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Abstract
We describe an interpretation of parareal as a two-level additive Schwarz precon-
ditioner in the time domain. We show that this two-level preconditioner in time is
equivalent to parareal and to multigrid reduction in time (MGRIT) with F-relaxation.
We also discuss the case when additional fine or coarse propagation steps are applied
in the preconditioner. This leads to procedures equivalent to MGRIT with FCF-
relaxation and to MGRIT with F(CF)2-relaxation or overlapping parareal. Numerical
results show that these variants have faster convergence in some cases. In addition,
we also apply a Krylov subspace method, namely GMRES (generalized minimal
residual), to accelerate the parareal algorithm. Better convergence is obtained, espe-
cially for the advection-reaction-diffusion equation in the case when advection and
reaction coefficients are large.

Keywords Parareal · Two-level additive Schwarz in time preconditioner ·
MGRIT with F-relaxation · FCF-relaxation · F(CF)2-relaxation · GMRES

1 Introduction

In this paper, we focus on parareal, an algorithm introduced by J.L. Lions et al. [1]
in 2001, which allows to exploit parallelism in time for initial value problems. Over
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the last two decades, this algorithm has been studied for a range of applications,
going from molecular dynamics simulations [2], unsteady hydrodynamic simula-
tions [3], kinetic neutron diffusion equation [4, 5], the Korteveg-deVries-Burgers’
equations [6], Hamiltonian systems [7, 8], to financial mathematics as the Black-
Scholes equations [9–11]. Its stability and convergence are studied in a series of
papers, e.g., [12–15]. Given a time-dependent problem, parareal allows parallel in
time integration by relying on a combination between a fine propagator, which gives
a very accurate approximate of the solution, and a coarse propagator, which is less
expensive and gives a coarse approximate of the solution. For this, the time domain
is decomposed into a number of uniform time subdomains. From an initial solution
obtained by sequentially using the coarse propagator, parareal iteratively corrects
it by the difference between the fine solution obtained in parallel using the fine
propagator and the coarse solution obtained from the previous iteration.

Several different interpretations of parareal exist in the literature. A derivation
of the parareal algorithm as a multiple shooting method is given in [13]. An inves-
tigation of the usage of spectral deferred corrections in the framework of parareal
is given in [16, 17]. Coupling parareal in time with Schwarz waveform relaxation
methods [18, 19] to exploit parallelism in both time and space are promising direc-
tions of research as well. Parareal can also be interpreted as a multigrid method in
time, referred to as MGRIT with F-relaxation [20, 21]. Following this interpretation,
several different variants have been investigated, as MGRIT with FCF-relaxation,
MGRIT with F(CF)2-relaxation, e.g., [21, 22], where F refers to the F-relaxation and
C refers to the C-relaxation.

Given that parareal relies on a decomposition of the time domain into subdomains,
in this paper, we study the connection between parareal and domain decomposition
methods. Traditionally domain decomposition methods are used for solving a linear
system of equations Ãũ = f̃ , Ã ∈ R

n×n, arising from the discretization of a PDE by
using, for example, the finite element method, and they rely on a decomposition of the
space domain into subdomains. We consider here the case in which this linear system
is solved by using an iterative method as a Krylov subspace method, preconditioned
by M̃−1,

M̃−1Ãũ = M̃−1f̃ ,

where M̃−1 is a domain decomposition method. One-level domain decomposition
preconditioners such as additive and multiplicative Schwarz preconditioners are well-
known in the literature for domain decomposition in space, see, e.g., [23]. However,
their convergence rate deteriorates when the number of subdomains becomes large
because of a lack of global information coupling the subdomains. In order to obtain
a scalable domain decomposition algorithm which depends weakly on the number
of subdomains, a coarse space can be used to couple global information of all sub-
domains. This leads to the idea of two-level domain decomposition preconditioners.
Given a spatial decomposition of the degrees of freedom of Ã into Ñ subdomains,
the restriction of Ã to a spatial subdomain i, for i = 1, . . . , Ñ , is referred to as
Ãi and is obtained by defining a restriction matrix R̃i together with a prolonga-
tion matrix R̃T

i , such that Ãi = R̃iÃR̃T
i . By defining the coarse matrix Ã0 and
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corresponding restriction and prolongation matrices R̃0, R̃
T
0 , the two-level additive

Schwarz preconditioner is defined as follows,

M̃−1
AS2 = R̃T

0 Ã−1
0 R̃0 +

Ñ∑

i=1

R̃T
i Ã−1

i R̃i ,

and the two-level multiplicative Schwarz preconditioner is analogously defined as
follows

M̃−1
MS2 =

⎡

⎣I − (I − R̃T
0 Ã−1

0 R̃0Ã)

Ñ∏

i=1

(I − R̃T
i Ã−1

i R̃i Ã)

⎤

⎦ Ã−1.

To show the equivalence between parareal and two-level domain decomposition
methods, we consider the linear time-dependent problem,

du

dt
= f (u) , u(0) = u0, u(t) ∈ R

d , t in (0, T ), (1)

and an algebraic framework in which the solution to (1) can be obtained by solving
with a residual correction scheme the linear system of equations,

AUF = f, (2)

where the time domain (0, T ) was decomposed into N time subdomains, A ∈
R

(N+1)d×(N+1)d is bidiagonal and denotes the time-stepping coefficient matrix with
the form,

A :=

⎡

⎢⎢⎢⎣

I
−φ I

. . .
. . .
−φ I

⎤

⎥⎥⎥⎦ .

In this equation, I ∈ R
d×d is the identity matrix, φ ∈ R

d×d denotes an arbitrary
stable discretization method in space and time, UF := [u0, . . . , uN ]T denotes the
solution at fine time steps, and f := [u0, 0 . . . , 0]T is the right-hand side. The matrix
A includes all the time steps for the whole time domain. If N and d become large, (2)
results in a very large and sparse system. This is the case where domain decomposi-
tion type methods show their advantages. We consider the problem on a uniform grid,
the time steps and space steps do not change from one to the next so the discretiza-
tion matrix for each time step, namely φ, does not change . We show that parareal
is equivalent to using the preconditioned stationary iteration which computes a new
approximate solution Uk+1

F from Uk
F ,

Uk+1
F = Uk

F + M−1
SC(f − AUk

F ),

whereM−1
SC is a two-level additive Schwarz in time preconditioner defined as follows,

M−1
SC = (RT

0 A−1
0 R0 + I − RT

0 R0)

⎛

⎝
N̂∑

i=1

RT
i A−1

i Ri

⎞

⎠ . (3)
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Remark 1 The preconditioner M−1
SC in (3) is different from the so-called hybrid pre-

conditioner where subdomain preconditioning is applied additively, but the coarse
solve is applied multiplicatively in the second stage, i.e.,

M−1
hybrid = RT

0 A−1
0 R0 + (I − RT

0 A−1
0 R0)

⎛

⎝
N̂∑

i=1

RT
i A−1

i Ri

⎞

⎠ .

A symmetrized version of this preconditioner appears as Phy1 in the standard
reference of Toselli and Widlund (2005) for domain decomposition methods, [24].

We give in Section 3 the exact definitions of the subdomain matrices Ai , for
i = 1, . . . , N̂ , the coarse time correction matrix A0, as well as the restriction and
prolongation matrices Ri, R

T
i , for i = 0, . . . , N̂ , where N̂ is the number of subdo-

main matrices of A. The matrix I ∈ R
(N+1)d×(N+1)d is the identity matrix. The first

term denotes an additive Schwarz preconditioner in time, which is computed in par-
allel by using the fine propagators, followed by a coarse correction in time, based on
a coarse propagator, which is computed sequentially and transfers the information
globally between the different time subdomains.

Furthermore, we show that this two-level additive Schwarz in time preconditioner
has the same error propagation as MGRIT with F-relaxation at coarse time points,
discussed in [20, 21, 25]. As expected, this shows that the three algorithms parareal,
MGRIT with F-relaxation, and two-level additive Schwarz in time preconditioner
from (3) are equivalent. We also discuss that applying additional fine or coarse prop-
agation steps in the two-level additive Schwarz in time preconditioner is equivalent
to MGRIT with FCF-relaxation and MGRIT with F(CF)2-relaxation or overlapping
parareal, discussed in [26]. Faster convergence can be achieved in some cases, but the
trade-off is also important to consider. To improve the convergence, a variant of two-
level domain decomposition method, referred to as SCS2 two-level additive Schwarz
in time preconditioner, provides a good alternative, since it relies on increasing the
number of additive Schwarz in time steps, while keeping only one coarse correction
step, which is performed in sequential. Note that the notations S and C used here
in the context of two-level additive Schwarz in time preconditioner correspond to
the use of fine and coarse propagators. They are different from F-relaxation and C-
relaxation used in MGRIT. Specifically, S and C propagation steps in the two-level
additive Schwarz in time preconditioner start from the same coarse time points and
propagate to obtain the approximate solution at the end of each time subdomain.
While F-relaxation propagates to obtain the approximate solution at fine time points
based on the coarse time points, and C-relaxation propagates to obtain the approxi-
mate solution at coarse time points based on the previous fine time points, for more
details, see [25]. We also explore the usage of Krylov subspace methods for solv-
ing the system (2). This gives promising numerical results, especially for solving the
advection-reaction-diffusion equation with large advection and reaction terms.

The paper is organized as follows. Section 2 recalls parareal algorithm and its for-
mulation as a residual correction scheme. Section 3 introduces an interpretation of
parareal as a two-level additive Schwarz in time preconditioner. Section 4 discusses
several variants of this two-level additive Schwarz in time preconditioner and gives
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their convergence analysis. Furthermore, theoretical convergence bounds are given in
Section 5. Several numerical experiments are presented in Section 6, where we con-
sider the Dahlquist problem, the heat equation, and the advection-reaction-diffusion
equation. Conclusions and perspectives are given in Section 7.

