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Optimal error estimate of the penalty method
for the 2D/3D time-dependent MHD equations

Kaiwen Shi1 Xinlong Feng1 Haiyan Su1

Abstract
In this article, we mainly consider a first-order decoupling penalty method for the
2D/3D time-dependent incompressible magnetohydrodynamic (MHD) equations in
a convex domain. This method applies a penalty term to the constraint “divu 0,”
which allows us to transform the saddle point problem into two small problems to
solve. The time discretization is based on the backward Euler scheme. Moreover, we
derive the optimal error estimate for the penalty method under semi-discretization
with the relationship . Finally, we give abundant of numerical tests to
verify the theoretical result and the spatial discretization is based on Lagrange finite
element.
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1 Introduction

In this article, we consider the following 2D/3D time-dependent incompressible
MHD equations:

u 1 u u u curlB B f in 0 T
divu 0 in 0 T
B 1curl curlB curl u B g in 0 T
divB 0 in 0 T

(1.1)

with the homogeneous boundary conditions and initial conditions

u 0 B n 0 n curlB 0 on 0 T
u x 0 u0 B x 0 B0 in

(1.2)
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where is a bounded, convex, and open domain in 2 or 3 with a suffi-
ciently smooth boundary . Here, u is the fluid velocity, B is the magnetic field,
is the hydrodynamic pressure, f denotes the external force term, g is the known

applied current with divg 0, n denotes the outward normal unit vector on ,
is the hydrodynamic Reynolds number, is the magnetic Reynolds number, is
the coupling coefficient, and is the final time.

The incompressible MHD equations mainly describe the dynamic behavior of an
electrically conducting fluid under the effect of an imposed magnetic field. It con-
sists of the Navier-Stokes equations for hydrodynamics and Maxwell’s equations
for electromagnetism. Its applications involve many branches of physics, such as
fusion reactor blankets, liquid metal magnetic pumps, and aluminum electrolysis (see
[11, 19, 32]). The detailed information of physical background of the MHD flow, we
refer to [12, 20]. In recent years, there have been many research works using finite
element method to simulate the MHD equations such as [7, 23, 29–33].

We note that the pressure does not appear in the incompressible equation, which
makes the equations difficult to solve numerically. A popular way to overcome the
above difficulty is to relax the incompressibility constraint in an appropriate way.
This leads to a number of methods, such as the penalty method, the artificial com-
pressibility method, the pressure stabilization method, and the projection method (see
for instance [3–5, 25, 26]). As far as we know, the stabilization method was proposed
in [3]. Next, a pressure stability analysis for the Stokes problem was given in [2].
For the projection method, it can be traced back to [4, 26]. Then, a consistent pro-
jection finite element method for the incompressible MHD equations was discussed
in [30]. Convergence analysis of an unconditionally energy stable projection scheme
for MHD equations was proposed in [29]. For the artificial compressibility method,
it originated in [4, 5, 25, 26]. Next, the artificial compressibility approximation for
MHD equations in unbounded domain was given in [8]. For the penalty method, we
can refer to [6]. Then, optimal error estimate of the penalty finite element method
for the time-dependent Navier-Stokes equations was given in [13]. A penalty finite
element method based on the Euler implicit/explicit scheme for the time-dependent
Navier-Stokes equations was proposed in [15]. In [22], the authors study iterative
methods in penalty finite element discretization for the steady MHD equations. In
[7], the authors given a decoupling penalty finite element method for the stationary
incompressible MHD equations. It is worth mentioning that the penalty method is
the simplest and the most basic of these mentioned above methods.

In this article, we mainly consider the penalty method to solve the time-dependent
incompressible MHD equations. The penalty method applied to (1.1) and (1.2) is to
approximate the solution u B by u B satisfying the following penalty
system:

u 1 u u u curlB B f in 0 T
divu 0 in 0 T
B 1curl curlB curl u B g in 0 T
divB 0 in 0 T

(1.3)
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with the homogeneous boundary conditions and initial conditions

u 0 B n 0 n curlB 0 on 0 T
u x 0 u0 B x 0 B0 in

(1.4)

where u v u v 1
2 divu v is the modified bilinear term, and 0 1 is

penalty parameter. The penalty method is a decoupled method, which can easily elim-
inate the in (1.3) by “divu 0” to obtain a penalty system containing
only u B , and then directly get the numerical solution of original equations. This
idea has been widely used in many fields of computational fluid dynamics (please
refer to [7, 13, 15, 18, 21, 22]).

From [7], we know that lim
0
u B u B , the solution of (1.1)–(1.2).

The error analysis of the penalty finite element method for the stationary MHD equa-
tions is studied in [22–24]. For example, the optimal error estimate of the penalty
system for the stationary MHD equations is as follows:

u u 1 B B 1

where 0 is a general positive constant, and 1 and denote the norm
in 1 and 2 , respectively. However, there is no literature on the penalty
method for time-dependent MHD equations. The purpose of this article is to derive
optimal error estimate of the penalty method for the time-dependent MHD equations
and its time-discretization. In Theorem 4.1, we derive that the optimal error estimate
of the penalty method for time-dependent MHD equations is as follows:

sup
0

u u B B 1 u u 1

1 B B 1
0

2
1
2

.

In Theorem 5.1 and (5.17), we derive that the optimal error estimate of the time-
discretization scheme of the penalty method for the time-dependent MHD equations
is as follows:

u u B B u u 1 B B 1

1

2 2
1
2

where is the time step, 1 , u B is an approximation
of u B at time .

