
Vol.:(0123456789)

Numerical Algorithms (2023) 93:695–710
https://doi.org/10.1007/s11075-022-01435-3

1 3

ORIGINAL PAPER

Shift‑splitting fixed point iteration method for solving
generalized absolute value equations

Xu Li1 · Yi‑Xin Li1 · Yan Dou1

Received: 11 August 2022 / Accepted: 5 October 2022 / Published online: 25 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Using the shift-splitting strategy, we propose a shift-splitting fixed point iteration
(FPI-SS) method for solving large sparse generalized absolute value equations
(GAVEs). The FPI-SS method is based on reformulating the GAVE as a two-by-two
block nonlinear equation. Several different types of convergence conditions of the
FPI-SS method are presented under suitable restrictions. Through numerical experi-
ments, we demonstrate that the FPI-SS method is superior to the fixed point iteration
method and the SOR-like iteration method in computing efficiency.

Keywords  Generalized absolute value equation · Shift-splitting · Fixed point
iteration · Convergence analysis

Mathematics Subject Classification 2010  65F10 · 65H10 · 90C05 · 90C30

1  Introduction

The generalized absolute value equation (GAVE) is formulated as:

where A, B ∈ ℝ
n×n are given large sparse matrices, b ∈ ℝ

n , and |x| = (|x1|,… , |x
n
|)T ∈ ℝ

n
denotes the componentwise absolute value of an unknown x ∈ ℝ

n . If B = I , where I
stands for an identity matrix of suitable dimension, the GAVE (1) can be simplified to the
following absolute value equation (AVE)

(1)Ax − B|x| = b,

 *	 Xu Li
	 lixu@lut.edu.cn

	 Yi‑Xin Li
	 leeyx11@163.com

	 Yan Dou
	 douy@lut.edu.cn

1	 Department of Applied Mathematics, Lanzhou University of Technology, 730050 Lanzhou,
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01435-3&domain=pdf

696	 Numerical Algorithms (2023) 93:695–710

1 3

GAVEs have arisen in various scientific and engineering fields and been pre-
sented in enormous applications since they were first introduced by Rohn [1].
Among many important applications, a well-known example is the linear com-
plementarity problem (LCP) [2–6]. Besides LCPs, many other optimization prob-
lems can be transformed into the GAVEs (1), including linear programming and
convex quadratic programming [1, 7].

Due to the existence of the nonlinear term B|x| , the GAVE (1) can be regarded
as a weakly nonlinear system

For solving the general weakly nonlinear systems

where the nonlinear function G ∶ ℝ
n
→ ℝ

n is B-differentiable, through the two-
stage splitting A = E − F and E = M − N , Bai for the first time introduced and stud-
ied the following two-stage iterative method [8]:

with x(k,0) ∶= x(k) and x(k+1) ∶= x(k,lk) . See also [9–11] for related methods. It is noted
that the two-stage iterative method provides a general framework of matrix splitting
iteration methods for solving the weakly nonlinear systems (4). For the GAVE (1),
i.e., the case when G(x) = B|x| + b , the two-stage iterative method includes a series
of existing matrix splitting iteration methods [12–16] as its special cases. For exam-
ple, when E = A , F = 0 , M = E , N = 0 , and lk ≡ 1 , the two-stage iterative method
reduces to the well-known Picard iteration method [12]

Recently, by reformulating the AVE (2) as a two-by-two block nonlinear
equation, Ke et al. proposed an SOR-like iteration method [17] for solving the
AVE (2). This method was also analyzed in [18]. The SOR-like iteration method
received wide attentions and obtained considerable achievements in recent years.
Using the similar technology, other SOR-like-based methods [19–21] are pre-
sented to solve the AVE (2). In order to further improve computational efficiency,
Ke proposed an efficient fixed point iteration (FPI) method [22] to solve the AVE
(2), which can be described as

Algorithm 1  (The FPI Method for AVE). Let A ∈ ℝ
n×n be a nonsingular matrix

and b ∈ ℝ
n . Given the initial vectors x(0), y(0) ∈ ℝ

n , compute (x(k+1), y(k+1)) for
k = 0, 1, 2,… using the following iteration scheme until {(x(k), y(k))}+∞

k=0
 satisfies the

stopping criterion:

(2)Ax − |x| = b.

(3)Ax = G(x), with G(x) = B|x| + b.

(4)Ax = G(x),

(5)Mx(k,�+1) = Nx(k,�) + Fx(k) + G(x(k)), for � = 0, 1,… , lk − 1,

(6)Ax(k+1) = B|x(k)| + b.

697

1 3

Numerical Algorithms (2023) 93:695–710	

where � is a positive constant.