2 Parareal algorithm

In this section, we describe the parareal algorithm by following its presentation from,
e.g., [13]. For the simplicity of the exposition, we consider the scalar linear time-
dependent problem,

du

dt
= f (u) , u(0) = u0, u(t) ∈ R

d , t in (0, T ), (4)

The time interval [0, T ] is decomposed into NC uniform time subdomains [Tn, Tn+1]
with n = 0, . . . , NC − 1. Parareal uses two solvers, a fine solver F(Tn+1, Tn, Un),
which gives a very good approximate, and a coarse solver G(Tn+1, Tn, Un), which
gives a coarse approximate of the solution at time Tn+1 starting from the initial solu-
tion Un at time Tn. The initial approximate U0

n at coarse time points is obtained
typically by using sequentially the coarse solver,

U0
n+1 = G(Tn+1, Tn, U

0
n ), U0

0 = u0.

From this initial solution in time, parareal iteratively computes a new approximate of
the solution of (4) until some convergence criterion is met. At each iteration k + 1,
k ≥ 0, a new approximate is computed as follows,

Uk+1
n+1 = G(Tn+1, Tn, U

k+1
n ) + F(Tn+1, Tn, U

k
n ) − G(Tn+1, Tn, U

k
n ). (5)

The coarse and the fine solvers can be chosen in various ways. Very often a higher
order approximation is used for the fine solver and a lower order approximation is
used for the coarse solver. The coarse solver can also solve a different problem, which
is simpler to solve than the original one, as long as it gives an acceptable approximate
of the solution. However, the coarse solver plays an important role in the convergence
of the parareal algorithm. It should be chosen in such a way that it is cheap but
accurate enough compared to the fine one, otherwise parareal algorithm can converge
slowly. One simple approach is to choose the same discretizations in both time and
space for both coarse and fine solvers, but with larger time step �t for the coarse
solver and smaller δt for the fine solver. Furthermore, one can also use a coarsened
spatial mesh for the coarse solver, see [27].

2.1 Parareal execution from an algebraic point of view

Consider the time-dependent problem from (4) for which the time interval [0, T ] is
divided into N uniform time slices [tn, tn+1] with length δt , for n = 0, . . . , N − 1.
On the other hand, [0, T ] is also partitioned into NC uniform coarse time intervals
[Tl, Tl+1] with length �T , for l = 0, . . . , NC − 1. We denote by φ a stable dis-
cretization method in time such as forward Euler, backward Euler, Runge-Kutta or
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higher order methods, and by φ�T the coarse solver for which the same methods
are used but with larger time step, or lower order methods or spatial coarsening, in
particular φ�T approximates the fine solver φm. Let δt be the fine time step and
�t = �T = mδt be the coarse time step (we use one coarse time step for the coarse
solver on each coarse time interval), in which m denotes the number of fine time
steps on each coarse time interval. We note that the error propagation and conver-
gence analysis in Sections 3, 4, and 5 are based on the assumption that φ and φ�T

can be diagonalized by the same set of eigenvectors, in cases when when φ and φ�T

have the same spatial discretization as stated in [25]. Furthermore, the analysis of
spatial discretization can also be found in [28]. Without loss of generality, we con-
sider in this work the same discretization methods in both time and space for both
coarse and fine solvers, namely the backward Euler in time and centered finite dif-
ference method in space. However, discretizations as forward Euler, Runge-Kutta or
higher order methods can also be used in the same framework, we illustrate this by
using Runge-Kutta 4 for the fine solver in Section 6.4. In this paper, we focus on the
linear constant-coefficient partial differential equations, in particular the heat equa-
tion and the advection-reaction-diffusion equation. By sequentially applying φ, the
linear system of equations obtained has the form:

AUF :=

⎡

⎢⎢⎢⎣

I
−φ I

. . .
. . .
−φ I

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u0
u1
...

uN

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u0
0
...
0

⎤

⎥⎥⎥⎦ =: f, (6)

where A ∈ R
(N+1)d×(N+1)d denotes the time-stepping coefficient matrix, I ∈ R

d×d

denotes the identity matrix, and φ ∈ R
d×d denotes the discretization matrix. This

system of equations can be solved by using a direct method in which the solutions
ui, i = 0, . . . , N at different time steps are obtained sequentially. This results in a
complexity of N time steps, each time step being solved by using φ. But instead of
just using φ, parareal combines the use of both coarse and fine solvers to result in a
faster algorithm in which the fine solvers are performed in parallel.

We describe parareal by considering a simple two-level temporal mesh for which
m = 2, as displayed in Fig. 1. With this choice, the fine nodes are defined at

Fig. 1 Two-level temporal mesh and parareal execution

34 Numerical Algorithms (2023) 94:29–72



all time points {t0, t1, t2, . . . , tN }, while the coarse nodes are defined at even time
points {t0, t2, . . . , tN }. At the initial step k = 0, the initial approximate of the
coarse solution is obtained by applying φ�T sequentially and the fine solution is
obtained by interpolating. Let F(Tn+1, Tn, U

k
n ) := φ2Uk

n be the fine propagator and
G(Tn+1, Tn, U

k
n ) := φ�T Uk

n be the coarse propagator, parareal iteration from (5)
becomes,

Uk+1
n+1 = φ�T Uk+1

n + φ2Uk
n − φ�T Uk

n ,

where Uk
n corresponds to uk

2n which denotes the parareal solution at coarse time point
t2n, n = 0, . . . , N/2 and iteration k. In detail, parareal computes the approximate
solutions at fine time points as follows,

uk+1
i =

⎧
⎨

⎩

u0, if i = 0,
φuk

i−1, for i = 1, 3, . . . , N − 1,
φ�T uk+1

i−2 + φuk+1
i−1 − φ�T uk

i−2, for i = 2, 4, . . . , N .
(7)

As it can be seen from Fig. 1, the fine approximate solutions can be computed
in parallel based on the coarse approximate solutions from the previous iterations.
Generally for arbitrary m ≥ 2, we have similarly,

Uk+1
n+1 = φ�T Uk+1

n + φmUk
n − φ�T Uk

n . (8)

2.2 Expression of the standard residual correction scheme

As presented in, e.g., [26], parareal algorithm can be seen as a preconditioned residual
correction scheme of a reduced system representing only the coarse time solutions,
which is obtained from the original system of (6). For this, a coarse matrix AC rep-
resents the time steps of the coarse level (here we keep every second time point on
each time interval), UC represents the unknown solutions and fC the right-hand side
at coarse time points,

ACUC :=

⎡

⎢⎢⎢⎢⎢⎣

I
−φ2 I

. . .
. . .

−φ2 I
−φ2 I

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

u0
u2
...

uN−2
uN

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

u0
0
...
0
0

⎤

⎥⎥⎥⎥⎥⎦
=: fC . (9)

This reduced system of (9) produces exactly the same solutions as the original system
(6) at coarse time points. A preconditioner M̃ which approximates the coarse matrix
A is obtained by approximating each fine time integration propagator φ2 by one
coarse integration propagator φ�T ,

M̃ :=

⎡

⎢⎢⎢⎢⎢⎣

I
−φ�T I

. . .
. . .

−φ�T I
−φ�T I

⎤

⎥⎥⎥⎥⎥⎦
.
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By using the preconditioned stationary iteration at the coarse level, we obtain at
iteration k,

Uk+1
C = Uk

C + M̃−1(fC − ACUk
C), (10)

which can be written as follows,

M̃(Uk+1
C − Uk

C) = fC − ACUk
C, (11)

or explicitly written as follows,
⎡

⎢⎢⎢⎢⎢⎣

I
−φ�T I

. . .
. . .

−φ�T I
−φ�T I

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

uk+1
0 − uk

0
uk+1
2 − uk

2
...

uk+1
N−2 − uk

N−2
uk+1

N − uk
N

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

u0 − uk
0

φ2uk
0 − uk

2
...

φ2uk
N−4 − uk

N−2
φ2uk

N−2 − uk
N

⎤

⎥⎥⎥⎥⎥⎦
. (12)

It can be easily seen that the solutions uk+1
2i for i = 0, . . . , N/2 obtained by solving

(12) are the same as the solutions obtained by parareal in (7).
We consider now solving the system AUF = f from (6) at the fine level. We

introduce a matrix MSC and we show that parareal algorithm is equivalent to solving
AUF = f by using a stationary iteration preconditioned byM−1

SC . The preconditioned
stationary iteration for solving AUF = f at the fine level becomes,

Uk+1
F = Uk

F + M−1
SC(f − AUk

F ), (13)

or equivalently,
MSC(Uk+1

F − Uk
F ) = f − AUk

F , (14)

Note that (14) acts at the fine level, so MSC is different from M̃ in (11). In other
words, MSC has to deal with both unknowns at coarse and fine time points. The
matrix MSC is defined in the following lemma.

Lemma 1 Let F(Tn+1, Tn, u
k
n) := φmuk

n and G(Tn+1, Tn, u
k
n) := φ�T uk

n denote the
fine and the coarse solvers, respectively. For m ≥ 2, (14) is equivalent to parareal
algorithm with MSC defined as follows,

MSC :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I

− φ I
. . .

−φ�T − φ I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
md × md

. . .
I

−φ I
. . .

− φ�T −φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

36 Numerical Algorithms (2023) 94:29–72



Proof For m = 2, (14) becomes,

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

I
I

−φ�T −φ I
. . .

