
https://doi.org/10.1007/s11075-022-01476-8

ORIGINAL PAPER

Lattice BoltzmannMethod Analysis Tool (LBMAT)

Radek Fučı́k1 ·Pavel Eichler1 · Jakub Klinkovský1 ·Robert Straka2 ·
Tomáš Oberhuber1

© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
A general computational tool for the derivation of equivalent partial differential equa-
tions (EPDEs) is presented for the lattice Boltzmann method (LBM) with general
collision operators that include single relaxation time (SRT-LBM), multiple relax-
ation time (MRT-LBM), central LBM (CLBM), or cumulant LBM (CuLBM). The
method can be used to recover the advection–diffusion equations (ADEs), Navier–
Stokes equations (NSEs), and other problems that could be solved by LBM in
all dimensions. The derivation of EPDEs starts with the discrete (lattice) Boltz-
mann equation for raw moments and uses spatio-temporal Taylor expansion of these
moments to obtain a system of partial differential equations. Then, to recover the
desired ADEs or NSEs with additional partial differential terms up to a given order,
a computationally feasible algorithm is proposed to eliminate higher order moments.
The algorithm for the derivation of EPDEs, under the name of LBMAT (Lattice
Boltzmann Method Analysis Tool), is implemented in C++ using the GiNaC library
for symbolic algebraic computations. In order to optimize memory demands for
higher dimension LBM models such as D3Q27, a custom-tailored data structure for
storing the terms of partial differential expressions is proposed. The implementation
of LBMAT is available to the community as open-source software under the terms
and conditions of the GNU general public license (GPL).

Keywords Lattice Boltzmann method · Equivalent partial differential equation ·
MRT-LBM · Central LBM · Cumulant LBM

1 Introduction

The lattice Boltzmann method (LBM) [1–5] is based on the solution of the Boltz-
mann transport equation for density distribution functions in a discretized form and

� Radek Fučı́k
fucik@fjfi.cvut.cz

Extended author information available on the last page of the article.

Numerical Algorithms (2023) 93:1509–1525

Received: 25 April 2022 / Accepted: 30 November 2022 /Published online: 16 December 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01476-8&domain=pdf
http://orcid.org/0000-0001-7040-9184
mailto: fucik@fjfi.cvut.cz

serves as an efficient computational method for solving evolution equations such
as the Navier–Stokes equations (NSEs), advection–diffusion equations (ADEs), and
others [6, 7]. However, in contrast to traditional numerical methods like the finite
difference, finite elements, or finite volume methods, these macroscopic equations
are not the forerunners of the LBM numerical scheme. They need to be recovered
using various techniques that include the asymptotic analysis [8, 9] or the deriva-
tion of equivalent finite difference equations (EFDEs) and subsequent use of the
Taylor expansion [10] to obtain the desired equivalent partial differential equations
(EPDEs) or just direct Taylor expansion of the lattice Boltzmann equation [11, 12].
Alternatively, recent article [13] describes other techniques that could be used to
reproduce macroscopic equations. The objective of the recovery procedure is to pro-
duce a system of equivalent partial differential equations (EPDEs) up to a given order
of derivatives and, furthermore, to transform EPDEs into a system of spatial EPDEs
(SEPDEs) by eliminating higher-order temporal derivatives. SEPDEs are the evolu-
tion partial differential equations for macroscopic quantities which contain spatial
derivatives only, except for the first-order temporal derivatives of the quantities [10].
Consequently, these SEPDEs represent the recovered macroscopic equations (NSEs,
ADEs, or others) but with additional higher-order derivatives. However, especially
in 3D, the derivation of EPDEs may become extremely difficult due to the immense
complexity of the equations.

We explore the approach based on EFDEs and Taylor expansion which simplifies,
generalizes, and expands the method proposed in [10]. In order to derive EPDEs and
SEPDEs for a general LBM, a new method and a computational tool under the name
of LBMAT (Lattice Boltzmann Method Analysis Tool) is proposed and implemented.
LBMAT starts with EFDEs for macroscopic quantities (raw moments), employs Tay-
lor expansion of these quantities to obtain EPDEs, and uses sophisticated algorithms
to obtain the desired SEPDEs. LBMAT is implemented as an open-source software in
C++ using the GiNaC library [14] (www.ginac.de) for symbolic algebraic computa-
tions. Its applicability is demonstrated on a series of selected popular LBM variants
such as the single relaxation time (SRT-LBM), multiple relaxation time (MRT-LBM),
central LBM (CLBM) [15], and the cumulant LBM (CuLBM) [16, 17] for both ADE
and NSE. Furthermore, by its design, LBMAT can be potentially used to improve
or propose new collision operators, or even to explore possibilities of recovering
SEPDEs other than ADEs or NSEs.

The paper is organized as follows. Section 2 contains the description of LBM
together with the definition of raw and central moments, derivation of EFDEs, and
the assessment of all assumptions required for LBMAT to work. In Section 3, detailed
derivations of EPDEs and SEPDEs are presented and two algorithms, essential for
the derivation, are given. In Section 4, key points of the implementation are discussed
and the computational performance of LBMAT is demonstrated using computations
on a common personal computer. Then, in Section 5, SEPDEs in 3D are given
and briefly discussed. The resulting SEPDEs for all aforementioned LBM variants
(including their mutual comparison) are given in the Supplementary Materials for
popular models D1Q3, D2Q5, D2Q9, D3Q7, and D3Q27.