The paper is organized as follows. In Section 2, we introduce some notations and
preliminary results for the time-dependent penalty MHD equations (1.3) and (1.4).
In Section 3, we analyze the error behavior of the linear form for the penalty MHD
equations. In Section 4, we consider the penalty method for the MHD equations. In
Section 5, we analyze the time-discretized scheme of the penalty MHD equations. In
Section 6, we give some numerical tests to verify the theoretical result of the penalty
method. Finally, some conclusions are given in Section 7.
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2 Preliminaries

In this section, we give some notations. For 1 , denotes the usual
Lebesgue space on with the norm . In particular, we will denote 2

norm and 2 inner product by and , respectively. For all non-negative
integers and , stands for the standard Sobolev space equipped with the
standard Sobolev norm . The norm of the space 2 is represented by

. The vector functions and vector spaces will be indicated by boldface type.
Now, we introduce the following spaces

X H1
0 v 1 v 0

M 2
0

2 x 0
W H1 w 1 w n 0
X0 v X divv 0
W0 w W divw 0
H w L2 divw 0 w n 0

and the following trilinear form

u v w u v w u v
1

2
divu v w

1

2
u v w

1

2
u w v u v w X.

Therefore, the trilinear form satisfies

u v v 0 u v X. (2.1)

Moreover, we have the following two formulas (cf. [22]):

a b c d a b c d a b d c

and

curlB C x B n C B curlC x

which imply that for all B C W and u X,

curl u B C u B n C u B curlC curlC B u .
(2.2)

Then, we have the following variational formulation of problem (1.1) and (1.2):
find u B 2 0 X 2 0 M 2 0 W such that for all
v C X M W

u v 1 u v u u v curlB B v divv divu f v
B C 1 curlB curlC curl u B C g C
u 0 u0 B 0 B0

(2.3)
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where divu0 divB0 0 and the variational formulation of (1.3) and (1.4) reads:
find u B 2 0 X 2 0 M 2 0 W such that for all
v C X M W

u v 1 u v u u v curlB B v divv divu
f v

B C 1 curlB curlC curl u B C g C
u 0 u0 B 0 B0.

(2.4)

Moreover, from the variational formulation (2.3), we can get divB 0 and
divB 0 (cf. [14, 34]).

We will use the letter as a general positive constant depending on coefficients
of the equations and the domain , which may have different values at its different
occurrences. The following two inequalities will be used repeatedly (cf. [21]):

u v w u 1 v
1
2
1 v

1
2
2 w v H2 X u w X (2.5)

and

u v w

u 1 v 1 w 1 u v w X
u 2 v w 1 u H2 X v w X
u 2 v 1 w u H2 X v w X
u 1 v 2 w v H2 X u w X.

(2.6)

Furthermore, we have the following estimates (cf. [9, 28]):

curlC B v v B curlC 0 B C W v X (2.7)

v 0 v v L3 v
1
2 v

1
2 v L6 v v X (2.8)

v L v L3 v
1
2
1 v

1
2
2 v H2 (2.9)

B 0 curlB divB B W (2.10)

v L4 1 v v X (2.11)

curlB 2 B divB B B W (2.12)

curl u B u divB B divu B u u B u X B W (2.13)

where 0 (only dependent on ) is a positive constant, 0 (only dependent on ) is an
embedding constant of H1 H1 ( denotes the continuous embedding),
and 1 (only dependent on ) is an embedding constant of H1 L4 .

We define 1u u and 1 u u 1 divu, which are the operators
associated with Navier-Stokes equations and the penalty Navier-Stokes equations.
They are the positive self-adjoint operators from 1 H2 X onto L2

and the powers 1 and 1 are well defined. Similarly, we define the
Maxwell’s operator 2 curlcurl div 2 H and also define
2 B 2B, where 2 H2 W and is the 2-orthogonal projection.
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Finally, it is easy to show that (cf. [21, 27])

1u v
1
2
1 u

1
2
1 v u v u v X

1 u v
1
2
1 u

1
2
1 v u v 1 divu divv u v X

2B C
1
2
2 B

1
2
2C curlB curlC divB divC B C W.

Furthermore, we have the following lemmas given in [21].

Lemma 2.1 There exists a constant 2 0 depending only on and such that for
sufficiently small, we have

u 2 1 u u H2 X

u 2

1
2
1 u u X

1
1 u 2 u 2 u H 2

where H 2 is the dual space of H2 X, 2 is the corresponding norm.

Lemma 2.2 (Gronwall lemma). Let y(t), h(t), g(t), f(t) be nonnegative functions
satisfying

0
0

0
0

0
.

Then

0
exp 0

0
0 .

Lemma 2.3 (discrete Gronwall lemma) Let be nonnegative series
satisfying

0 0

with
0

0 .

Assume 1 for every n. Define max
0

1 1, then

0

exp
0

0 .

In this paper, we assume that the problem (1.1) satisfies the following conditions.
Assumption A1: The initial data u0 X0 H2 and B0 W0 H2 the

external force f, and the applied current g satisfy the bound

sup
0

f f g g u0 2 B0 2 .
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Suppose that A1 ensures the existence of a unique strong solution to the problem
(2.3) on small time interval 0 such that (cf. [20])

u 0 X 2 0 H2 2 0 1 M
B 0 W0

2 0 H2 (2.14)

by using the smoothing property of the Navier-Stokes equations at 0, then (see
for instance [16])

2 0 1 . (2.15)

Assumption A2: Assume that the boundary of is smooth so that the unique
solution v X M of the steady Stokes problem (cf. [14, 34])

v f divv 0 in v 0

for prescribed f L2 satisfies

v 2 1 f

and Maxwell’s equations

curl curlC g divC 0 in C n 0 n curlC 0 on

for the prescribed g L2 admit a unique solution C W0 which satisfies

C 2 g

where is a positive constant depending only on , and may take different values at
its different places.

