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Abstract
Matrix completion is usually formulated as a low-rank matrix approximation prob-
lem. Several methods have been proposed to solve this problem, e.g., truncated
nuclear norm regularization (TNNR) which performs well in recovery accuracy and
convergence speed, and hybrid truncated norm regularization (HTNR) method which
has better stability compared to TNNR. In this paper, a modified hybrid truncated
norm regularization method, named WHTNR, is proposed to accelerate the con-
vergence of the HTNR method. The proposed WHTNR method can preferentially
restore rows with fewer missing elements in the matrix by assigning appropriate
weights to the first r singular values. The presented experiments show empirical evi-
dence on significant improvements of the proposed method over the closest four
methods, both in convergence speed or in accuracy, it is robust to the parameter
truncate singular values r.

Keywords Matrix completion Low rank Truncated norm Weights

1 Introduction

Matrix completion [1] aims to recover an unknown low-rank or approximately low-
rank matrix from the observed missing matrix. It is widely used in computer vision
[2–4], recommendation system [5–7], machine learning [8], etc. It is well-known that
the vast majority of visual data is of low-rank or approximately low-rank structure
[9]. Wright et al. [10] transferred the matrix completion problem into a rank mini-
mization model while retaining the low-rank or approximately low-rank structure of
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the matrix. Specifically, given the incomplete data matrix , the general
completion model is rewritten as follows

min rank

s.t.
(1)

where rank denotes the rank of the matrix , and is the set of locations in
matrix , corresponding to the known entries.

Unfortunately, because the rank function is discontinuous and non-convex, solving
the rank minimization model (1) is NP-hard [11], which greatly limits the practical
application of this model. M. Fazel et al. [12] firstly suggest that the nuclear norm is
a good substitute for the matrix rank function. It showed that the nuclear norm is the
most compact convex lower bound of the rank function [12]. The rank of matrix is
equal to the number of its non-zero singular values, and the nuclear norm is the sum
of singular values. The relationship between rank function and the nuclear norm is
similar to the relationship between 1 and 0 norm.

Inexact augmented Lagrangian multiplier (IALM) method [13] and accelerated
proximal gradient method [14], to name a few, have been developed in recent years
to solve this model, however with unsatisfactory performance in practical applica-
tions. The main reason is that the nuclear norm is not the best substitute for the
rank function when the matrix does not have a strict low-rank structure. In the rank
function, all non-zero singular values should have an equal contribution. However,
in the nuclear norm, the contributions of singular values are different according to
their magnitudes. The singular value threshold (SVT) method [15] is widely used for
solving the nuclear norm minimization model. But the SVT method needs to make a
large number of iterations to converge. Hence, the nuclear norm may not be the best
substitution of the rank function in the practical application.

To obtain a better approximation of the rank function, Zhang et al. [16] firstly
proposed the truncated nuclear norm considered as an alternative to the rank func-
tion, and designed an effective two-step iteration algorithm. Subsequently, to solve
the convex subproblem in the second step, three efficient iterative procedures were
introduced by Hu et al. [17], called TNNR-APGL, TNNR-ADMM, and TNNR-
ADMMAP. The TNNRmethod has significantly improved convergence accuracy. To
improve the rate of convergence and robustness of the TNNR method, a truncated
nuclear norm regularization method based on weighted residual error was proposed
by Liu et al. [18], called the TNNR-WRE and ETNNR-WRE methods, respectively.
Hereafter, the double weighted truncated nuclear norm regularization was proposed
by Xue et al. [19], called DW-TNNR. Then, quaternion truncated nuclear norm for
LRQMC was proposed by Yang et al. [20], called QTNN. However, as a variant
of the nuclear norm, its stability problem still faces challenges. The stability of the
matrix completion model aims to keep the output matrix almost unchanged when the
elements of the observation matrix are replaced.

To improve the stability of the model, Cai et al. [15] proposed a model that com-
bines the nuclear norm and the Frobenius norm, with which they control the low
rank and stability of the model, respectively. The Frobenius norm is the arithmetic
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root of the sum of squares of its singular values and the truncated nuclear norm dis-
cards large singular values. Although the Frobenius norm can improve stability, if
it is directly integrated into the TNN model, it may not work well. Therefore, it may
be inappropriate to directly combine the Frobenius norm with the truncated nuclear
norm improving the model stability. To overcome the above shortcomings, Ye et al.
[21] combined the truncated nuclear norm with truncated Frobenius norm, proposed
a hybrid truncated norm regularization (HTNR) method, and improved the recovery
accuracy and the model stability simultaneously. However the convergence speed of
the HTNR method is not satisfying. The HTNR designs a two-step iterative scheme
that needs to recover all the missing entries of an incomplete matrix in each step. As
the variant method of truncated nuclear norm, the robustness of is very important
for HTN, therefore the choice of will affect the convergence accuracy.

