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Abstract
Based on two-grid discretizations, some local and parallel stabilized finite element 
methods are proposed and investigated for the Stokes problem in this paper. For the 
finite element discretization, the lowest equal-order finite element pairs are chosen 
to circumvent the discrete inf-sup condition. In these algorithms, we derive the low-
frequency components of the solution for the Stokes problem on a coarse grid and 
catch the high-frequency components on a fine grid using some local and parallel 
procedures. Optimal error bounds are demonstrated and some numerical experi-
ments are carried out to support theoretical results.

Keywords Stokes equations · Stabilized finite element method · Two-grid 
discretizations · Parallel algorithms · Partition of unity

1 Introduction

It is significant but challenging to simulate the motion of the incompressible flow, such 
as the Stokes problem. It is well known that the inf-sup condition should be satisfied to 
guarantee the compatibility of the component approximations of the velocity and pres-
sure. Generally speaking, to ensure the inf-sup condition, different spaces for the veloc-
ity and pressure are in general considered and investigated in the last decades [20, 33, 
36, 40]. Due to the fact that the lowest equal-order finite element pairs are high efficient 
and convenient for computing, especially in a multigrid context and parallel processing, 
it is essential to develop some efficient and stable schemes based on the lowest equal-
order finite element pairs to study the incompressible flow. On the other hand, the low-
est equal-order finite element pairs do not satisfy the inf-sup condition, which usually 
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results in nonphysical pressure oscillations in the numerical simulation. Consequently, 
there have been lots of works [6–8, 22, 23, 32, 37–39, 46] associated with stabilization of 
the lowest equal-order finite element pairs. The crucial idea of such stabilized schemes is 
changing the finite element discrete system in order to avoid the inf-sup condition.

As we know, simulation of the incompressible flow often results in large-scale 
computation needing large computing resources that may only be supported by 
high-performance parallel computers. Thereby, it is important to devise some par-
allel algorithms which could be implemented efficiently. In this paper, we focus on 
developing some local and parallel stabilized finite element methods based on two-
grid discretizations for the Stokes problem. Algorithms are motivated by the observa-
tion that for a solution of the Stokes problem, low-frequency components could be 
derived by a relatively coarse grid and high-frequency components could be caught 
on a fine grid by some local and parallel procedures. This type parallel strategy was 
firstly proposed by Xu and Zhou for linear and nonlinear elliptic boundary value 
problems [43, 44], then it was applied for the Stokes problem [20, 21, 33, 36, 45], the 
Navier-Stokes problem [13, 19, 30, 31, 34, 42], the mixed Stokes-Darcy model [14, 
15], the mixed Navier-Stokes-Darcy problem [11, 12, 41], the MHD problem [9, 10, 
49], and others [3, 26]. The main superiority of this type parallel strategy is that once 
the coarse approximation is derived, it requires no data exchange among processors, 
which makes this method easy to implement with a low communication cost. This 
is appealing to avoid too much communication cost in today’s distributed memory 
parallel computers.

In this paper, we will consider the lowest equal-order finite element pairs to approxi-
mate the velocity and pressure. To offset the lack of discrete inf-sup condition, a local 
pressure-projection stabilized method based on two local Gauss integrations technique 
presented in [46] is chosen. This stabilized method has many attractive features, such 
as the unconditional stability. Firstly, we present and study a local algorithm, then we 
straightforward generalize this local algorithm to some parallel algorithms. However, 
the numerical solution by the local and parallel stabilized algorithm is global discon-
tinuous. To improve this algorithm, we study on two steps, introducing the partition of 
unity and adding a coarse mesh correction. Together with the partition of unity tech-
nique, the global continuous solution is derived. Furthermore, constructing a coarse 
mesh correction could improve the smoothness of the numerical solution. Finally, for 
these proposed algorithms, optimal error bounds are given, and some numerical experi-
ments are presented to support the theoretical findings.