1510 Numerical Algorithms (2023) 93:1509–1525

www.ginac.de

2 Definitions and assumptions

2.1 Lattice Boltzmann equation

The lattice Boltzmann method solves the evolution equation for the discrete den-
sity distribution functions fi , i = 1, 2, . . . , q, on a lattice covering a computational
domain in R

d , where d denotes the dimension and q is the number of discrete veloc-
ities discretizing the velocity space [5]. For such a so-called DdQq model, the lattice
Boltzmann equation is given by

fi(t + δt , x + δtci) = fi(t, x) + Ci(f1(t, x), f2(t, x), . . . , fq(t, x)), (1)

where i = 1, 2, . . . , q, t ∈ R
+
0 and x ∈ R

d are the temporal and spatial coordinates,
respectively, δt is the time step, ci is the discrete velocity associated with fi , and Ci

denotes a discrete collision operator such as, for instance, one of the aforementioned
SRT-LBM, MRT-LBM, CLBM, or CuLBM. The distance between neighboring lat-
tice sites along each axis is considered the same and denoted by δl . Note that for those
components of ci (denoted by [ci]α) that are nonzero, δl = |[ci]α|δt , i = 1, 2, . . . , q

and α = 1, . . . , d .
In (1), for the sake of simplicity, all quantities are considered dimensionless

[4, 5]. Although δt = 1 and δl = 1 are employed in practice, symbols δt and δl are
used throughout the paper to underline the temporal and spatial stepping, especially
in the Taylor expansion later in Section 3.

In a vector form, (1) can be considered as
q∑

i=1

Eif (t + δt , x + δtci) = f (t, x) + C(f (t, x)), (2)

where f := (f1, f2, . . . , fq)T , C := (C1, C2, . . . , Cq)T , and Ei denotes the i-th
row-selector q × q matrix, for which [Ei]i,i = 1 is the only nonzero element, i =
1, 2, . . . , q.

Raw moments mα , which represent the macroscopic physical quantities [5], are
defined by

mα :=
q∑

i=1

fic
α
i , (3)

where α = (α1, α2, . . . , αd) ∈ N
d
0 denotes a multi-index (as a row vector) and cα

i :=∏d
j=1[ci]αj

j .

Definition 1 (Conserved raw moments) A raw moment mα is said to be conserved
during the collision, if it is a collision invariant [18], i.e., for all f ,

q∑

i=1

Ci(f)cα
i = 0. (4)

A particular choice of a linear combination of raw moments represented by
μ = (μ1, μ2, . . . , μq)T allows to transform (2) into EFDEs for these macroscopic

1511Numerical Algorithms (2023) 93:1509–1525

moments. The transformation is realized using

μ = Mf , (5)

where M is a constant, custom-selected nonsingular transformation matrix between
the discrete density distribution functions and raw moments.

2.2 Conserved and nonconserved quantities

Although M in (5) can be selected arbitrarily, additional assumptions need to be
placed upon the structure (ordering) of M in order to enable deriving the desired
SEPDEs.

Assumption 1 LetM be selected such that the components of μ = Mf are ordered
as

μ =
(

γ

ν

)
= (γ1, γ2, . . . , γc, ν1, ν2, . . . , νn)

T , (6)

where c and n denote the number of conserved (denoted by {γi := μi}ci=1) and
nonconserved (denoted by {νi := μc+i}ni=1) quantities, respectively, with c + n = q,
γ := (γ1, γ2, . . . , γc)

T , and ν := (ν1, ν2, . . . , νn)
T .

In Assumption 1, the conserved quantities (moments) γi , i = 1, 2, . . . , c, represent
the physical macroscopic quantities that are collision invariants [18] and for which we
aim to derive SEPDEs; e.g., c = 1 and c = d + 1 for ADEs and NSEs, respectively.
Similar to [10], γ1 is the zeroth-order raw moment (γ1 = μ1 = m0) that corresponds
to scalar quantities such as the density ρ (NSEs) or concentration (ADEs) and, in the
case of NSEs, γ2, . . . , γd+1 correspond to the hydrodynamic momentum components
(γ2 = μ2 = m(1,0,0) = ρv1, γ3 = μ3 = m(0,1,0) = ρv2, γ4 = μ4 = m(0,0,1) =
ρv3, where (v1, v2, v3)

T denotes the macroscopic velocity vector in 3D). Note that
the definition of the conserved quantities γ can be extended to represent a general,
custom-selected linear combination of conserved raw moments.

2.3 Equivalent finite difference equations

From (2), the EFDEs are obtained by substitution of f = M−1μ (i.e., the inverse of
(5)) and by multiplying (2) by M from the left. The resulting EFDEs read

[q∑

i=1

MEiM−1μ(t + δt , x + δtci)
]

− μ(t, x) = MC(M−1μ(t, x)). (7)

In (7), the first c equations can be regarded as those defining the conserved
quantities {γi}ci=1 and the rest of them as those associated with the nonconserved
quantities {νi}ni=1. Let the right-hand sides of (7) corresponding to c conserved and n

nonconserved equations be represented by vectors Rc and Rn with components

[
Rc(γ , ν)

]
i
:=

[
MC(M−1μ)

]

i
, i = 1, 2, . . . , c, (8a)

1512 Numerical Algorithms (2023) 93:1509–1525

and

[
Rn(γ , ν)

]
i
:=

[
MC(M−1μ))

]

c+i
, i = 1, 2, . . . , n, (8b)

respectively. In Assumption 1, the conserved quantities {γi}ci=1 defined by the
first c rows of M are collision invariants and as follows from Definition 1, the left
multiplication by M in (7) implies Rc = 0. Assumption 2 summarizes the properties
of Rn which are required for the derivation of EPDEs.