Using the operators 1 2 , we can rewrite the penalized system (2.4) as

u 1
1 u u u curlB B f

B 1
2 B curl u B g.

(2.16)

Then, we have

u 2
1 B 2

1
0

u 2
2 B 2

2 0 . (2.17)

Taking the 2 inner product of the first equation of (2.16) with u , the second
equation with B , and thanks to (2.1), (2.7), we obtain

1

2
u 2 B 2 1

1
2
1 u 2 1

1
2
2 B 2 f u g B .

Due to Lemma 2.1, we have

f u g B f 2 g 2 1

2

1
2
1 u 2

2

1
2
2 B 2.

Combining the above inequality and integrating from 0 to , we get

u 2 B 2

0

1
1
2
1 u 2 1

1
2
2 B 2 . (2.18)
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Taking the 2 inner product of the first equation of (2.16) with 1 u , the second
equation with 2 B , we obtain

1

2

1
2
1 u 2

1
2
2 B 2 1

1 u 2 1
2 B 2 f 1 u g 2 B

u u 1 u curlB B 1 u curl u B 2 B .

By using Lemma 2.1, (2.5) and (2.9)–(2.13), we get

f 1 u g 2 B
1

4
1

1 u 2 1
2 B 2 f 2 g 2

u u 1 u u 1 u
1
2
1 u

1
2
2 1 u

1

8
1 u 2 u 4

1

1
2
1 u 2

curlB B 1 u curlB B L 1 u
1

8
1 u 2 1

8
2 B 2 B 4

1

1
2
2 B 2

curl u B 2 B B L divu B L u u L B 2 B
1

8
1 u 2 1

8
2 B 2 B 4

1

1
2
1 u 2 u 4

1

1
2
2 B 2 .

Combining the above inequalities, we arrive at

1
2
1 u 2

1
2
2 B 2 1

1 u 2 1
2 B 2

f 2 g 2 u 4
1 B 4

1

1
2
1 u 2 u 4

1 B 4
1

1
2
2 B 2.

Integrating the above inequality over 0 , using (2.18), (2.10), Lemma 2.1 and
the Gronwall lemma, we complete the proof of (2.17).

3 Linearized problem

It is difficult to deal with the nonlinear terms of the MHD equations. Therefore, we
derive the penalty errors of its linear form as an intermediate step in the analysis of
the nonlinear MHD equations in the next section. Next, we will consider the linear
form of MHD equations:

u 1 u f
divu 0 u 0 u0
B 1curl curlB g
divB 0 B 0 B0.

(3.1)

The penalty method applied to (3.1) is

u 1 u f
divu 0 u 0 u0
B 1curl curlB g
divB 0 B 0 B0.

(3.2)
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Letting e u u B B , and subtracting (3.2) form (3.1),
we obtain

e 1 e 0 (3.3)

dive e 0 0 (3.4)
1curl curl 0 (3.5)

div 0 0 0. (3.6)

We can derive from (3.5) and (3.6) that

1
2 g 0 0. (3.7)

Lemma 3.1 Under Assumptions A1 A2, we have

e 2 2

0

1 e 2 1 2 2 (3.8)

0
e 2 2 2. (3.9)

Proof Taking the 2 inner product of (3.3) with e, (3.4) with , (3.7) with , and
summing up the three relations, we obtain

1

2
e 2 2 1 e 2 1

1
2
2

2 2

2
2

2
2.

Integrating the above inequality from 0 to , thanks to e 0 0, 0 0
and (2.14), we have

e 2 2

0

1 e 2 1 2 2 .

We now use the standard duality argument. Taking 0 and adding Lagrange
multiplier to (3.1) for the third equation, we can get

u 1 u f
divu 0 u 0 u0
B 1curl curlB g
divB 0 B 0 B0.

(3.10)

Then, we have the following variational formulation of the problem (3.10): find
u B 2 0 X 2 0 2 0 W 2 0 such that

u v 1 u v divv divu f v u 0 u0
B C 1 curlB curlC divC divB g C B 0 B0.

Exchanging u B v C , we get

v u 1 v u divu divv f v
C B 1 curlC curlB divB divC g C .
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Then, we have

v u 1 v u divv f v
divu 0

C B 1 curlC curlB divC g C
divB 0.

Letting u B , we obtain

v 1 v divv f v
div 0

C 1 curlC curl divC g C
div 0.

(3.11)

Integrating the first equation in (3.11) form 0 to , we have

0
v 1 v divv

0
f v .

By integrating by parts, we get

v v 0 0
0

v 1 v divv
0

f v .

Taking v 0 0, we obtain

v 1 v divv f v .

Similarly, we can get

C 1 curlC curl divC g C .

Taking f e g , thanks to 0, we get the following dual problem. For
any 0 , we define by

1 e 0 (3.12)

div 0 0 (3.13)
1curl curl 0 (3.14)

div 0 0. (3.15)

We can derive from (3.14) and (3.15) that
1

2 0 0 . (3.16)

Let us first establish the following inequality:
1

2 0 H2
1

2 0 H2 2 0 2

e 2 0 L2 2 0 L2 . (3.17)

Taking the 2 inner products of (3.12) with 1 , (3.16) with 2 , and summing
up the two relations, we get

1

2

1
2
1

2
1
2
2

2 1
1

2 1
2

2 e 1 2 .
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Integrating the above relation from 0 to , we have

0

1
1

2 1
2

2 0 2 0 2

0
e 2 2 .

Applying the projection operator on (3.12) and (3.16), we derive

2 0 L2 2 0 L2 e 2 0 L2 2 0 L2 .

