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Abstract
We present a novel algorithm, inspired by the recent BRASIL algorithm, for best uni-
form rational approximation of real continuous functions on real intervals based on a
formulation of the problem as a nonlinear system of equations and barycentric inter-
polation. We derive a closed form for the Jacobian of the system of equations and
formulate a Newton’s method for its solution. The resulting method for best uniform
rational approximation can handle singularities and arbitrary degrees for numerator
and denominator. We give some numerical experiments which indicate that it typi-
cally converges globally and exhibits superlinear convergence in a neighborhood of
the solution. A software implementation of the algorithm is provided. Interesting aux-
iliary results include formulae for the derivatives of barycentric rational interpolants
with respect to the interpolation nodes, and for the derivative of the nullspace of a
full-rank matrix.

Keywords Rational approximation · Best uniform rational approximation ·
Newton’s method · Barycentric interpolation

1 Introduction

The best uniform rational approximation of real functions is a classical problem
with applications throughout mathematics and the sciences. There has been a recent
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resurgence of interest in the fast computation of best uniform rational approxima-
tions, motivated by applications in solving fractional diffusion problems [17, 19, 22]
and more generally in the context of rational Krylov methods for computing matrix
functions [8, 9, 16]. The classical algorithm for best uniform rational approximation
is the Remez algorithm (see, e.g., [6, 7, 29]), which is based on the idea of itera-
tively determining the nodes in which the approximation error equioscillates. The
severe numerical instabilities which occur in this approach are usually dealt with
using extended precision arithmetic (as in [29]). Novel approaches for stabilizing the
Remez algorithm based on the so-called barycentric rational formula were recently
proposed in [13, 24].

Recently, a new algorithm for computing best rational approximations was pro-
posed based on a different idea [23]: observing that the best approximation must
interpolate the target function in a number of nodes, we can take these interpolation
nodes as our unknowns to be found, rather than the equioscillation nodes as is done in
the Remez algorithm. The iterative BRASIL algorithm [23] achieves this by a simple
heuristic, namely, by rescaling the lengths of the intervals between the interpola-
tion nodes so as to equilibrate the local errors. Rational interpolation is performed
using the barycentric formula. This novel approach appears to enjoy excellent numer-
ical stability. However, as a fixed-point iteration, its convergence rate is only linear,
whereas the Remez algorithm converges quadratically in a neighborhood of the exact
solution. Therefore our goal for the present work is to construct an algorithm which
seeks the interpolation nodes while converging superlinearly. Furthermore, whereas
the BRASIL algorithm usually only works well for computing rational approxima-
tions with equal degree for the numerator and denominator, we seek a method which
can compute approximations with arbitrary degrees.

To this end, we take as a starting point our recent work on a Newton’s method for
best polynomial approximation [14] and extend it to the rational case. Just as in this
prior work, we reformulate the problem of best uniform approximation as a system of
nonlinear equations using the equioscillation property with the interpolation nodes as
the unknowns. The computation of the Jacobian matrix of this system is significantly
more involved in the rational case. It involves computing derivatives of barycentric
interpolants with respect to the interpolation nodes, which in turn requires, in a cer-
tain sense, to compute the derivative of the nullspace of a matrix. We will make use
of some concepts from differential geometry, interpreting these spaces as points on
the Grassmann manifold, in order to derive formulae for such derivatives which are
of more general interest in their own right.

A widely used code for best uniform rational approximation is the minimax
routine of the Matlab package Chebfun [11] which is based on a barycentric formu-
lation of the Remez algorithm with adaptively chosen support points [13]. However,
it was previously observed [23] that this routine does not seem to work well for func-
tions with singularities on or close to the boundary of the approximation interval,
typically breaking down already at low rational degrees. In fact, these issues served
as the initial motivation for the development of the BRASIL algorithm.

The remainder of the paper is structured as follows: in Section 2, we state the prob-
lem of best uniform rational approximation, reformulate it as a system of nonlinear
equations and propose a Newton’s method to solve it. In Section 3, we employ the
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barycentric rational formula to derive an interpolation scheme with arbitrary degrees
of the numerator and denominator. In Section 4, we apply tools from differential
geometry to derive formulae for the derivative of the orthogonal complement of first
orthogonal and then general matrices. We apply these results to our interpolation for-
mula in order to obtain derivatives of barycentric interpolants in Section 5, which
yields an identity for the Jacobian of our nonlinear system. In Section 6, we com-
bine all previous results and state the algorithm for best rational approximation in
its entirety, and finally present some numerical examples and concluding remarks in
Section 7.