Assumption 2 Let Rn be expressed using the first-order Taylor polynomial with
respect to ν ∈ R

n at ν = �0 for all γ ∈ R
c as

Rn(γ , ν) = Q(γ) + L(γ)ν + N(γ , ν), (9a)

where Q(γ) := Rn(γ , 0), L(γ) := (DνRn) (γ , 0) is a n × n matrix (with Dν denot-
ing the differential operator with respect to ν), and N(γ , ν) denotes the remainder. It
is assumed that for all γ ∈ R

c, L(γ) is nonsingular and N(γ , ν) is polynomial in ν.

Finally, under the notation given by Assumption 2, matrix M needs to satisfy the
following property given by Assumption 3.

Assumption 3 Let M be selected such that for all γ ∈ R
c and k = 1, 2, . . . , n,

[L(γ)−1N(γ , ν)]k does not depend on νk , νk+1, . . . νn.

For any matrix-LBM (such as SRT-LBM, MRT-LBM, CLBM), Assumption 3 is
always satisfied since N(γ , ν) = �0 for all γ ∈ R

c and ν ∈ R
n, however, for nonlinear

collision operators with N(γ , ν) �= �0, M needs to be chosen carefully. In the case of
CuLBM, it was found that M can be chosen as the matrix defining the raw moments
for the MRT-LBM. The definition of M for each case considered in this paper is
given in Section 1.3 of each Supplementary material.

3 Equivalent partial differential equations

The derivation of equivalent partial differential equations described in this section is
possible under the assumption of sufficient smoothness of μj , j = 1, 2, . . . , q that
allows to consider commutation of partial derivatives involved. From now on, it is
assumed that μj are continuously differentiable functions of order D in time and
space.

3.1 Taylor expansion

In order to transform (7) into a system of EPDEs, a Taylor expansion of μj ,
j = 1, 2, . . . , q, in time and space centered around (t, x) up to a given degree D is

1513Numerical Algorithms (2023) 93:1509–1525

considered in the form

μj (t +δt , x+δlh) = μj (t, x)+
∑

1≤|σ |≤D

(|σ |
σ

)
δ
σ1
t δ

|σ |−σ1
l

(d∏

m=1

[h]σm+1
m

)
Dσ μj (t, x),

(10)
where σ ∈ N

d+1
0 is a multi-index, |σ | := ∑d+1

i=1 σi , h ∈ Z
d , and Dσ denotes the

differential operator

Dσ := ∂ |σ |

∂tσ1∂x
σ2
1 . . . ∂x

σd+1
d

. (11)

In (10), h represents δt

δl
ci from (7) and, to ease the notation in the following, hi :=

δt

δl
ci is used for all i = 1, 2, . . . , q.
After combining Taylor-expanded moments given by (10) with (7), the resulting

raw EPDEs read
q∑

i=1
MEiM−1

[∑
1≤|σ |≤D

(|σ |
σ

)
δ
σ1
t δ

|σ |−σ1
l

(d∏
m=1

[hi]σm+1
m

)
Dσ μ(t, x)

]
=

MC(M−1μ(t, x)),

(12)

where the fact that
∑q

i=1 Ei gives the identity matrix is used to cancel out the zeroth-
order derivatives (ZOD) of μ from the left-hand side of the equation.

Employing the notation introduced in (8), (12) can be written as

∑

1≤|σ |≤D

(
P(σ)

c,c P(σ)
c,n

P(σ)
n,c P(σ)

n,n

)(
Dσ γ (t, x)

Dσ ν(t, x)

)
=

(
0

Rn(t, x),

)
(13)

where {P(σ)
α,β}α,β∈{c,n} denote constant matrices defined by

(
P(σ)

c,c P(σ)
c,n

P(σ)
n,c P(σ)

n,n

)
:=

q∑

i=1

(|σ |
σ

)
δ
σ1
t δ

|σ |−σ1
l

(d∏

m=1

[hi]σm+1
m

)
MEiM−1. (14)

3.2 Elimination of nonconserved quantities

Assumption 2 together with (13) allows to express ν from EPDEs for the noncon-
served quantities as

ν =
∑

1≤|σ |≤D

[
L(γ)−1P(σ)

n,cDσ γ + L(γ)−1P(σ)
n,nDσ ν

]

−L(γ)−1N(γ , ν) − L(γ)−1Q(γ). (15)

For all k = 1, 2, . . . , n, the ZODs of nonconservative quantities {νi}ni=1 in the
right-hand side of (15) are present in the nonlinear term [L(γ)−1N(γ , ν)]k only.
Since (15) can be regarded as a recursive system of equations for ν1, ν2, . . . , νn, the
assumption of N being polynomial with respect to ν (Assumption 2) together with
the Assumption 3 allows using a Gaussian-type recursive elimination procedure with
truncation of higher order derivatives to completely eliminate all nonconservative

1514 Numerical Algorithms (2023) 93:1509–1525

quantities ν from the right-hand side of (15). In Definition 2, the truncation strat-
egy used here is described and referred to as the second degree truncation since the
resulting partial differential expression is assumed in a form of the second-degree
polynomial in terms of derivatives of (γ , ν).

