1 (i), (iv),

we get 0 ∈ ∂cM↑(0, xk) and hence 0 ∈ ∂ f (xk) + B̄(0, θ̄). Consequently, the latest
serious iterate xk is an approximate stationary point.

From now on, we assume that Algorithm 1 does not stop and generates an infinite
sequence of iterates. We consider various cases that may occur during the execution
of Algorithm 1 with infinite cycles.

Theorem 2 Assume that f is locally Lipschitz, {ηk	}	 is boundedabove, there exists μ̄ >

0 such thatμk
	 ≤ μ̄ for all k and 	 and the level set A(x1) := {x ∈ R

n, f (x) ≤ f (x1)}
is bounded. If Algorithm 1 performs infinite serious iterates, then with probability
one every accumulation point of the sequence of serious iterates is an approximate
stationary point of Problem (2).

Proof By assumption there exists a sequence {xk}k and with probability one {xk}k ⊆
D. The method is descent type thus we have {xk}k ⊆ A(x1). Since f is locally
Lipschitz and A(x1) is bounded, the sequences { f̂ (xk)}k is bounded below. On the
other hand, for each k we have f̂ (xk+1) ≤ f̂ (xk) + mLvk	 and hence vk	 → 0, as
k → ∞. By the definition of vk	 , we have

−vk	 =
(1

μk
	

‖
∑

j∈Lk
	

λ jξ
k
j ‖2 +

∑

j∈Lk
	

λ j c
k
j

)
.

Since ckj ≥ 0 and λ j ≥ 0, we deduce that
∑

j∈Lk
	
λ j ckj and

1
μk

	

‖∑
j∈Lk

	
λ jξ

k
j ‖2 are

nonnegative. Therefore, both are convergence to zero, i.e.,

∑

j∈Lk
	

λ j c
k
j → 0 and

1

μk
	

‖
∑

j∈Lk
	

λ jξ
k
j ‖2 → 0.

Since μk
	 ≤ μ̄, we have 1

μk
	

≥ 1
μ̄
and hence

∑

j∈Lk
	

λ jξ
k
j → 0, and

∑

j∈Lk
	

λ j c
k
j → 0, k → ∞. (13)

123

Numerical Algorithms (2023) 94:765–787 775

We have {xk}k ⊆ A(x1) and due to boundedness of the set A(x1), there exist a
convergent subsequence {xk}k∈A ⊆ {xk}k and x∗ ∈ R

n satisfying xk →k∈A x∗. By
(5) we have ξ kj ∈ ∂ckj

M	(0, xk) and consequently M	(d, xk) ≥ M	(0, xk)+〈ξ kj , d〉−
ckj , for all j ∈ Lk

	 and d ∈ R
n . By Lemma 1 (ii) and (iii), λ j ≥ 0 and

∑
j∈Lk

	
λ j = 1

we have M↑(d, xk) ≥ M↑(0, xk) + 〈∑ j∈Lk
	
λ jξ

k
j , d〉 − ∑

j∈Lk
	
λ j ckj . Passing to the

limit in this relation when k ∈ A and k → ∞ and using (13), we obtain M↑(d, x∗) ≥
M↑(0, x∗) + 〈0, d〉. By Lemma 1 (i) and (iv), we deduce 0 ∈ ∂ f (x∗) + B̄(0, θ̄) and
thus x∗ is an approximate stationary point.

Theorem 3 Assume that f is a locally Lipschitz function, {ηk	}	 is bounded above and
μk

	 ≤ μk
	+1 ≤ μ̄ for all 	. If Algorithm 1 performs infinite iterations with a finite

number of serious iterations, then with probability one the latest serious iterate xk is
an approximate stationary point of Problem (2).

Proof Suppose Algorithm 1 produces a finite number of serious iterations followed
by an infinite number of null iterations. Therefore, throughout this proof, k and the
latest serious point xk are constant.We demonstrate that it is an approximate stationary
point. Suppose that dk	 is the optimal solution of Problem (8) and xkm+	+1 = xk + dk	 .
First, we show that the sequence {M	(dk	 , xk) + μk

2 ‖dk	 ‖2}	 is bounded above and
nondecreasing.

Since Problem (6) is strictly convex, it follows that its solution (i.e., dk) is unique

thus M	(dk	 , xk) + μk
	

2 ‖dk	 ‖2 < M	(d, xk) + μk
	

2 ‖d‖2, for all d ∈ R
n and d �= dk	 .