Note that the FPI method reduces to the Picard iteration method for � = 1 . Owing
to the simplicity and effectiveness of FPI method for solving the AVE (2), Yu et al.
developed a modified FPI (MFPI) method [23], which is a generalized version of the
FPI method.

Clearly, at each step of the FPI method, a linear system Au = f needs to be
solved. Since A is always large and sparse, a computationally efficient way is to use
matrix splitting iteration methods to obtain the approximate solution of this linear
system. For solving non-Hermitian positive definite linear systems, Bai et al. first
proposed the shift-splitting (SS) iteration method [24]. Motivated by its promising
performance, the SS method was extended to solve many linear systems with special
structure such as the saddle point problems [25], block 3 × 3 saddle point problems
[26], and time-harmonic eddy current problems [27]. In this paper, using the shift-
splitting [24] of the coefficient matrix A, we propose a shift-splitting fixed point iter-
ation (FPI-SS) method for solving the GAVE (1). Compared with the FPI method,
the coefficient matrix of the first sub-iteration scheme of our method is more diago-
nally dominant. Our method is more efficient than the FPI method and the SOR-like
iteration method as shown in our numerical experiments.

In what follows, some notations in this work are described. For x ∈ ℝ
n , xi

stands for the ith entry of vector x for all i = 1, 2,… , n . sgn(x) ∈ ℝ
n denotes a

vector with components equal to 1, 0, or −1 depending on whether the corre-
sponding component of the vector x is positive, zero, or negative, respectively.
Let diag(x) ∈ ℝ

n×n represent a diagonal matrix with xi as its ith diagonal entry for
i = 1, 2,… , n . For matrix M ∈ ℝ

n×n , ‖M‖ denotes the spectral norm defined by
‖M‖ ∶= max{‖Mx‖ ∶ x ∈ ℝ

n, ‖x‖ = 1} , where ‖x‖ is the 2-norm.
The organization of the remaining parts is the following. In Section 2, we present

a brief introduction of the FPI method and establish the FPI-SS method for solving
the GAVE (1). In Section 3, the convergence theories for the FPI-SS method are pre-
sented in detail. In Section 4, we give two numerical examples in Section 4 to verify
the effectiveness of our method. Finally, the conclusions are given in Section 5.

2 � The shift‑splitting fixed point iteration (FPI‑SS) method

Let y = |x| , then the GAVE (1) is equivalent to

which can be reformulated as the following two-by-two block nonlinear equation

(7)
{

x(k+1) = A−1
(y(k) + b),

y(k+1) = (1 − �)y(k) + �|x(k+1)|,

(8)
{

Ax − By = b,

−|x| + y = 0,

698	 Numerical Algorithms (2023) 93:695–710

1 3

where H(x) = diag(sign(x)).
If A is a nonsingular matrix, (9) yields the following fixed point equation

where the relaxation parameter 𝜔 > 0.
Then, we can obtain the following fixed point iteration (FPI) method for the

GAVE (1).

Algorithm 2  (The FPI Method for GAVE). Let A ∈ ℝ
n×n be nonsingular, B ∈ ℝ

n×n
and b ∈ ℝ

n . Given the initial vectors x(0), y(0) ∈ ℝ
n , compute (x(k+1), y(k+1)) for

k = 0, 1, 2,… using the following iteration scheme until {(x(k), y(k))}+∞
k=0

 satisfies the
stopping criterion:

where � is a positive constant.

It is evident that Algorithm 2 reduces to Algorithm 1 when we take B = I . Simi-
larly, if we set � = 1 in Algorithm 2, the Picard iteration method (6) for solving the
GAVE (1) can be obtained. Since the convergence analyses of Algorithm 2 are anal-
ogous to those of Algorithm 1 discussed in detail in [22], we do not give them here.

Importantly, by employing the following shift-splitting of the matrix A [24]

where the parameter � is a positive constant and the matrix �I + A is invertible, we
get the following fixed point equation from (9)

which leads to the following FPI-SS method for the GAVE (1).

Algorithm 3  (The FPI-SS Method for GAVE). Let A, B ∈ ℝ
n×n and b ∈ ℝ

n . Let �
be a positive constant such that �I + A ∈ ℝ

n×n is nonsingular. Given the initial vec-
tors x(0), y(0) ∈ ℝ

n , compute (x(k+1), y(k+1)) for k = 0, 1, 2,… using the following iter-
ation scheme until {(x(k), y(k))}+∞

k=0
 satisfies the stopping criterion:

(9)
(

A − B

−H(x) I

)(
x

y

)

=

(
b

0

)

,

(10)
{

x∗ = A−1
(By∗ + b),

y∗ = (1 − �)y∗ + �|x∗|,

(11)
{

x(k+1) = A−1
(By(k) + b),

y(k+1) = (1 − �)y(k) + �|x(k+1)|,

A =
1

2
(�I + A) −

1

2
(�I − A),

(12)
{

x∗ = (�I + A)−1(�I − A)x∗ + 2(�I + A)−1(By∗ + b),

y∗ = (1 − �)y∗ + �|x∗|,

(13)
{

x(k+1) = (�I + A)−1(�I − A)x(k) + 2(�I + A)−1(By(k) + b),

y(k+1) = (1 − �)y(k) + �|x(k+1)|,

699

1 3

Numerical Algorithms (2023) 93:695–710	

where � is a positive constant.