We organize this paper as follows. In the following section, the Stokes problem is intro-
duced and some preliminaries are presented. In Section 3, we present and analyze some 
local and parallel stabilized finite element methods. In Section 4, some numerical examples 
are reported to demonstrate the feasibility and effectiveness of the proposed algorithms.

2  The Stokes model

In this paper, the standard notations for Sobolev space Wm,p(Ω)d (d = 2,3) and 
corresponding norm ∥⋅∥m,p,Ω used in [1] will be inherited. For p = 2, we denote 
Hs(Ω)d = Wm,2(Ω)d, thus the norm can be written as ‖ ⋅ ‖s,Ω = ‖ ⋅ ‖Hs(Ω) . For m 
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= 0, we denote Lp(Ω)d = W0,p(Ω)d and ‖ ⋅ ‖0,Ω = ‖ ⋅ ‖L2(Ω) when p = 2. The space 
H− 1(Ω)d with its dual space H1

0
(Ω)d , and its corresponding norm ∥⋅∥− 1,Ω will be 

used.
Let Ω be a bounded domain in ℝd (d = 2, 3) . The Stokes model we consider in 

this paper is

where u denotes the fluid velocity, p denotes the fluid pressure, ν is the kinematic 
viscosity, and f is the source term.

Define the following spaces as

 The weak formulation of (2.1) is to seek a pair of [u,p] ∈ X × Q such that

where

 and (⋅,⋅) represents the standard inner-product in L2(Ω).
For the bilinear forms, the following continuous properties hold

where the letter c is a generic positive constant which is independent of the mesh 
size and may stand for different values at different places. For convenience, hereafter 
we shall use x ≲ y to denote x ≤ cy in the rest of the paper.

Assume the domain Ω be regular enough such that the unique solution [w,r] ∈ 
X × Q satisfies the following steady Stokes system

where g ∈ L2(Ω)d, then there exists

Assume that τh = {K} is the triangulation of the domain Ω. Let 
h = max

K∈�h
diam(K) = the longest edge of K denote the size of mesh. Define the fol-

lowing finite spaces as

(2.1)
−�Δu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on �Ω,

X = H1
0
(Ω)d, Q = L2

0
(Ω) =

{
q ∈ L2(Ω) ∶ ∫ Ω

qdx = 0

}
.

(2.2)
a(u, v) − b(v, p) = (f , v) ∀v ∈ X,

b(u, q) = 0 ∀q ∈ Q,

a(u, v) = �(∇u,∇v), b(v, p) = (div v, p),

a(u, v) ≤ c‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ X,

b(v, p) ≤ c‖v‖1,Ω‖p‖0,Ω, ∀[v, p] ∈ X × Q,

(2.3)
−�Δw + ∇r = g in Ω,

div w = 0 in Ω,

w = 0 on �Ω,

(2.4)‖w‖1,Ω + ‖r‖0,Ω ≲ ‖g‖0,Ω.
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where P1(K) denotes the space of piecewise linear polynomial on the element K. 
Furthermore, we set

Since we choose the lowest equal-order element pairs to approximate the fluid 
velocity and the pressure, respectively, the well-known inf-sup condition is not estab-
lished any more. To solve this problem, a stabilized term is introduced as that in [46]. 
The L2-projection is defined as Π ∶ X → R0 with R0 is the space of piecewise constant 
on the element K, which has the following properties

Define the stabilized term as

where ∫
K,i

⋅ dx represents the local Gauss integral in the element K with the poly-
nomials degree i, i = 1,2, α is the stabilization parameter satisfies 0 < α < 1.

With this representation, the stabilized finite element approximation for the Stokes 
problem is described as follows: Find [uh, ph] ∈ X0

h
(Ω) × Q0

h
(Ω) such that

For the sake of simplicity, we set

 it leads to

For the problem (2.8), its well-posedness could be found in [22], and there exist the 
prior error estimates for the stabilized approximate solutions [46]

Xh(Ω) =
{
v ∈ C0(Ω)d ∶ v|K ∈ P1(K)

d,∀K ∈ �h
}
,

Qh(Ω) =
{
q ∈ C0(Ω) ∶ q|K ∈ P1(K),∀K ∈ �h

}
,

X0
h
(Ω) = Xh(Ω) ∩ X, Q0

h
(Ω) = Qh(Ω) ∩ Q.