Note that in Definition 2, polynomials with higher degrees can also be used to
represent the truncated expressions, however, it may not be feasible from the com-
putational point of view because the complexity of the resulting expressions and
subsequent memory demands for the derivation of EPDEs and SEPDEs will increase
considerably. On the other hand, the second-degree polynomials are found to suffi-
ciently represent the desired EPDEs and SEPDEs, therefore, only the second-degree
polynomials are considered and implemented through Definition 2 in LBMAT.

The Gaussian-type elimination procedure applied to (15) is described by Algo-
rithm 1. Note that based on Assumption 3, ZOD of νk is not present in the right-hand
side of k-th (A) for all k = 1, 2, . . . , n.

Definition 2 (A second-degree truncation strategy of order D for a polynomial partial
differential expression) Let F (A,B,C)(y1(t, x), y2(t, x), . . . , yq(t, x)) denote a par-
tial differential expression where F (A,B,C) is a polynomial of degree A with respect
to derivatives of {yi}qi=1 (of at least the first order) with general (nonlinear) coeffi-
cients, B denotes the highest order of derivatives of {yi}qi=1 present in the expression,
and C is the highest sum of orders of derivatives present in products, i.e.,

F (A,B,C)(y1, y2, . . . , yq) = a0(y1, y2, . . . , yq) + (16)
q∑

i1=1

∑

1≤|σ 1|≤B

a
(σ 1)
i1

(y1, y2, . . . , yq)Dσ 1yi1 + (17)

q∑

i1=1

q∑

i2=i1

∑

1≤|σ 1|≤B

1≤|σ 2|≤B

|σ 1|+|σ 2|≤C

a
(σ 1,σ 2)
i1,i2

(y1, y2, . . . , yq)Dσ 1yi1Dσ 2yi2 + · · · + (18)

q∑

i1=1

q∑

i2=i1

· · ·
q∑

iA=iA−1

∑

1≤|σ 1|≤B

1≤|σ 2|≤B

...
1≤|σA|≤B

∑A
k=1|σ k |≤C

a
(σ 1,σ 2,...,σA)
i1,i2,...,iA

(y1, y2, . . . , yq)

A∏

	=1

Dσ 	
yi	 , (19)

where the polynomial’s coefficients are represented by the symbol a. Then, the
second-degree truncated partial differential expression of order D for F (A,B,C) is
given by F (2,D,D).

After the Gaussian elimination with the second-degree truncation strategy of order
D is done in (15), the nonconserved quantities can be expressed as functions of γ

1515Numerical Algorithms (2023) 93:1509–1525

Algorithm 1 Gaussian-type recursive elimination of ν in (15).

only:

νk = bk(γ) +
c∑

j=1

∑

1≤|σ |≤D

b
(σ)
k,j (γ)Dσ γj +

c∑

j1=1

c∑

j2=j1

∑

1≤|σ 1|≤D

1≤|σ 2|≤D

|σ 1|+|σ 2|≤D

b
(σ 1,σ 2)
k,j1,j2

(γ)Dσ 1γj1Dσ 2γj2 , (20)

k = 1, 2, . . . , n, where all coefficients denoted by the symbol b are produced by
Algorithm 1.

In the vector form, (20) can be represented by

ν = b(γ) +
∑

1≤|σ |≤D

B(σ)
(2) (γ)Dσ γ +

∑

1≤|σ 1|≤D

1≤|σ 2|≤D

|σ 1|+|σ 2|≤D

B(σ 1,σ 2)
(3) (γ)Dσ 1γ Dσ 2γ , (21)

1516 Numerical Algorithms (2023) 93:1509–1525

where b = (b1, b2, . . . , bn)
T , and B(2) and B(3) denote the second- and third-order

tensors (bk,j)
n,c
k,j=1 and (bk,j1,j2)

n,c,c
k,j1,j2=1, respectively.

3.3 Spatial EPDEs for conserved quantities

Combining (21) with the equations corresponding to the conserved quantities in (13),
the following system of c partial differential equations for {γi}ci=1 is obtained:

∑

1≤|σ 0|≤D

[
P(σ 0)

c,c Dσ 0γ +P(σ 0)
c,n Dσ 0b(γ)

]
+

∑

1≤|σ 0|≤D
1≤|σ1|≤D

P(σ 0)
c,n Dσ 0

(
B(σ 1)

(2) (γ)Dσ 1γ
)

+
∑

1≤|σ 0|≤D

1≤|σ 1|≤D

1≤|σ 2|≤D

|σ 1|+|σ 2|≤D

P(σ 0)
c,n Dσ 0

(
B(σ 1,σ 2)

(3) (γ)Dσ 1γ Dσ 2γ
)
=0. (22)

Expanding all derivatives together with the truncation strategy from Definition 2,
(22) is transformed into

∑

1≤|σ 1|≤D

A(σ 1)
(2) (γ)Dσ 1γ +

∑

1≤|σ 1|≤D

1≤|σ 2|≤D

|σ 1|+|σ 2|≤D

A(σ 1,σ 2)
(3) (γ)Dσ 1γ Dσ 2γ = 0, (23)

where A(2) and A(3) denote the resulting second- and third-order tensors, respec-
tively.