Remark 1  If matrix A is positive semi-definite, the condition that �I + A is nonsin-
gular naturally holds. Even if matrix A is singular, we can always find some suffi-
ciently large parameters � to ensure that �I + A is nonsingular. Therefore, the FPI-SS
method has a broader range of application than the FPI method. In addition, owing
to the positive scalar matrix �I , the matrix �I + A is expected to be strictly diago-
nally dominant and better conditioned than the matrix A. Thus, our FPI-SS method
may have better computing efficiency than the FPI method.

3 � Convergence of the FPI‑SS method

We first give some lemmas that will be used in convergence analysis of the FPI-
SS method for solving the GAVE (1).

Lemma 1  [28–30] For any vectors x ∈ ℝ
n and y ∈ ℝ

n , the following results hold:

(1)	 ‖�x� − �y�‖ ≤ ‖x − y‖;
(2)	 if 0 ≤ x ≤ y , then ‖x‖p ≤ ‖y‖p , with ‖ ⋅ ‖p standing for p-norm of vector;
(3)	 if x ≤ y and P is a nonnegative matrix, then Px ≤ Py.

Lemma 2  [28, 29] For any matrices A,B ∈ ℝ
n×n , if 0 ≤ A ≤ B , then ‖A‖p ≤ ‖B‖p ,

with ‖ ⋅ ‖p standing for p-norm of matrix.

Lemma 3  [28, 31] Both roots of the real quadratic equation x2 − ax + b = 0 are less
than one in modulus if and only if |b| < 1 and |a| < 1 + b.

In the remainder of this section, we assume that the GAVE (1) has a unique
solution. Let (x∗, y∗) be the solution pair of (12) and (x(k), y(k)) be generated by the
FPI-SS iteration (13). The iteration errors are denoted by

Then, we can get the following convergence theorem by estimating the above two
iteration errors.

Theorem 1  Let A,B ∈ ℝ
n×n and b ∈ ℝ

n . Let � be a positive constant such that
�I + A ∈ ℝ

n×n is nonsingular. Denote

and

ex
k
= x∗ − x(k) and e

y

k
= y∗ − y(k).

� = ‖(�I + A)−1(�I − A)‖, � = 2‖(�I + A)−1B‖, � = �1 − ��,

700	 Numerical Algorithms (2023) 93:695–710

1 3

Then, we have

where ‖ ⋅ ‖
∞

 denotes the ∞-norm of vector or matrix and

Furthermore, ‖L(𝛼,𝜔)‖
∞
< 1 if and only if parameters � and � satisfy

i.e., if the conditions (15) hold, the iteration sequence {x(k)}+∞
k=0

 generated by the
FPI-SS iteration converges to the unique solution x∗ of the GAVE (1) for any initial
vector.

Proof  Subtracting (13) from (12), we get

According to (16), we can obtain

From (17) and Lemma 1, we have

Rearranging (18) and (19), we find

Let

E(k+1)
=

�
‖ex

k+1
‖

‖e
y

k+1
‖

�

.

(14)‖E(k+1)‖
∞
≤ ‖L(�,�)‖

∞
⋅ ‖E(k)‖

∞
,

L(�,�) ∶=

(
� �

�� �� + �

)

.

(15)𝛿 + 𝛽 < 1 and 0 < 𝜔 <
2

1 + 𝛿 + 𝛽
,

(16)ex
k+1

= (�I + A)−1(�I − A)ex
k
+ 2(�I + A)−1Be

y

k
,

(17)e
y

k+1
= (1 − �)e

y

k
+ �(|x∗| − |x(k+1)|).

(18)‖ex
k+1

‖ ≤ �‖ex
k
‖ + �‖e

y

k
‖.

(19)

‖e
y

k+1
‖ ≤� ⋅ ‖e

y

k
‖ + �‖�x∗� − �x(k+1)�‖

≤� ⋅ ‖e
y

k
‖ + �‖x∗ − x(k+1)‖

=� ⋅ ‖e
y

k
‖ + �‖ex

k+1
‖.

(20)
�

1 0

−� 1

��
‖ex

k+1
‖

‖e
y

k+1
‖

�

≤

�
� �

0 �

��
‖ex

k
‖

‖e
y

k
‖

�

.