(2.5)(p, q) = (Πp, q) ∀p ∈ L2(Ω), q ∈ R0,

(2.6)‖Πp‖0,Ω ≤ ‖p‖0,Ω ∀p ∈ L2(Ω),

(2.7)‖(I − Π)p‖0,Ω ≲ h‖p‖1,Ω ∀p ∈ H1(Ω).

G(ph, qh) = �((I − Π)ph, (I − Π)qh),

= �
∑

K∈�h(Ω)

�∫
K,2

phqhdx − ∫
K,1

phqhdx
�
, ∀ph, qh ∈ Q0

h
(Ω),

(2.8)
a(uh, vh) − b(vh, ph) = (f , vh) ∀vh ∈ X0

h
(Ω),

b(uh, qh) + G(ph, qh) = 0 ∀qh ∈ Q0
h
(Ω).

B(u, p;v, q) = a(u, v) − b(v, p) + b(u, q) + G(p, q) ∀[v, q] ∈ X × Q,

(2.9)B(uh, ph;vh, qh) = (f , vh) ∀[vh, qh] ∈ X0
h
(Ω) × Q0

h
(Ω).

(2.10)
‖u − uh‖1,Ω + ‖p − ph‖0,Ω ≲ h(‖u‖2,Ω + ‖p‖1,Ω),
‖u − uh‖0,Ω + ‖p − ph‖−1,Ω ≲ h2(‖u‖2,Ω + ‖p‖1,Ω).
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Lemma 2.1 For the bilinear form B , there hold

where ���[u, p]���Ω = ‖u‖1,Ω + ‖p‖0,Ω.

3  Local and parallel stabilized finite element methods

In this section, we shall propose some local and parallel stabilized finite element 
methods based on two-grid discretizations for the Stokes system. Firstly, we study 
on a local algorithm, then we generalize it to some parallel algorithms. The cor-
responding error estimates are obtained subsequently.

3.1  Local algorithm

To describe the following algorithm, we shall introduce some useful notations. 
Let H denote the size of coarse mesh, and h denotes the size of fine mesh such 
that h ≪ H. For a subdomain D, we enlarge it to Ω0 such that D ⊂⊂Ω0 ⊂⊂Ω (for 
D ⊂ G ⊂Ω, D ⊂⊂ G is used to mean that dist(∂D∖∂Ω,∂G∖∂Ω) > 0). We assume 
that Ω0 aligns with τH(Ω), τh(Ω0) is a regular triangulation on Ω0. For a global 
regular triangulation τh(Ω) that aligns with τH(Ω), we set �h(Ω0) = �h(Ω)|Ω0

 . Simi-
larly, we could define Xh(Ω0),Qh(Ω0),X

0
h
(Ω0),Q

0
h
(Ω0) on τh(Ω0).

Algorithm 0
Step 1. Seek a global coarse solution [uH , pH] ∈ X0

H
(Ω) × Q0

H
(Ω) such that

Step 2. Correct a local fine grid residual [eh, �h] ∈ X0
h
(Ω0) × Q0

h
(Ω0) such that

Step 3. Set [uh,ph] = [uH + eh,pH + 𝜖h] in D.
For the error estimates of approximate solution, we now describe local a prior 

estimate for problem (2.9) directly. The reader is referred to [46] for the proof.