Now set d = 0, then M	(dk	 , xk) + μk
	

2 ‖dk	 ‖2 < M	(0, xk) = f̂ (xk). Therefore, the

sequence {M	(dk	 , xk) + μk
	

2 ‖dk	 ‖2}	 is bounded from above by f̂ (xk). Next, let us
prove that this sequence is nondecreasing. We have

M	+1(d
k
	+1, x

k) + μk
	+1

2
‖dk	+1‖2

≥ M	+1(d
k
	+1, x

k) + μk
	

2
‖dk	+1‖2

≥ f̂ (xk) − ckj + 〈ξ kj , dk	+1〉 + μk
	

2
‖dk	+1‖2

= f̂ (xk) − ckj + 〈ξ kj , dk	 〉 + 〈ξ kj , dk	+1 − dk	 〉 + μk
	

2
‖dk	+1 − dk	 + dk	 ‖2

= f̂ (xk) − ckj + 〈ξ kj , dk	 〉 + 〈ξ kj , dk	+1 − dk	 〉 + μk
	

2
‖dk	+1 − dk	 ‖2

+ μk
	

2
‖dk	 ‖2 + μk

	〈dk	+1 − dk	 , dk	 〉,
(14)

where the first inequality follows from μk
	 ≤ μk

	+1, the second inequality holds by
the definition of M	(·, xk) and the other relations are obvious. The above relation
is satisfied for all j ∈ Lk

	+1 and further Lk
	+1 = Lk

	

⋃{m + 	 + 1}. For all j ∈

123

776 Numerical Algorithms (2023) 94:765–787

Lk
	 , multiplying the relation (14) with corresponding λ j , summing up and due to∑
j∈Lk

	
λ j = 1, we arrive at

M	+1(d
k
	+1, x

k) + μk
	+1

2
‖dk	+1‖2 ≥ f̂ (xk) −

∑

j∈Lk
	

λ j c
k
j + 〈

∑

j∈Lk
	

λ jξ
k
j , d

k
	 〉

+ 〈
∑

j∈Lk
	

λ jξ
k
j , d

k
	+1 − dk	 〉 + μk

	

2
‖dk	+1 − dk	 ‖2 + μk

	

2
‖dk	 ‖2 + μk

	〈dk	+1 − dk	 , dk	 〉.

Since dk	 = − 1
μk

	

∑
j∈Lk

	
λ jξ

k
j , we have

M	+1(d
k
	+1, x

k) + μk
	+1

2
‖dk	+1‖2

≥ f̂ (xk) −
∑

j∈Lk
	

λ j c
k
j + μk

	

2
‖dk	 ‖2 − 1

μk
	

〈
∑

j∈Lk
	

λ jξ
k
j ,

∑

j∈Lk
	

λ jξ
k
j 〉 + μk

	

2
‖dk	+1 − dk	 ‖2

= f̂ (xk) − (∑

j∈Lk
	

λ j c
k
j + 1

μk
	

‖
∑

j∈Lk
	

λ jξ
k
j ‖2

) + μk
	

2
‖dk	 ‖2 + μk

	

2
‖dk	+1 − dk	 ‖2

= f̂ (xk) + vk	 + μk
	

2
‖dk	 ‖2 + μk

	

2
‖dk	+1 − dk	 ‖2

= M	(d
k
	 , xk) + μk

	

2
‖dk	 ‖2 + μk

	

2
‖dk	+1 − dk	 ‖2

≥ M	(d
k
	 , xk) + μk

	

2
‖dk	 ‖2.

Therefore, the sequence {M	(dk	 , xk) + μk
	

2 ‖dk	 ‖2}	 is nondecreasing and due to its
boundedness, we deduce it is convergent. Assume that there exists M∗ ∈ R such that
M	(dk	 , xk) + μk

2 ‖dk	 ‖2 → M∗ as 	 → ∞. From the above relation we have

M	+1(d
k
	+1, x

k) + μk
	+1

2
‖dk	+1‖2 ≥ M	(d

k
	 , xk) + μk

	

2
‖dk	 ‖2 + μk

	

2
‖dk	+1 − dk	 ‖2.

Passing to the limit in this inequality when 	 → ∞, we get

M∗ ≥ M∗ + lim
	→∞

μk
	

2
‖dk	+1 − dk	 ‖2,

hence lim	→∞
μk

	

2 ‖dk	+1 − dk	 ‖2 ≤ 0. By assumption we have μk
	 ≤ μk

	+1 ≤ μ̄,
therefore μk

	 ≥ μk
	∗ . That is {μk

	}	 is bounded below by μk
	∗ , where 	∗ :=

max{	|	 is a serious iteration}. This implies that dk	+1 − dk	 → 0, as 	 → ∞. Using

123

Numerical Algorithms (2023) 94:765–787 777

the definition of M	+1(dk	+1, x
k) for all j ∈ Lk

	+1 we have M	+1(dk	+1, x
k) ≥

f̂ (xk) − ckj + 〈ξ kj , dk	+1〉. Set j = m + 	 + 1 in this relation, we obtain

M	+1(d
k
	+1, x

k)