As a general cognition, the matrix completion task gets easier after recovering
some rows with more observed entries. With this idea, we propose a weighted hybrid
truncated norm regularization method (WHTNR), aiming to improve the convergence
speed. At the same time, the WHTNR algorithm has better convergence accuracy and
it is very robust to the parameter .

In theWHTNRmethod, different weights are assigned according to the proportion
of missing elements to the rows, so that the rows with fewer missing elements will
restore firstly hoping to accelerate the matrix recovery process. The experimental
results show that the WHTNR not only has a better convergence speed, but also
has better accuracy compared with SVT, IALM, TNNR, HTNR, and TNNR-WRE
methods (the closest four methods).

The rest of the paper is as follows. In Section 2, some closely related works are
introduced. In Section 3, we introduce the proposed WHTNR model and discuss its
convergence. In Section 4, experimental results on real images are presented.

2 Related work

Suppose the singular value decomposition (SVD) of the matrix is as
follows

diag 1 min

where [ 1 2 ] and [ 1 2 ] are orthog-
onal matrices, is the th singular value of , and is assumpted to be sorted in
descending order, 1 2 0.

As mentioned in the introduction, it is intractable to directly solve the optimiza-
tion model (1). Conventional approaches use an approximate method via convex
relaxation. Specifically, the rank minimization model (1) could be rewritten by
approximating the rank function with nuclear norm [12] as follows

min

s.t.
(2)
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where min
1 denotes the nuclear norm of the matrix , deno-

tes the orthogonal projection operator onto the span of matrices vanishing out-
side of . For any matrix X, we have

if

0 otherwise
. (3)

The singular value thresholding (SVT) method for matrix completion proposed by
Cai et al. [15] combines the nuclear norm and the Frobenius norm, with which they
control the low rank and stability of the model, respectively. The SVT model [15] is
as follows

min 2

s.t.
(4)

where min
1

2 denotes the Frobenius norm of the matrix .
Since the nuclear norm is the sum of singular values, a few largest singular values

have an important contribution to the nuclear norm. To obtain a better approximation
to the rank function, Zhang et al. proposed a truncated nuclear norm [16]. For any
matrix , the truncated nuclear norm minimization model (TNN) is defined
as follows

min

s.t. .
(5)

And the inequality holds [16] as follows

max Tr
1

. (6)

Thus, the optimization model (5) can be rewritten as follows:

min max Tr

s.t. .
(7)

However, it is inappropriate to directly combine the Frobenius norm with the TNN
term to improve the stability of the model. Later, Ye et al. [21] proposed a hybrid
truncated norm model instead of integrating the Frobenius norm into the TNN term.
This method improves recovery accuracy and enhances stability. Experimental results
demonstrate the effectiveness of the HTNR model. For any matrix , the
truncated Frobenius norm (TFN) is defined as follows

min

1

2 . (8)
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So, the hybrid truncated norm minimization model (HTNR) is as follows

min max Tr 2 max 2

s.t. .
(9)

The main iterative steps of the HTNR algorithm are presented in Algorithm 1.

Algorithm 1 HTNR algorithm [21].

3 WHTNRmethod for matrix completion

In this section, we propose a weighted hybrid truncated norm regularization method
(WHTNR) which is dedicated to improving the iteration speed of the HTNR model
while ensuring recovery accuracy. Aiming to improve the matrix restoration speed,
the rows with fewer missing elements will be recovered first.

3.1 TheWHTNRmethod

In line with the trace inequality [22], if min , then we have

Tr (10)
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where . Consequently, the truncated nuclear norm is rewritten as
follows

max Tr . (11)

On the basis of (11), the model (9) is presented as follows

min max Tr max Tr

2 max 2

s.t. .