Lemma 3.1 Assume D ⊂⊂Ω0 ⊂Ω, � = O(h) , for the solution [wh,rh] ∈ Xh(Ω) × 
Qh(Ω), g ∈ H− 1(Ω)d satisfying

|B(u, p;v, q)| ≲ |||[u, p]|||Ω|||[v, q]|||Ω ∀[u, p], [v, q] ∈ X × Q,
||||||[uh, ph]||||||Ω ≲ sup

[vh,qh]∈X
0
h
(Ω)×Q0

h
(Ω)

|B(uh,ph;vh,qh)|
|||[vh,qh]|||Ω

∀[uh, ph] ∈ X0
h
(Ω) × Q0

h
(Ω),

B(uH , pH;vH , qH) = (f , vH) ∀[vH , qH] ∈ X0
H
(Ω) × Q0

H
(Ω).

B(eh, �h;vh, qh) = (f , vh) −B(uH , pH;vh, qh) ∀[vh, qh] ∈ X0
h
(Ω0) × Q0

h
(Ω0).

a(wh, vh) − b(vh, rh) = (g, vh) ∀vh ∈ X0
h
(Ω0),

b(wh, qh) + G(rh, qh) = 0 ∀qh ∈ Q0
h
(Ω0),
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then there holds

Theorem  3.1 Assume that [uh,ph] is the solution obtained by Algorithm 0, then 
there holds

Proof. With a simple calculation, we have the following equation of the local 
algorithm

Subtracting (3.2) from (2.9) results in

Thanks to Lemma 3.1, we get

To estimate ‖eh‖0,Ω0
 and ‖�h‖−1,Ω0

 , we introduce a dual Stokes problem 
as follows. Find [w, r] ∈ (H1

0
(Ω0)

d ∩ H2(Ω0)
d) × (L2

0
(Ω0) ∩ H1(Ω0)) , for 

[g, �] ∈ L2(Ω0)
d × (L2

0
(Ω0) ∩ H1(Ω0)) such that

Based on the regularity of triangulation, we obtain

The standard finite element method for the dual Stokes (3.5) is to find 
[w�, r�] ∈ X0

�
(Ω0) × Q0

�
(Ω0) (� = h,H) such that

Combining (3.5) with (3.7) yields

Based on (2.10) and (3.6), we have

From (2.9), for [u�, p�] ∈ X0
�
(Ω0) × Q0

�
(Ω0) , ∀[wH , rH] ∈ X0

H
(Ω0) × Q0

H
(Ω0) , it is 

easy to verify that

‖wh‖1,D + ‖rh‖0,D ≲ ‖wh‖0,Ω0
+ ‖rh‖−1,Ω0

+ ‖g‖−1,Ω0
.

(3.1)‖u − uh‖1,D + ‖p − ph‖0,D ≲ h + H2.

(3.2)B(uh, ph;vh, qh) = (f , vh) ∀[vh, qh] ∈ X0
h
(Ω0) × Q0

h
(Ω0).

(3.3)B(uh − uh, ph − ph;vh, qh) = 0 ∀[vh, qh] ∈ X0
h
(Ω0) × Q0

h
(Ω0).

(3.4)
‖uh − uh‖1,D + ‖ph − ph‖0,D

≲ ‖uh − uh‖0,Ω0
+ ‖ph − ph‖−1,Ω0≤ ‖uh − uH‖0,Ω0
+ ‖ph − pH‖−1,Ω0

+ ‖eh‖0,Ω0
+ ‖𝜖h‖−1,Ω0

.

(3.5)
a(v,w) − b(w, q) + b(v, r) + G(q, r) = (g, v) + (�, q) ∀[v, q] ∈ H1

0
(Ω0)

d × L2
0
(Ω0).

(3.6)‖w‖2,Ω0
+ ‖r‖1,Ω0

≲ ‖g‖0,Ω0
+ ‖𝜌‖1,Ω0

.

(3.7)a(v,w�) − b(w� , q) + b(v, r�) + G(q, r�) = (g, v) + (�, q) ∀[v, q] ∈ X0

�
(Ω0) × Q0

�
(Ω0).

(3.8)
a(v,w − w�) − b(w − w�, q) + b(v, r − r�) + G(q, r − r�) = 0 ∀[v, q] ∈ X0

�
(Ω0) × Q0

�
(Ω0).