≥ f̂ (xk) − ckm+	+1 + 〈ξ km+	+1, d
k
	+1〉

= f̂ (xkm+	+1) + 〈∇̂ f (xkm+	+1), x
k − xkm+	+1〉 − ηk	+1

2
‖xkm+	+1 − xk‖2

+ 〈ξ km+	+1, d
k
	+1〉

≥ f̂ (xkm+	+1) + 〈∇̂ f (xkm+	+1), x
k − xkm+	+1〉 − ηk	+1‖xk − xkm+	+1‖2

+ 〈ξ km+	+1, d
k
	+1〉

= f̂ (xkm+	+1) − 〈∇̂ f (xkm+	+1) + ηk	+1(x
k
m+	+1 − xk), xkm+	+1 − xk〉

+ 〈ξ km+	+1, d
k
	+1〉

= f̂ (xkm+	+1) − 〈ξ km+	+1, x
k
m+	+1 − xk〉 + 〈ξ km+	+1, d

k
	+1〉

= f̂ (xkm+	+1) + 〈ξ km+	+1, d
k
	+1 − (xkm+	+1 − xk)〉

= f̂ (xkm+	+1) + 〈ξ km+	+1, d
k
	+1 − dk	 〉 − 〈ξ km+	+1, x

k
m+	+1 − (xk + dk)〉

> f̂ (xk) + mLvk	 + 〈ξ km+	+1, d
k
	+1 − dk	 〉 − 〈ξ km+	+1, x

k
m+	+1 − (xk + dk)〉.

Due to the definition of vk	+1 on (7), we have vk	+1 = M	+1(dk	+1, x
k) − f̂ (xk) and

get

0 ≤ −vk	+1 = f̂ (xk) − M	+1(d
k
	+1, x

k)

< −mLvk	 + 〈ξ km+	+1, d
k
	 − dk	+1〉 + 〈ξ km+	+1, x

k
m+	+1 − (xk + dk)〉

≤ −mLvk	 + 〈ξ km+	+1, d
k
	 − dk	+1〉 + ‖ξ km+	+1‖‖xkm+	+1 − (xk + dk)‖

≤ −mLvk	 + 〈ξ km+	+1, d
k
	 − dk	+1〉 + ‖ξ km+	+1‖ε	.

Since the number of the null iterates is infinite, by the algorithm process, we deduce
ε	 → 0. On the other hand, we have dk	+1 − dk	 → 0, as 	 → ∞, mL ∈ (0, 1) and
{ξ k	 }	 is bounded, hence −vk	 → 0. By the definition of vk	 and ckj ≥ 0 for all j ∈ Lk

	

and this fact that μk
	 ≤ μ̄, we get

∑

j∈Lk
	

λ jξ
k
j → 0, and

∑

j∈Lk
	

λ j c
k
j → 0, 	 → ∞. (15)

By using the relation (5), we have ξ kj ∈ ∂ckj
M	(0, xk), and by the definition of ε-

subdifferential we deduce M	(d, xk) ≥ M	(0, xk) + 〈ξ kj , d〉 − ckj , for all j ∈ Lk
	 and

d ∈ R
n . Bymultiplying λ j ≥ 0 in this relation, summing up and due to

∑
j∈Lk

	
λ j = 1

we obtain M	(d, xk) ≥ f̂ (xk) + 〈∑ j∈Lk
	
λ jξ

k
j , d〉 − ∑

j∈Lk
	
λ j ckj . From Lemma 1

123

778 Numerical Algorithms (2023) 94:765–787

(ii)-(iii), we get M↑(y, xk) ≥ M↑(0, xk) + 〈∑ j∈Lk
	
λ jξ

k
j , d〉 − ∑

j∈Lk
	
λ j ckj . Taking

the limit as 	 → ∞ and using (15), we deduce M↑(d, xk) ≥ M↑(0, xk) + 〈0, d〉.
Therefore, due to Lemma 1 (i) and (iv) we obtain 0 ∈ ∂cM↑(0, xk) and so 0 ∈
∂ f (xk) + B̄(0, θ̄).

In the sequel, we state the results in the exact case.

Remark 2 Consider the obtained necessary conditions, we observe that:

(i) If δ̄ = θ̄ = 0, that is we have the exact function and gradient values then
we have that if Algorithm 1 generates an infinite serious sequence, then every
accumulation point of the generated sequence is a stationary point. On the other
hand, if Algorithm 1 produces a finite number of serious iterates, then the latest
serious iterate is a stationary point.

(ii) If θ̄ = 0, that is no error in the gradient values but errors in the function values
are allowed, then the results in (i) are still correct.

(iii) Adding inexact information does not cause any additional difficulty to the per-
formance of the algorithm.

5 Numerical experiments

In this section, the performance and efficiency of theGradient SamplingProximalBun-
dle (GSPB) algorithm are presented. We first investigate the performance of GSPB
when the information is exact (i.e., δ̄ = θ̄ = 0), by comparing it with other con-
current nonsmooth optimization algorithms. Furthermore, we numerically test GSPB
for various kinds of inexactness and study the effect of noise on the accuracy of the
solution.