Equation (23) is a system of partial differential equations for the conserved quanti-
ties γ with coefficients independent of ν. As such, (23) represents the sought EPDEs
of (1). However, as in [10], (23) can be further processed in order to produce SEPDEs
by eliminating all temporal derivatives of γ except for Dtγ (Dt := ∂

∂t
). Since (23)

describes the evolution of conserved quantities, it is expected that A(τ)
(2) (γ), with

τ := (1, 0)T ∈ N
d+1
0 , is nonsingular for all γ and Dtγ can be expressed from (23) as

Dtγ = −
∑

1≤|σ 1|≤D
σ1 �=τ

A(τ)
(2) (γ)−1A(σ 1)

(2) (γ)Dσ 1γ +

∑

1≤|σ 1|≤D

1≤|σ 2|≤D

|σ 1|+|σ 2|≤D

A(τ)
(2) (γ)−1A(σ 1,σ 2)

(3) (γ)Dσ 1γ Dσ 2γ . (24)

Equation (24) forms a recursive equation for Dtγ that, as in [10], allows to elimi-
nate all temporal derivatives of γ from its right-hand side (again with the truncation
strategy described in Definition 2). This procedure is described by Algorithm 2.

1517Numerical Algorithms (2023) 93:1509–1525

Algorithm 2 Elimination of temporal derivatives from (24).

3.4 Summary

In essence, the derivation of SEPDEs from the lattice Boltzmann equation given by
(1), for which the collision operator satisfies Assumption 2, consists of the following
steps:

1. Select matrix M that satisfies Assumptions 1 and 3.
2. Assemble EPDE in (13).
3. Use Algorithm 1 to eliminate nonconserved quantities and produce (23).

1518 Numerical Algorithms (2023) 93:1509–1525

4. Use Algorithm 2 to eliminate temporal derivatives of γ in the right-hand side of
(24) and produce SEPDEs.

4 Implementation

The computational algorithm summarized in Section 3.4 is implemented in C++
using the GiNaC library for symbolic algebraic computation [14]. The code is made
available to the LBM community as open-source software LBMAT (Lattice Boltz-
mann Method Analysis Tool) under the terms and conditions of the GNU general
public license (GPL):

https://mmg-gitlab.fjfi.cvut.cz/gitlab/lbm/lbmat

Due to the extreme complexity of recurrently substituted partial differential
expressions in Algorithms 1 and 2, the computational code is required to be carefully
designed with respect to the computational efficiency and memory demands. In the
following section, the most important implementation challenges are discussed.

4.1 Representation of truncated partial differential expressions

In the code, the truncated partial differential expressions given by Definition 2
are represented by structure TPDE which also provides all required operations on
TPDE such as addition, multiplication by another TPDE, differentiation of a general
order, substitution of a coefficient or a derivative for another TPDE, and simplifi-
cation of the expression. By design, the second-degree truncation strategy given by
Definition 2 is implemented automatically inside TPDE by storing the desired coeffi-
cients and discarding all that correspond to higher order derivatives or higher degree
polynomial than D with respect to these derivatives.

Since all the aforementioned operations can become computationally expensive
and substantially memory demanding, it is crucial to use an efficient storage for
the coefficients. For this task, the structure std::unordered map from the C++
Standard Template Library was found to be the best choice. Unordered map is a con-
tainer in which elements are stored in buckets addressed by a hash of keys [19]. In
LBMAT, these keys correspond to multi-indices α that define the derivatives of the
quantities.

4.2 Symbolic substitutions

During the recurrent substitutions of partial differential expressions in Algorithms 1
and 2, the process of simplification of algebraic expressions within GiNaC is the
most computationally expensive and memory demanding operation. If an alge-
braic expression involved in the recurrent substitutions consists of more than one
summand, the number of summands in the resulting expression may increase expo-
nentially in each iteration of the algorithms, especially for large q. Therefore, all
expressions with more than one summand are replaced by a symbolic variable and
the substitution is listed for later re-use.

1519Numerical Algorithms (2023) 93:1509–1525

https://mmg-gitlab.fjfi.cvut.cz/gitlab/lbm/lbmat

To obtain the final EPDEs after Algorithms 1 and 2 completed, the deferred
symbolic variables need to be replaced recursively by the substitutions established
during the execution of the algorithms. This replacement is implemented as a post-
processing step: first, the substitutions are offloaded into files stored on a disk to
reduce RAM usage and outputs the EPDEs with symbolic variables, then, a separate
Python script (using GiNaC internally to simplify algebraic expressions) is executed
to perform recursive replacements. The dependencies between symbolic variables in
the listed substitutions are analyzed and only those variables that are needed in the
final EPDEs are actually substituted.

Using this approach, computational times and the amount of memory needed for
both algorithms (including the post-processing step) decrease considerably and even
for the most complex LBM models in 3D (CLBM or CuLBM in D3Q27), EPDEs
and SEPDEs can be computed on a personal computer, see Table 1 for illustrative
computational times. The execution times of the Python script are marginal with
respect to the execution of LBMAT and they are not included in the computational
times listed in Table 1.

5 Illustrative SEPDEs in 3D

In order to demonstrate the applicability of LBMAT, SEPDEs for ADEs and NSEs
in 3D using D3Q7 and D3Q27 models, respectively, are presented in this section. In
the Supplementary Materials, the definitions of LBM models SRT, MRT1, MRT2,
CLBM1, CLBM2, CuLBM1, and CuLBM2 are given together with the list of all
SEPDEs coefficients (marked in green) that mutually differ among these models.