(12)

In order to restore the rows with fewer missing elements in the matrix preferen-
tially, Liu et al. [18] assigned different weights to each row of the residual matrix

. Inspired by this, the terms of Tr in the model (12) are weighted
to restore the rows with few missing elements first. The optimization model (12) is
changed as follows

min Tr Tr 2 2

s. t.
(13)

where , , 1 , 1 . and are the
left and right orthogonal matrices in the SVD decomposition of , respectively, and
is the number of subtracted singular values.
In addition, the weight matrix is defined as follows

diag 1 . (14)

where 0 1 , if 1 , and is the number of
observed entries in the ith row of . Any matrix with rank can be expressed as the
sum of r matrices with rank 1, and singular values measure the weight of these matri-
ces with rank 1 to the original matrix. In image processing, small singular values can
be considered to be caused by missing elements. For the nuclear norm minimization
model of the matrix completion algorithm, missing elements can have a large impact
on the larger first few singular values of the matrix. The WHTNR algorithm, which
is one of the variants of truncation of the nuclear norm, completely truncates the first
singular values, which may lead to poor robustness to the parameter .
The optimization function of the model (13) is

Tr Tr 2 2

1

Tr
1

Tr
1

2

1

Tr
1

Tr
1

2 .

(15)

624 Numerical Algorithms (2023) 94:619–641



The weight of each singular value should be greater than 0. Based on the
above analysis, for a given , we have Tr 0, let satisfy

1 , if . (16)

That is, the rows with more missing elements are assigned smaller weights.

3.2 SolvingWHTNRmodel

According to model (13), we can update 1 by solving the next convex optimiza-
tion model:

min Tr Tr 2 2

s. t. .
(17)

For solving the model (13), an auxiliary variable is added to relax the
constraint, and the above model is equivalent to

min Tr Tr 2 2

s. t. .
(18)

To preferentially recover the rows wit h fewer missing elements in the matrix, the
Lagrange function as follows

Tr Tr 2 2

2
2 Tr . (19)

We solve the Lagrange function (19) by alternating direction iterative method.
Firstly, fix and to update 1,

1 argmin

argmin Tr
2

1 2

1 1
. (20)

Based on the constraints in model (18), the value of the recovery matrix is
consistent with the observed value. We have

1 1 . (21)

where

0 if
otherwise.
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Secondly, fix 1 and to update 1,

1 argmin 1

argmin Tr 2 2

2
1

1 2

. (22)

Then, combining (20) and (22), we obtain the following iterative scheme

1 (23)

where 2
1
, 1 . Like (20),

1 1 (24)

Updating 1 with fixed 1 and 1 is performed as follows

1 1 1 . (25)

By (23), the update expression about 1 does not contain or 1, so there
is no need to calculate 1 in the algorithm. The parameter is updated by

1

where 0 0 1 and 1 2 .
In conclusion, the main steps of the WHTNR algorithm are described in

Algorithm 2.

Algorithm 2 WHTNR algorithm.
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3.3 Convergence analysis

In this subsection, the convergence of the proposed method is discussed. For
convenience, the optimal value of (18) is depicted as follows

inf Tr Tr 2 2

(26)

the unaugmented lagrangian function (19) is also written by

Tr Tr 2 2

2
. (27)

In order to further illustrate the convergence of WHTNR algorithm, the following
three lemmas are established, and the proofs are shown in the Appendices A, B and C.

Lemma 1 If is the optimal solution of the unaugmented Lagrangian
function (27), then the inequality holds as follows

1 1
2

1 1 (28)

2 1 1 1 1 1 1 . (29)

where 1 1 1. In fact, 1 1, which implies that is
also the optimal solution to the model (18).

Lemma 2 If is the optimal solution of the unaugmented Lagrangian
function (27), then decreases in each iteration and satisfies the relationship as
follows

1 1
2

1
2 . (30)

where 1 2
1

2 .

In terms of the above three lemmas, we have the following convergence theorem.

Theorem 1 If is the optimal solution of the unaugmented Lagrangian
function (27), the iterative solution converges to the optimal solution

if . In other words, as

On the basis of Theorem 1, the convergence of the WHTNR method is explained
by the approach of the objective function to the optimal value.

4 Experiments

In this section, extensive experiments are performed on real data to verify the pro-
posed convergence accuracy, speed, and stability of the WHTNR algorithm. All
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experiments on Intel(R), Core(TM) i7- MATLAB R2016b running on CPU@2.90
GHz, 32GB main memory. The proposed algorithm WHTNR will be compared with
five related algorithms, including (1) SVT [15]; (2) IALM [13]; (3) TNNR-admmap
[17]; (4) TNNR-WRE [18]; (5) HTNR [21]; (6) WHTNR (The proposed method).