2 Best uniform rational approximation as a system of nonlinear
equations

We seek to determine a rational function r ∈ Rm,n with degree of the numerator
at most m and of the denominator at most n which best approximates a given con-
tinuous function f ∈ C[a, b] in a real interval [a, b] in the maximum norm. It is
a classical result that such a best approximation exists and is unique [2, 28]. Let
m∗ ≤ m and n∗ ≤ n denote the actual degrees of the best approximation r; then
d = min{m − m∗, n − n∗} is the so-called defect of r . The following equioscillation
result characterizes the best rational approximation.

Theorem 1 [2, 28] A rational function r ∈ Rm,n is the best uniform rational approx-
imation to f ∈ C[a, b] if and only if the error f − r equioscillates between at least
m + n + 2 − d extreme points, where d is the defect of the best approximation.

We will in the following always assume that d = 0, but problems with d > 0 can
be treated by reducing the degrees m and n correspondingly. Therefore, we assume
that there exist m + n + 2 distinct local maxima (yj )

m+n+1
j=0 in [a, b] of the error

function such that

f (yj ) − r(yj ) = λ(−1)j , j = 0, . . . , m + n + 1,

where λ = ±‖f − r‖∞. Due to continuity, there must exist m + n + 1 distinct
interpolation nodes (xi)

m+n
i=0 in (a, b) with

r(xi) = f (xi), i = 0, . . . , m + n,

interleaving the equioscillation nodes in the sense

a ≤ y0 < x0 < y1 < . . . < ym+n < xm+n < ym+n+1 ≤ b.

Let x ∈ X denote a vector of interpolation nodes in the admissible set

X := {x ∈ (a, b)m+n+1 : x0 < · · · < xm+n}
of nodes in increasing order. We denote by y �→ ρ(x, y) ∈ Rm,n the rational function
which interpolates f in the nodes x, that is, ρ(x, xj ) = f (xj ) for j = 0, . . . , m + n.
It should be noted that, unlike in the polynomial case, such an interpolating ratio-
nal function may not exist due to so-called unattainable points [27], but this is the
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exceptional case and the arguments above show that the interpolant exists at least for
those interpolation nodes associated with the best approximant. We will implicitly
assume the existence of the interpolant in the following. In each interval (xj−1, xj ),
j = 0, . . . , m + n + 1 (letting x−1 := a and xm+n+1 := b), let

yj := yj (x) := arg max
y∈(xj−1,xj )

|f (y) − ρ(x, y)|, j = 0, . . . , m + n + 1, (1)

denote the abscissa where the interpolation error |f − ρ| is largest. Let

Φ(x) := (f (yj ) − ρ(x, yj ))
m+n+1
j=0 , w := ((−1)j )m+n+1

j=0 .

Theorem 2 If there exists λ ∈ R such that

F(x, λ) := Φ(x) − λw = 0, F : Rm+n+2 → R
m+n+2, (2)

then ρ(x, ·) is the best uniform rational approximation to f with error |λ| =
‖f − ρ(x, ·)‖∞.

Proof By definition, ‖f − ρ(x, ·)‖∞ = maxm+n+1
j=0 |f (yj ) − ρ(x, yj )| = |λ|, and

thus the error f − ρ(x, ·) equioscillates in (yj )
m+n+1
j=0 . The statement follows with

Theorem 1.

Thus, if we find a solution (x, λ) of the nonlinear equation (2), we have also
found the best uniform rational approximation ρ(x, ·) to f , and λ is the signed best
approximation error.

We propose to solve (2) using Newton’s method. Given initial guesses for the
nodes x0 ∈ X and the signed error λ0 ∈ R, a Newton step for the solution of (2) is
given by

d0 := (d0
x, d

0
λ) := −(∇F(x0, λ0))−1F(x0, λ0) ∈ R

m+n+2.

We must keep the interpolation nodes in the admissible set X , that is, within the
interval (a, b) and in increasing order. To this end we take a damped step τd0 with
τ ∈ (0, 1] chosen according to

τ = max{2−t : t ∈ N0, x0 + 2−td0
x ∈ X }. (3)

Such a choice always exists since x0 ∈ X and X is an open set. We then take the
Newton step

x1 := x0 + τd0
x, λ1 := λ0 + τd0

λ

and repeat the procedure until convergence. The computation of the Jacobian matrix
of F will be discussed in the following sections.

3 Barycentric rational interpolation with arbitrary degrees

We will use the so-called barycentric rational formula to solve the rational interpo-
lation problems that our method relies on; see [4, 5, 25] and the references therein
for details on this formula. One of the advantages of the barycentric formula is its
superior numerical stability [4, 21, 27]. A recent and popular algorithm for rational
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approximation using this representation is the AAA algorithm [26], which however
does not compute minimax approximations.