From (3.12) and (3.16), we obtain

2 0 2 e 2 0 L2 2 0 L2 .

The proof of (3.17) is thus complete.
Next, taking the 2 inner product of (3.12) with e and (3.14) with , thanks to

(3.3)–(3.5) and div 0, we have

e 2 2 e 1 e e 1 curl curl

e e 1 e e

1 curl curl

e dive

e .

Integrating the above relation from 0 to , thanks to e 0 0 and
0 0, we obtain

0
e 2 2

0 0

2 2 2 2

where is a constant depending on only. Due to (3.17) and (3.8), we can choose
sufficiently small such that

0
e 2 2

0

2 2 2 0 .

The proof is thus complete.

Lemma 3.2 Under Assumptions A1 A2, we have

0

2 2 0 .

We can refer to [21] to prove this result.
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Lemma 3.3 Under Assumptions A1 A2, we have

e 2 2

0

1 e 2 1 2 2 2 0

1 2 e 2 1 2 2

0

2 2 2 0 .

Proof Let us consider the decomposition (see, for instance, [10])

X X0 X0 where X0
1 2

and v 1 if v and v 0. It is well known that for M,
there exists a unique X0 such that div with

1 0 . (3.18)

Moreover, if M, we have div with

1 0 . (3.19)

Taking the 2 inner products of (3.3) with e, (3.4) with , (3.7) with , summing
up the three relations, and using (3.3), we derive

1

2
e 2 1 e 2 2 1

2
2 1 2

1

2
e 2 1

2
2 1

2
e 2 1

2
2 div (3.20)

1

2
e 2 1

2
2 e e

1

2
e 2 1

2
2 e e e e .

Using (3.18), we get

e
4

e 2 2 2 2

4
e 2 2.
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Hence, integrating (3.20) from 0 to , using the above relation, the Cauchy-
Schwarz inequality, Lemma 3.1, (3.18), and (3.19), we derive

e 2 2

0

1 e 2 2 1 2

2

0
e 2 2 2

0

2 2

0

2 2

2 2

0

2 2 2 2.

Next, we take the partial derivative with respect to on (3.4), we obtain

div . (3.21)

Taking the 2¡¡ inner product of (3.3) with 2e , (3.21) with 2 , (3.7) with 2 , and
summing up the three relations, we obtain

2 e 2 2 1

2
2 1 e 2 1 2

2
2 2

e 2 2 2 2 . (3.22)

Due to (3.3) and (3.18), we get

2 2 div 2 2 e 2 e
2

2
e 2 2 2 2 2 2 e 2 2 2 2 2

2

2
e 2 2 e 2 2 2 2 2.

Integrating (3.22) and using the Gronwall lemma, we obtain

1 2 e 2 1 2 2 2 2

0

2 e 2 2 2 0 .

Finally, we derive from (3.3) that
2 2

1 e 2
1 e 2

1 e 2
1 e 2 .

Therefore, we have

0

2 2

0

2 e 2
1 e 2 2.

The proof is thus complete.

To summarize, we prove the following theorem.

Theorem 3.1 Under Assumptions A1 A2, we have

e 2 2 2 e 2
1

2 2
1

0

2 2 2 0 .
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4 Nonlinear MHD equations

In this section, we transform the nonlinear MHD equations into an intermediate linear
equations, and then use the previous result to give an error estimate of the penalty
system. Next, let us consider the following intermediate linear equations:

v 1 v f u u curlB B
divv 0 v 0 u0

1curlcurl g curl u B
div 0 0 B0

(4.1)

where u and B are the solutions of MHD equations (1.1).
Letting v u B , and subtracting (1.1) from (4.1),

we obtain
1 0

div 0 0 0
1curlcurl 0

div 0 0 0.

(4.2)

Lemma 4.1 Under Assumptions A1 A2, we have

0

2 2 2 2 2 2
1

2
1

0

2 2 2 0 .

Proof Thanks to Assumption A1 and (2.14), we have f u u curlB B,
g curl u B 2 0 L2 . One the other hand, it can be easily shown that
u 2 0 X B 2 0 W (cf. [20]). And, since

f u u curlB B f u u u u curlB B curlB B

g curl u B g curl u B curl u B

we have

f u u curlB B g curl u B 2 0 L2 .

Then, by applying Lemma 3.1 and Theorem 3.1 to (4.2), we can get Lemma 4.1.

Next, letting u v B , and subtracting (4.1)
from (4.2), we get

1 u u u u curlB B curlB B 0 (4.3)

div 0 0 0 (4.4)
1curlcurl curl u B curl u B 0 (4.5)

div 0 0 0. (4.6)
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Since

u u u u u u u u u u u u
curlB B curlB B curlB curl B
curl u B curl u B curl u curl B

(4.7)

we can rewrite (4.3)–(4.6) as
1

1 u u curlB

curl B 0 (4.8)
1

2 curl u curl B 0. (4.9)

Theorem 4.1 Under Assumptions A1 A2, we have the following estimate:

u u 2 B B 2 2 1 u u 2
1

1 B B 2
1

0

2 2 2 0 .

Proof Taking the 2 inner product of (4.8) with 1
1 and of (4.9) with 1

2 ,
summing up the two relations, we get

1

2

1
2

1
2 1 2 1

2

1
2

2
2 1 2

u 1
1 u 1

1

curlB 1
1 curl B 1

1

curl u 1
2 curl B 1

2 .