There are several parameters (weight matrix , coefficients of the Frobenius norm
, coefficients of lagrangian functions , and the number of truncated singular values
in WHTNR algorithm. is given by the formula (33). In experiments, an optimal

value of was chosen between 1 and 20.
The maximum number of iterations forWHTNR is 100, and the maximum number

of iterations for other comparison algorithms is 100. The stopping condition of the
algorithm is

1

1
0. (31)

The stop error is set to 0.0001.
In these experiments, the peak signal to noise ratio (PSNR) is used as evaluation

metrics, for which is defined as follows

PSNR 10 log10
2552

MSE
(32)

where Erec rec c F, SE Erec 2
R Erec2G Erec2B, MSE SE

SE
R G B

, is the number of missing elements, and R G B are the different
channels of the real image.

In addition, the stability of the proposed method is characterized by the coefficient
of variation of PSNR (CV) and the smaller the CV value, the more stable the result.
Except that, we use the running time (CPU time(s)) value under the same conditions
to evaluate the speed.

In this section, real images are used to verify the performance of the WHTNR
algorithm on matrix computation. In practical applications, real-world images some-
times suffer from noise which causes missing of image information to a certain
extent. Approximately, the WHTNR algorithm proposed above can effectively
restore the damaged images when the image satisfies the low rank or near low rank.
Therefore, in the experiments, the WHTNR method is evaluated below, and three
types of pixel occlusion are considered, including (1) random mask; (2) text mask;
and (3) block mask. The images used in this section are color images in JPEG format
with a dimension of 300 300 as shown in Fig. 1.

4.1 The effect of W onWHTNR

If diag 1 , then is defined as follows

2 1 2 (33)

where 1 is the number of rows of the matrix to be restored and is the
number of observed entries in the ith row. According to the (33), we have
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Fig. 1 The 14 real images used in image denoising experiments

if , that is to say, the row with more observed elements is assigned with a
smaller value of weight, according to (33). Clearly, 0 denotes that the -th row
has no element lost.

In Fig. 2(b)–(e) illustrate that rows with few missing elements are recovered first.
For clarification, Fig. 3(a) depicts the weights applied in Fig. 2. Rows with fewer
missing elements have lower weighted values, since they are commonly easier to be
restored than the others. Likewise, the bigger blocks require larger values of weights
to ensure accuracy. Therefore, the entire process is accelerated by the sequential
recovery fashion.

To test the robustness of the WHTNR algorithm when parameter varying, we set
increasing from 0.1 to 3. For different miss rates, if is too large, the PSNR will

become worse. This is because controls the weight range in the row dimension,
which affect the recovery of WHTNR. So we choose that 1.2 for our method
and apply to subsequent experiments. It shows PSNR is relatively stable when 2,
which indicates that WHTNR performs well in robustness when 2 (Fig. 4).

4.2 Convergence of WHTNR

Figure 5 shows the PSNR curve of the first 70 iterations under random occlusion with
different missing rates for Fig. 1(a). It can be seen from Fig. 5 that the PSNR value
gradually increases in the first 40 iterations, and becomes stable after 40 iterations,
which verifies the convergence of the WHTNR algorithm experimentally.

Fig. 2 The optimization process of the WHTNR performed on the image in Fig. 1(k) with the missing
diamond block. (a) original image; (b) the incomplete image; (c) the 20th step; (d) the 30th step; (e) the
recovered image
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Fig. 3 Weights corresponding to four missing blocks on the image in Fig. 1(a)

4.3 Robustness to r of WHTNR

We design an experiment on Fig. 1(a) to verify that the number of truncated singular
values is robust of WHTNR. In Fig. 6, a line graph of PSNR values under differ-
ent values is shown and compared with TNNR-admmap, TNNR-WRE, and HTNR
methods. As can be seen from Fig. 6, when parameter varying, WHTNR outper-
forms other methods in terms of robustness, because WHTNR does not completely
truncate the first singular values, but assigns weights (similar to ETNNR-WRE
algorithm [18]), which can optimize the convergence accuracy based on the nuclear
norm.
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Fig. 4 The effect of for W on WHTNR on the image in Fig. 1(a)
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Fig. 5 The convergence analysis on WHTNR on the image in Fig. 1(a)

4.3.1 Randommask

Random noise refers to missing information randomly distributed in the image,
which is a relatively simple matrix computation problem. In the experiment, we
mask 50%, 60%, 70% elements randomly in the 14 test images in Fig. 1 and then
use SVT, IALM, TNNR-admmap, TNNR-WRE, HTNR and the WHTNR algorithm
proposed in this paper for image restoration and compare their performance. By
experience, we set the following settings for the parameters respectively, 1.2,