P =

(
1 0

� 1

)

≥ 0.

701

1 3

Numerical Algorithms (2023) 93:695–710	

Multiplying (20) from left by the nonnegative matrix P and according to Lemma 1,
we have

which can be rewritten as

Taking the ∞-norm on both sides of inequality (22) and according to (2) of Lemma
1, the estimation (14) is obtained. Since

we have

From (14), we deduce that

Hence if the conditions (15) are satisfied, then we have lim
k→∞

‖E(k)‖
∞
= 0.

As

it follows that

which mean that the iteration sequence {(x(k), y(k))}+∞
k=0

 is convergent to (x∗, y∗) under
the conditions (15). This proves the theorem.

Using a different error estimate by a new weighted norm, we can obtain
another convergence theorem as follows.

Theorem 2  Let the assumptions of Theorem 1 hold, � , � , and � be defined as in The-
orem 1. Denote

(21)
�
‖ex

k+1
‖

‖e
y

k+1
‖

�

≤

�
� �

�� �� + �

��
‖ex

k
‖

‖e
y

k
‖

�

,

(22)E(k+1)
≤ L(�,�) ⋅ E(k).

‖L(�,�)‖
∞
= max{� + �, (� + �)� + �},

‖L(𝛼,𝜔)‖
∞
< 1 ⇔

�
𝛿 + 𝛽 < 1

(𝛿 + 𝛽)𝜔 + 𝛾 < 1
⇔

�
𝛿 + 𝛽 < 1

�1 − 𝜔� < 1 − (𝛿 + 𝛽)𝜔

⇔

⎧
⎪
⎨
⎪
⎩

𝛿 + 𝛽 < 1

1 − (𝛿 + 𝛽)𝜔 > 0

(𝛿 + 𝛽)𝜔 − 1 < 1 − 𝜔 < 1 − (𝛿 + 𝛽)𝜔
⇔

⎧
⎪
⎨
⎪
⎩

𝛿 + 𝛽 < 1

𝜔 <
1

𝛿+𝛽

0 < 𝜔 <
2

1+𝛿+𝛽

⇔

�
𝛿 + 𝛽 < 1

0 < 𝜔 <
2

1+𝛿+𝛽
.

0 ≤ ‖E(k)‖
∞
≤ ‖L(�,�)‖

∞
⋅ ‖E(k−1)‖

∞
≤ ⋯ ≤ ‖L(�,�)‖k

∞
⋅ ‖E(0)‖

∞
.

‖E(k)‖
∞
= max{‖ex

k
‖, ‖e

y

k
‖},

lim
k→∞

‖ex
k
‖ = 0 and lim

k→∞

‖e
y

k
‖ = 0,

702	 Numerical Algorithms (2023) 93:695–710

1 3

Then, we have

where

Furthermore, ‖T(𝛼,𝜔)‖ < 1 if and only if parameters � and � satisfy

and

i.e., if the conditions (24)–(25) hold, the iteration sequence {x(k)}+∞
k=0

 generated by
the FPI-SS iteration converges to the unique solution x∗ of the GAVE (1) for any
initial vector.

Proof  Denote

According to Lemma 1, we multiply left (21) by matrix D to obtain

which can be rewritten as

From the above, it follows that (23) holds.
Let � be an eigenvalue of the matrix Q ∶= T(�,�)TT(�,�) . Since

we get

and

E(k+1)
�

=

�
‖ex

k+1
‖

�−1‖e
y

k+1
‖

�

.

(23)‖E(k+1)
�

‖ ≤ ‖T(�,�)‖ ⋅ ‖E(k)
�
‖,

T(�,�) ∶=

(
� ��

� �� + �

)

.

(24)𝛿𝛾 < 1

(25)2𝛿2 + 𝜔2𝛽2 + (𝜔𝛽 + 𝛾)2 − 𝛿2𝛾2 − 1 < 0,

D =

(
1 0

0 𝜔−1

)

> 0.

�
‖ex

k+1
‖

�−1‖e
y

k+1
‖

�

≤

�
� ��

� �� + �

��
‖ex

k
‖

�−1‖e
y

k
‖

�

,

E(k+1)
�

≤ T(�,�) ⋅ E(k)
�
.

Q =

(
2�2 2��� + ��

2��� + �� �2�2 + (�� + �)2

)

,

tr(Q) = 2�2 + �2�2 + (�� + �)2

703

1 3

Numerical Algorithms (2023) 93:695–710	

Thus, � is the root of the following real quadratic equation

From Lemma 3, it follows that ‖T(𝛼,𝜔)‖ < 1 if and only if

and

From (23), we conclude that

Hence, we have lim
k→∞

‖E(k)
�
‖ = 0 when the conditons (24)–(25) are satisfied.