By using (2.6)–(2.13) and Lemma 2.1, we derive that

u 1
1 u 1

1

u 2
1

1 1 u 2 1 1

u 2

1
2

1 u 2

1
2

1

1

4
2 2 u 2

2 u 2
2

1
2

1
2

curlB 1
1 curl B 1

1

B 2
1

1 1 B 2
1

1 1

1

4
2 2 B 2

2 B 2
2

1
2

1
2

curl u 1
2 curl B 1

2

u 2

1
2

2 B 2

1
2

2

1

4
2 1

4
2 2 2 u 2

2 B 2
2

1
2
2

2.
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Combining the above inequalities, we arrive at

1
2

1
2

1
2

2
2 1 2 1 2 (4.10)

2 2 u 2
2 u 2

2 B 2
2 B 2

2

1
2

1
2 u 2

2 B 2
2

1
2
2

2.

Due to 0 u 2
2 u 2

2 B 2
2 B 2

2 , we can apply the Gronwall
lemma, Lemma 4.1, and get

1
2

1
2

1
2

2
2

0

1 2 1 2 2 0 . (4.11)

Next, taking 2 the inner products of (4.3) with , (4.4) with , (4.9) with
, we derive

1

2
2 1 2 2 2 1

2
2 1 2

1

2
2

2
2 u u

curlB curl B

curl u curl B .

From (2.6)–(2.11), we get

u u

u 2 1 u 2 1

4
2 2

1 u 2
2 u 2

2
2

curlB curl B

B 2 1 B 2 1

4
2 2

1 B 2
2 B 2

2
2

curl u curl B

u 2 1 B 2 1

4
2

4
2 2

1
2
1 u 2

2 B 2
2

2.

Combining the above inequalities, we arrive at

2 2 1 2 1 2 2

2 2 2
1

2
1 u 2

2 u 2
2 B 2

2 B 2
2

2

u 2
2 B 2

2
2.
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Integrating the above inequality over 0 , using (4.10), Lemma 4.1, and the
Gronwall lemma, we obtain

2 2

0

1 2 1 2 2. (4.12)

Then, we take the partial derivative with respect to of (4.4) to get

div 0. (4.13)

Taking the 2 inner products of (4.3) with 2 , (4.13) with 2 , (4.9) with 2

and adding them up, we get

2 2 1

2
2 2

2
2 2 2 2 1

2
2 2

1 2 1 2 2 2 u 2 u
2 curlB 2 curl B

2 curl u 2 curl B .

Using (2.6)–(2.12) and Lemma 4.1, we derive
2 u 2 u

2 u 2 1
2 u 2 1

2

4
2 2 u 2

2 u 2
2

2 u 2
2 u 2

2
2

2 curlB 2 curl B
2 B 2 1

2 B 2 1
2

4
2 2 B 2

2 B 2
2

2 B 2
2 B 2

2
2

2 curl u 2 curl B
2 B 2 1

2 B 2 1
2

4
2 2 u 2

2 B 2
2

2 u 2
2

2 2 B 2
2

2.

Combining the above inequalities, we obtain

2 2 2 2 1 2 1 2 2

1 2 1 2 2 2 u 2
2 u 2

2 B 2
2 B 2

2

2 u 2
2 u 2

2 B 2
2

2 2 u 2
2 B 2

2 B 2
2

2.

Integrating over 0 , using (4.12) and the Gronwall lemma, we get

0

2 2 2 2 1 2 1 2 2 2. (4.14)
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We have

u 1 u 1 1 u 1 1 1

u 1 u 1 1 1

curlB 1 B 1 1

curl B 1 B 1 1 1 .

Due to (4.3) and (4.7), we deduce

1 u u u u curlB B curlB B .

By using previous estimates on the above equation, we have

0

2 2

0

2 2
1

2

which completes the proof of Theorem 4.1.

5 Time discretizations of the penalized system

In this part, we give the time-discretization of the penalty system and derive its error
estimate. Next, we will give some rules for the solutions of the penalty system.

Lemma 5.1 Suppose u0 B0 H2 and A1 A2 are valid. Then the solutions
u B of (2.18) satisfy

u B 0 H2 (5.1)

u 2 0 X B 2 0 W
1
2 u

1
2B 2 0 L2 (5.2)

u B 2 0 L2 .

Since the proof of (5.1) is standard (cf. [20]), we just need to prove (5.2). Taking
the partial derivative with respect to on (1.3), we have

u 1
1 u u u u u curlB B curlB B f (5.3)

B 1
2 B curl u B curl u B g . (5.4)

Taking the 2 inner product of (5.3) with u , (5.4) with B , thanks to (2.1) and
(2.7), we obtain

1

2
u 2 1

1
2
1 u 2

2
B 2 1

1
2
2 B 2 f u g B

u u u curlB B u curl u B B .
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Using Lemma 2.1 and Young’s inequality, we get

f u g B f u 1 g B 1

f 2 g 2 1

4

1
2
1 u 2

4

1
2
2 B 2.

Due to (2.6) and Young’s inequality, we have

u u u u u 2 u 1
1

8

1
2
1 u 2 u 2

2 u 2.

By using (2.8), (2.12), and Young’s inequality, we have

curlB B u curl u B B

B 2 B u 1 u 2 B B 1

1

8

1
2
1 u 2

4

1
2
2 B 2 B 2

2 u 2
2 B 2.

Combining the above inequalities, we obtain

u 2 B 2 1
1
2 u 2 1 1

2B 2

f 2 g 2 u 2
2 u 2 B 2

2 u 2
2 B 2.

Since u B 0 H2 , we can show that u 0 B 0 is well defined (cf.
[20]). Hence, integrating over 0 , using the Gronwall lemma and Lemma 2.1, we
derive

u 2 B 2

0

1
1
2
1 u 2 1

1
2
2 B 2 .