5.1 Solvers and their implementations

We employ three optimization algorithms in our comparison; including Hybrid Algo-
rithm for Nonsmooth Optimization (HANSO 2.2) [6, 26], the unconstrained version
of the infeasible proximal bundle method (IPBM) [16] and a solver for local nonlinear
optimization problems, which is an implementation of Shor’s algorithm (SolvOpt)
[34]. All codes are written in MATLAB R2016a and run on a PC Intel Core I5 with
CPU 2.5 GHz and 4GB of RAM. For HANSO 2.2, IPBM and SolvOpt, the parame-
ters are set to the default values suggested by the respective codes and the stopping
parameter is chosen tol := 10−8.We set the parameters of Algorithm 1 as tol := 10−8,
ε̄ := 0.1, με := 0.1, mL := 10−2, ω := 1.2, maxnull := 2n and m := n. The prox-
imal parameter is considered one in all iterations, i.e., μk

	 := 1 for all k and 	. The
quadratic programming solver is quadprog.m, which is available in the MATLAB
optimization toolbox. In our results, to select ηk	 we use the relation (4) with equality,

i.e., ηk	 = max{max j∈Lk
	\{0}

−2ekj
‖xkj−xk‖2 , ω} + ω.

123

Numerical Algorithms (2023) 94:765–787 779

5.2 Comparison with different solvers in the exact case

To evaluate the performance of GSPB and compare it with the aforementioned algo-
rithms, some nonsmooth test problems of [4] are used; for more details see Table 1.
We use the notation n for the number of variables and fopt for the optimal value. The
number of function and subgradient (gradient) evaluations are considered as measures
of efficiency.

First, we applied algorithms for solving problems P1–P20 with the given starting
points in [4]. Results are presented in Table 2. The numerical experiments demonstrate
that GSPB has an acceptable behavior for these problems as comparing with the
previously mentioned algorithms; for more details see Table 2. We use the following
notations: ffinal is the value of the objective function at the final point and n f , nξ and
n∇ f are the number of function evaluations, subgradient evaluations, and gradient
evaluations, respectively.

In the next step, for each problem we use 20 randomly generated starting points
(by applying rand.m and randn.m functions in MATLAB) and the starting points
are the same for all algorithms. To compare the performance of the algorithms, we
apply an indicator: nb — the number of successful runs considering the best known
solution. We say that an algorithm finds a solution to a problem with tolerance ε > 0

Table 1 Description of test problems

No. Name Problem Problem type n fopt

P1 CB2 Nonsmooth convex 2 1.9522245

P2 CB3 Nonsmooth convex 2 2

P3 DEM Nonsmooth convex 2 -3

P4 QL Nonsmooth convex 2 7.2

P5 LQ Nonsmooth convex 2 −√
2

P6 Miffilin 1 Nonsmooth convex 2 -1

P7 Wolfe Nonsmooth convex 2 -8

P8 Rosen-Suzuki Nonsmooth convex 4 -44

P9 Davidon Nonsmooth convex 4 115.70644

P10 Shor Nonsmooth convex 5 22.600162

P11 Crescent Nonsmooth nonconvex 2 0

P12 Miffilin 2 Nonsmooth nonconvex 2 -1

P13 WF Nonsmooth nonconvex 2 0

P14 Spiral Nonsmooth nonconvex 2 0

P15 EVD 52 Nonsmooth nonconvex 3 3.5997193

P16 PBC 3 Nonsmooth nonconvex 3 0.42021427 × 10−2

P17 Brad Nonsmooth nonconvex 3 0.50816327 × 10−1

P18 Kowalik-Osborne Nonsmooth nonconvex 4 0.80843684 × 10−2

P19 OET 5 Nonsmooth nonconvex 4 0.26359735 × 10−2

P20 OET 6 Nonsmooth nonconvex 4 0.20160753 × 10−2

123

780 Numerical Algorithms (2023) 94:765–787

Table 2 Results of P1–P20 with given starting points

GSPB HANSO 2.2 IPBM SolvOpt
No. n f n∇ f ffinal n f , n∇ f ffinal n f , nξ ffinal n f nξ ffinal