1.15, 0.001, 1.05 and 0.0001. The WHTNR algorithm and the
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Fig. 6 The comparison of robustness to by SVT, IALM, TNNR-admmap, TNNR-WRE, HTNR and
WHTNR on the image in Fig. 1(a)
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Table 1 Observed ratio 0.5, PSNR of recovery images of the images with random distributed missing
entries, bold represents the best performance

Images SVT IALM TNNR-admmap TNNR-WRE HTNR WHTNR

1 28.1121 29.8072 30.1705 29.9151 29.0670 30.6468

2 28.1099 31.2981 31.1682 31.4656 30.4860 32.1641

3 24.1461 24.4312 24.6214 24.6217 24.0376 24.9736

4 24.3065 25.2049 24.9564 25.3303 23.3163 26.0943

5 27.2948 28.5808 28.8148 28.6208 27.9988 28.9238

6 30.7216 35.2434 34.7264 35.2932 33.8347 36.4625

7 27.8719 29.6775 29.3014 29.9007 28.1114 30.2254

8 25.7343 26.5771 26.7358 26.9210 25.7986 27.0819

9 27.9036 30.9808 30.6419 31.0850 28.9421 31.5581

10 26.9251 28.7535 28.7090 28.9679 27.9070 29.4754

11 36.9962 42.8085 42.7938 42.8338 40.3267 42.9238

12 28.5392 30.7617 30.7667 30.8090 30.1978 31.6983

13 26.5124 28.3927 28.0051 28.3326 26.9470 28.9840

14 25.8188 26.8950 26.9456 27.1963 26.3043 27.6408

quantization results of the convergence accuracy of the other 5 algorithms are shown
in Table 1. The original image, the noise image and the restored image of different
methods are shown in Fig. 7. The CPU time for different methods is shown in Fig. 8.
As can be seen from Table 1, WHTNR has the best quality of the restored image,

Fig. 7 Recovered results of the image in Fig. 1(a) with randommask (missing ratio 0.5) by six methods:
(a) the original image, (b) the observed image, (c) SVT, (d) IALM, (e) TNNR-admmap, (f)TNNR-WRE,
(g) HTNR, (h) WHTNR
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Fig. 8 Observed ratio 0.5,
CPU time(s) of recovery images
of the images with random
distributed missing entries
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which is due to that WHTNR does not completely truncate the first singular val-
ues. As can be seen from Fig. 6, WHTNR is robust to parameter . As can be seen
from Table 4, WHTNR retains the advantages of the good stability of the HTNR
algorithm without affecting the convergence accuracy. As can be seen from Fig. 7,
WHTNR can basically restore the original appearance of the image compared with
other algorithms, and its image details are clearer. It can be seen from Fig. 8 that
the WHTNR algorithm greatly improves the convergence speed based on the HTNR
algorithm. Therefore, WHTNR has certain advantages in terms of convergence
accuracy, convergence speed, stability, and robustness of parameter (Tables 2, 3
and 4).

Table 2 Observed ratio 0.6, PSNR of recovery images of the images with random distributed missing
entries, bold represents the best performance

Images SVT IALM TNNR-admmap TNNR-WRE HTNR WHTNR

1 27.0935 28.6233 28.4487 28.5687 28.1066 29.4741

2 27.2189 30.0333 29.3451 29.8436 29.6091 30.8692

3 23.2543 23.4174 23.2163 23.5796 23.2391 24.1128

4 22.9236 23.6558 22.8710 23.4552 22.4605 24.7131

5 26.6926 27.6678 27.7733 27.7670 27.2919 28.1621

6 29.7115 33.5088 32.8846 33.3185 32.1052 34.4100

7 26.8535 28.4994 28.0022 28.5661 27.0452 29.0369

8 24.8885 25.7333 25.4477 25.7641 24.9006 26.2801

9 26.9378 29.6417 28.9745 29.5486 27.9510 30.1570

10 25.8532 27.5152 26.9737 27.4630 26.5333 28.3397

11 36.7861 41.5232 41.5248 41.6279 40.0552 41.7842

12 27.5205 29.5540 29.3376 29.2040 28.9932 30.4289

13 25.3527 26.9629 25.8602 26.5336 25.8116 27.6976

14 24.8841 25.6161 25.2616 25.8585 25.2571 26.4201
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Table 3 Observed ratio 0.7, PSNR of recovery images of the images with random distributed missing
entries, bold represents the best performance