I
−φ�T −φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk+1
0 − uk

0
uk+1
1 − uk

1
uk+1
2 − uk

2
...

uk+1
N−1 − uk

N−1
uk+1

N − uk
N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

u0 − uk
0

φuk
0 − uk

1
φuk

1 − uk
2

...
φuk

N−2 − uk
N−1

φuk
N−1 − uk

N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Simplifying (16) gives

uk+1
i =

⎧
⎨

⎩

u0, if i = 0,
φuk

i−1, for i = 1, 3, . . . , N − 1,
φ�T uk+1

i−2 + φuk+1
i−1 − φ�T uk

i−2, for i = 2, 4, . . . , N .

Generalize for m > 2, for j = 0, m, 2m, . . . , N − m and by induction, we have,

uk+1
0 = u0,

uk+1
j+1 = φuk

j ,

uk+1
j+2 = φuk+1

j+1,

...

uk+1
j+m−1 = φuk+1

j+m−2,

uk+1
j+m = φ�T uk+1

j + φuk+1
j+m−1 − φ�T uk

j = φ�T uk+1
j + φmuk

j − φ�T uk
j ,

which is identical to (8) and concludes the proof.

Hence, instead of solving the system (6) by using a direct method, parareal algo-
rithm uses the stationary iteration defined in (13) preconditioned by MSC as defined
in (15). In addition, Krylov subspace methods as GMRES can also be used to acceler-
ate the convergence of parareal. In the numerical experiments, Section 6.3 we present
results obtained by using GMRES for solving the preconditioned linear system,

M−1
SCAUF = M−1

SCf .

It will be seen that GMRES improves slightly the convergence of parareal and it
allows to solve problems for which parareal has difficulty to converge, as in the case
when the advection and reaction coefficients are large compared to the diffusion
term for the advection-reaction-diffusion problem. However, in general, it does not
improve drastically the convergence of parareal for our test problems, and this was
also observed in previous works as [29] which studied the acceleration of waveform
relaxation methods.
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3 Interpretation of parareal as a two-level additive Schwarz
in time preconditioner

In this section, we present an interpretation of parareal as a two-level domain decom-
position method. For this, we show that the inverse of the preconditioner MSC from
(15) can be expressed as a first level additive Schwarz preconditioner that relies on
using the fine propagator φm in each time subdomain, followed by a coarse time
correction based on using the coarse propagator φ�T .

We introduce first some notations. Let A ∈ R
(N+1)d×(N+1)d be the time-

stepping matrix as defined in Section 2.1. The matrices I ∈ R
(N+1)d×(N+1)d and

I ∈ R
d×d are identity matrices. The matrix A is decomposed into NC + 1 non-

overlapping subdomains {�i}1≤i≤NC+1, where NC = N/m denotes the number of
coarse time intervals. The matrix A is a block matrix, the blocks being defined as
{Aij }1≤i,j≤N+1 ∈ R

d×d . As displayed in (6), Aij can be the φ matrix, the identity
or the zero matrix. Let N = {1, . . . , N + 1} be the set of indices of A, which corre-
sponds to the fine time steps {t0, . . . , tN }. Let Ni , i ∈ {1, . . . , NC + 1} be the subset
of N such that Ni represents the subset of indices of subdomain i, we define Ni as
follows,

Ni =
{ {1}, if i = 1,

{m(i − 2) + 2, . . . , m(i − 1) + 1}, for i = 2, . . . , NC + 1,
(17)

the restriction matrix Ri is defined as follows,

Ri =
{

I, if i = 1,
I(Ni , :), for i = 2, . . . , NC + 1,

(18)

where I(Ni , :) denotes the submatrix of I formed by the rows whose indices belong
to Ni . The prolongation matrix RT

i is the transpose of Ri . The subdomain matrices
{Ai}1≤i≤NC+1 are defined as follows,

Ai =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

I, if i = 1,

RiART
i =

⎡

⎢⎢⎢⎢⎢⎣

I
−φ I

. . .
. . .
−φ I

−φ I

⎤

⎥⎥⎥⎥⎥⎦
, for i = 2, . . . , NC + 1.
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For i ≥ 2, Ai = RiART
i is an md × md block matrix. The inverse of Ai can be

computed as follows,

A−1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I, if i = 1,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
φ I
φ2 φ I
φ3 φ2 φ I
...

...
. . .

. . .
φm−2 φm−3 . . . φ I
φm−1 φm−2 . . . φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, for i = 2, . . . , NC + 1.

The first level additive Schwarz in time preconditioner is
∑NC+1

i=1 RT
i A−1

i Ri as pre-
sented in Section 1. The second level coarse time correction is defined as following.
Let N0 = {1 + im}0≤i≤NC

be the set of indices corresponding to coarse time points
and A0 ∈ R

(NC+1)d×(NC+1)d be the coarse matrix that solves the reduced system
from (6) at every coarse time point by using the coarse integration propagator φ�T ,

A0 =

⎡

⎢⎢⎢⎢⎢⎣

I
−φ�T I

. . .
. . .

−φ�T I
−φ�T I

⎤

⎥⎥⎥⎥⎥⎦
. (19)

The coarse problem at coarse time points in the time domain is obtained by using
a restriction matrix R0 ∈ R

(NC+1)d×(N+1)d , defined such that the entries of R0 are
identities at positions corresponding to the coarse time points and 0 elsewhere. In
particular, R0 is defined as follows,

R0 = I(N0, :), (20)

in whichN0 = {1, 1+m, 1+2m, . . . , 1+NCm} and the prolongation matrix for the
coarse problem is the transpose of R0. The inverse of A0 can be computed as follows,

A−1
0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
φ�T I
φ2

�T φ�T I
φ3

�T φ2
�T φ�T I

...
...

. . .
. . .

φ
NC−1
�T φ

NC−2
�T . . . φ�T I

φ
NC

�T φ
NC−1
�T . . . φ�T I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 2 The matrix MSC defined in (15) can be factored as follows,

MSC =
⎛

⎝
NC+1∑

i=1

RT
i AiRi

⎞

⎠ (RT
0 A0R0 + I − RT

0 R0),
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and the additive Schwarz in time preconditioner M−1
SC is formed by the product of

the additive Schwarz term
∑NC+1

i=1 RT
i A−1

i Ri and the coarse time correction term

RT
0 A−1

0 R0 + I − RT
0 R0,

M−1
SC = (RT

0 A−1
0 R0 + I − RT

0 R0)

⎛

⎝
NC+1∑

i=1

RT
i A−1

i Ri

⎞

⎠ . (21)

Proof We have
⎛

⎝
NC+1∑

i=1

RT
i AiRi

⎞

⎠ (RT
0 A0R0 + I − RT

0 R0)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I
− φ I

. . .
− φ I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
md×md

. . .
I

−φ I
. . .
−φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I

I
. . .

−φ�T I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
md×md

. . .
I
I

. . .
−φ�T I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
I
−φ I

. . .
−φ�T −φ I

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
md × md

. . .
I

− φ I
. . .

−φ�T −φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= MSC .

We observe that the matrix (RT
0 A0R0 + I − RT

0 R0) can be permuted to a matrix
whose first diagonal block is A0 followed by an identity matrix. Additionally the
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term
∑NC+1

i=1 RT
i AiRi is a block diagonal matrix. Thus, we obtain,

M−1
SC = (RT

0 A0R0 + I − RT
0 R0)

−1
(∑NC+1

i=1
RT

i AiRi

)−1

= (RT
0 A−1

0 R0 + I − RT
0 R0)

(∑NC+1

i=1
RT

i A−1
i Ri

)
.

The preconditioner M−1
SC is applied to a vector at each iteration of the resid-

ual correction scheme (13). The inverses A−1
i and A−1

0 are never formed explicitly,
they are applied to a vector by using a backward solve. We refer to this precondi-
tioner as the SC two-level additive Schwarz in time preconditioner. It is formed by
the additive Schwarz preconditioner

∑NC+1
i=1 RT

i A−1
i Ri , which corresponds to the

use of the fine propagators computed in parallel, followed by a coarse time correc-
tion RT

0 A−1
0 R0 + I − RT

0 R0, which corresponds to the use of the coarse propagator
computed sequentially.

Corollary 1 Solving (6) by using parareal is equivalent to using the residual correc-
tion scheme from (13) at the fine level, preconditioned by the SC two-level additive
Schwarz in time preconditioner. Each iteration becomes:

Uk+1
F = Uk

F + (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j Rj (f − AUk
F ). (22)

Proof The proof is done by combining Lemma 1 and 2.

We illustrate these results by considering the simple linear time-dependent prob-
lem (4) with m = 2, as it can be seen in Fig. 2. After discretization, the linear
system from (6) needs to be solved. We first decompose the whole time domain
into non-overlapping subdomains with indices Ni given by (17), with the restric-
tion matrices R1 ∈ R

d×(N+1)d , Ri ∈ R
md×(N+1)d , and the prolongation matrices

RT
1 ∈ R

(N+1)d×d , RT
i ∈ R

(N+1)d×md for i = 2, . . . , NC + 1 satisfy (18) such that

Fig. 2 Non-overlapping time subdomains with m = 2. The fine nodes are defined at all time points
{t0, t1, t2, . . . , tN } and the coarse nodes are defined at even time points {t0, t2, t4, . . . , tN }. The first time
subdomain is always defined at {t0}, while following time subdomains are defined at {tn, tn+1} for n =
1, . . . , N − 1
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their entries are I at positions corresponding to the ith subdomain and 0 elsewhere,
specifically,

R1 = [
I 0 0 0 . . . 0 0

]
, R2 =

[
0 I 0 0 0 . . . 0
0 0 I 0 0 . . . 0

]
, . . . ,

RNC+1 =
[
0 0 0 0 . . . I 0
0 0 0 0 . . . 0 I

]
.

The subdomain matrices Ai = RiART
i , for i = 1, . . . , NC + 1, become,

Ai =
⎧
⎨

⎩

I, for i = 1,[
I 0

−φ I

]
, for i = 2, . . . , NC + 1.