From the definition

we get

which mean that the iteration sequence {(x(k), y(k))}+∞
k=0

 is convergent to (x∗, y∗) under
the conditions (24)–(25). This completes the proof.

Theorem 2 shows that in order to obtain the convergence of the FPI-SS method,
we need to find the conditions in which ‖T(𝛼,𝜔)‖ < 1 holds. Here, we give conver-
gence conditions that are simpler than those in Theorem 2.

Corollary 1  Let the assumptions of Theorem 1 hold, � , � , and � be defined as in The-
orem 1, E(k+1)

�
 and T(�,�) be defined as in Theorem 2. If

and

then ‖T(𝛼,𝜔)‖ < 1 , i.e., the FPI-SS method is convergent when the conditions (27)–
(28) hold.

Proof  Let � = max{�, ��, �} , we can get

det(Q) = �2�2.

(26)�2 − (2�2 + �2�2 + (�� + �)2)� + �2�2 = 0.

𝛿2𝛾2 < 1,

2𝛿2 + 𝜔2𝛽2 + (𝜔𝛽 + 𝛾)2 < 1 + 𝛿2𝛾2.

0 ≤ ‖E(k)
�
‖ ≤ ‖T(�,�)‖ ⋅ ‖E(k−1)

�
‖ ≤ ⋯ ≤ ‖T(�,�)‖k ⋅ ‖E(0)

�
‖.

‖E(k)
�
‖ =

�

‖ex
k
‖2 + �−2‖e

y

k
‖2,

lim
k→∞

‖ex
k
‖ = 0 and lim

k→∞

‖e
y

k
‖ = 0,

(27)𝛿 <
3 −

√
5

2
, 𝛽 <

√
5 − 1

2
,

(28)
√
5 − 1

2
< 𝜔 < min{

3 −
√
5

2𝛽
,
5 −

√
5

2
},

704	 Numerical Algorithms (2023) 93:695–710

1 3

where

From lemma 2, we obtain

Let � =
3 −

√
5

2
 . Hence, we have ‖T(𝛼,𝜔)‖ < 1 if 𝜂 < 𝜃 . Then,

Therefore, if the conditions (27)–(28) are satisfied, the iteration sequence
{(x(k), y(k))}+∞

k=0
 is convergent to (x∗, y∗).

4 � Numerical experiments

In this section, two examples from LCPs are presented to show the feasibility and effec-
tiveness of the FPI-SS method. We compare the FPI-SS method with the FPI method
[22] and the SOR-like iteration method [17, 18] from aspects of the numbers of itera-
tion steps (denoted as “IT”), elapsed CPU time in seconds (denoted as “CPU”), and
relative residual error (denoted as “RES”) which is defined by

In our implementation, all initial guess vectors x(0) and y(0) are chosen to zero
vectors and all iterations are terminated if RES ≤ 10−6 or the maximum number

0 ≤ T(�,�) =

(
� ��

� �� + �

)

≤

(
� �

� 2�

)

= �

(
1 1

1 2

)

∶= �K,

K =

(
1 1

1 2

)

.

‖T(�,�)‖ ≤ ‖�K‖ = �‖K‖ = � ⋅
3 +

√
5

2
.

𝜂 < 𝜃 ⇔

⎧
⎪
⎨
⎪
⎩

𝛿 < 𝜃

𝜔𝛽 < 𝜃

𝛾 = �1 − 𝜔� < 𝜃
⇔

⎧
⎪
⎨
⎪
⎩

𝛿 < 𝜃

𝜔 <
𝜃

𝛽

1 − 𝜃 < 𝜔 < 1 + 𝜃

⇔

⎧
⎪
⎨
⎪
⎩

𝛿 < 𝜃

1 − 𝜃 < 𝜔 < min{
𝜃

𝛽
, 1 + 𝜃}

1 − 𝜃 <
𝜃

𝛽

⇔

⎧
⎪
⎨
⎪
⎩

𝛿 < 𝜃
√
5−1

2
< 𝜔 < min{

3−
√
5

2𝛽
,

5−
√
5

2
}.

𝛽 <
𝜃

1−𝜃
=

√
5−1

2

RES(x(k)) ∶=
‖Ax(k) − B�x(k)� − b‖2

‖b‖2
.

705

1 3

Numerical Algorithms (2023) 93:695–710	

of iteration steps k
max

 exceeds 500. All computations are performed in MATLAB
R2018b on a personal computer with 2.40GHz central processing unit (Intel(R)
Core(TM) i5-6200U) and 8 GB memory.