For N ∈ N0 and vectors of real nodes, values, and weights, respectively,

z = (zi)
N
i=0, f = (fi)

N
i=0, w = (wi)

N
i=0,

where the nodes (zi) are pairwise distinct, the barycentric formula of degree N is
given by

r(z, f,w, x) :=
∑N

i=0
fiwi

x−zi
∑N

i=0
wi

x−zi

. (4)

It can represent arbitrary rational functions in RN,N . For any node zi with wi 
= 0,
we have the interpolation condition r(z, f,w, zi) = fi , and thus we immediately
get interpolation in the N + 1 nodes (zi) if we choose the weights nonzero. The
barycentric formula is invariant with respect to rescaling of the weights by a nonzero
factor.

To achieve interpolation with fixed degrees (m, n) in m + n + 1 nodes, we set
N := max{m, n} and N̂ := min{m, n} = m + n − N . We separate the m + n + 1
given nodes x into N + 1 primary nodes z = (zi)

N
i=0, which serve as the nodes in the

barycentric formula (4), and N̂ secondary nodes ẑ = (ẑi)
N̂
i=1. The vector of values

is just f = (f (zi))
N
i=0. In order to enforce interpolation at the secondary nodes ẑ, the

weight vector w is chosen to lie in the nullspace of the Löwner matrix L ∈ R
N̂×(N+1)

with entries

Lk� = f (ẑk) − f (z�)

ẑk − z�

, k = 1, . . . , N̂, � = 0, . . . , N . (5)

If m = n, the Löwner matrix L has shape N × (N + 1); assuming it has full rank,
then there are no unattainable points, the weight vector w is unique up to scaling and
the rational interpolant is uniquely determined [23–25].

If m 
= n, we need N − N̂ additional conditions on w in order to enforce the
correct degrees of the numerator and the denominator. Following [3], we introduce
the matrices A(z, f, μ) ∈ R

μ×(N+1) with entries

[A(z, f, μ)]k� = f�z
k
�, k = 0, . . . , μ − 1, � = 0, . . . , N . (6)

It is shown in [3, Theorem 3.1] that the numerator of r has degree at most m iff
w ∈ ker A(z, f, N − m), and the denominator of r has degree at most n iff w ∈
ker A(z, 1, N − n). Here 1 ∈ R

N+1 is the constant vector of ones. Thus, by choosing
w from the nullspace of

B :=
⎡

⎣
L

A(z, 1, N − n)

A(z, f, N − m)

⎤

⎦ ∈ R
N×(N+1), (7)

we obtain our interpolant r(z, f,w, x) of degree (m, n) through m+n+1 given nodes.
The upper block L guarantees the interpolation condition, and the two lower blocks
(of which at most one has a nonzero number of rows) enforce the degree constraint.
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4 Derivative of the nullspace of a matrix

For computing derivatives of rational interpolants, we will require, given a matrix
and the direction of its derivative, respectively, B, Ḃ ∈ R

N×(N+1), a formula for the
corresponding derivative ẇ of the vector w spanning the nullspace. Equivalently, we
can consider the transpose BT and compute the derivative of the orthogonal comple-
ment of its range since ker B = (span BT )⊥. To this end, we will consider the space
spanned by BT as a point of the Grassmannian manifold GN+1,N which consists of
all N-dimensional subspaces of RN+1. Useful concepts for computing with both the
Grassmann and the Stiefel manifolds which we will make heavy use of are given in
[1, 12].

4.1 Derivative of the orthogonal complement in the Stiefel manifold

We first consider the case of orthonormal matrices. Let k ≤ n be integers and denote
by

Vn,k = {Y ∈ R
n×k : YT Y = Ik}, Gn,k = {span Y : Y ∈ Vn,k}

the (compact) Stiefel manifold of matrices with orthonormal columns and the Grass-
mann manifold of k-dimensional subspaces of Rn, respectively. Let a matrix Y ∈ Vn,k

be given and choose Z ∈ Vn,n−k such that their concatenation
[
Y Z

] ∈ R
n×n is orthogonal. (8)

In other words, Z forms an orthonormal basis for the orthogonal complement
(span Y )⊥ of the range of Y .