By Lemma 2.1, we get u 2 0 H1 B 2 0 H1 . Then by
using (2.6), we get

1
2 u u u u 1 sup

v H1
0

u u v
v 1

u u 2.

By the same proof, we have

1
2

1 u u u u 2
1
2

1 curlB B
1
2 curlB B B B 2

1
2

2 curlu B u B 2

1
2

2 curlu B B u 2.

Thus, we get

1
2

1 u
1
2

1 f 1
1 u u u u u curlB B curlB B

1
2

2 B
1
2

2 g 1
2 B curl u B curl u B .
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Then
1
2

1 u
1
2

2 B 2 0 L2 . (5.5)

Taking the 2 inner product of (5.3) with u , (5.4) with B , we obtain

u 2 1

2

1
2
1 u 2 B 2 1

2

1
2
2 B 2 1

2

1
2
1 u 2 1

2

1
2
2 B 2

f u g B u u u u u u curlB B u

curlB B u curl u B B curl u B B .

Using Schwarz’s inequality, we get

f u g B f u g B
4

u 2 B 2 f 2 g 2 .

From (2.6), we obtain

u u u u u u u 2 u 1 u
8

u 2 u 2
2 u 2

1.

By using (2.12) and Young’s inequality, we obtain

curlB B u curlB B u B 2 B 1 u
8

u 2 B 2
2 B 2

1.

Using (2.8)–(2.13), we can derive

curl u B B curl u B B B 2 u 1 B u 2 B 1 B

4
B 2 B 2

2 u 2
1 u 2

2 B 2
1.

Combining the above inequalities, integrating over 0 , and using Assumption
A1 and (5.6), we derive

0
u 2 B 2 .

Let us consider the time discretization of the penalized system (2.16) by the
backward Euler scheme

u 1
1 u u u curlB B f

B 1
2 B curl u B g

(5.6)

where 0 1 is the time-step size, , , u0 B0 u0 B0 ,
and u 1 u u 1 for 1 .
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Lemma 5.2 Under the assumption of Lemma 5.1, we have

u u 2
1 B B 2

1
1

u u 2
2 B B 2

2
2 .

Proof Letting u u B B and subtracting (5.6) from (2.18)
at , we get

1
1 u u curlB curl B R1 (5.7)

1
2 curl u curl B R2 (5.8)

where

R1 u
1

u u 1
1

1

1 u (5.9)

R2 B
1

B B 1
1

1

1 B . (5.10)

Taking the 2 inner product of (5.7) with 2 , (5.8) with 2 , thanks to (2.1)
and (2.7), we obtain

2 1 2 1 2 2 1
1
2
1

2

2 1 2 1 2 2 1
1
2
2

2

2 R1 2 R2 2 u

2 curlB 2 curl u .

Using the Schwarz inequality, (5.9), and (5.10), we get

2 R1 2 R2 2
1
2

1 R1

1
2
1 2

1
2

2 R2

1
2
2

1

1

1
2

1 u
2

2

1
2
1

2

1

1

1
2

2 B
2

2

1
2
2

2

2
1

1
2
1

2 1
1
2
2

2

2

1

1
2

1 u 2
1
2

2 B 2 .

We can derive from (2.6) and (5.1) that

2 u 1 u 2
4

1
2
1

2 2.
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Due to (2.8)–(2.11) and (5.1), we have

2 curlB 2 curl u

B 2 1 u 2 1

4

1
2
1

2

2

1
2
2

2 2 2.

Combining the above inequalities, we obtain

2 1 2 2 1 2 1
1
2
1

2 1
1
2
2

2

2

1

1
2

1 u 2
1
2

2 B 2 2 2. (5.11)

Summing (5.11) from 1 to , and using the discrete Gronwall lemma, Lemma 5.1,
we derive

2 2

1

1
1
2
1

2 1
1
2
2

2 2. (5.12)

Thus,

u 1 B 1 1 u 1 1 B 1

1
2
1

1
2
2 . (5.13)

Taking the 2 inner product of (5.7) with 2 1 , (5.8) with 2 2 ,
we have

1
2
1

2
1
2
1

1 2
1
2
1

1 2 1
1

2 2 1
2

2

1
2
2

2
1
2
2

1 2
1
2
2

1 2 1 1

2 2 2 2 u 1 2 u 1

2 curl B 1 2 curl B 1

2 curl u 2 2 curl B 2 .
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Using Young’s inequality, we can derive

2 1 1 2 2 2

1

1 u
2

2
1

2

1

1 B
2

2
2

2

1

1
2 1

u 2

2
1

2

1

1
2 1

B 2

2
2

2

2
1

1
2 1

2
2 2

1

u 2 B 2 .

Due to (2.5)–(2.11) and (5.13), we obtain

2 u 1 2 u 1

1 u 1

1
2
1

1
2
2 u 2 1 1

1
3
2

1
2
1 1 1

8
1

2 2
1

2 curl B 1 2 curl B 1

B 2 1 1 1 B 1

1
2
1

1
2
2

1 1 1 2
1
2

1
2
1

4
1

2

4
2

2 2
1

2 curl u 2 2 curl B 2

u 2 1 2 2 B 1

1
2
1

1
2
2

8
1

2

4
2

2 2
1

2
1.

Combining the above inequalities, we obtain

1
2
1

2
1
2
1

1 2
1
2
2

2
1
2
2

1 2 1
1

2 1
2

2

2
1

2
1

2

1

u 2 B 2 . (5.14)

Taking the summation of (5.14) for form 1 to , using the discrete Gronwall
lemma and the relation

1
2
1

2
1
2
1

1 2
1
2
1

2
1

1
2
1

1 2
1
2
1

1 2
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we get

1
2
1

2
1
2
2

2

1

1
1

2 1
2

2 2.