Let N0 = {1, 3, 5, . . . , N + 1} be the set of indices corresponding to coarse
time points {t0, t2, . . . tN } as displayed in Fig. 3. Let A0 ∈ R

(NC+1)d×(NC+1)d be the
coarse matrix as defined in (19) and the restriction matrix R0 ∈ R

(NC+1)d×(N+1)d

satisfies (20), namely,

R0 =

⎡

⎢⎢⎢⎢⎢⎣

I 0 0 0 0 . . . 0
0 0 I 0 0 . . . 0
0 0 0 0 I . . . 0
...
...
...
...
...
. . .

...
0 0 0 0 0 0 I

⎤

⎥⎥⎥⎥⎥⎦
.

The matrix MSC becomes,

MSC =
NC+1∑

i=1

RT
i AiRi(R

T
0 A0R0 + I − RT

0 R0)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0 I

−φ I
0 I

−φ I
. . .

. . .
0 I

−φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0 I

−φ�T 0 I
0 I

−φ�T 0 I
. . .

. . .
0 0 I

−φ�T 0 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0 I

−φ�T −φ I
0 I

−φ�T −φ I
. . .

. . .
0 0 I

−φ�T −φ I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)
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Fig. 3 Coarse time correction defined at even time points {t0, t2, t4, . . . , tN }

It can be seen that MSC from (23) is the same as the matrix MSC defined in Lemma
1 in case m = 2, the preconditioner M−1

SC is computed following Lemma 2,

M−1
SC = (RT

0 A−1
0 R0 + I − RT

0 R0)

NC+1∑

i=1

RT
i A−1

i Ri,

and then Corollary 1 gives the residual correction scheme of the problem (4) at the
fine level (22) with SC two-level additive Schwarz in time preconditionerM−1

SC which
is equivalent to parareal.

It was shown in a series of papers, e.g., [13, 21], that MGRIT with F-relaxation is
equivalent to parareal algorithm. We show now that MGRIT with F-relaxation is also
equivalent to SC two-level additive Schwarz in time preconditioner by computing
the error propagation matrix at coarse time points. The error propagation of (22) is
governed by

ek+1 = (I − M−1
SCA)ek, (24)

where ek := UF − Uk
F , and UF , Uk

F denote the exact solution and the approximate
solution, respectively. The iteration matrix has the form,

I − M−1
SCA = I − (RT

0 A−1
0 R0 + I − RT

0 R0)

NC+1∑

i=1

RT
i A−1

i RiA.

Note that we consider M−1
SC as a two-level additive Schwarz preconditioner in the

time domain and the matrix A is not symmetric. Hence, we cannot exploit the theory
of Schwarz-type algorithms for symmetric positive definite matrices for which the
preconditioned system M−1

SCA can be expressed as sums of orthogonal projection
matrices Pi , for i = 1, 2, . . . , NC + 1, for further details, see [23]. Instead we study
the error propagation matrix produced in the residual correction scheme (22). The
following lemma shows that the error propagation matrix produces exactly the same
error after one iteration at coarse time points as MGRIT with F-relaxation, for which
the error is given in [25, Lemma 3.1].

Remark 2 The error propagation matrix I − M−1
SCA in (24) describes the propaga-

tion of errors of (22) at both coarse and fine levels. In the following sections, e.g.,
Lemma 3, 4, 5, and 6, for the convenience of comparison with parareal and the vari-
ants, we only consider the error propagation matrices at the coarse level. We also
remark that φ and φ�T commute due to the assumption that they can be diagonalized
by the same set of eigenvectors.

Lemma 3 Let UF be the exact solution of (6), Uk
F be an approximate solution from

(13), ek := UF − Uk
F and denote by ek

j the error at iteration k and time tj with
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j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of (13)
with SC two-level additive Schwarz in time preconditioner defined in (21) satisfies:

ek+1
0 = 0,

ek+1
hm =

h−1∑

r=0

φh−1−r
�T (φm − φ�T )ek

rm, h = 1, 2, . . . , NC . (25)

Proof We denote by ek
C,SC and ek+1

C,SC the errors at coarse time points at iteration k

and k + 1 respectively and by ESC := I − M−1
SCA, the error propagation matrix at

coarse time points for SC two-level additive Schwarz in time preconditioner. The
error propagation from (24) at coarse time points yields,

ek+1
C,SC = ESCek

C,SC, (26)

note that φ and φ�T commute, so (26) can also be written as follows,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ek+1
0

ek+1
m

ek+1
2m

ek+1
3m
...

ek+1
NCm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0
φm − φ�T 0 0 . . . 0 0

φ�T (φm − φ�T ) φm − φ�T 0 . . . 0 0
φ2

�T (φm − φ�T ) φ�T (φm − φ�T ) φm − φ�T . . . 0 0
...

...
...

. . .
...

...
φ

NC−1
�T (φm − φ�T ) φ

NC−2
�T (φm − φ�T ) φ

NC−3
�T (φm − φ�T ) . . . φm − φ�T 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ek
0

ek
m

ek
2m

ek
3m
...

ek
NCm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (25) follows.

4 Variants of SC two-level additive Schwarz in time preconditioner
and convergence analysis

In this section, we study several variants of SC two-level additive Schwarz in time
preconditioner and discuss their equivalence with MGRIT with FCF-relaxation,
MGRIT with F(CF)2-relaxation, or overlapping parareal. In addition, we derive a
method, referred to as SCS2 two-level additive Schwarz in time preconditioner, and
discuss its suitability for exploiting parallel computing.

We first describe the SCS variant of SC two-level additive Schwarz in time pre-
conditioner. It is obtained by first applying SC two-level additive Schwarz in time
preconditioner, that is one fine solve followed by one coarse solve, and then adding
one more fine solve. In detail, one iteration of the residual correction scheme is
performed as follows:

U
k+ 1

2
F = Uk

F + (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j Rj (f − AUk
F ),

Uk+1
F = U

k+ 1
2

F +
NC+1∑

j=1

RT
j A−1

j Rj (f − AU
k+ 1

2
F ).
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The error propagation matrix is defined as follows,

⎡

⎣I −
NC+1∑

j=1

RT
j A−1

j RjA

⎤

⎦

⎡

⎣I − (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j RjA

⎤

⎦ .

The following lemma gives the error propagation of the SCS variant of SC two-
level additive Schwarz in time preconditioner. It can be seen that the error propagation
matrix produces exactly the same error at coarse time points after one iteration
as MGRIT with FCF-relaxation. The result for MGRIT with FCF-relaxation is
described in [25, Lemma 3.2].

Lemma 4 Let UF be the exact solution of (4), Uk
F be an approximate solution from

(13), ek := UF − Uk
F and denote by ek

j the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of
the residual correction scheme from (13) preconditioned by SCS two-level additive
Schwarz in time preconditioner satisfies:

ek+1
0 = 0,

ek+1
m = 0,

ek+1
hm =

h−2∑

r=0

φh−2−r
�T (φm − φ�T )φmek

rm, h = 2, 3, . . . , NC . (27)

Proof We denote by ek
C,SCS and ek+1

C,SCS the errors at coarse time points at iteration k

and k+1 respectively and by ESCS the error propagation matrix at coarse time points
for SCS two-level additive Schwarz in time preconditioner. We have the relation,

ek+1
C,SCS = ESCSek

C,SCS, (28)

in which ESCS =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0

(φm − φ�T )φm 0 0 0 . . . 0 0
φ�T (φm − φ�T )φm (φm − φ�T )φm 0 0 . . . 0 0
φ2

�T (φm − φ�T )φm φ�T (φm − φ�T )φm (φm − φ�T )φm 0 . . . 0 0
...

...
...

. . .
...

...
...

φ
NC−2
�T (φm − φ�T )φm φ

NC−3
�T (φm − φ�T )φm φ

NC−4
�T (φm − φ�T )φm . . . (φm − φ�T )φm 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The relations in (27) follow.
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The SCS2 variant of SC two-level additive Schwarz in time preconditioner is
obtained by adding one more fine solve based on additive Schwarz as follows:

U
k+ 1

3
F = Uk

F + (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j Rj (f − AUk
F ),

U
k+ 1

2
F = U

k+ 1
3

F +
NC+1∑

j=1

RT
j A−1

j Rj (f − AU
k+ 1

3
F ),

Uk+1
F = U

k+ 1
2

F +
NC+1∑

j=1

RT
j A−1

j Rj (f − AU
k+ 1

2
F ).

The error propagation matrix is defined as follows,
⎡

⎣I −
NC+1∑

j=1

RT
j A−1

j RjA

⎤

⎦
2 ⎡

⎣I − (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j RjA

⎤

⎦ .

Lemma 5 Let UF be the exact solution of (4), Uk
F be an approximate solution from

(13), ek := UF − Uk
F and denote by ek

j the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of the
residual correction scheme from (13) with SCS2 two-level additive Schwarz in time
preconditioner satisfies:

ek+1
0 = 0,

ek+1
m = 0,

ek+1
2m = 0,

ek+1
hm =

h−3∑

r=0

φh−3−r
�T (φm − φ�T )φ2mek

rm, h = 3, 4, . . . , NC . (29)

Proof Let ek
C,SCS2 and ek+1

C,SCS2 be the errors at coarse time points at iteration k and
k+1 respectively and let ESCS2 be the error propagation matrix at coarse time points
for SCS2 two-level additive Schwarz in time preconditioner. We have the relation,

ek+1
C,SCS2 = ESCS2e

k
C,SCS2, (30)

in which ESCS2 =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0

(φm − φ�T )φ2m 0 0 0 . . . 0 0 0
φ�T (φm − φ�T )φ2m (φm − φ�T )φ2m 0 0 . . . 0 0 0
φ2

�T (φm − φ�T )φ2m φ�T (φm − φ�T )φ2m (φm − φ�T )φ2m 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...
φ

NC−3
�T (φm − φ�T )φ2m φ

NC−4
�T (φm − φ�T )φ2m φ

NC−5
�T (φm − φ�T )φ2m . . . (φm − φ�T )φ2m 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Equation (29) follows.