(3.9)
‖w − w𝜇‖1,Ω0

+ ‖r − r𝜇‖0,Ω0
≲ 𝜇(‖w‖2,Ω0

+ ‖r‖1,Ω0
)

≲ 𝜇(‖g‖0,Ω0
+ ‖𝜌‖1,Ω0

).
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Set [v,q] = [eh,𝜖h] in (3.5), together with (3.3), (3.8), and (3.10), we get

From (2.10) and (3.9), there holds

which leads to

 Therefore, we get

 Using the triangle inequality and (2.10), (3.1) is obtained.  

3.2  Parallel algorithms

To introduce some parallel algorithms, we divide the domain Ω into a series of dis-
joint subdomains Di,i = 1,2,…,m, then we enlarge every Di to Ωi such that Di ⊂⊂Ωi. 
For each Ωi, we assume that it aligns with τH(Ω).

Algorithm 1
Step 1. Seek a global coarse solution [uH , pH] ∈ X0

H
(Ω) × Q0

H
(Ω) such that

Step 2. Correct local fine grid residuals [ei
h
, �i

h
] ∈ X0

h
(Ωi) × Q0

h
(Ωi), i = 1, 2,… ,m, 

such that

Step 3. Set [uh, ph] = [uH + ei
h
, pH + �i

h
] in Di.

Define the following piecewise norms as

(3.10)
a(uh − uH ,wH) − b(wH , ph − pH) + b(uh − uH , rH) + G(ph − pH , rH) = 0.

(g, eh) + (�, �h)

= a(eh,w) − b(w, �h) + b(eh, r) + G(�h, r)

= a(eh,wh) − b(wh, �h) + b(eh, rh) + G(�h, rh)

= a(uh − uH ,wh) − b(wh, ph − pH) + b(uh − uH , rh) + G(ph − pH , rh)

= a(uh − uH ,wh − w) − b(wh − w, ph − pH) + b(uh − uH , rh − r) + G(ph − pH , rh − r)

+a(uh − uH ,w − wH) − b(w − wH , ph − pH) + b(uh − uH , r − rH) + G(ph − pH , r − rH).

��(g, eh) + (𝜌, 𝜖h)
��

≲ (‖uh − uH‖1,Ω0 + ‖ph − pH‖0,Ω0 )(‖w − wh‖1,Ω0 + ‖r − rh‖0,Ω0 + ‖w − wH‖1,Ω0 + ‖r − rH‖0,Ω0 )
≲ H(‖uh − uH‖1,Ω0 + ‖ph − pH‖0,Ω0 )(‖g‖0,Ω0 + ‖𝜌‖1,Ω0 )
≲ H2(‖g‖0,Ω0 + ‖𝜌‖1,Ω0 ),

‖eh‖0,Ω0
+ ‖𝜖h‖−1,Ω0

≲ H2.

‖uh − uh‖1,D + ‖ph − ph‖0,D ≲ H2.

B(uH , pH;vH , qH) = (f , vH) ∀[vH , qH] ∈ X0
H
(Ω) × Q0

H
(Ω).

B(ei
h
, �i

h
;vh, qh) = (f , vh) −B(uH , pH;vh, qh) ∀[vh, qh] ∈ X0

h
(Ωi) × Q0

h
(Ωi).
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From what have been discussed above, we may easily get the following error estimate.

Theorem 3.2 Assume that [uh,ph] is the solution obtained by Algorithm 1, then we 
obtain the following inequality

Proof. From Theorem 3.1, we have 

Based on the definition of the piecewise norms, (3.11) is derived.  
However, it is obvious that the numerical solution by Algorithm 1 is global discon-

tinuous since it is piecewise defined. In the following, by introducing the partition of 
unity method, we derive a global continuous solution. Suppose that {Ωi}

m
i=1

 is the open 
cover of Ω, {�i}

m
i=1

 is the partition of unity subordinate to {Ωi}
m
i=1

 which satisfies

To construct a partition of unity, we need to get a regular triangulation �hp . For 
convenience, we fix hp such that h < H ≤ hp, and hp is independent of h, H. The 
choice for partition of unity functions is arbitrary, and we fix it as a continuous and 
piecewise linear Lagrange basis function which satisfies �i(xj) = �i,j, ∀xj ∈ �hp

 in 
this paper.