The tangent spaces TY Vn,k at a point Y ∈ Vn,k of the Stiefel manifold and
Tspan Y Gn,k at a point span(Y ) ∈ Gn,k of the Grassmann manifold may be
parameterized as (cf. [12])

TY Vn,k = {Y Ã + ZB̃ : Ã ∈ R
k×k skew-symmetric, B̃ ∈ R

(n−k)×k}, (9)

Tspan Y Gn,k = {ZB̃ : B̃ ∈ R
(n−k)×k}. (10)

We now wish to derive a formula for the derivative of Z as Y varies. From (8)
it follows that YT Y = Ik , ZT Z = In−k , YT Z = 0, and YYT + ZZT = In. By
differentiation we obtain

Ẏ T Y + YT Ẏ = 0, ŻT Z + ZT Ż = 0, Ẏ Y T + Y Ẏ T + ŻZT + ZŻT = 0. (11)

The first two identities imply that the matrices YT Ẏ and ZT Ż are skew-symmetric.
In fact (cf. [12]), this is equivalent to the fact that Ẏ lies in the tangent space TY Vn,k

at Y , and analogously Ż ∈ TZVn,n−k . It follows then from (9) that the matrix Ż has
a representation

Ż = ZA + YB, A ∈ R
(n−k)×(n−k) skew-symmetric, B ∈ R

k×(n−k).

Inserting this ansatz into the third identity in (11) and using the skew-symmetry of
A, we obtain

YBZT + ZBT YT = −Ẏ Y T − Y Ẏ T .
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Multiplying from the left with YT and from the right with Z and using orthogonality
yields

B = −Ẏ T Z.

Note that A can be chosen arbitrarily save for being skew-symmetric; therefore, we
simply set A = 0. In fact, this is the canonical choice here since, due to (10), it means
that

Ż = −Y Ẏ T Z (12)

lies in the tangent space Tspan ZGn,n−k to the space spanned by Z considered as a
point of the Grassmannian Gn,n−k . Since we are only interested in the spanned space
and not the concrete matrix representation, this is the correct setting. Likewise, it is
easy to see that Ż depends only on the second term of Ẏ = Y Ã + ZB̃, namely,
the contribution ZB̃ ∈ Tspan Y Gn,k that induces a change in the space spanned by
Y . Therefore, we can consider the mapping Ẏ �→ −Y Ẏ T Z as a homomorphism
(indeed, an isomorphism) between the tangent spaces Tspan Y Gn,k → Tspan ZGn,n−k

which both have dimension k(n − k). In terms of differential geometry, it represents
the derivative of the isomorphism span Y �→ (span Y )⊥, mapping Gn,k → Gn,n−k ,
which associates to a space its orthogonal complement.

In brief, we have shown the following theorem.

Theorem 3 Let a k-dimensional subspace span Y of Rn and its (n − k)-dimensional
orthogonal complement span Z be given, where Y ∈ Vn,k , Z ∈ Vn,n−k are matrices
with orthonormal columns. Then, given a tangent direction Ẏ ∈ Tspan Y Gn,k for the
former space, the corresponding derivative of the orthogonal complement has the
tangent direction Ż = −Y Ẏ T Z ∈ Tspan ZGn,n−k .

4.2 Derivative of the orthogonal complement for a general matrix

The results of Section 4.1 require the matrix Y under consideration to be orthonor-
mal. We now extend the result for the derivative of the orthogonal complement to
arbitrary matrices of full rank using two different approaches, the singular value
decomposition and the QR decomposition.

4.2.1 Using the singular value decomposition

Let A ∈ R
n×k have full rank k and denote by

A = Y�V T , Y ∈ Vn,k, � = diag(σ1, . . . , σk), V ∈ Vk,k

its (thin) singular value decomposition (SVD). Choose a corresponding Z ∈ Vn,n−k

such that YYT + ZZT = In as in Section 4.1. One way to do this is by computing
the full, rather than thin, SVD of A and using the n−k last left-singular vectors as Z.

Clearly, span A = span Y , and we are interested in computing the derivative of
the orthogonal complement of that space given a perturbation Ȧ ∈ R

n×k of A. We
will achieve this by computing Ż via identity (12), for which we need an expression
for ZT Ẏ in terms of Ȧ. We use here some ideas for computing the derivative of the
SVD (see, e.g., [15]), but our task is simplified by the fact that we require only the
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tangent direction to the left-singular space. Since Y ∈ Vn,k , we have, arguing as in
Section 4.1, that YT Ẏ is skew-symmetric and therefore

Ẏ = Y Ã + ZB̃, Ã ∈ R
k×k skew-symmetric, B̃ ∈ R

(n−k)×k .

We are only interested in the tangent vector to the space spanned by Y , that is, the
component ZB̃. Taking the derivative of the SVD identity A = Y�V T , we obtain

Ȧ = Ẏ�V T + Y �̇V T + Y�V̇ T .

Inserting the ansatz for Ẏ and multiplying from the left with ZT and from the right
with V , we obtain

ZT ȦV = B̃�

from which we can compute B̃. We conclude

ZT Ẏ = B̃ = ZT ȦV �−1,

which we can insert in (12) to obtain the compact expression

Ż = −Y�−1V T ȦT Z (13)

for the derivative of Z given a perturbation of A in the tangent direction Ȧ. More
precisely, Ż ∈ Tspan ZGn,n−k represents the tangent direction along which the space
span(Z) = span(A)⊥ ∈ Gn,n−k is perturbed.