Consider the following LCP(q, M) [2]: to derive two real vectors z,� ∈ ℝ
n such

that

where M ∈ ℝ
n×n and q ∈ ℝ

n are given. From [3–6], the LCP(q, M) (29) can be for-
mulated as the following GAVE:

with

Example 1  ([5, 6]) The matrix M ∈ ℝ
n×n is defined by M = M̂ + �I ∈ ℝ

n×n and
q ∈ ℝ

n is defined by q = −Mz∗ , where

is a block-tridiagonal matrix,

is a tridiagonal matrix, n = m2 , and z∗ = (1, 2, 1, 2,… , 1, 2,…)
T
∈ ℝ

n
is the unique solution of the LCP(q, M) (29). It can be derived that
x∗ = (−0.5,−1,−0.5,−1,… ,−0.5,−1,…)

T
∈ ℝ

n is the exact solution after formu-
lating the LCP(q, M) (29) as the GAVE (30).

For various problem sizes n, the optimal experimental parameters, the iteration
steps, CPU time, and relative residual errors of three methods in the case of � = 1 and
� = 4 are listed in Tables 1 and 2, respectively.

(29)z ≥ 0, � = Mz + q ≥ 0, zT� = 0,

(30)(M + I)x − (M − I)|x| = q,

x =
1

2
((M − I)z + q).

M̂ = Tridiag(−I, S,−I) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S − I 0 ⋯ 0 0

−I S − I ⋯ 0 0

0 − I S ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ⋯ S − I

0 0 ⋯ ⋯ − I S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ
n×n

S = tridiag(−1, 4,−1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 − 1 0 ⋯ 0 0

−1 4 − 1 ⋯ 0 0

0 − 1 4 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ⋯ 4 − 1

0 0 ⋯ ⋯ − 1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ
m×m

706	 Numerical Algorithms (2023) 93:695–710

1 3

We find that each tested method converges to the exact solution and the num-
ber of iterative steps becomes smaller with the increase of � . Notably, among
these methods, the FPI-SS method requires the least iteration steps and costs the
least computing time.

Example 2  ([5]) Consider the LCP(q, M) (29). The matrix M ∈ ℝ
n×n is defined by

M = M̂ + �I ∈ ℝ
n×n and q ∈ ℝ

n is defined by q = −Mz∗ , where

Table 1   Numerical results for Example 1 with � = 1

Method n 502 1002 1502 2002

SOR-like �
exp

1.0 1.0 1.0 1.0
IT 65 65 65 65
CPU 0.2185 1.3265 3.1923 6.3418
RES 8.1731e-07 9.3586e-07 9.7624e-07 9.9659e-07

FPI �
exp

1.9 1.9 1.9 1.9
IT 32 32 32 32
CPU 0.1028 0.6670 1.5182 3.0045
RES 8.6927e-07 8.1065e-07 7.8688e-07 7.7407e-07

FPI-SS �
exp

1.3 1.4 1.3 1.3
�
exp

3.3 4.6 3.0 3.3
IT 16 16 16 15
CPU 0.0435 0.2931 0.7731 1.5064
RES 5.5429e-07 8.3983e-07 6.0380e-07 9.9518e-07

Table 2   Numerical results for Example 1 with � = 4

Method n 502 1002 1502 2002

SOR-like �
exp

1.0 1.0 1.0 1.0
IT 27 27 27 27
CPU 0.0881 0.5479 1.3626 2.8915
RES 7.5622e-07 8.0353e-07 8.1946e-07 8.2746e-07

FPI �
exp

1.7 1.7 1.7 1.7
IT 13 13 13 13
CPU 0.0410 0.2745 0.6650 1.3447
RES 5.0722e-07 5.4099e-07 5.5243e-07 5.5818e-07

FPI-SS �
exp

1.1 1.1 1.1 1.1
�
exp

4.5 6.9 7.5 7.5
IT 10 10 9 9
CPU 0.0324 0.1889 0.4332 0.9821
RES 9.3877e-07 4.6551e-07 9.7719e-07 9.5782e-07

707

1 3

Numerical Algorithms (2023) 93:695–710	

is a block-tridiagonal matrix,

is a tridiagonal matrix, n = m2 , and z∗ = (1, 2, 1, 2,… , 1, 2,…)
T
∈ ℝ

n
is the unique solution of the LCP(q, M) (29). It can be derived that
x∗ = (−0.5,−1,−0.5,−1,… ,−0.5,−1,…)

T
∈ ℝ

n is the exact solution after formu-
lating the LCP(q, M) (29) as the GAVE (30).

In Tables 3 and 4, we list the numerical results of three methods by using experi-
mental optimal parameters in the case of � = 1 and � = 4 , respectively. From those
results, we get the same conclusions as Example 1.