A variant known in the literature as MGRIT with F(CF)ν-relaxation or overlap-
ping parareal has been shown to converge at most after k = [N/(ν + 1)] iterations
[26, Theorem 5]. For the case ν = 2, in the framework of domain decomposition,
this variant is referred to as S(CS)2 two-level additive Schwarz in time preconditioner
and it is obtained as follows:

U
k+ 1

3
F = Uk

F + (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j Rj (f − AUk
F ),

U
k+ 1

2
F = U

k+ 1
3

F + (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j Rj (f − AU
k+ 1

3
F ),

Uk+1
F = U

k+ 1
2

F +
NC+1∑

j=1

RT
j A−1

j Rj (f − AU
k+ 1

2
F ).

The error propagation matrix is defined as follows,

⎡

⎣I −
NC+1∑

j=1

RT
j A−1

j RjA

⎤

⎦

⎡

⎣I − (RT
0 A−1

0 R0 + I − RT
0 R0)

NC+1∑

j=1

RT
j A−1

j RjA

⎤

⎦
2

.

For completeness, we give in the following lemma the error of this variant.

Lemma 6 Let UF be the exact solution of (4), Uk
F be an approximate solution from

(13), ek := UF − Uk
F and denote by ek

j the error at iteration k and time tj with
j = 1, 2, . . . , N . The error at coarse time points generated at iteration k + 1 of (13)
with S(CS)2 two-level additive Schwarz in time preconditioner satisfies:

ek+1
0 = 0,

ek+1
m = 0,

ek+1
2m = 0,

ek+1
hm =

h−3∑

r=0

(h − 2 − r)φh−3−r
�T (φm − φ�T )2φmek

rm, h = 3, 4, . . . , NC . (31)

Proof We denote by ek
C,S(CS)2

and ek+1
C,S(CS)2

the errors at coarse time points at itera-
tion k and k + 1 respectively and by ES(CS)2 the error propagation matrix at coarse
time points for S(CS)2 two-level additive Schwarz in time preconditioner. We obtain
the relation,

ek+1
C,S(CS)2

= ES(CS)2e
k
C,S(CS)2

, (32)
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in which ES(CS)2 =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
� 0 0 0 . . . 0 0 0

2φ�T � � 0 0 . . . 0 0 0
3φ2

�T � φ�T � � 0 . . . 0 0 0
...

...
...

. . .
...

...
...
...

(NC − 2)φNC−3
�T � (NC − 3)φNC−4

�T � (NC − 4)φNC−5
�T � . . . � 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

from which (31) follows, where � := (φm − φ�T )2φm.

These different variants have different costs in a parallel environment. Given that
the fine solve phase based on additive Schwarz is done in parallel and the coarse
solve phase has to be done in sequential, the coarse solve is the major limiting factor.
For that reason, the advantage becomes more noticeable when they use more fine
solve phases based on additive Schwarz and one coarse solve phase which is done in
sequential. The impact of additional fine or coarse solve phases in the preconditioner
to the error convergence as well as the computational costs will be discussed in more
detail in the next section.

5 Convergence estimate

In this section, we estimate the convergence of SC two-level additive Schwarz in
time preconditioner and its variants by computing the norms of the error propagation
matrices. The convergence is estimated based on an eigenvalue analysis for which the
coarse and the fine propagators must have the same eigenvectors. As the assumption
in Section 2 that φ and φ�T have the same eigenvectors, there exists a unitary matrix
X, e.g., X∗X = XX∗ = I such that φ and φ�T can be diagonalized as follows,

� = X∗φX = diag(λ1, λ2, . . . , λd),

��T = X∗φ�T X = diag(μ1, μ2, . . . , μd),

with |λi | < 1 and |μi | < 1 for i = 1, 2, . . . , d since φ and φ�T are stable time-
stepping methods.

The matrix ESC defined in (26) is the error propagation matrix correspond-
ing to SC two-level additive Schwarz in time preconditioner, each element of
this matrix is a block matrix of dimension d × d. The error propagation matri-
ces ESCS, ESCS2, ES(CS)2 corresponding to the variants of SC two-level additive
Schwarz in time preconditioner are defined in (28), (30), and (32). LetESC = YBY ∗,
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where Y ∈ R
NCd×NCd is a block diagonal matrix, Y = BlockDiag(X, X, . . . , X)

and B has the form

B =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0
�m − ��T 0 0 . . . 0 0

��T (�m − ��T ) �m − ��T 0 . . . 0 0
�2

�T (�m − ��T ) ��T (�m − ��T ) �m − ��T . . . 0 0
...

...
...

. . .
...

...
�

NC−1
�T (�m − ��T ) �

NC−2
�T (�m − ��T ) �

NC−3
�T (�m − ��T ) . . . �m − ��T 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

We then have,

||B||1 = ||B||∞ = max
1≤j≤d

NC−1∑

i=0

|μi
j (λ

m
j − μj )|. (33)

On the other hand, we also have,

||ESC ||2 = ||YBY ∗||2 = ||B||2 ≤ √|B||1||B||∞

= max
1≤j≤d

NC−1∑

i=0

|μi
j (λ

m
j − μj )|

≤ max
1≤j≤d

NC−1∑

i=0

|μi
j ||λm

j − μj |

= max
1≤j≤d

⎧
⎨

⎩|λm
j − μj |

NC−1∑

i=0

|μi
j |

⎫
⎬

⎭

= max
1≤j≤d

{
|λm

j − μj |1 − |μj |NC

1 − |μj |

}
. (34)

Similarly we have,

||ESCS ||2 ≤ max
1≤j≤d

{
|λm

j − μj |1 − |μj |NC−1

1 − |μj | |λj |m
}

, (35)

||ESCS2 ||2 ≤ max
1≤j≤d

{
|λm

j − μj |1 − |μj |NC−2

1 − |μj | |λj |2m
}

, (36)

||ES(CS)2 ||2 ≤ max
1≤j≤d

Cj , (37)

in which

Cj = (λm
j − μj )

2 1 − (NC − 1)|μj |NC−2 + (NC − 2)|μj |NC−1

(1 − |μj |)2 |λj |m. (38)

The 2-norm of the errors is estimated in the following theorem.
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Theorem 1 Let φ and φ�T be simultaneously diagonalizable by the same unitary
matrix X and be stable time-stepping methods with eigenvalues λi and μi respec-
tively , e.g., |λi | < 1 and |μi | < 1 for i = 1, . . . , d . The error at coarse time points
generated at iteration k + 1 of (13) satisfies:

||ek+1
C,SC ||2 ≤ max

1≤j≤d

{
|λm

j − μj |1 − |μj |NC

1 − |μj |

}
||ek

C,SC ||2, (39)

||ek+1
C,SCS ||2 ≤ max

1≤j≤d

{
|λm

j − μj |1 − |μj |NC−1

1 − |μj | |λj |m
}

||ek
C,SCS ||2, (40)

||ek+1
C,SCS2 ||2 ≤ max

1≤j≤d

{
|λm

j − μj |1 − |μj |NC−2

1 − |μj | |λj |2m
}

||ek
C,SCS2 ||2, (41)

||ek+1
C,S(CS)2

||2 ≤ max
1≤j≤d

Cj ||ek
C,S(CS)2

||2, (42)

where Cj is defined in (38).

Proof Combining (33), (34), (35), (36), and (37) leads to the desired results.

The convergence bounds for SC from (39) and SCS from (40) are already given
in the context of MGRIT with F-relaxation and with FCF-relaxation, see [25], in
which the authors estimate the convergence by using the eigenvector expansion of the
error to compute the error norm for each eigenmode. In this paper, we estimate the
convergence of SC two-level additive Schwarz in time preconditioner and its vari-
ants by computing directly the norms of the error propagation matrices generated
at iteration k + 1 of the residual correction scheme from (13). The theoretical con-
vergence bounds we obtained for SC and SCS two-level additive Schwarz in time
preconditioner are exactly the same with those for MGRIT with F-relaxation and with
FCF-relaxation. This once again confirms the equivalence between parareal, MGRIT
with F-relaxation, and SC two-level additive Schwarz in time preconditioner.

As the work presented in [25], those estimates have a removable singularity that
is when |μj | tends to 1. They are also shown to be bounded independently of NC

in many applications. Furthermore, the nominator 1 − |μj |NC can be replaced by 1
since the estimates hold for all NC .

As mentioned in the end of the previous section, these variants have different
computational costs for implementation. To make this clear, we follow our setting in
Section 2 to recall the speedup of parareal algorithm from [30] as follows,

S(NC) = NCmτf

NCτC + K(NCτC + mτf )
, (43)

in which the numerator describes the runtime for the fine propagator over NC coarse
time intervals while the denominator shows the runtime of parareal algorithm with
NC processors and K iterations, and τC, τf denote the computational cost of one step
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of the coarse and fine propagator. Depending on the number of coarse and fine prop-
agator phases in the preconditioner, we then have different speedup of the variants,
more precisely,

SSCS(NC) = NCmτf

NCτC + K(NCτC + 2mτf )
, (44)

SSCS2(NC) = NCmτf

NCτC + K(NCτC + 3mτf )
, (45)

SS(CS)2(NC) = NCmτf

NCτC + K(2NCτC + 3mτf )
. (46)

It is obvious that the speedup becomes less efficient as the number of coarse or fine
propagator phases increases. However, those fine propagator phases are totally per-
formed in parallel, this is a very important characteristic that we can exploit. By
adding one or two additional fine propagation steps in the preconditioner, the conver-
gence of parareal from (39) can be reduced by a factor of |λj |m or |λj |2m as it can be
seen in (40) and (41), especially in the case when the eigenvalues are very small and
the number of fine time step per time slice m is very large.