The proof is thus complete.

Thus, we have

u 2 B 2 2 u 2 2 B 2 1 2 . (5.15)

Finally, combining Theorem 4.1 and Lemma 5.2, we prove the following theorem.

Theorem 5.1 Under the assumption of Lemma 5.1, we have

u u 2 B B 2 2 u u 2
1 B B 2

1
2 2 .

Taking the 2 inner product of (5.7) with 2 2 , (5.8) with 2 2 , we
obtain

2 2 2 2 2
1
2
1

2
1
2
1

1 2
1
2
1

1 2

2 2 2 2 2
1
2
2

2
1
2
2

1 2
1
2
2

1 2

2 2 R1 2 2 R2 2 2 u 2 2 u

2 2 curlB 2 2 curl B

2 2 curl u 2 2 curl B . (5.16)

Using Young’s inequality, we have

2 2 R1 2 2 R2

2

2
2

1

u
2 2

2
2

1

B
2

2

2
2 2

1

2

2
1

2 u 2 B 2

2

2
2 2 2

1

2 u 2 B 2 .
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Due to (2.6)–(2.12), we get

2 2 u 2 2 u
2

1 u 2
2 u 2 1

2

4
2 2 u 2

2 u 2
2

1
2
1

2

2 2 curlB 2 2 curl B
2 B 2 1

2
1 B 2

2

4
2 2 B 2

2 B 2
2

1
2
2

2

2 2 curl u 2 2 curl B
2 u 2 1

2
1 B 2

2

2
2 2 u 2

2

1
2
2

2 2 B 2
2

1
2
1

2.

Combining the above inequalities, we obtain

2 2 2 2
1
2
1

2
1
2
1

1 2 2 2 2
1
2
2

2
1
2
2

1 2

2

1

2 u 2 B 2 2 u 2
2 u 2

2 B 2
2

1
2
1

2

2 B 2
2 B 2

2 u 2
2

1
2
2

2.

Summing (5.16) from 1 to m and using the discrete Gronwall lemma, we have

1

2 2 2 2 .

From Eq. (5.6) and the available estimates for , we can prove

1

2 2 2 2 (5.17)

which is similar to the estimate in the continuous case (see Theorem 4.1).

6 Numerical results

In this section, we present several numerical experiments to illustrate the accuracy
and performance of our proposed method. All finite element calculations are carried
out by 1 1 1 finite element pair. The penalty parameter is selected as

.
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6.1 Accuracy test

This section will test the convergence rates of our proposed penalty finite element
method. We set domain 0 1 2, physical parameters 1, and
final time 1. We prescribe the exact solution u B as follows:

1
2 1 2 1 2 1 cos 2

2 1 2 1 2 1 cos
1 sin cos cos 2 sin cos cos

2 1 2 1 cos .

The time step is chosen by 2 . The error of velocity, pressure, and
magnetic field are presented in Table 1. We observe that the first-order accuracy for
u u 1, B B 1 and the second-order accuracy asymptotically for u u ,
B B , which agree with the theoretical results. Notice that has faster
convergence rate than the theoretical result.

6.2 Island coalescence

Let us consider an example of driving magnetic reconnection, the island coalescence
problem. Understanding fast magnetic reconnection is one of the important issues in
plasma physics. We set two magnetic islands as the initial conditions of the perturbed
Harris sheet magnetic field configuration in the island coalescence problem. The
combination of the two magnetic islands produces Lorentz forces, pulling the two
islands together. The detailed information of physical background of this issue, we
can refer to [31].

In this example, we set 1 1 0.5 0.5 , 1000, 1.
The source terms are taken as

f 0 0

g 2 1 2

2
sinh

cosh cos 3
2 1 2

2
sin

cosh cos 3 .

The initial conditions are set as

u0 0 0

B0
sinh

cosh cos 1
sin

cosh cos 2 .

Table 1 The convergence rates of our scheme at 1 (2D)

u u Ratio u u 1 Ratio Ratio B B Ratio B B 1 Ratio

1/8 2.46e 4 5.34e 3 4.68e 3 1.26e 2 3.13e 1

1/16 6.18e 5 1.99 2.59e 3 1.04 1.36e 3 1.79 3.22e 3 1.97 1.58e 1 0.99

1/32 1.53e 5 2.01 1.28e 3 1.02 4.14e 4 1.71 8.11e 4 1.99 7.90e 2 1.00

1/64 3.80e 6 2.01 6.34e 4 1.01 1.34e 4 1.63 2.03e 4 2.00 3.95e 2 1.00

1/128 9.45e 7 2.01 3.16e 4 1.00 4.51e 5 1.57 5.08e 5 2.00 1.98e 2 1.00
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Here 1 cos sin 1
2 , 2 2 cos 1

2 sin are perturbations,
1.0, 0.2, 1

2 , and 0.01. The velocity field u and magnetic field
B are periodic boundary conditions on the left and right boundaries, and zeros tan-
gential stress 2 0 and perfect conducting wall 2 0 on the top and bottom
boundaries.

We choose 1
100 and 1

5000 . Figure 1 gives the vector field of the mag-
netic field B and the magnitude of the current density ( curlB). We observe the
dynamic reconnection behaviors of current density and magnetic island during the
coalescence process, and a sharp peak in current density is appeared at the reconnec-
tion point. Figure 2 shows the magnitude of pressure at different moments, and we
find pressure and magnetic field have the same the coalescence process.