5.1 ADE D3Q7

In this section, for the sake of brevity, the velocity vector v is considered constant in
time and space and the SEPDE for ADE is shown up to the fourth-order derivative
(truncated as F (2,4,4) based on Definition 2). For the non-constant velocity case, the
coefficients of SEPDE for ADE are listed in the Supplementary materials (ADE,
model D3Q7).

∂ρ

∂t
+ δl

δt

v ·∇ρ −∇ ·
(

δ2
l

δt

D∇ρ

)
+

∑

α∈N3
0

3≤|α|≤4

C
(0),ADE
D

α1
x1 D

α2
x2 D

α3
x3 ρ

δ
|α|
l

δt

∂ |α|ρ
∂x

α1
1 ∂x

α2
2 ∂x

α3
3

= 0, (25)

where the diffusion tensor is given by

D =
(

1

ω
− 1

2

)⎛

⎝
c2
s −v1v2 −v1v3

−v2v1 c2
s −v2v3

−v3v1 −v3v2 c2
s

⎞

⎠ (26a)

1520 Numerical Algorithms (2023) 93:1509–1525

Table 1 Illustrative computational times and peak memory usage for all cases computed on a personal
computer equipped with a single Intel Core i9-9900KF CPU (at 3.6 GHz) and 64 GB RAM

Computations without Computations with

symbolic substitutions symbolic substitutions

Model Computational Peak Computational Peak memory

time [s] memory [MB] time [s] [MB]

ADE D1Q3a) SRT 3.6 29 3.3 30

MRT 3.5 29 3.0 30

CLBM 6.1 30 3.6 30

D2Q5b) SRT 17.1 93 19.4 95

MRT1 19.5 95 19.4 95

MRT2 19.5 95 19.5 95

CLBM1 30.1 95 24.0 96

CLBM2 30.9 95 24.5 96

D3Q7c) SRT 71.9 222 96.4 233

MRT1 90.3 229 95.5 233

MRT2 89.5 229 95.8 232

CLBM1 115.9 231 108 234

CLBM2 115.5 231 107 233

NSE D1Q3d) SRT 2.8 27 3.4 27

MRT 3.5 27 3.2 27

CLBM 3.1 27 3.0 27

D2Q9e) SRT 234 297 311 347

MRT1 346 326 311 347

MRT2 344 326 311 347

CLBM1 3925 558 483 353

CLBM2 3953 558 484 354

CuLBM1 3904 582 476 359

CuLBM2 4155 578 674 403

D3Q27f) SRT 18725 5452 18488 5884

MRT1 32477 6236 18460 5884

MRT2 32501 6237 18047 5883

CLBM1 > 1000000�) > 64000�) 60854 6014

CLBM2 > 1000000�) > 64000�) 66119 6013

CuLBM1 > 1000000�) > 64000�) 57820 6795

CuLBM2 > 1000000�) > 64000�) 141897 7743

Definitions of models used in the table are given in the following Supplementary materials: a)supp d1q3 ade.pdf,
b)supp d2q5 ade.pdf, c)supp d3q7 ade.pdf, d)supp d1q3 nse.pdf, e)supp d2q9 nse.pdf, f)supp d3q27
nse.pdf

�The computation failed because the computer ran out of memory

1521Numerical Algorithms (2023) 93:1509–1525

for SRT, and by

D =

⎛

⎜⎜⎜⎝

(
1
ω2

− 1
2

)
c2
s

(
1
2 − 1

2ω2
− 1

2ω3

)
v1v2

(
1
2 − 1

2ω2
− 1

2ω4

)
v1v3(

1
2 − 1

2ω2
− 1

2ω3

)
v2v1

(
1
ω3

− 1
2

)
c2
s

(
1
2 − 1

2ω3
− 1

2ω4

)
v2v3(

1
2 − 1

2ω2
− 1

2ω4

)
v3v1

(
1
2 − 1

2ω3
− 1

2ω4
−

)
v3v2

(
1
ω4

− 1
2

)
c2
s

⎞

⎟⎟⎟⎠

(26b)
for MRT1, MRT2, CLBM1, and CLBM2. The diffusion tensor contains extra terms,
which is in accordance with [20].

5.2 NSE D3Q27

The conservation of mass is recovered as

∂ρ

∂t
+ δl

δt

∇ · (ρv) + δ3
l

12δt

3∑

k=1

[
(3c2

s −1+v2
k)vk

∂3ρ

∂x3
k

+(c2
s −1 + 3v2

k)ρ
∂3vk

∂x3
k

]

−ρc2
s

6

δ3
l

δt

[
∂3v1

∂x1∂x2
2

+ ∂3v1

∂x1∂x2
3

+ ∂3v2

∂x2
1∂x2

+ ∂3v2

∂x2∂x2
3

+ ∂3v3

∂x2
1∂x3

+ ∂3v3

∂x2
2∂x3

]

+
∑

β∈{ρ,v1,v2,v3}

∑

α∈N3
0|α|=4

C
(0),NSE
D

α1
x D

α2
y D

α3
z β

δ4
l

δt

∂ |α|β
∂x

α1
1 ∂x

α2
2 ∂x

α3
3

=0, (27)

and for all i = 1, 2, 3, the conservation of momentum ρvi is given by:

∂(ρvi)

∂t
+ δl

δt

∇ · (ρviv) + c2
s

δl

δt

∂ρ

∂xi

+ δ2
l

δt

∂ρ

∂xi

⎡

⎣
3∑

j=1

C
(i)NSE
Dxi

ρ,Dxj
vj

∂vj

∂xj

⎤

⎦

+δ2
l

δt

⎡

⎢⎢⎣
3∑

j=1
j �=i

∂ρ

∂xj

(
C

(i)NSE
Dxj

ρ,Dxj
vi

∂vi

∂xj

+ C
(i)NSE
Dxj

ρ,Dxi
vj

∂vj

∂xi

)
+ C

(i)NSE
Dxi

Dxj
vj

∂2vj

∂xi∂xj

⎤

⎥⎥⎦

+δ2
l

δt

⎡

⎣
3∑

j=1

C
(i)NSE
Dxi

Dxj
ρ

∂2ρ

∂xi∂xj

+ C
(i)NSE
Dxi

vj ,Dxj
vj

∂vj

∂xi

∂vj

∂xj

+ C
(i)NSE
D2

xj
vi

∂2vi

∂x2
j

⎤

⎦

+
∑

β∈{ρ,v1,v2,v3}

∑

α∈N3
0

3≤|α|≤4

C
(i),NSE
D

α1
x1 D

α2
x2 D

α3
x3 β

δ
|α|
l

δt

∂ |α|β
∂x

α1
1 ∂x

α2
2 ∂x

α3
3

= 0. (28)

The resulting mass and momentum conservation equations (27), (28) are in accor-
dance with macroscopic equations given in [5]. In order to match the coefficients
in (28) and in the Supplementary Materials, the coefficients’ denotations in (28)
need to be arranged lexicographically due to commutation of products or partial
derivatives, i.e., for instance, C(i)

Dxa vb,Dxc vd
= C

(i)
Dxc vd ,Dxa vb

or C
(i)
Dxa Dxb

vc
= C

(i)
Dxb

Dxa vc
,

respectively.

1522 Numerical Algorithms (2023) 93:1509–1525

6 Conclusion

A computational analysis tool LBMAT has been proposed and implemented for
the derivation of equivalent partial differential equations of the lattice Boltzmann
method. The applicability of LBMAT has been demonstrated using the popular veloc-
ity models DdQq and collision operators (SRT, MRT, CLBM, and CuLBM) for
both advection–diffusion and Navier–Stokes equations. The LBMAT computer code
is available to the LBM community under the GPL license and can be used to ana-
lyze existing variants of LBM. By its general design, it can be employed in the
development of new variants of LBM in the future.

Supplementary Information The online version contains supplementary material available at https://
doi.org/10.1007/s11075-022-01476-8.

Funding The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under
OP RDE grants no. CZ.02.1.01/0.0/0.0/16 019/0000765 and no. CZ.02.1.01/0.0/0.0/16 019/0000753,
by the Ministry of Health of the Czech Republic project No. NV19-08-00071, by the Czech Sci-
ence Foundation project no. 21-09093S, and by the National Science Center, Poland grant number
UMO2018/31/B/ST8/00622.

Data availability All data generated or analyzed during this study are included in this published article
and its supplementary information files.

Code availability Implementations of the algorithms used can be found at https://mmg-gitlab.fjfi.cvut.
cz/gitlab/lbm/lbmat.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Wolf-Gladrow, D.A.: Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Introduction,
vol. 1725. Springer, Berlin (2000). https://doi.org/10.1007/b72010

2. Succi, S.: The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond. Oxford University Press,
Oxford (2001)

3. Sukop, M.C. Jr., D.T.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and
Engineers. Springer, Berlin (2006). https://doi.org/10.1007/3-540-27982-2

4. Guo, Z., Shu, C.: Lattice Boltzmann Method and Its Applications in Engineering, vol. 3. World
Scientific, Singapore (2013). https://doi.org/10.1142/8806

5. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The lattice boltzmann
method springer. https://doi.org/10.1007/978-3-319-44649-3 (2017)

6. Sharma, K.V., Straka, R., Tavares, F.W.: Current status of lattice boltzmann methods applied
to aerodynamic, aeroacoustic, and thermal flows. Prog. Aerosp. Sci. 100616, 115 (2020).
https://doi.org/10.1016/j.paerosci.2020.100616

7. Geier, M., Fakhari, A., Lee, T.: Conservative phase-field lattice boltzmann model for interface
tracking equation. Phys. Rev. E 91(6), 063309 (2015). https://doi.org/10.1103/PhysRevE.91.063309

8. Chen, S., Doolen, G.: Lattice Boltzmann Method for fluid flows. Ann. Rev. Fluid Mech. 30(1), 329–
364 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329

1523Numerical Algorithms (2023) 93:1509–1525

https://doi.org/10.1007/s11075-022-01476-8
https://doi.org/10.1007/s11075-022-01476-8
https://mmg-gitlab.fjfi.cvut.cz/gitlab/lbm/lbmat
https://mmg-gitlab.fjfi.cvut.cz/gitlab/lbm/lbmat
https://doi.org/10.1007/b72010
https://doi.org/10.1007/3-540-27982-2
https://doi.org/10.1142/8806
https://doi.org/10.1007/978-3-319-44649-3
https://doi.org/10.1016/j.paerosci.2020.100616
https://doi.org/10.1103/PhysRevE.91.063309
https://doi.org/10.1146/annurev.fluid.30.1.329