Images SVT IALM TNNR-admmap TNNR-WRE HTNR WHTNR

1 25.6865 27.3416 26.2852 26.7112 26.6568 28.0530

2 25.7377 28.0747 26.6681 27.3292 27.2364 28.8589

3 22.1677 22.2307 21.6337 22.1372 21.8867 22.9974

4 21.2437 21.8698 19.9338 21.3424 20.1566 22.8227

5 25.8754 26.6403 26.4699 26.6254 26.5676 27.2489

6 28.5542 31.809 30.2775 31.2284 30.1341 32.4142

7 25.7401 27.2122 26.3433 26.8773 25.9903 27.5904

8 23.7845 24.6063 23.8092 24.3867 23.7739 25.1674

9 25.6807 28.0137 26.6184 27.4422 26.7832 28.5099

10 24.5153 25.9682 24.3972 25.3951 25.3495 26.7235

11 36.4801 40.2858 40.4219 40.7171 39.1148 40.9232

12 26.0421 28.0813 26.3698 27.3454 26.9642 28.7660

13 24.0608 25.2519 23.2416 24.5447 24.4054 26.0243

14 23.7061 24.2434 23.3845 23.9151 23.9917 25.0542

4.3.2 Text mask

Unlike random noise, text noise continuously distributed in part of the image. In
this paper, a matrix computation algorithm is used to restore low-rank images con-
taminated by text noise, and text is regarded as the missing element in the matrix
computation problem. In this section, Fig. 1(d) and (k) are arbitrarily selected as
examples, the text noise is printed, and use SVT, IALM, TNNR-admmap, TNNR-
WRE, HTNR and WHTNR to recover the image. The quantized results of its
convergence accuracy are shown in Table 5. In Fig. 9 original image, noise image
and restored image of different methods are shown. It can be seen from Table 5 that
in terms of quantization results, the WHTNR algorithm significantly outperforms the
SVT and IALMmethods, and slightly better than the TNNR-admmap, TNNR-WRE,
and HTNR algorithms. As can be seen from Fig. 9, the upper part of the SVT and
IALM results still contains noise, while the edge of the restored image by WHTNR
algorithm is clearer.

Table 4 Observed ratio 0.5, PSNR and CV of recovery images of the images with random distributed
missing entries, bold represents the best performance and the italic stands for suboptimal.

Images Index SVT IALM TNNR-admmap TNNR-WRE HTNR WHTNR

13 PSNR 26.5124 28.3927 28.0051 28.3326 26.9470 28.9840

CV 0.1546% 0.2127% 0.4160% 0.4939% 0.3294% 0.1943%

14 PSNR 25.8188 26.8950 26.9456 27.1963 26.3043 27.6408

CV 0.2213% 0.2431% 0.3216% 0.6244% 0.3558% 0.2266%
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Table 5 PSNR of recovery images of the images with text or block missing entries, bold represents the
best performance

Images Mask SVT IALM TNNR-admmap TNNR-WRE HTNR WHTNR

2 text 29.1588 28.2572 34.3488 35.2722 33.0369 36.3247

3 text 23.4513 22.9871 25.8909 26.0748 26.0748 26.4935

4 block 21.7347 22.3297 22.3558 22.5553 21.5871 22.6689

5 block 23.7514 25.1105 25.6866 26.2994 23.3491 28.5427

4.3.3 Block mask

As mentioned earlier, text noise is continuously distributed in the image area, while
block noise is continuously distributed in the larger area, which makes it more dif-
ficult to restore contaminated images with matrix padding. In this paper, a matrix
computation algorithm is used to restore low-rank images contaminated by text noise,
and text elements are regarded as missing elements in the matrix computation prob-
lem. Figure 1(e) and (f) are arbitrarily chosen in this section as examples, print block
noise, and use SVT, IALM, TNNR-admmap, TNNR-WRE, HTNR and HTNR-wre
to recover the image. The quantized results of its convergence accuracy are shown
in Table 5. In Fig. 10 original image, noise image and restored image of different
methods are shown. From Table 5, WHTNR algorithm has better recovery effect than
other algorithms. As can be seen from Fig. 10, the WHTNR algorithm can basically
restore the visual effect of the image even under the more difficult block noise.