Algorithm 2
Step 1. Seek a global coarse solution [uH , pH] ∈ X0

H
(Ω) × Q0

H
(Ω) such that

Step 2. Correct local fine grid residuals [ei
h
, �i

h
] ∈ X0

h
(Ωi) × Q0

h
(Ωi), i = 1, 2, ...,m, 

such that

Step 3. Set [uh
i
, ph

i
] = [uH + ei

h
, pH + �i

h
] in Ωi.

Step 4. Derive the global continuous solution as

������u − uh������1,Ω =

�
m∑
i=1

‖u − uh‖2
1,Di

,

������p − ph������0,Ω =

�
m∑
i=1

‖p − ph‖2
0,Di

.

(3.11)||||||u − uh||||||1,Ω + ||||||p − ph||||||0,Ω ≲ h + H2.

‖u − uh‖1,Di
+ ‖p − ph‖0,Di

≲ h + H2 i = 1, 2,⋯ ,m.

supp 𝜙i ⊂ Ωi i = 1,… ,m,
m∑
i=1

𝜙i = 1 on Ω,

‖𝜙i‖L∞(ℝn) ≤ C i = 1,… ,m.

B(uH , pH;vH , qH) = (f , vH) ∀[vH , qH] ∈ X0
H
(Ω) × Q0

H
(Ω).

B(ei
h
, �i

h
;vh, qh) = (f , vh) −B(uH , pH;vh, qh) ∀[vh, qh] ∈ X0

h
(Ωi) × Q0

h
(Ωi).
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Step 5. Seek a coarse grid correction [eH , �H] ∈ X0
H
(Ω) × Q0

H
(Ω) satisfying

Step 6. Obtain the final approximate solution

Theorem  3.3 Assume that [ũh, p̃h] ∈ X0
h
(Ω) × Q0

h
(Ω) is the solution obtained by 

Step 1 to Step 4 of Algorithm 2, then

Proof. It is obvious that 

Therefore, we have

Combining the triangle inequality with (2.10) yields

 We finish the proof.  

Theorem 3.4 Assume that [uh
H
, ph

H
] ∈ X0

h
(Ω) × Q0

h
(Ω) is the solution derived from 

Algorithm 2, then the following estimates hold

[ũh, p̃h] =

[
m∑

i=1

𝜙iu
h
i
,

m∑

i=1

𝜙ip
h
i

]
.

B(eH , 𝜖H;vH , qH) = (f , vH) −B(ũh, p̃h;vH , qH) ∀[vH , qH] ∈ X0
H
(Ω) × Q0

H
(Ω).

[uh
H
, ph

H
] = [ũh + eH , p̃

h + 𝜖H].

(3.12)‖u − ũh‖1,Ω + ‖p − p̃h‖0,Ω ≲ h + H2.

uh = (

m∑

i=1

�i)uh =

m∑

i=1

�iuh, ph = (

m∑

i=1

�i)ph =

m∑

i=1

�iph.

‖uh − ũh‖1,Ω + ‖ph − p̃h‖0,Ω
= ‖

m∑
i=1

𝜙iuh −
m∑
i=1

𝜙iu
h
i
‖1,Ω + ‖

m∑
i=1

𝜙iph −
m∑
i=1

𝜙ip
h
i
‖0,Ω

= ‖
m∑
i=1

𝜙i(uh − uh
i
)‖1,Ω + ‖

∑m

i=1
𝜙i(ph − ph

i
)‖0,Ω

≲
m∑
i=1

‖𝜙i(uh − uh
i
)‖1,Ωi

+
∑m

i=1
‖𝜙i(ph − ph

i
)‖0,Ωi

≲
m∑
i=1

‖𝜙i‖L∞(Ω)(‖uh − uh
i
‖1,Ωi

+ ‖ph − ph
i
‖0,Ωi

)

≲ ‖uh − uh
i
‖1,Ωi

+ ‖ph − ph
i
‖0,Ωi

≲ H2.