M̂ = Tridiag(−1.5I, S,−0.5I) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S − 0.5I 0 ⋯ 0 0

−1.5I S − 0.5I ⋯ 0 0

0 − 1.5I S ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ⋯ S − 0.5I

0 0 ⋯ ⋯ − 1.5I S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ
n×n

S = tridiag(−1.5, 4,−0.5) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 − 0.5 0 ⋯ 0 0

−1.5 4 − 0.5 ⋯ 0 0

0 − 1.5 4 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ ⋯ 4 − 0.5

0 0 ⋯ ⋯ − 1.5 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ
m×m

Table 3   Numerical results for Example 2 with � = 1

Method n 502 1002 1502 2002

SOR-like �
exp

1.0 1.0 1.0 1.0
IT 64 65 65 65
CPU 0.7538 3.3268 8.2104 15.4580
RES 8.5588e-07 8.7416e-07 9.3491e-07 9.6552e-07

FPI �
exp

1.8 1.9 1.9 1.9
IT 33 32 32 32
CPU 0.3669 1.6016 4.5292 7.5732
RES 7.3824e-07 9.9926e-07 9.2406e-07 8.8200e-07

FPI-SS �
exp

1.2 1.2 1.2 1.2
�
exp

2.2 2.3 2.3 2.4
IT 22 21 21 21
CPU 0.2111 0.9085 2.6978 5.0868
RES 9.9926e-07 8.7943e-07 7.0811e-07 6.3176e-07

708	 Numerical Algorithms (2023) 93:695–710

1 3

5 � Conclusion

In this paper, by combining the shift-splitting of the coefficient matrix with the
fixed point iteration (FPI) method, we proposed a shift-splitting fixed point itera-
tion (FPI-SS) method to solve the generalized absolute value equation (GAVE). We
have given several different types of convergence conditions of the FPI-SS method
by introducing two different norms of the iteration error. Furthermore, using two
numerical examples from linear complementarity problems, we have demonstrated
that the FPI-SS method outperforms the FPI method and the SOR-like iteration
method in terms of iteration steps and computing times.

Finally, we should mention that the FPI-SS method can be seen as an inexact
version of the FPI method. If we replace the shift-splitting in the FPI-SS algorithm
with other matrix splitting such as SOR-based splitting [28, 29, 31] and HSS-based
splitting [28, 32–34], we can establish a series of inexact FPI methods which may
have similar convergence results. In real applications of inexact FPI algorithms, how
to choose the optimal (or quasi-optimal) parameters is an interesting and practical
topic, which is left as our future work.

Acknowledgements  The authors would like to thank the two referees for their constructive suggestions
which greatly improve the presentation of the paper. This research was funded by the Natural Science
Foundation of Gansu Province (No. 20JR5RA464) and the National Natural Science Foundation of China
(Nos. 11501272 and 11901267).

Author contribution  Xu Li and Yi-Xin Li wrote the main manuscript text and Yi-Xin Li performed the
numerical experiments. All authors reviewed the manuscript.

Funding  The research of Xu Li was supported by the Natural Science Foundation of Gansu Province
(No. 20JR5RA464) and the National Natural Science Foundation of China (No. 11501272). The research
of Yi-Xin Li was supported by the Natural Science Foundation of Gansu Province (No. 20JR5RA464).
The research of Yan Dou was supported by the National Natural Science Foundation of China (No.
11901267).

Table 4   Numerical results for Example 2 with � = 4

Method n 502 1002 1502 2002

SOR-like �
exp

1.0 1.0 1.0 1.0
IT 27 27 27 27
CPU 0.3075 1.3550 3.5566 6.9559
RES 7.4004e-07 7.9538e-07 8.1402e-07 8.2338e-07

FPI �
exp

1.7 1.7 1.7 1.7
IT 13 13 13 13
CPU 0.1435 0.6567 1.6867 3.2636
RES 5.0817e-07 5.4126e-07 5.5257e-07 5.5827e-07

FPI-SS �
exp

1.1 1.1 1.1 1.1
�
exp

5.7 7.0 6.0 5.8
IT 11 10 10 10
CPU 0.1027 0.4260 1.3000 2.5901
RES 4.4188e-07 8.4124e-07 8.2384e-07 9.0426e-07

709

1 3

Numerical Algorithms (2023) 93:695–710	

Data availability  Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations 

Competing interests  The authors declare no competing interests.

Ethics approval and consent to participate  Not applicable.

Consent for publication  The authors agree to publication of the article in English by Springer in Springer’s
corresponding English-language journal.

Human and animal ethics  Not applicable.