We provide now the estimation of the computational cost of parareal with GMRES
acceleration. In this case we consider only scalar and 1D problems and we denote
τCd, τf d the computational cost of one step of the coarse and fine propagators to
account for the linear cost in d, where d denotes the spatial dimension of φ. The
operation count is presented in Table 1 and the total cost can be computed as,

PParareal+GMRES(NC, K) = NCτCd+Kd(NCτC+mτf )+O(K2(NC+md)+Kmd),

where we have subsumed the least squares solve cost into theO(K2(NC +md)) term
since (NC + md) � 1. The normalized cost over sequential time-stepping can thus
be computed as follows,

SParareal+GMRES(NC, K) = NCτC +K(NCτC +mτf ) + O(K2(NC/d + m) + Km)

NCmτf

,

(47)

Table 1 Operation count for parareal with GMRES acceleration

Operation Cost

Initial coarse propagation NCτCd

kth GMRES step (for k = 1, . . . , K)

1. Multiplication by A O(md)

2. Parareal preconditioner application NCτCd + mτf d

3. Orthogonalization O(k(NC + md))

4. Residual estimation O(k)

Total cost after K iterations K(NCτCd + mτf d) + O(K2(NC + md))

Least squares solve O(K2)

Solution reconstruction O(Kmd)
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where we cancelled the d in both the numerator and denominator. Formula (47) will
be used for the plots in Sections 6.3 and 6.4.

6 Numerical results

In this section, we first discuss results that show the equivalence between parareal
and SC two-level additive Schwarz in time preconditioner for three different prob-
lems, Dahlquist problem, heat equation, and advection-reaction-diffusion equation.
Numerical experiments investigate the behavior of the convergence rates on short
and long time intervals when NC and m vary. We then discuss the convergence
of different variants of two-level domain decomposition preconditioners in time. A
comparison between parareal or SC two-level additive Schwarz in time precondi-
tioner and parareal with GMRES acceleration is also conducted. The three linear test
cases considered here are the Dahlquist problem with a0 = −1, u0 = 1,

du

dt
= a0u, u(0) = u0, t ∈ [0, T ], (48)

the heat equation with a∗ = 3, L = 1, �x = 0.1, the exact solution uexact = x(L −
x)2 exp(−2t),

⎧
⎨

⎩

∂u
∂t

= a∗ ∂2u

∂x2
+ f in (0, L) × (0, T ),

u(x, 0) = u0(x) x ∈ (0, L),

u(0, t) = u(L, t) = 0 t ∈ (0, T ),

(49)

and the advection-reaction-diffusion equation with a = 1, b = 1, c = 1, L =
1, �x = 0.1, the exact solution uexact = sin(2πx) exp(−2t),

⎧
⎨

⎩

∂u
∂t

= a ∂2u

∂x2
− b ∂u

∂x
+ cu + f in (0, L) × (0, T ),

u(x, 0) = u0(x) x ∈ (0, L),

u(0, t) = u(L, t) = 0 t ∈ (0, T ),

(50)

in which the unknowns u(x, t) in (49) and (50) are considered in (0, L) × (0, T ) ⊂
R

d × R, where d is the space dimension. The source term is denoted by f and is
chosen to obtain the desired exact solution. For simplicity, we consider the Dirich-
let boundary condition; however, the periodic boundary condition is also used in
Section 6.4. Note that the same discretization methods are used for both coarse and
fine solvers, namely centered finite difference in space and backward Euler in time
except the end of Section 6.4 in which Runge-Kutta 4 is used for the fine solver.

6.1 Equivalence between parareal and SC two-level additive Schwarz
in time preconditioner

In order to study the short time interval behavior, we use NC = 20, T = 1, while
for the long time interval behavior, we use NC = 100, T = 100. With time steps
�t = T/NC, δt = �t/m, for m = 20, d = 1 for Dahlquist problem, d = 10 for the
heat and advection-reaction-diffusion equations, the 2-norm (spectral norm) of the
error between the approximate solution and the fine sequential solution (obtained by
sequentially using the fine solver) is displayed in Fig. 4 for the three test cases. We
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Fig. 4 Error between approximate solution and fine sequential solution with m = 20 for Dahlquist prob-
lem (top), heat equation (middle), and advection-reaction-diffusion equation (bottom), T = 1, NC = 20
(first column), and T = 100, NC = 100 (second column)

observe that the convergence curves of parareal and SC two-level additive Schwarz in
time preconditioner are almost the same, except for the last iterations, when this may
happen because of round-off errors. The bound for SC two-level additive Schwarz in
time preconditioner derived in (39) is sharp, in particular for long time intervals.

For the Dahlquist problem, the errors of parareal and SC two-level additive
Schwarz in time preconditioner are in superlinear convergence regime on short time
intervals and in linear convergence regime on long time intervals. This behavior is
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also outlined in [13]. In particular on short time intervals, they reach 10−13 after 5
iterations while with the same number of iterations, the attained error is 10−4 on long
time interval.

For the heat equation, a convergence to 10−16 is observed for short time interval
after 18 iterations. For long time interval, both parareal and SC two-level additive
Schwarz in time preconditioner converge to an error of 10−17 after 10 iterations.

For the advection-reaction-diffusion equation, in particular for short time interval,
both parareal and SC two-level additive Schwarz in time preconditioner converge to
an error of 10−14 after 18 iterations. For long time interval, both parareal and SC
two-level additive Schwarz in time preconditioner converge to an error of 10−16 after
15 iterations.

In addition to this section, numerical tests are performed for the case when m �
NC , specifically, we set NC = 20 and m = 500. The results are displayed in Fig. 5.
We observe that the results are almost the same with the case when m = 20 in Fig. 4
for short time interval. On long time interval, a linear convergence with the same rate
is obtained for both parareal and SC two-level additive Schwarz preconditioner.
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Fig. 5 Error between approximate solution and fine sequential solution with m = 500 for Dahlquist
problem (left), heat equation (right), and advection-reaction-diffusion equation (bottom), T = 1, NC = 20
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6.2 Comparison between variants of SC two-level additive Schwarz
in time preconditioner

Numerical experiments are performed to study the convergence of several variants of
the SC two-level additive Schwarz in time preconditioner that use additional coarse
or fine propagation steps. Similarly to the previous section, d = 1 for Dahlquist
problem, d = 10 for the heat and advection-reaction-diffusion equations, the short
time interval behavior uses NC = 20 and T = 1, and the long time interval behavior
uses NC = 100 and T = 100. Figures 6, 8, and 10 display the error, in 2-norm,
between the approximate solution and the fine sequential solution, with time steps
�t = T/NC, δt = �t/m, and m ∈ {2, 20}, for the Dahlquist problem, heat equation,
and advection-reaction-diffusion equation, respectively.

For the Dahlquist problem (Fig. 6), on short time interval, the improvement of
SCS, SCS2 is not very important compared to SC two-level additive Schwarz in time
preconditioner except the S(CS)2 which converges faster than the others. However,
on long time interval, the improvement becomes more important. In particular for
m = 2, SC two-level additive Schwarz in time preconditioner converges to an error
of 10−10 after 9 iterations, while SCS and SCS2 converge in 7 and 5 iterations respec-
tively, and S(CS)2 converges in just 4 iterations to an error of 10−10. For m = 20,
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Fig. 6 Error between approximate solution and fine sequential solution for Dahlquist problem with m = 2
(first column) and m = 20 (second column), T = 1, NC = 20 (first row), and T = 100, NC = 100
(second row)
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after 9 iterations, SC two-level additive Schwarz in time preconditioner converges
to an error of 10−6, while SCS, S(CS)2, and SCS2 converge to much smaller errors,
10−10 and 10−14, respectively.

Additionally, in this part, we present in Fig. 7 a comparison of the different
methods in terms of their computational costs for the Dahlquist problem (when com-
munication costs are neglected). For this purpose, the convergence is presented as a
function of computational cost in which the x-axis corresponds to the computational
cost normalized by the cost of sequential time-stepping, i.e., the inverse of the for-
mulas (43), (44), (45), and (46). We choose τC = τf = 8 since the same integrator is
used and we solve a tridiagonal system of dimension d with the computational cost
8d. For short time interval, SC converges to the error of 10−15 with the cheapest cost
compared to the others, while SCS2 is the most expensive method. On the contrary,
on long time interval T = 100, NC = 100, SCS2 converges with the lowest cost and
SC is the most expensive method. Specifically, when m = 20, SCS2 converges to the
error of 10−14 with a cheaper cost compared to the cost of sequential time-stepping.

For the heat problem (Fig. 8), on short time interval, SCS, SCS2, and S(CS)2 con-
verge faster than SC two-level additive Schwarz in time preconditioner. In particular,
for m = 2, SC converges to an error around 10−16 after 13 iterations, while SCS,
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Fig. 7 Computational cost comparison of the error between approximate solution and fine sequential
solution for Dahlquist problem with m = 2 (first column) and m = 20 (second column), T = 1, NC = 20
(first row), and T = 100, NC = 100 (second row)
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Fig. 8 Error between approximate solution and fine sequential solution for heat equation with m = 2 (first
column) and m = 20 (second column), T = 1, NC = 20 (first row), and T = 100, NC = 100 (second
row)

SCS2, and S(CS)2 need 9, 6, and 5 iterations, respectively. For m = 20, the improve-
ment becomes more important, specifically it takes 18 iterations for SC two-level
additive Schwarz in time preconditioner to converge to an error of 10−16, while SCS
reaches this error in 10 iterations, and both SCS2 and S(CS)2 require only 7 itera-
tions. We also observe that SCS2 has a convergence rate close to S(CS)2. On long
time interval, both SCS and SCS2 have a convergence rate close to the one of S(CS)2,
and SCS2 converges faster than the other variants. In particular, for m = 2, SC two-
level additive Schwarz in time preconditioner converges to an error of 10−17 after
10 iterations, while it takes 4 iterations for SCS and 3 iterations for both SCS2 and
S(CS)2 to converge to the same error. Form = 20, SCS2 converges to an error around
10−17 after one iteration, SCS and S(CS)2 converge to the same error in 2 iterations,
while SC two-level additive Schwarz in time preconditioner requires 10 iterations.