9. Hosseini, S.A., Darabiha, N., Thévenin, D.: Theoretical and numerical analysis of the lat-
tice kinetic scheme for complex-flow simulations. Phys. Rev. E 99(2), 023305 (2019).
https://doi.org/10.1103/PhysRevE.99.023305

10. Fučı́k, R., Straka, R.: Equivalent finite difference and partial differential equations for the lattice
Boltzmann method. Comput. Math. Appl. 90(1), 96–103 (2021). https://doi.org/10.1016/j.camwa.
2021.03.014

11. Farag, G., Zhao, S., Chiavassa, G., Boivin, P.: Consistency study of lattice-boltzmann schemes
macroscopic limit. Phys. Fluids 33, 037101 (2021). https://doi.org/10.1063/5.0039490

12. Dubois, F., Lallemand, P.: On single distribution lattice boltzmann schemes for the approximation of
navier stokes equations. arXiv:2206.13261. https://doi.org/10.48550/arXiv.2206.13261 (2022)

13. Chai, Z., Shi, B.: Multiple-relaxation-time lattice boltzmann method for the navier-stokes and non-
linear convection-diffusion equations: modeling, analysis, and elements. Phys. Rev. E 102, 023306
(2020). https://doi.org/10.1103/PhysRevE.102.023306

14. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for symbolic com-
putation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002).
https://doi.org/10.1006/jsco.2001.0494

15. Geier, M., Greiner, A., Korvink, J.G.: Cascaded digital lattice Boltzmann automata for high Reynolds
number flow. Phys. Rev. E 73(6), 066705 (2006). https://doi.org/10.1103/PhysRevE.73.066705

16. Geier, M., Schönherr, M., Pasquali, A., Krafczyk, M.: The cumulant lattice Boltzmann equation in
three dimensions: Theory and validation. Computers & Mathematics with Applications 70(4), 507–
547 (2015). https://doi.org/10.1016/j.camwa.2015.05.001

17. Geier, M., Pasquali, A., Schönherr, M.: Parametrization of the cumulant lattice Boltzmann method for
fourth order accurate diffusion Part II: Application to flow around a sphere at drag crisis. J. Comput.
Phys. 348, 889–898 (2017). https://doi.org/10.1016/j.jcp.2017.05.040

18. Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases.
Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-11696-4

19. Drozdek, A.: Data structures and algorithms in c++ cengage learning (2012)
20. Chopard, B., Falcone, J.L., Latt, J.: The lattice boltzmann advection-diffusion model revisited. The

European Physical Journal Special Topics 171(1), 245–249 (2009). https://doi.org/10.1140/epjst/
e2009-01035-5

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

1524 Numerical Algorithms (2023) 93:1509–1525

https://doi.org/10.1103/PhysRevE.99.023305
https://doi.org/10.1016/j.camwa.2021.03.014
https://doi.org/10.1016/j.camwa.2021.03.014
https://doi.org/10.1063/5.0039490
http://arxiv.org/abs/2206.13261
https://doi.org/10.48550/arXiv.2206.13261
https://doi.org/10.1103/PhysRevE.102.023306
https://doi.org/10.1006/jsco.2001.0494
https://doi.org/10.1103/PhysRevE.73.066705
https://doi.org/10.1016/j.camwa.2015.05.001
https://doi.org/10.1016/j.jcp.2017.05.040
https://doi.org/10.1007/978-3-642-11696-4
https://doi.org/10.1140/epjst/e2009-01035-5
https://doi.org/10.1140/epjst/e2009-01035-5

Affiliations

Radek Fučı́k1 ·Pavel Eichler1 · Jakub Klinkovský1 ·Robert Straka2 ·
Tomáš Oberhuber1

Pavel Eichler
eichlpa1@fjfi.cvut.cz

Jakub Klinkovský
jakub.klinkovsky@fjfi.cvut.cz

Robert Straka
straka@metal.agh.edu.pl

Tomáš Oberhuber
tomas.oberhuber@fjfi.cvut.cz

1 Department of mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical
University in Prague, Trojanova 13, Prague, 12000, Czech Republic

2 AGH University of Science and Technology, al. Mickiewicza 30, Krakow, 30-059, Poland

1525Numerical Algorithms (2023) 93:1509–1525

http://orcid.org/0000-0001-7040-9184
mailto: eichlpa1@fjfi.cvut.cz
mailto: jakub.klinkovsky@fjfi.cvut.cz
mailto: straka@metal.agh.edu.pl
mailto: tomas.oberhuber@fjfi.cvut.cz

	Lattice Boltzmann Method Analysis Tool (LBMAT)
	Abstract
	Introduction
	Definitions and assumptions
	Lattice Boltzmann equation
	Conserved and nonconserved quantities
	Equivalent finite difference equations

	Equivalent partial differential equations
	Taylor expansion
	Elimination of nonconserved quantities
	Spatial EPDEs for conserved quantities
	Summary

	Implementation
	Representation of truncated partial differential expressions
	Symbolic substitutions

	Illustrative SEPDEs in 3D
	ADE D3Q7
	NSE D3Q27

	Conclusion
	Declarations
	References
	Affiliations