References

	 1.	 Rohn, J.: A theorem of the alternatives for the equation Ax + B|x| = b . Linear Multilinear Algebra
52(6), 421–426 (2004)

	 2.	 Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press,
(1992)

	 3.	 Schäfer, U.: On the modulus algorithm for the linear complementarity problem. Oper. Res. Lett.
32(4), 350–354 (2004)

	 4.	 Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2–3), 359–
367 (2006)

	 5.	 Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems.
Numer. Linear Algebra Appl. 17(6), 917–933 (2010)

	 6.	 Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear
complementarity problems. Numer. Linear Algebra Appl. 20(3), 425–439 (2013)

	 7.	 Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)
	 8.	 Bai, Z.-Z.: A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer.

Algorithms 14(4), 295–319 (1997)
	 9.	 Bai, Z.-Z.: Parallel multisplitting two-stage iterative methods for large sparse systems of weakly

nonlinear equations. Numer. Algorithms 15(3–4), 347–372 (1997)
	10.	 Bai, Z.-Z., Migallón, V., Penadés, J., Szyld, D.B.: Block and asynchronous two-stage methods for

mildly nonlinear systems. Numer. Math. 82(1), 1–20 (1999)
	11.	 Bai, Z.-Z., Yang, X.: On HSS-based iteration methods for weakly nonlinear systems. Appl. Numer.

Math. 59(12), 2923–2936 (2009)
	12.	 Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equa-

tions and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)
	13.	 Wang, A., Cao, Y., Chen, J.-X.: Modified Newton-type iteration methods for generalized absolute

value equations. J. Optim. Theory Appl. 181(1), 216–230 (2019)
	14.	 Zhou, H.-Y., Wu, S.-L., Li, C.-X.: Newton-based matrix splitting method for generalized absolute

value equation. J. Comput. Appl. Math. 394, 113578–15 (2021)
	15.	 Li, C.-X., Wu, S.-L.: A shift splitting iteration method for generalized absolute value equations.

Comput. Methods Appl. Math. 21(4), 863–872 (2021)
	16.	 Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8(8),

2191–2202 (2014)
	17.	 Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations. Appl. Math.

Comput. 311, 195–202 (2017)
	18.	 Guo, P., Wu, S.-L., Li, C.-X.: On the SOR-like iteration method for solving absolute value equa-

tions. Appl. Math. Lett. 97, 107–113 (2019)
	19.	 Huang, B., Li, W.: A modified SOR-like method for absolute value equations associated with second

order cones. J. Comput. Appl. Math. 400, 113745–20 (2022)
	20.	 Dong, X., Shao, X.-H., Shen, H.-L.: A new SOR-like method for solving absolute value equations.

Appl. Numer. Math. 156, 410–421 (2020)

710	 Numerical Algorithms (2023) 93:695–710

1 3

	21.	 Zhang, J.-L., Zhang, G.-F., Liang, Z.-Z.: A modified generalized SOR-like method for solving an
absolute value equation. Linear Multilinear Algebra (2022). https://​doi.​org/​10.​1080/​03081​087.​2022.​
20666​14

	22.	 Ke, Y.-F.: The new iteration algorithm for absolute value equation. Appl. Math. Lett. 99, 105990–7
(2020)

	23.	 Yu, D., Chen, C., Han, D.: A modified fixed point iteration method for solving the system of abso-
lute value equations. Optimization 71(3), 449–461 (2022)

	24.	 Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite
matrices. J. Comput. Math. 24(4), 539–552 (2006)

	25.	 Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl.
Math. 272, 239–250 (2014)

	26.	 Cao, Y.: Shift-splitting preconditioners for a class of block three-by-three saddle point problems.
Appl. Math. Lett. 96, 40–46 (2019)

	27.	 Cao, Y.: A general class of shift-splitting preconditioners for non-Hermitian saddle point problems
with applications to time-harmonic eddy current models. Comput. Math. Appl. 77(4), 1124–1143
(2019)

	28.	 Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, (2021)
	29.	 Varga, R.S.: Matrix Iterative Analysis. Springer, (2000)
	30.	 Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity prob-

lems. Int. J. Comput. Math. 63(3–4), 309–326 (1997)
	31.	 Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, (1971)
	32.	 Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Her-

mitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)
	33.	 Bai, Z.-Z., Golub, G.H., Ng, M.K.: On successive-overrelaxation acceleration of the Hermitian and

skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14(4), 319–335 (2007)
	34.	 Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting meth-

ods for positive-definite linear systems. SIAM J. Sci. Comput. 26(3), 844–863 (2005)

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1080/03081087.2022.2066614
https://doi.org/10.1080/03081087.2022.2066614

	Shift-splitting fixed point iteration method for solving generalized absolute value equations
	Abstract
	1 Introduction
	2 The shift-splitting fixed point iteration (FPI-SS) method
	3 Convergence of the FPI-SS method
	4 Numerical experiments
	5 Conclusion
	Acknowledgements
	References