‖u − ũh‖1,Ω + ‖p − p̃h‖0,Ω ≲ h + H2.

(3.13)‖u − uh
H
‖1,Ω + ‖p − ph

H
‖0,Ω ≲ h + H2,
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Proof. We introduce the following projection operator (RH , LH) ∶ (X,Q) → (X0
H
,Q0

H
) 

such that

Similar to Corollary 3.5 in [43], the property of projection operator is described as 
follows

From Algorithm 2, we know

Combining (3.15) with (3.17), we obtain

Taking [vh,qh] = [RHv,LHq] into (2.9), then

Together with (3.18), we obtain

Based on the triangle inequality and Theorem 3.3, there holds

From Lemma 2.1, Theorem 3.3 and (3.20), we have

With the triangle inequality and (2.10), (3.13) is derived.
To estimate ‖u − uh

H
‖0,Ω , for uh − uh

H
∈ L2(Ω) , we introduce a dual problem to find 

[Φ,Ψ] ∈ X × Q such that

(3.14)‖u − uh
H
‖0,Ω ≲ h2 + H3.

(3.15)
a(vH , u − RHu) − b(u − RHu, qH) + b(vH , p − LHp)

+G(qH , p − LHp) = 0 ∀[vH , qH] ∈ X0
H
(Ω) × Q0

H
(Ω).

(3.16)‖u − RHu‖1,Ω + ‖p − LHp‖0,Ω ≲ H(‖u‖2,Ω + ‖p‖1,Ω).

(3.17)

a(eH ,RHv) − b(RHv, 𝜖H) + b(eH , LHq) + G(𝜖H , LHq)

= (f ,RHv) − [a(ũh,RHv) − b(RHv, p̃
h) + b(ũh, LHq) + G(p̃h, LHq)] ∀[v, q] ∈ X0

h
(Ω) × Q0

h
(Ω).

(3.18)

a(eH , v) − b(v, 𝜖H) + b(eH , q) + G(𝜖H , q)

= (f ,RHv) − [a(ũh,RHv) − b(RHv, p̃
h) + b(ũh, LHq) + G(p̃h, LHq)] ∀[v, q] ∈ X0

h
(Ω) × Q0

h
(Ω).

(3.19)
a(uh,RHv) − b(RHv, ph) + b(uh, LHq) + G(ph, LHq) = (f ,RHv) ∀[v, q] ∈ X0

h
(Ω) × Q0

h
(Ω).

(3.20)

a(eH , v) − b(v, 𝜖H) + b(eH , q) + G(𝜖H , q)

= a(uh − ũh,RHv) − b(RHv, ph − p̃h) + b(uh − ũh, LHq) + G(ph − p̃h, LHq) ∀[v, q] ∈ X0

h
(Ω) × Q0

h
(Ω).

‖uh − uh
H
‖1,Ω + ‖ph − ph

H
‖0,Ω ≤ ‖uh − ũh‖1,Ω + ‖ph − p̃h‖0,Ω + ‖eH‖1,Ω + ‖𝜖H‖0,Ω

≲ H2 + ‖eH‖1,Ω + ‖𝜖H‖0,Ω.

‖eH‖1,Ω + ‖𝜖H‖0,Ω ≲ sup
[v,q]∈X0

h
×Q0

h

�B(eH ,𝜖H ;v,q)�
���[v,q]���Ω

= sup
[v,q]∈X0

h
×Q0

h

�B(uh−ũ
h,ph−p̃

h;RHv,LHq)�
���[v,q]���Ω

≲ ‖uh − ũh‖1,Ω + ‖ph − p̃h‖0,Ω
≲ H2.