Fig. 9 Recovered results of the image in Fig. 1(b) with text mask by six methods: (a) the original image,
(b) the observed image, (c) SVT, (d) IALM, (e) TNNR-admmap, (f) TNNR-WRE, (g) HTNR, (h) WHTNR
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Fig. 10 Recovered results of the image in Fig. 1(d) with block mask by six methods: (a) the original
image, (b) the observed image, (c) SVT, (d) IALM, (e) TNNR-admmap, (f) TNNR-WRE, (g) HTNR, (h)
WHTNR

5 Conclusions

In this paper, we introduce a new low-rank matrix completion method called the
weighted residual-based hybrid truncated norm method (WHTNR). The WHTNR
model is used for matrix completion. By assigning appropriate weights to the first
singular values, the rows with fewer missing elements in the matrix can be restored
preferentially. At the same time, we verify the convergence of the WHTNR algo-
rithm both theoretically and experimentally. Quantization results and visual effects
on real images, illustrating the advantages of WHTNR compared to other methods.
Therefore, the WHTNR algorithm is based on the HTNR algorithm, and on the basis
of ensuring its stability, compared with the closest 5 methods, it has higher conver-
gence accuracy and convergence speed, and is more robust to the parameter truncate
singular values .

Appendix A: Proof of Lemma 1

First, Lemma 1 (1) is discussed. On the basis of that is the optimal
solution to the Lagrange function (19). Hence, we have

1 1 . (34)

Clearly, , then the left-hand side is . And 1 Tr 1

Tr 1 1
2

1
2 , (34) is rewritten to 1

2 1 1 , the inequality (34) holds.
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Thus, Lemma 1 (1) is proved. Then Lemma1(2) is discussed.
Clearly, 1 minimizes by definition. Since is

closed, convex and subdifferentiable on . On the basis of the property of subdiffer-
ential [23], the optimality condition is obtained as follows

0 1

Tr 1 Tr 1
2

1
2

1 .

(35)

Since 1 1, we have 1 1, (35) is rewritten as
follows

0 Tr 1 1
2

1
2 (36)

1 1. (37)

note that 1 minimizes

Tr 2 2
1 1 . (38)

In the same way, 1 minimizes 1 by definition. Since
1 is closed, convex and subdifferentiable on . On the basis of the

property of subdifferential [23], the optimality condition is obtained as follows,

0 1 1

Tr 1 1 1 .
(39)

Since 1 1, we have 1 1, (39) is rewritten as
follows

0 Tr 1 . (40)

note that 1 minimizes

Tr 1 . (41)

Hence, for the optimal solution , we have

Tr 1 1
2

1
2

1 1 1

Tr 2 2
1 1 .

(42)

and

Tr 1 1 1 Tr 1 . (43)
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With (42), (43), and , we have

1 1 1 1 1 1

1 1 1 1

1 1

1 1 1 1 1 .

(44)

Thus, Lemma 1(2) is also proved.

Appendix B: Proof of Lemma 2

Add the two inequalities in Lemma 1, multiply both sides by 2, we have

2
1 1 1 1

1 1 1 0.
(45)

the inequality (45) is rewritten as follows

2 1 1 1
2 2 1 1

2 1 1 0.
(46)

Since 1 1, we have

2 1 1

2 1 1

2 1 1
2

1
2

2
1

1
1

2
1

2 .

(47)

Since 1 1 , we have

2 1 1
2

1
2 2 . (48)

The inequality (47) is rewritten as follows

2 1 1
1

1
2 2

1
2 . (49)

Since 1 1 , we have

2 1 1
2

1
2

1
2 . (50)
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The inequality (47) is rewritten as follows

1
1

2 2
1

2 2

1
2 2 1 1

1 1 1
2

0.

(51)

In other words,

1 1 1
2 0. (52)

Hence, decreases. Clearly, in order to prove (30), it only need to verify the
2 1 1 0.
In fact, recalling that 1 minimizes Tr 1 and

minimizes Tr , we have

Tr 1 1 1 Tr 1 . (53)

and

Tr Tr 1 1 . (54)

Add the two inequalities (53) and (53), we have

1 1 0. (55)

With 1 1 and 0, then the inequality (55) is rewritten to
2 1 1 0
Thus, Lemma 2 is proved.

Appendix C: Proof of Theorem 1

In terms of Lemma 2, decreases in each iteration and 1

1
2

1
2 , add all the terms on the both sides and rearrange it,

we have

1

1
2

1
2

1

1 1 .

Notes that 1
2

1
2 0( ). Hence, if , then

1 0 and 1 0. In view of Theorem 1, we have

1
2

1 1 0 .
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and

1 1 1 1 1 1

0 .

That is to say, as .
Thus, Theorem 1 is proved.
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Conflict of interest The authors declare no competing interests.