P1 63 83 1.9522 128 1.9522 48 1.9522 99 32 1.9522

P1 67 89 1.9522 108 1.9522 47 1.9522 92 31 1.9522

P2 7 11 2 192 2.0000 20 2 81 30 2.0000

P3 104 136 -3.0000 92 -2.9998 36 -3.0000 250 92 -3.0000

P4 45 65 7.2000 131 7.2000 24 7.2000 85 27 7.2000

P5 28 50 -1.4142 156 -1.4142 17 -1.4142 59 14 -1.4142

P6 126 148 -1.0000 32 4.0000 128 -1.0000 55 34 -0.8286

P7 238 274 -8.0000 96 -8.0000 69 -8.0000 120 34 -8

P8 738 839 -44.0000 140 -44.0000 96 -44.0000 147 55 -44.0000

P9 369 481 115.7064 356 115.7064 69 115.7064 211 75 115.7064

P10 616 756 22.6002 410 22.6002 92 22.6002 118 46 22.6002

P11 38 66 0.0000 175 0.0000 15 0.0002 261 50 0.0000

P12 60 88 -1.0000 247 -1.0000 28 -1.0000 85 27 -1.0000

P13 88 120 0.0000 91 0.0000 73 0.0000 172 33 0.0000

P14 475 526 0.1152 96 0.0774 615 0.0769 291 128 0.0743

P15 92 125 3.5997 131 3.5997 53 3.5997 144 46 3.5997

P16 319 505 0.0042 254 0.0042 90 0.0042 263 73 0.0042

P17 304 487 0.0508 468 0.0508 87 0.0508 118 37 0.0508

P18 47 69 0.0081 860 0.0081 615 0.0081 248 79 0.0081

P19 2039 2979 0.0027 2622 0.0029 61 0.0074 2445 662 0.0027

P20 1999 2640 0.0020 2701 0.0020 678 0.0020 938 258 0.0020

if | ffinal − fopt|/(1 + | fopt|) ≤ ε. In our experiment ε = 5 × 10−4. Results of this
part are presented in Table 3. We use the following notations: navef , naveξ and nave∇ f
are the average number of function evaluations, subgradient evaluations and gradient
evaluations, respectively. These results show that GSPB, SolvOpt, IPBM and HANSO
2.2 can solve 388, 373, 368 and 344 problems, respectively.

In order to provide a better picture of the algorithms, we analyze the results using
performance profiles [9]. We compare the performance of the solvers both in terms
of the number of function evaluations and in terms of the number of subgradient
(gradient) evaluations.

In the performance profiles, the value of ρs(τ) at τ = 0 determines the ratio of test
problems for which the solver s is the best, i.e., the solver s uses the least number of
function evaluations or the least number of subgradient (gradient) evaluations. Note
that the value of ρs(τ) on the rightmost abscissa shows the ratio of test problems that
the solver s can solve, that is, the robustness of the solver s. In addition, the higher is
a particular curve, the better is the corresponding solver.

It is clear from the performance profile figures that the GSPB method is more
efficient and accurate with given and randomly starting points than the HANSO 2.2.
with the number of function evaluations (see parts (a) of Figs. 1 and 3) and the number

123

Numerical Algorithms (2023) 94:765–787 781

Table 3 Average results of P1–P20 with 20 randomly starting points

GSPB HANSO 2.2 IPBM SolvOpt
No. nb navef nave∇ f nb navef , nave∇ f nb navef , naveξ nb navef naveξ

P1 20 64.60 87.10 20 109.50 20 50.40 20 90.25 29.55

P2 20 90.05 114.60 20 193.95 20 33.80 20 94.80 31.55

P3 20 83.20 114.40 13 115.05 20 35.55 20 187.90 54.20

P4 20 32.25 48.25 20 120.90 20 40.05 20 105.30 32.65

P5 20 25.20 42.20 20 170.65 20 29.60 20 91.00 29.55

P6 19 125.00 150.35 14 131.15 18 167.20 8 183.05 82.60

P7 20 306.65 349.60 20 182.10 20 70.65 20 95.65 29.25

P8 20 817.55 924.45 20 257.05 20 185.00 20 136.55 46.50

P9 20 428.80 542.00 20 459.30 20 82.05 20 256.60 84.00

P10 20 695.05 865.35 20 422.15 20 112.75 20 155.45 54.95

P11 15 85.10 109.30 20 169.25 10 56.95 20 214.95 41.90

P12 20 46.20 70.50 20 274.25 20 27.90 20 90.00 27.00

P13 16 81.30 105.65 17 69.70 10 39.25 20 120.30 26.25

P14 18 64.50 117.15 3 35.15 18 116.70 16 434.95 123.68

P15 20 110.30 152.90 20 244.85 20 55.70 20 124.25 40.4.00

P16 20 205.05 337.75 19 333.30 19 135.75 20 182.90 55.85

P17 20 194.30 254.25 13 585.95 19 155.65 18 188.60 50.70

P18 20 770.90 947.20 15 881.50 18 103.70 16 198.70 63.15

P19 20 329.65 3975.45 20 728.50 20 433.60 20 2086.30 567.60

P20 20 4649.90 6049.10 10 1793.30 16 617.40 15 903.00 285.40

Sum 388 344 368 373

of gradient evaluations (see parts (a) of Figs. 2 and 4). Since it is superior to HANSO
2.2 in all figures.