4.2.2 Using the QR decomposition

Let A ∈ R
n×k have full rank k and denote by

A = QR, Q ∈ Vn,k, R ∈ R
k×k upper triangular

its (reduced) QR decomposition. Choose a corresponding Z ∈ Vn,n−k such that
QQT +ZZT = In as in Section 4.1. Such a Z may be obtained by computing the full
QR decomposition and splitting the obtained orthogonal matrix into the components[
Q Z

] ∈ R
n×n. Similar to above, we take derivatives to obtain

Ȧ = Q̇R + QṘ, Q̇T Q + QT Q̇ = 0,

and we can again conclude from the second identity that Q̇ permits a representation

Q̇ = QÃ + ZB̃, Ã ∈ R
k×k skew-symmetric, B̃ ∈ R

(n−k)×k .

Sine Q here plays the role of Y in (12), we are only interested in ZT Q̇ = B̃. Inserting
into the identity for Ȧ, we obtain

Ȧ = Q(ÃR + Ṙ) + ZB̃R.

Multiplying from the left with ZT , we obtain B̃ = ZT ȦR−1 and finally, by inserting
into (12),

Ż = −QR−T ȦT Z. (14)

Either (13) or (14) may be used to compute the Jacobi matrix for our Newton’s
method. In our experience, the version (14) based on the QR decomposition is both
faster and leads to smaller numerical errors, for which reason we prefer it.

We summarize both main results of this section in the following theorem.
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Theorem 4 Let a k-dimensional subspace span A of Rn and its (n − k)-dimensional
orthogonal complement span Z be given, where A ∈ R

n×k has full rank and Z ∈
Vn,n−k has orthonormal columns. Further, let a perturbation of the former space in
a tangent direction Ȧ ∈ R

n×k be given.

– Given the thin singular value decomposition A = Y�V T , the correspond-
ing derivative of the orthogonal complement has the tangent direction Ż =
−Y�−1V T ȦT Z ∈ Tspan ZGn,n−k .

– Given the reduced QR decomposition A = QR, the corresponding derivative
of the orthogonal complement has the tangent direction Ż = −QR−T ȦT Z ∈
Tspan ZGn,n−k .

5 Derivatives of the rational interpolant

5.1 Partial derivatives of the barycentric formula

The barycentric formula (4) may be written as

r(z, f,w, x) = q(z, f,w, x)

q(z, 1,w, x)
, q(z, f,w, x) :=

N∑

i=0

fiwi

x − zi

.

Since we will require the derivatives of the interpolant only at the local maxima of
the error function which lie between the interpolation nodes, we may assume x 
= zj .
By elementary calculations we then obtain for j = 0, . . . , N that

∂q

∂zj

(z, f,w, x) = fjwj

(x − zj )2
,

∂q

∂fj

(z, f,w, x) = wj

x − zj

,

∂q

∂wj

(z, f,w, x) = fj

x − zj

and therefore

∂r

∂zj

(z, f,w, x) = q(z, (wj (fj − fi))
N
i=0,w, x)

(x − zj )2q2(z, 1,w, x)
, (15)

∂r

∂fj

(z, f,w, x) = r(z, ej ,w, x), (16)

∂r

∂wj

(z, f,w, x) = q(z, (fj − fi)
N
i=0,w, x)

(x − zj )q2(z, 1,w, x)
, (17)

where ej ∈ R
N+1 is the unit vector pointing in the j -th coordinate direction (here j

is 0-based).
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5.2 Derivatives of the rational interpolant with respect to the nodes

In the following we assume sufficient smoothness, in particular, f ∈ C1[a, b]. Tak-
ing the total derivative of the interpolating rational function ρ(x, x) = ρ((z, ẑ), x)

with respect to the primary and secondary nodes yields, by the chain rule,

dρ

dzj

((z, ẑ), x) = ∂r

∂zj

+ ∂r

∂fj

f ′(zj ) +
N∑

k=0

∂r

∂wk

∂wk(z, ẑ)
∂zj

, j = 0, . . . , N,

dρ

dẑj

((z, ẑ), x) =
N∑

k=0

∂r

∂wk

∂wk(z, ẑ)
∂ẑj

, j = 1, . . . , N̂, (18)

where we have omitted the arguments (z, f,w, x) of r for brevity. It therefore remains
to compute the partial derivatives of the weight vector, which spans the nullspace of
B, with respect to the interpolation nodes. To this end, we first compute the partial
derivatives of the matrix B from (7) and then apply Theorem 4.