References

1. Ma, T.H., Lou, Y., Huang, T.Z.: Truncated 1 2 models for sparse recovery and rank minimization.
SIAM J. Imaging Sci. 10(3), 1346–1380 (2017)

2. Zhao, X.L., Wang, F., Huang, T.Z., et al.: Deblurring and sparse unmixing for hyperspectral images.
IEEE Trans. Geosci. Remote Sens. 51(7), 4045–4058 (2013)

3. Zhao, X.L., Xu, W.H., Jiang, T.X., et al.: Deep plug-and-play prior for low-rank tensor completion.
Neurocomputing 400, 137–149 (2020)

4. Zhao, X.L., Zhang, H., Jiang, T.X., et al.: Fast algorithm with theoretical guarantees for constrained
low-tubal-rank tensor recovery in hyperspectral images denoising. Neurocomputing 413, 397–409
(2020)

5. Jannach, D., Resnick, P., Tuzhilin, A., et al.: Recommender systems—beyond matrix completion.
Commun. ACM 59(11), 94–102 (2016)

6. Ramlatchan, A., Yang, M., Liu, Q., et al.: A survey of matrix completion methods for recommendation
systems. Big Data Mining and Analytics 1(4), 308–323 (2018)

7. Wang, W., Chen, J., Wang, J., et al.: Geography-aware inductive matrix completion for personalized
Point-of-Interest recommendation in smart cities. IEEE Internet Things J. 7(5), 4361–4370 (2019)

8. Candes, E.J., Plan, Y.: Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)
9. Zou, C., Hu, Y., Cai, D., et al.: Salient object detection via fast iterative truncated nuclear norm

recovery. In: International Conference on Intelligent Science and Big Data Engineering, pp. 238–245.
Springer, Berlin (2013)

10. Wright, J., Ganesh, A., Rao, S., et al.: Robust principal component analysis: Exact recovery of
corrupted low-rank matrices via convex optimization. Advances in Neural Information Processing
Systems 22 (2009)

11. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math.
9(6), 717–772 (2009)

12. Fazel, M.: Matrix Rank Minimization with Applications. PhD thesis, Stanford University (2002)
13. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted

low-rank matrices. arXiv:1009.5055 (2010)
14. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear

least squares problems. Pacific Journal of Optimization 6(3), 615–640 (2010)
15. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM

J. Optim. 20(4), 1956–1982 (2010)
16. Zhang, D., Hu, Y., Ye, J., et al.: Matrix completion by truncated nuclear norm regularization. In: 2012

IEEE Conference on Computer Vision and Pattern Recognition, pp. 2192–2199. IEEE (2012)
17. Hu, Y., Zhang, D., Ye, J., et al.: Fast and accurate matrix completion via truncated nuclear norm

regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)
18. Liu, Q., Lai, Z., Zhou, Z., et al.: A truncated nuclear norm regularization method based on weighted

residual error for matrix completion. IEEE Trans. Image Process. 25(1), 316–330 (2015)

640 Numerical Algorithms (2023) 94:619–641

http://arxiv.org/abs/1009.5055


19. Xue, S., Qiu, W., Liu, F., et al.: Double weighted truncated nuclear norm regularization for low-rank
matrix completion. arXiv:1901.01711 (2019)

20. Yang, L., Kou, K.I., Miao, J.: Weighted truncated nuclear norm regularization for low-rank quaternion
matrix completion. J. Vis. Commun. Image Represent. 81, 103335 (2021)

21. Ye, H., Li, H., Cao, F., et al.: A hybrid truncated norm regularization method for matrix completion.
IEEE Trans. Image Process. 28(10), 5171–5186 (2019)

22. Mirsky, L.: A trace inequality of John von Neumann. Monatshefte für mathematik 79(4), 303–306
(1975)

23. Tyrrell, R., Fellar, R.: Convex analysis. Princeton University Press (1996)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

641Numerical Algorithms (2023) 94:619–641

http://arxiv.org/abs/1901.01711

	Weighted hybrid truncated norm regularization method for low-rank matrix completion
	Abstract
	Introduction
	Related work
	WHTNR method for matrix completion
	The WHTNR method
	Solving WHTNR model
	Convergence analysis

	Experiments
	The effect of W on WHTNR 
	Convergence of WHTNR
	Robustness to r of WHTNR
	Random mask
	Text mask
	Block mask


	Conclusions
	Appendix A A: Proof of Lemma 1
	 B: Proof of Lemma 2
	Appendix B B: Proof of Lemma 2
	 C: Proof of Theorem 1
	Appendix C C: Proof of Theorem 1
	References