By comparing the performance profiles of GSPBwith IPBM, we deduce that IPBM
is better than GSPB for the most of the test problems with given and randomly starting
points. On the other hand, in all cases IPBM can solve approximately 90% of problems
while GSPB can solve 95% of problems; see parts (b) of Figs. 1, 2, 3 and 4. This means
that GSPB is more robust than IPBM.

Due to parts (c) of Figs. 1 and 3, we get GSPB is more accurate and efficient than
SolvOpt for both given and randomly starting points with the number of function
evaluations. But if we consider the number of subgradient (gradient) evaluations as a
measure of efficiency, we deduce that SolvOpt is better solver than GSPB; see parts
(c) of Figs. 2 and 4.

5.3 Impact of noise on solution accuracy

In order to study the impact of the inexact information on theGSPBmethod, we use the
Ferrier polynomials as a collection of nonconvex test problems, which further used in

123

782 Numerical Algorithms (2023) 94:765–787

Fig. 1 Performance profile with the number of function evaluations, given starting points

Fig. 2 Performance profile with the number of subgradient (gradient) evaluations, given starting points

Fig. 3 Performance profile with the number of function evaluations, random starting points

Fig. 4 Performance profile with the number of subgradient (gradient) evaluations, random starting points

123

Numerical Algorithms (2023) 94:765–787 783

[11, 12]. For each i = 1, 2, 3, . . . , n, the function hi : Rn → R is defined as hi (x) =
(i x2i −2xi)+∑n

j=1 x j . There are five classes of test functions defined by hi (see [10])

as f1(x) := ∑n
i=1 |hi (x)|, f2(x) := ∑n

i=1(hi (x))
2, f3(x) := maxi=1,2,...,n |hi (x)|,

f4(x) := ∑n
i=1 |hi (x)| + 1

2‖x‖2 and f5(x) := ∑n
i=1 |hi (x)| + 1

2‖x‖. It has been
proved in [11] that these test functions are nonconvex and globally lower − C1 in R2

and they are nonsmooth except f2. These properties carry to higher dimensions as
well. We consider the following test problems

min
x∈Rn

fk(x),

for k = 1, 2, 3, 4, 5 and n = 2, 3, 4, . . . , 20 which are called Problem 1–Problem 5.
We set x1 = [1, 1

2 ,
1
3 , . . . ,

1
n] as a starting point.

To introduce perturbations to the available information, at each evaluation we add
randomly generated elements to the exact function values and gradient values, with
norm less than or equal to δ̄ and ε̄, respectively. We test five different forms of the
noise:

– N0 : No noise, ε̄ = ε j = 0 and δ̄ = δ j = 0 for all j ∈ Lk
	 .

– N f ,ξ
c : Constant noise, ε̄ = ε j = 0.01 and δ̄ = δ j = 0.01 for all j ∈ Lk

	 .

– N f ,ξ
v : Changing noise, ε̄ = 0.01, ε j = min{0.01, ‖x j‖

100 }, δ̄ = 0.01 and δ j =
min{0.01, ‖x j‖

100 } for all j ∈ Lk
	 .

– N ξ
c : Constant gradient noise, ε̄ = ε j = 0 and δ̄ = δ j = 0.01 for all j ∈ Lk

	 .

– N ξ
v : Changing gradient noise, ε̄ = ε j = 0 and δ j = min{0.01, ‖x j‖

100 } for all
j ∈ Lk

	 .

The first noise form, N0, is used as a benchmark for comparison. The noise form
N f ,ξ
c is representative of inexact function and gradient values with a constant noise.

The third, N f ,ξ
v , is representative of inexact values with a changing noise. The fourth

and fifth, N ξ
c and N ξ

v , represent the exact function values with inexact gradient values.
In order to preserve the random nature, for noise forms N f ,ξ

c , N f ,ξ
v , N ξ

c and N ξ
v , we

repeat each test 20 times.
For all functions the global minimum is zero. We use the following formula

Accuracy = | log10(f kj)| to check the accuracy of GSPB with different noises. In
Figs. 5 and 6, we plot the accuracy of the achieved results, when running the GSPB
algorithmuntil satisfaction of its stopping test. For ease the interpretation of the graphs,
we also report the results with no noise. We used colors blue, red, magenta, green and
black for Problem 1–Problem 5 respectively and we employ these colors for all dimen-
sions n = 2, 3, . . . , 20. Figure 5 reports the results for constant noises (for N0, N

ξ
c

and N f ,ξ
c) and Fig. 6 states the results for changing noises (for N0, N

ξ
v and N f ,ξ

v). We
see that when function values are exact the accuracy is better than the situations where
both the function and gradients values are inexact. In the most cases the accuracy with
a changing noise is better than the accuracy with a constant noise.