Similarly to the previous test case, a comparison of the different methods in terms
of their computational costs for the heat problem is displayed in Fig. 9. Specifically,
SCS2 always converges with the lowest cost compared to the others. SCS and S(CS)2

are slightly higher and SC is the most expensive method.
For the advection-reaction-diffusion problem (Fig. 10), the convergence behavior

is similar to the heat equation for m = 2. For short time interval and m = 20, SC
two-level additive Schwarz in time preconditioner converges to an error of 10−14 in
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Fig. 9 Computational cost comparison of the error between approximate solution and fine sequential
solution for heat equation with m = 2 (first column) and m = 20 (second column), T = 1, NC = 20 (first
row), and T = 100, NC = 100 (second row)

18 iterations, while SCS, SCS2, and S(CS)2 converge to the same error in 9, 7, and
6 iterations, respectively. On long time interval and m = 20, it takes 15 iterations
for SC two-level additive Schwarz in time preconditioner to converge to an error of
10−16, while SCS, S(CS)2, and SCS2 reach the same error in 4, 3, and 2 iterations,
respectively.

As the previous test case, a comparison of the different methods in terms of
their computational costs for the advection-reaction-diffusion problem is displayed
in Fig. 11. We observe that SCS2 always converges with the cheapest cost compared
to the others, except for the short time interval with m = 20 in which SCS is slightly
cheaper. S(CS)2 is slightly higher compared to SCS2 and SCS while SC is the most
expensive method.

In summary, the SC two-level additive Schwarz in time preconditioner with no
additional coarse or fine propagation steps has a slower convergence than the other
variants for all our test cases. This indicates that the usage of additional coarse or
fine propagation steps leads to a more efficient preconditioner. The S(CS)2 variant,
corresponding to overlapping parareal or MGRIT with F(CF)2-relaxation, converges
faster than the other variants in case of short time interval simulation. The SCS2 vari-
ant converges faster than SCS for all our test cases. It is close to the convergence rate
of S(CS)2 for short time interval simulation, and it is even faster than S(CS)2 for the
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Fig. 10 Error between approximate solution and fine sequential solution for advection-reaction-diffusion
equation with m = 2 (first column) and m = 20 (second column), T = 1, NC = 20 (first row), and
T = 100, NC = 100 (second row)

heat (49) and the advection-reaction-diffusion (50) on long time interval. It is effi-
cient when m increases, for example, for m = 20, it reaches an error of 10−17 after
one iteration. For the computational cost comparison, SCS2 becomes the best candi-
date since it converges with the cheapest cost for almost cases of the three problems,
especially on long time intervals.

Furthermore, in this part, we perform numerical experiments for the case when
m � NC , specifically, NC = 20 and m = 500. The results are displayed in
Fig. 12. For the Dahlquist test, S(CS)2 reaches the error 10−15 after 3 iterations while
SC, SCS, and SCS2 converge to the errors of 10−13, 10−14, and10−15 after 5 iter-
ations, respectively. For the heat problem, S(CS)2 and SCS2 converge nearly with
the same rate to the error of 10−15 after 6 iterations while SC and SCS reach the
same error after 17 and 9 iterations. For the advection-reaction-diffusion equation,
we observe that S(CS)2, SCS2, SCS, and SC converge to the error of 10−15 after 6,
7, 9, and 18 iterations, respectively. In summary, the behavior of all methods in this
case is quite similar with the case when m = 20 in which S(CS)2 and SCS2 have
more advantage compared to SCS and SC.

A comparison of the different methods in terms of their computational costs for
the three problems on short time interval is displayed in Fig. 13. For Dahlquist test,
SC is the fastest, S(CS)2, SCS are slightly slower and SCS2 is the most expensive. For

59Numerical Algorithms (2023) 94:29–72



0 1 2 3 4 5 6 7 8 9
Computational cost normalized by sequential time-stepping

10-15

10-10

10-5

Er
ro

r
T=1

SC two-level additive Schwarz
SCS two-level additive Schwarz
SCS2 two-level additive Schwarz
S(CS)2 two-level additive Schwarz

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Computational cost normalized by sequential time-stepping

10-15

10-10

10-5

Er
ro

r

T=1

SC two-level additive Schwarz
SCS two-level additive Schwarz
SCS2 two-level additive Schwarz
S(CS)2 two-level additive Schwarz

0 1 2 3 4 5 6 7 8
Computational cost normalized by sequential time-stepping

10-15

10-10

10-5

Er
ro

r

T=100

SC two-level additive Schwarz
SCS two-level additive Schwarz
SCS2 two-level additive Schwarz
S(CS)2 two-level additive Schwarz

0 0.2 0.4 0.6 0.8 1 1.2
Computational cost normalized by sequential time-stepping

10-15

10-10

10-5

100

Er
ro

r

T=100

SC two-level additive Schwarz
SCS two-level additive Schwarz
SCS2 two-level additive Schwarz
S(CS)2 two-level additive Schwarz

Fig. 11 Computational cost comparison of the error between approximate solution and fine sequential
solution for advection-reaction-diffusion equation with m = 2 (first column) and m = 20 (second
column), T = 1, NC = 20 (first row), and T = 100, NC = 100 (second row)

the heat and the advection-reaction-diffusion problems, the behaviors are the same
and all methods converge nearly with the same computational cost, the difference
is not very significant. Especially for the heat problem (Fig. 12), SCS2 and S(CS)2

converge after 6 iterations while SC converges after 17 iterations to the error of 10−15

nearly with the same computational cost. For long time interval T = 100, NC = 20
(Fig. 14), SCS2 converges with the lowest computational cost, SCS and S(CS)2 are
slightly slower, and SC is the most expensive for Dahlquist test. For the heat and the
advection-reaction-diffusion problems, the behaviors are similar. Specifically, SCS
converges with the cheapest computational cost, SCS2 and S(CS)2 converge with the
same computational costs, and SC is the most expensive method.

6.3 Parareal with GMRES acceleration

In this section, we discuss the results obtained by parareal with GMRES accelera-
tion. The tolerance for GMRES is set to 10−16. For Dahlquist problem, the 2-norm
of the error between the approximate solution and the fine sequential solution and
of the relative residual are displayed in Fig. 15 for NC = 20, T = 1, and for
NC = 100, T = 100. In both tests, �t = T/NC, δt = �t/m, m ∈ {5, 20}, d = 1 for
Dahlquist problem, d = 10 for the heat and advection-reaction-diffusion equations.
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Fig. 12 Error between approximate solution and fine sequential solution with m = 500 for Dahlquist
problem (left), heat equation (right), and advection-reaction-diffusion equation (bottom), T = 1, NC = 20

On short time interval, we observe that GMRES slightly improves the convergence of
parareal. On long time interval, the improvement becomes more noticeable. Specif-
ically, for m = 20, parareal with GMRES acceleration converges to an error of
10−15 while parareal only converges to an error of 10−11, after 16 iterations. For
the relative residual, parareal with GMRES acceleration converges to 10−15 after 20
iterations, while parareal converges to 10−11 after the same numbers of iterations.
Since the convergence behavior of the error and the relative residual are similar for
the heat equation and the advection-reaction-diffusion equation, we present only the
convergence results for the latter equation. They are displayed in Fig. 16 for short
and long time intervals. On short time interval, we observe that the convergence rate
of parareal with GMRES acceleration is slightly improved for both the error and
the relative residual. Parareal with GMRES acceleration allows to reach the same
error as parareal, while requiring 2 iterations less. For example for m = 20, parareal
with GMRES acceleration converges to an error of 10−14 after 16 iterations, while
parareal converges to the same error after 18 iterations. On long time interval, the
improvement is even less important.

It can be seen that GMRES improves slightly the convergence of parareal for the
three test cases as mentioned in the end of Section 2.2. In addition to this part, a
comparison of the two methods in terms of their computational costs for Dahlquist
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Fig. 13 Computational cost comparison of the error between approximate solution and fine sequential
solution withm = 500 for Dahlquist problem (left), heat equation (right), and advection-reaction-diffusion
equation (bottom), T = 1, NC = 20

problem and advection-reaction-diffusion equation is displayed in Fig. 17, on short
time intervals. Specifically, for Dahlquist problem, the difference is not very large
at the beginning. It becomes more noticeable when the costs increase, and compu-
tational cost of plain parareal is 0.7 time less than the one of parareal with GMRES
acceleration, to obtain the error of 10−15. For advection-reaction-diffusion equation,
the same behaviors are observed for the two curves and the computational cost of
plain parareal is 0.5 time less than the one of parareal with GMRES acceleration, to
obtain the error of 10−14.