The derivatives of the Löwner matrix L from (5) with respect to the primary and
secondary nodes, respectively, are

∂Lk�

∂zj

= δj�

ẑk − z�

(
Lk� − f ′(z�)

)
, j = 0, . . . , N,

∂Lk�

∂ẑj

= δjk

ẑk − z�

(
f ′(ẑk) − Lk�

)
, j = 1, . . . , N̂ . (19)

Note that the derivative of L by a primary node contains only a single nonzero col-
umn, whereas the derivative by a secondary node contains only a single nonzero
row.

The derivatives of the degree constraint matrices (6) are, for k = 0, . . . , μ− 1 and
� = 0, . . . , N , given by

∂[A(z, f, μ)]k�

∂zj

= f ′(z�)z
k
� + kf (z�)z

k−1
� ,

∂[A(z, 1, μ)]k�

∂zj

= kzk−1
� , j = 0, . . . , N, (20)

where in both cases the last term is omitted for k = 0. Here we used f = (f (zi))
N
i=0.

Since these matrices do not depend on the secondary nodes, the derivatives by ẑj ,
j = 1, . . . , N̂ , are 0.

For each primary or secondary node zj or ẑj , we can now compute the corre-
sponding partial derivative of the matrix B from (7) with respect to that node,

Ḃzj
:= ∂B

∂zj

∈ R
N×(N+1), Ḃẑj

:= ∂B

∂ẑj

∈ R
N×(N+1),

by simply combining the formulae (19) and (20) for the partial derivatives of its
components.

As described in Section 3, the weight vector w = w(z, ẑ) lies in the nullspace of
the matrix B. Therefore, we are interested in the derivative ẇ of the vector spanning
the nullspace when a derivative of B is taken, for which we use Theorem 4.
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Let w ∈ ker B with ‖w‖ = 1, and let Ḃ ∈ R
N×(N+1) denote one of the derivatives

Ḃzj
or Ḃẑj

. Denoting by

BT = QR

the reduced QR decomposition of BT with Q ∈ R
(N+1)×N orthonormal and R ∈

R
N×N upper triangular, we obtain from (14) that the corresponding derivative of the

nullspace vector is
ẇ = −QR−T Ḃw.

Thus,

∂wk(z, ẑ)
∂zj

= [−QR−T Ḃzj
w]k, ∂wk(z, ẑ)

∂ẑj

= [−QR−T Ḃẑj
w]k, (21)

and Theorem 4 is applicable since the barycentric formula depends only on the one-
dimensional space spanned by w, not the vector itself.

By combining (18), (15)–(17) and (21) we can now compute, for fixed y ∈ [a, b]
which does not coincide with any of the primary nodes, the gradient

dρ

dxj

(x, y), j = 0, . . . , m + n + 1

of the interpolating rational function ρ with respect to the interpolation nodes.

5.3 Computing the Jacobian

For computing the Jacobian of Φ and therefore F , we require the total deriva-
tives dρ

dxj
(x, yi(x)) with x = (z, ẑ), where the abscissae of the local maxima yi ,

i = 0, . . . , m + n + 1, themselves depend on x; see (1). By the chain rule,

d

dxj

ρ(x, yi(x)) = ∂ρ

∂y
(x, yi)

∂yi

∂xj

+ dρ

dxj

(x, yi),

where in the first term the derivative of the rational interpolant is taken with respect
to the evaluation point yi , whereas in the second term the derivative is taken with
respect to the interpolation node xj while the evaluation point yi is kept constant. It
follows that

∂Φi

∂xj

(x) = ∂

∂yi

(f (yi) − ρ(x, yi))
∂yi

∂xj

− dρ

dxj

(x, yi).

Since the nodes yi are local extrema of the error f − ρ(x, ·), the term
∂

∂yi
(f (yi) − ρ(x, yi)) vanishes whenever yi ∈ (a, b). On the boundary, that is if

yi ∈ {a, b}, the product of ∂
∂yi

(f (yi) − ρ(x, yi)) and ∂yi

∂xj
is 0 by a duality argument.

Thus,

[∇Φ]ij = ∂Φi

∂xj

(x) = − dρ

dxj

(x, yi), i = 0, . . . , m + n + 1, j = 0, . . . , m + n,

meaning that the dependence of the local maxima yi on x can be ignored while com-
puting the Jacobian matrix. These expressions are now computed as described in
Section 5.2. The Jacobian of F is then given by

∇F = [ ∇Φ − w
] ∈ R

(m+n+2)×(m+n+2). (22)
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6 The algorithm for best uniform rational approximation

The complete procedure for best uniform rational approximation is given in Algo-
rithm 1. In the following we discuss some implementation issues.