123

784 Numerical Algorithms (2023) 94:765–787

Fig. 5 Accuracy at termination for noise forms N0, N
ξ
c and N f ,ξ

c (blue, red, magenta, green and black are
used for Problem 1–Problem 5, respectively)

6 Conclusions

Wehaveproposed and analyzed anewalgorithm for unconstrainednonsmoothnoncon-
vex optimization problems. This method combines the advantages of the well-known
GS and proximal bundle methods. It is a descent method, easy to implement and
supports both exact and inexact information. At each iteration, the objective function
is approximated by a piecewise linearworking model M	(y, xk) based on the bundle

Fig. 6 Accuracy at termination for noise forms N0, N
ξ
v and N f ,ξ

v (blue, red, magenta, green and black are
used for Problem 1–Problem 5, respectively)

123

Numerical Algorithms (2023) 94:765–787 785

methods. Then the proximal term is added to the model M	(y, xk) to guarantee the
existence and uniqueness of the minimum point of the subproblem (6) and also to keep
the approximation local enough. The algorithm is globally convergent to a stationary
point with exact information and to an approximately stationary point with inexact
information. On the other hand, we need the proximal parameter μk

	 to be positive
and the sequence {μk

	} be bounded above and as a sequence of 	, it must be nonde-
creasing. Therefore, it can be considered as a fixed sequence, i.e., μk

	 = c > 0 for all
	 and k. The value of c can be considered arbitrarily small without any affect on the
convergence of algorithm (since all required assumptions are satisfied).

The newmethod was tested using different nonsmooth unconstrained test problems
and compared with several other nonsmooth solvers. Furthermore, in order to better
analyze the numerical results we use the performance profile. The obtained results
demonstrate that the proposed method is efficient and robust for solving nonsmooth
nonconvex optimization problems, although in some cases it may require a large num-
ber of gradient evaluations; where it is usual in gradient sampling based methods.
As mentioned in our numerical experiments, the proximal parameter is considered
one in all iterations, i.e., μk

	 = 1 for all k and 	. Although the value of this parame-
ter does not affect the convergence analysis, it is effective in the performance of the
algorithm and its execution speed (numerical results). Investigating the effect of the
proximal parameter value on the performance and speed of the algorithm is an inter-
esting topic that is beyond the scope of this research. This can be considered as a topic
for future research. Furthermore, we are interested in extending the proposed algo-
rithm to solve nonsmooth nonconvex constrained optimization problems with exact
and inexact information in future.

Acknowledgements The authors would like to thank anonymous referees for their comments that helped
to improve the quality of the paper.

Author Contributions N.HoseiniMonjezi andS.Nobakhtian contributed equally to drafting thismanuscript
(material preparation and data collection, design, analysis and implementation of the algorithm, writing and
editing the first draft of the manuscript). Both authors read and approved the final manuscript.

Funding The research was supported by a grant from IPM.

Data Availability Data availability not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations

Ethics approval and consent to participate Not applicable

Consent for publication Not applicable

Human and animal ethics Not applicable

Competing interests The authors declare no competing interests.

123

786 Numerical Algorithms (2023) 94:765–787

References

1. Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math. Sci., 115,
2567–2609 (2003)

2. Bagirov, A.M., Hoseini Monjezi, N., Taheri, S.: An augmented subgradient method for minimizing
nonsmooth DC functions. Comput. Optim. Appl. 80, 411–438 (2021)

3. Bagirov, A.M., Jin, L., Karmitsa, N., Nuaimat, A.Al., Sultanova N.: Subgradient method for nonconvex
nonsmooth optimization. J. Optim. Theory Appl., 157, 416–435 (2013)

4. Bagirov, A.M., Karmitsa, N.,Mäkelä,M.M.: Introduction toNonsmoothOptimization: theory, practice
and software. Springer (2014)

5. Bagirov, A.M., Taheri, S., Joki, K., Karmitsa, N., Mäkelä, M.M.: Aggregate subgradient method for
nonsmooth DC optimization. Optim. Lett., 15, 83–96 (2021)

6. Burke, J., Lewis, A., Overton, M.: A robust gradient sampling algorithm for nonsmooth, nonconvex
optimization. SIAM J. Optim., 15, 571–779 (2005)

7. Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth
constrained optimization. SIAM J. Optim., 22(2), 474–500 (2012)

8. de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified
analysis for inexact oracles. Math. Program., 148(1–2), 241–277 (2014)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram., 91(2), 201–213 (2002)

10. Ferrier, C.: Bornes Duales de Problémes d’Optimisation Polynomiaux, Ph.D. thesis, Laboratoire
Approximation et Optimisation, Université Paul Sabatier, France (1997)

11. Hare,W., Sagastizábal, C.: A redistributed proximal bundlemethod for nonconvex optimization. SIAM
J. Optim., 20, 2442–2473 (2010)

12. Hare,W., Sagastizábal,C., Solodov,M.:Aproximal bundlemethod for nonsmooth nonconvex functions
with inexact information. Comput. Optim. Appl., 63, 1–28 (2016)