6.3 Hydromagnetic Kelvin-Helmholtz instability

The Kelvin-Helmholtz (K-H) instability in sheared flow configuration is an effective
mechanism to initiate fluid mixing, momentum and energy transfer, and turbulence
development, we can refer to [1]. This question is of great significance when studying
various spaces, astrophysical, and geophysical environments involving shear plasma
flows. Including the interface between the solar wind and the magnetosphere, coronal
streamers moving through the solar wind and so on. Since most astrophysical envi-
ronments are conductive, related fluids may be magnetized. Therefore, it is important
to understand the role of magnetic field in K-H instability. The detailed information
of physical background of this issue, we can refer to [32].

Fig. 1 Snapshots of the magnetic field B (in arrows) and the magnitude of the current density (in
colormap) at 0.2 0.62 0.7 0.78
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Fig. 2 Snapshots of the pressure at 0.2 0.62 0.7 0.78

In this example, the domain of our calculation is 0 2 0 1 . The
initial velocity is u0 1.5 0 in the top half domain and u0 1.5 0 in
the bottom half domain. The initial magnetic field is B0 tanh 0 , where

0.07957747154595 (see [32]). The boundary conditions of velocity u are zero
tangential stress 2 0 on the top and bottom boundaries, and periodic boundary
conditions on the left and right boundaries. The magnetic field B are B n B0 n
on the top boundary, B n B0 n on the bottom boundary, and periodic bound-
ary conditions on the left and right boundaries. We set 1000, 0.095,

1
60 ,

1
600 .

Figure 3 shows the contour of the first component 1 of the magnetic field
B 1 2 and the velocity u at different moments. We observe the profiles of
vortexes and the magnetic field show the typical structure of K-H instability, and it
deforms and rotates along with the flow. The magnitude of the pressure at the time
corresponding to 1 is presented in Fig. 4. We find the obtained numerical results are
consistent with the experimental results discussed in [33].

6.4 Flow around a cylinder

This example is about the calculation of the flow around a cylinder, which is a
well-known problem in [17]. We set the computational domain as 0 2.2
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Fig. 3 The velocity u with the filled contour of 1 that shows the hydromagnetic K-H instability.
Snapshots are taken at 0.01 2.6 2.8 3

Fig. 4 Snapshots of the pressure taken at 0.01 2.6 2.8 3
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0 0.41 . A disk of radius 0.05 is placed at 0.2 0.2 . We take the initial val-
ues u0 B0 0 and the source terms f g 0. The velocity u are u

6
0.412

sin 8 0.41 0 on the left and right boundaries, and no-slip boundary

conditions at the other boundaries.
In Fig. 5, we plot the velocity for the MHD equations without magnetic field with

1000. We find that with the increase of time, the two vortices behind the
cylinder gradually separated into vortex streets. The numerical results coincide well
with the phenomenon in [17]. In order to show the influence of the magnetic field
on the fluid, the boundary condition of magnetic field is B n 1 0 n. We set

1000, 1 and change the coupling coefficient to simulate this problem.
Figures 6, 7, and 8 describe the plot the velocity at 0.5 1 100. We find that
with the increase of , the magnetic field inhibits the formation of vortex streets.

6.5 2D-driven cavity flow

In this example, we simulate the 2D-driven cavity flow, we can refer to [31]. Our
calculation domain is 0 1 2. We take the initial values u0 B0 0 and the
source terms f g 0.

The boundary condition of velocity is u 1 0 on the top side, and no-flow
boundary conditions on the bottom, left, and right sides. The boundary condition of
magnetic field is B n 1 0 n.

We set 1
40 ,

1
400 , fix 1 and change the fluid Reynolds

numbers or fix 1 and change the coupling coefficient to sim-
ulate this problem. The velocity field u under different fluid Reynolds numbers is
presented in Fig. 9. The velocity field u under different coupling coefficient is pre-
sented in Fig. 10. We can see the main vortex split into two small vortexes as the fluid
Reynolds number increases. The numerical results are similar to the experimental
results discussed in [31, 35], which shows that our algorithm is effective.

Fig. 5 The velocity u at 2 6 7 8 for the MHD equations without magnetic field with 1000
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Fig. 6 The velocity u at 2 6 7 8 with 1000 1 0.5

Fig. 7 The velocity u at 2 6 7 8 with 1000 1 1

Fig. 8 The velocity u at 2 6 7 8 with 1000 1 100
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Fig. 9 The streamlines of velocity at = 1, 100, 1000

6.6 3D-driven cavity flow

In this example, we test the 3D-driven cavity flow problem, we can refer to [31]. We
set a cubic domain 0 1 3.We take the initial values u0 B0 0 and the source
terms f g 0. The boundary condition of velocity field is u 1 0 0 on the top
wall, and no-slip boundary conditions on the bottom, front, back, left, and right walls
of the domain. The boundary condition of magnetic field is B n 1 0 0 n
on the walls.

We set 1
15 ,

1
150 , fixed 1, 0.1, and change the fluid Reynolds

numbers to simulate this problem. Figure 11 shows the velocity field u at plane
0.5 for fluid Reynolds number 1 100 1000. We find the bigger , the

vortex becomes larger in the cavity.

7 Conclusions

In this paper, we present the penalty method for the 2D/3D time-dependent MHD
equations. The main idea of this method is to decouple the MHD equations into two
equations, one is the equation of velocity and magnetic field u B , and the other
is the equation pressure . What’s more, we derive the optimal error estimate of the

Fig. 10 The streamlines of velocity at = 1, 100, 1000
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Fig. 11 The streamlines of velocity at plane 0.5 of = 1, 100, 1000

time-discretization of the penalty equations. Several 2D and 3D numerical experi-
ments verify the theoretical result. The fully discrete scheme of the time-dependent
MHD equations will be given in our on going work.
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