– The partitioning of the node indices k = 0, . . . , m + n + 1 into primary and
secondary ones can be done in various ways as long as it is done consistently. For
stability, we enforce that each primary node interval (zj−1, zj ) contains at most
one secondary node, which is possible since there are always fewer secondary
than primary nodes. Such alternating partitions were described in [24], where it
was demonstrated numerically that this significantly improves the conditioning
of the interpolation matrix.

– The local maxima yi may be computed efficiently by means of a golden section
search; see [23] for details.

– An initial guess for the error λ is obtained in the first iteration of the algorithm
by taking the mean of the local error maxima.

– For the evaluation of formulae (18)–(20), the algorithm requires the first deriva-
tive f ′, which we assume to be specified along with f itself. If it is not available,
finite difference approximations could be used.

For higher values of the degrees m and n, numerical issues arise, and therefore
an implementation of the algorithm with extended precision arithmetic is required
in these cases. In particular, these issues arise in two places: while computing the
decomposition (SVD or QR) of the interpolation constraint matrix BT and while
solving the linear system with the Jacobian ∇F . From (7), we see that BT contains
two Vandermonde-like matrices with N −n and N −m columns, respectively, which
are well-known to be poorly conditioned. The problem is perhaps easier to observe in
the SVD variant (13): although computing the SVD is a numerically stable operation,
only the absolute error in each singular value is in general uniformly bounded (see,
e.g., [10, 20]), which may incur arbitrarily large relative error for very small singular
values. Thus, large errors may occur when forming the inverse �−1 of the singu-
lar values. The QR variant (14) exhibits similar issues with some diagonal entries
of R becoming very small. It should be noted that numerically more advantageous
procedures for finding the nullspace of these Vandermonde-like matrices have been
proposed in [3, 13], but at present it is unclear how to compute the analytical Jacobian
of F when using these approaches.

The solution of the linear system with the Jacobian ∇F is another source of poten-
tially large numerical errors. In particular if the interpolation nodes have strongly
varying orders of magnitude (as is the case when the nodes are clustered towards a
boundary singularity of f ), this matrix may become very poorly conditioned, often
reaching condition numbers significantly larger than 1016 and thus necessitating the
use of extended precision arithmetic.

Finally, here are some options for choosing the initial nodes at the start of the
algorithm:

– equispaced, i.e., xi = a + (b − a) i+1
m+n+2 , i = 0, . . . , m + n;
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Algorithm 1 Newton’s method for best uniform rational approximation.

– Chebyshev nodes of the first kind, i.e., xi = a + (b−a)(1− 1
2 cos( 2i+1

2(m+n+1)
π)),

i = 0, . . . , m + n;
– via the initialization procedure for the BRASIL algorithm [23] where nodes are

iteratively placed at the abscissa of the largest interpolation error;
– by performing a number of iterations of the BRASIL algorithm [23] itself.

Although the BRASIL algorithm was originally only specified for degrees (n, n),
it can straightforwardly be extended to degree (m, n) rational approximation by
adopting an interpolation routine along the lines of that described in Section 3,
although it tends to be numerically less robust in this case;

– by re-using the interpolation nodes of a ”neighboring” approximation when com-
puting several approximations with varying degree. For instance, after computing
the nodes associated with the best approximation with degrees (m, n), these
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nodes will often be good starting values for the best approximation with degree
(m+1, n−1) or (m−1, n+1), which both have the same total number of nodes.

Generally, we observe that the step size choice (3) is remarkably effective at estab-
lishing global convergence for our Newton’s method, and in our examples we
obtained convergence for all possible choices of initial nodes as long as the resulting
interpolant does not possess a pole within the interval (a, b). However, the number
of iterations can be significantly reduced by choosing good initial nodes, and either
the BRASIL initialization routine or BRASIL itself usually do a good job at this.

7 Numerical examples

In the following we demonstrate the performance of our novel method, Algorithm
1, in several examples. The algorithm was implemented in Python using the second
author’s baryrat1 software package for barycentric rational approximation. The
used implementation of the algorithm is now also publicly available in that package.
For extended precision calculations, the gmpy22 package was used. In all examples,
the stopping criterion used for the algorithm was the reduction of the Euclidean norm
of the residual (2) below ε = 10−16.

The results were obtained on a Linux workstation with an Intel Xeon E-2276G
CPU and 32 GB RAM.