13. Hintermüller, M.: A proximal bundle method based on approximate subgradients. Comput. Optim.
Appl., 20, 245–266 (2001)

14. Hoseini, N., Nobakhtian, S.: A new trust region method for nonsmooth nonconvex optimization. Opti-
mization, 67, 1265–1286 (2018)

15. Hoseini Monjezi, N., Nobakhtian, S.: A filter proximal bundle method for nonsmooth nonconvex
constrained optimization. J. Glob. Opti., 79, 1–37 (2021)

16. Hoseini Monjezi, N., Nobakhtian, S.: A new infeasible proximal bundle algorithm for nonsmooth
nonconvex constrained optimization. Comput. Optim. Appl., 74(2), 443–480 (2019)

17. Hoseini Monjezi, N., Nobakhtian, S.: A proximal bundle-based algorithm for nonsmooth constrained
multiobjective optimization problems with inexact data. Numer. Algor., 89, 637–674 (2022)

18. Hoseini Monjezi, N., Nobakhtian, S.: An inexact multiple proximal bundle algorithm for nonsmooth
nonconvex multiobjective optimization problems. Ann. Oper. Res., 311, 1123–1154 (2022)

19. Hoseini Monjezi, N., Nobakhtian, S.: Convergence of the proximal bundle algorithm for nonsmooth
nonconvex optimization problems. Optim. Lett., 16, 1495–1511 (2022)

20. Hoseini Monjezi, N., Nobakhtian, S. Pouryayevali, M.R.: Proximal bundle algorithm for nonsmooth
optimization on riemannian manifolds, IMA J. Numer. Anal., 43(1), 293–325 (2023)

21. Kiwiel, K.C.: Approximations in proximal bundle methods and decomposition of convex programs. J.
Optim. Theory Appl., 84, 529–548 (1995)

22. Kiwiel, K.C.: Convergence of approximate and incremental subgradient methods for convex optimiza-
tion. SIAM. J. Optim., 14(3), 807–840 (2004)

23. Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization.
SIAM J. Optim., 18, 379–388 (2007)

24. Kiwiel, K.C.: Efficiency of Proximal Bundle Methods. J. Optim. Theory Appl., 104, 589–603 (2000)
25. Lemaréchal, C.: Bundlemethods in nonsmooth optimization, in: NonsmoothOptimization (Laxenburg,

1977), Lemaréchal C., Mifflin, R. (eds.), IIASA Proc. Ser. 3, Pergamon Press, Oxford, 79–102 (1978)
26. Lewis, A.S., Overton, M.L.: Nonsmooth Optimization via Quasi-Newton Methods. Math. Program.,

141(1–2), 135–163 (2013)
27. Lv, J., Pang, LP., Xu, N., Xiao, Z.H.: An infeasible bundle method for nonconvex constrained opti-

mization with application to semi-infinite programming problems. Numer. Algor., 80, 397–427 (2019)
28. Mäkelä,M.M.,Neittaanmäki, P.:NonsmoothOptimization:Analysis andAlgorithmswithApplications

to Optimal Control. World Scientific, Singapore (1992)

123

Numerical Algorithms (2023) 94:765–787 787

29. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program., 120(1), 221–259
(2009)

30. Noll, D.: Bundle method for non-convex minimization with inexact subgradients and function val-
ues. In: Computational and Analytical Mathematics, vol. 50, pp. 555–592. Springer Proceedings in
Mathematics (2013)

31. Noll, D.: Cutting plane oracles to minimize non-smooth non-convex functions. Set-Valued Var. Anal.,
18, 531–568 (2010)

32. Pang, LP., Wu, Q.: A feasible proximal bundle algorithm with convexification for nonsmooth, noncon-
vex semi-infinite programming. Numer. Algor., 90, 387–422 (2022)

33. Qi, L., Sun, J.: A trust region algorithm for minimization of locally Lipschitzian functions. Math.
Program., 66, 25–43 (1994)

34. Shor, N.Z.: Minimization methods for non-differentiable functions. Springer (1985)
35. Solodov, M.V., Zavriev, S.K.: Error stability properties of generalized gradient-type algorithms. J.

Optim. Theory Appl., 98, 663–680 (1998)
36. Tang, C., Liu, S., Jian, J., Li. J.: A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained

optimization. Numer. Algor., 65, 1–22 (2014)
37. Yang, Y., Pang, L., Ma, X., Shen, J.: Constrained Nonconvex Nonsmooth Optimization via Proximal

Bundle Method. J. Optim. Theory Appl., 163, 900–925 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information
	Abstract
	1 Introduction
	2 Preliminaries
	3 The gradient sampling proximal bundle algorithm
	4 Global convergence
	5 Numerical experiments
	5.1 Solvers and their implementations
	5.2 Comparison with different solvers in the exact case
	5.3 Impact of noise on solution accuracy

	6 Conclusions
	Acknowledgements
	References