6.4 Impact of GMRES acceleration for the advection-reaction-diffusion equation
with different coefficients

We study in this section the convergence of parareal with GMRES acceleration for the
advection-reaction-diffusion equation with different coefficients than at the begin-
ning of Section 6. We consider the following setting: L = 1, T = 1, a = 0.01, b =
0.5, c = 100, NC = 20, �x ∈ {0.2, 0.05}, �t = T/NC, δt = �t/m, m = 2.
The exact solution is uexact = sin(2πx) exp(−2t). The 2-norm of the error between
the approximate solution and the fine sequential solution and of the relative residual
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Fig. 14 Computational cost comparison of the error between approximate solution and fine sequential
solution withm = 500 for Dahlquist problem (left), heat equation (right), and advection-reaction-diffusion
equation (bottom), T = 100, NC = 20

are displayed in Fig. 18. We observe that both parareal and parareal with GMRES
acceleration converge within 20 iterations. However, the error and relative residual
of parareal seem to stagnate (�x ∈ {0.2, 0.05}) and even increase (�x = 0.05),
while those of parareal with GMRES acceleration always decrease. Specifically, for
�x = 0.2, parareal converges slowly within the first 5 iterations, then stagnates,
and continues to converge after 16 iterations. Hence, GMRES acceleration provides
a more robust approach on short time interval T = 1. However, on long time inter-
val T = 100, both methods converge with the same rate. As the previous section, a
comparison of the two methods in terms of their computational costs is displayed in
Fig. 19. For �x = 0.2, the computational cost of parareal with GMRES acceleration
is even less than the computational cost of the plain parareal at the beginning. How-
ever, to achieve the error of 10−15, the computational cost of parareal with GMRES
acceleration is 1.7 times higher than the one of plain parareal. For �x = 0.05, while
parareal stagnates and even blows up at the beginning, parareal with GMRES acceler-
ation still converges. Particularly, with almost the same computational cost, parareal
with GMRES acceleration reaches an error less than 10−4 while the plain parareal
only reaches an error of 10−3. Moreover, with a 1.2 times higher computational cost,
parareal with GMRES acceleration achieves an error of 10−15, while the plain paraeal
only reaches an error of 10−13.
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Fig. 15 Computational cost comparison of the error between approximate solution and fine sequen-
tial solution (first column) and relative residual (second column) in 2-norm for Dahlquist problem,
T = 1, NC = 20 (first row), T = 100, NC = 100 (second row) with m = 20 in both cases

In this section, we also present numerical experiments for the advection-reaction-
diffusion equation in two cases, diffusion dominated and advection dominated.
For both cases, we consider the advection-reaction-diffusion (50) with the periodic
boundary condition {

u(0, t) = u(L − �x, t),

u(L, t) = u(�x, t),

with L = 1, T = 1, NC = 20, �x = 0.1, �t = T/NC, δt = �t/m, m = 5
and the exact solution uexact = sin(2π(x − bt)) exp(−2t). For the advective case,
we consider a = 0.0005, b = 1, c = 1, and for the diffusive case, we consider
a = 1, b = 0.0005, c = 1. The 2-norm of the error between the approximate solution
and the fine sequential solution and of the relative residual are displayed in Fig. 20.
We observe that parareal with GMRES acceleration always converges faster than the
plain parareal in both cases. In particular for the advective case, parareal converges to
the error of 10−14 after 17 iterations while parareal with GMRES acceleration reaches
the same error after 15 iterations. For the diffusive case, we observe that both parareal
and parareal with GMRES acceleration converge with a slower rate than the advective
case. In particular, parareal with GMRES acceleration needs 16 iterations to converge
to the error of 10−14 while parareal needs 18 iterations to reach the same error. It
can be seen that GMRES again improves slightly the convergence of parareal as the
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Fig. 16 Error between approximate solution and fine sequential solution (first column) and relative resid-
ual (second column) in 2-norm for advection-reaction-diffusion equation, T = 1, NC = 20,m = 20 (first
row), and T = 100, NC = 100,m = 5 (second row)

numerical results in Section 6.3. A comparison of the two methods in terms of their
computational costs is also displayed in Fig. 21. We observe that the computational
costs in the diffusive case are lower than the ones in the advective case. For the
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Fig. 17 Computational cost comparison of the error between approximate solution and fine sequen-
tial solution in 2-norm for Dahlquist problem (left), advection-reaction-diffusion equation (right) , T =
1, NC = 20 with m = 20
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Fig. 18 Error between approximate solution and fine sequential solution (first column) and relative resid-
ual (second column) in 2-norm for advection-reaction-diffusion equation with the Dirichlet boundary
condition, T = 1, NC = 20, m = 2, �x = 0.2 (first row), and �x = 0.05 (second row), with backward
Euler for both propagators

advective case, the difference is not significant at the beginning. However, to achieve
the error of 10−14, the computational cost of parareal with GMRES acceleration is
slightly higher. For the diffusive case, the difference is slightly larger with a small
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Fig. 19 Computational cost comparison of the error between approximate solution and fine sequential
solution in 2-norm for advection-reaction-diffusion equation , T = 1, NC = 20,m = 2, with �x = 0.2
(left) and �x = 0.05 (right)
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Fig. 20 Error between approximate solution and fine sequential solution (first column) and relative resid-
ual (second column) in 2-norm for advection-reaction-diffusion equation with the periodic boundary
condition, T = 1, NC = 20,m = 5 for advective case (first row), and for diffusive case (second row),
with backward Euler for both propagators

0 1 2 3 4 5 6 7

Computational cost normalized by sequential time-stepping

10-15

10-10

10-5

100

E
rr

or

T=1

Parareal
Parareal with GMRES acceleration

0 1 2 3 4 5 6 7 8 9

Computational cost normalized by sequential time-stepping

10-15

10-10

10-5

100

E
rr

or

T=1

Parareal
Parareal with GMRES acceleration

Fig. 21 Computational cost comparison of the error between approximate solution and fine sequential
solution in 2-norm for advection-reaction-diffusion equation with the periodic boundary condition, T =
1, NC = 20,m = 5 for advective case (left) and for diffusive case (right), with backward Euler for both
propagators
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advantage for parareal with GMRES acceleration at the beginning. Nevertheless, as
the advective case, the computational cost of parareal with GMRES acceleration is
1.3 times higher to reach the error of 10−14.

Additionally in the end of this section, we show the convergence behaviors of
parareal and parareal with GMRES acceleration with a different method for the fine
propagator. In particular, we keep using backward Euler in time for the coarse prop-
agator but Runge-Kutta 4 for the fine propagator. For the discretization in space, we
keep the same centered finite difference method for both coarse and fine propagators.
Following the same setting with the periodic boundary condition, the convergence
results are displayed in Fig. 22. Specifically, for the advective case, a convergence
to the error of 10−13 is obtained for parareal after 15 iterations while parareal with
GMRES acceleration reaches the same error after 12 iterations. For the diffusive case,
a slower convergence rate than the advective case is observed for both parareal and
parareal with GMRES acceleration. Specifically, it takes 15 iterations for parareal
while parareal with GMRES acceleration needs 13 iterations to converge to the error
of 10−14. We also observe that parareal with GMRES acceleration slightly improves
the convergence in both cases as the previous results in Fig. 20. Moreover, with the
more accurate discretization for the fine propagator Runge-Kutta 4, the convergence
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Fig. 22 Error between approximate solution and fine sequential solution (first column) and relative resid-
ual (second column) in 2-norm for advection-reaction-diffusion equation with the periodic boundary
condition, T = 1, NC = 20,m = 5 for advective case (first row), and for diffusive case (second row),
with backward Euler for the coarse propagator and Runge-Kutta 4 for the fine propagator
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Fig. 23 Computational cost comparison of the error between approximate solution and fine sequential
solution in 2-norm for advection-reaction-diffusion equation with the periodic boundary condition, T =
1, NC = 20,m = 5 for advective case (left) and for diffusive case (right), with backward Euler for the
coarse propagator and Runge-Kutta 4 for the fine propagator

curves are slightly faster than the ones using backward Euler in Fig. 20. Specifically,
in the diffusive case, parareal with GMRES acceleration converges to the error of
10−14 after 13 iterations while it needs 16 iterations to reach the same error in case
of using backward Euler for the fine propagator as it can be seen in Fig. 20. We
also give in Fig. 23 a comparison of the two methods in terms of their computational
costs. It can be seen that the computational costs of both plain parareal and parareal
with GMRES acceleration are slightly higher than the ones in the previous test case
in Fig. 21 for the avective case. Specifically, the difference is not very significant at
the beginning, however to reach an error of 10−14, the computational cost of parareal
with GMRES acceleration is 1.4 times higher than the one of plain parareal. For the
diffusive case, the same observation is obtained as the previous test case in figure 21.

We observe from numerical experiments in this section that GMRES acceleration
is helpful at the beginning when the overhead is cheap, and becomes less helpful
as the orthogonalization cost increases. One potential choice is to exploit a restart
strategy after a few iterations.

7 Conclusions and perspectives

In this paper, we propose an interpretation of parareal algorithm based on a domain
decomposition strategy that we refer to as SC two-level additive Schwarz in time
preconditioner. This preconditioner in time is equivalent to MGRIT with F-
relaxation. We study variants of this preconditioner and show that additional fine
or coarse propagation steps lead to MGRIT with FCF-relaxation, MGRIT with
F(CF)2-relaxation, or overlapping parareal. We also find that SCS2 two-level additive
Schwarz in time preconditioner converges faster thanMGRIT with F(CF)2-relaxation
or overlapping parareal on long time interval and with a large number of subdomains.
The efficiency of the variants as well as their computational costs has been shown
in numerical experiments, especially on long time intervals. Theoretical convergence
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bounds are verified and numerical results show that they are sharp especially for long
time intervals. We also propose using Krylov subspace method, especially GMRES,
to accelerate the parareal algorithm. We find that for a specific case of the advection-
reaction-diffusion equation in which the advection and reaction coefficients are large
compared to the diffusion term, the error of parareal stagnates or even increases for
the first iterations, while GMRES provides a faster decrease of the error. This phe-
nomena as well as the convergence analysis of parareal with GMRES acceleration
will be studied in our future work.
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