7.1 Example 1

We compute the best rational approximation in Rm,n of the function

f1(x) = x1/4

1 + 10x1/4
, x ∈ [0, 1],

where we vary the degrees m and n both of the numerator and the denominator.
This example is motivated by applications in fractional diffusion equations and has
been studied in several past publications [14, 18, 23]. As initial nodes, we choose the
nodes obtained using 100 iterations of the BRASIL algorithm [23], or those obtained
using only the initialization routine of BRASIL if the former encountered numerical
difficulties. The Newton algorithm was executed using 150 digits of precision. The
chosen tolerance ε = 10−16 leads to very accurate results: for example, for m =
n = 10, the values of the local maxima of the error function |f1(x) − r(x)| differ
from each other by less than 6 · 10−23. In other words, the equioscillation property of
Theorem 1 holds to machine precision.

In Table 1, we list both iteration numbers and obtained maximum norm errors for
varying degrees m and n. The very low iteration numbers on the diagonal are owed
to the fact that BRASIL performs very well in the case m = n, so the starting nodes
it produces are sufficiently close to the exact solution that the Newton algorithm can

1https://github.com/c-f-h/baryrat
2https://pypi.org/project/gmpy2/
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Table 1 Iteration numbers (in bold) and maximum errors for best rational approximation with varying
degrees m and n of the numerator and denominator, respectively, for Example 1

n 10 20 30 40

m

10 4 | 6.25727e-5 10 | 3.06698e-5 24 | 2.45576e-5 31 | 2.13897e-5

20 9 | 3.02712e-5 3 | 1.39512e-6 16 | 6.91611e-7 47 | 5.42020e-7

30 20 | 2.41140e-5 18 | 6.86436e-7 3 | 6.85694e-8 31 | 3.50347e-8

40 27 | 2.09309e-5 46 | 5.36097e-7 28 | 3.48498e-8 3 | 5.22661e-9

immediately take full steps, τ = 1, and converge superlinearly. On the other hand, for
the off-diagonal cases, BRASIL does not produce good initial nodes, and therefore
the Newton algorithm has an initial phase of roughly linear convergence with step
sizes τ from (3) often significantly smaller than 1 before entering the superlinear
convergence phase. This behavior will be demonstrated in a plot for Example 2 below.

In general, we observe that if the degrees m and n differ significantly, best uni-
form rational approximations are significantly more difficult to compute in terms
of numerical stability and iteration numbers. A large part of the numerical issues
stems from the matrix B given in (7) which contains as a submatrix a Vandermonde-
like matrix with max{m, n} − min{m, n} rows, leading to the well-known poor
conditioning associated with such matrices.

7.2 Example 2

To demonstrate that the algorithm also works in the case of reduced smoothness,
namely, f 
∈ C1, we perform best rational approximation in Rm,n of the absolute
value function,

f2(x) = |x|, x ∈ [−1, 1],

where in place of the first derivative, we use the sign function, f ′
2(x) = sign(x).

Due to f2 being an even function, we can only apply our algorithm with degrees
(m, n) such that m+n is odd and the total number of nodes is even. For our examples,
we always choose the degree of the denominator to be n = m − 1.

Since BRASIL cannot approximate the function f2, we instead use Chebyshev
nodes of the first kind as our starting nodes in this example. The calculations were
performed using 100 digits of precision.

In Fig. 1, left, we display the maximum norm error, iteration numbers and used
computation time for varying degrees m. Despite the poor choice of initial nodes, the
iteration numbers increase only moderately with the degree; we observe a roughly
linear dependence. A plot of the convergence history, meaning the residual norm
plotted over the iterations for varying degrees m ∈ {10, 20, 30, 40}, is shown in
the right-hand side of the figure. Again, we observe that after an initial phase of
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Fig. 1 Results for Example 2. Left: Degree m, maximum error, number of iterations, and computation
time, with n = m − 1. Right: Convergence history of the residual norm for four different choices of m

roughly linear convergence, where the step size τ is smaller than 1, we then enter the
superlinear regime where τ = 1 and full Newton steps are taken once sufficiently
close to the solution.

7.3 Conclusions and outlook

We have presented a Newton’s method for best uniform rational approximation with
arbitrary degrees (m, n) of numerator and denominator. The main advantages of the
novel method over the BRASIL algorithm [23] are its superlinear convergence and
the fact that it works well for arbitrary degrees, whereas BRASIL performs best
in the case m = n. The main drawback is the requirement of using extended pre-
cision arithmetic, whereas BRASIL can be performed using standard IEEE double
precision.

The goal of an algorithm based on the determination of the interpolation nodes
with the excellent numerical stability of BRASIL, but superlinear convergence,
remains elusive. One step towards the stabilization of our method would be to use
the Arnoldi process described in [13] for determining the nullspace of (7), but apply-
ing Newton’s method requires computing also the derivative of this procedure, which
appears challenging. Nevertheless, this may be a suitable topic for future work.

We stress that Theorems 3 and 4 on the derivatives of orthogonal complements of
full-rank matrices may be of general interest, and we could not find these formulae
in the literature.
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