76 Numerical Algorithms (2023) 93:67–83



1 3

Since the triangulation is regular, there holds

Taking [v, q] = [uh − uh
H
, ph − ph

H
] into (3.21) yields

(3.21)
a(v,Φ) − b(Φ, q) + b(v,Ψ) + G(q,Ψ) = (v, uh − uh

H
) ∀[v, q] ∈ X × Q.

(3.22)‖Φ‖2,Ω + ‖Ψ‖1,Ω ≲ ‖uh − uh
H
‖0,Ω.

(uh − uh
H
, uh − uh

H
) = ‖uh − uh

H
‖2
0,Ω

= a(uh − uh
H
,Φ) − b(Φ, ph − ph

H
) + b(uh − uh

H
,Ψ) + G(ph − ph

H
,Ψ)

= a(uh − uh
H
, (I − RH)Φ) − b((I − RH)Φ, ph − ph

H
) + b(uh − uh

H
, (I − LH)Ψ)

+G(ph − ph
H
, (I − LH)Ψ) + a(uh − uh

H
,RHΦ) − b(RHΦ, ph − ph

H
)

+b(uh − uh
H
, LHΨ) + G(ph − ph

H
, LHΨ).

Fig. 1  The partition of unity functions
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Subtracting (3.17) from (3.19), we get

Thus, together with (3.16), (3.22), and (3.23), there holds

Noting (3.13), then

Therefore, together with the triangle inequality and (2.10), we get

4  Numerical tests

This section will show some numerical tests to verify the theoretical results. The 
computational domain is Ω = (0,1) × (0,1), linear polynomial functions are used 
both for the velocity and pressure fields, and all the numerical results are derived 
by using the public domain software FreeFem++ [17]. We decompose Ω into 
four subdomains Di (i = 1,2,3,4) as follows

(3.23)
a(uh − uh

H
,RHΦ) − b(RHΦ, ph − ph

H
) + b(uh − uh

H
, LHΨ) + G(ph − ph

H
, LHΨ) = 0.

‖uh − uh
H
‖2
0,Ω

≲ (‖uh − uh
H
‖1,Ω + ‖ph − ph

H
‖0,Ω)(‖(I − RH)Φ‖1,Ω + ‖(I − LH)Ψ‖0,Ω)

≲ H(‖uh − uh
H
‖1,Ω + ‖ph − ph

H
‖0,Ω)(‖Φ‖2,Ω + ‖Ψ‖1,Ω)

≲ H(‖uh − uh
H
‖1,Ω + ‖ph − ph

H
‖0,Ω)‖uh − uh

H
‖0,Ω.

‖uh − uh
H
‖0,Ω ≲ H(‖uh − uh

H
‖1,Ω + ‖ph − ph

H
‖0,Ω)

≲ H3.

‖u − uh
H
‖0,Ω ≲ ‖u − uh‖0,Ω + ‖uh − uh

H
‖0,Ω

≲ h2 + H3.

D1 = (0, 0.5) × (0, 0.5), D2 = (0.5, 1) × (0, 0.5),

D3 = (0, 0.5) × (0.5, 1), D4 = (0.5, 1) × (0.5, 1),

Table 1  The errors of velocity in H1 norm by SFEM, Algorithms 1, 2

1/h ∥u − uh∥1,Ω rate  ||||||u − uh||||||1,Ω rate  ‖u − uh
H
‖1,Ω rate

64 1.25162 ×  10− 2 − 1.24454 ×  10− 2 − 1.25152 ×  10− 2 −
144 5.54700 ×  10− 3 1.00350 5.53302 ×  10− 3 0.999614 5.54691 ×  10− 3 1.00342
256 3.11692 ×  10− 3 1.00182 3.11249 ×  10− 3 0.999907 3.11690 ×  10− 3 1.00180
400 1.99384 ×  10− 3 1.00111 1.99203 ×  10− 3 0.999959 1.99383 ×  10− 3 1.00111

Table 2  The errors of pressure in L2 norm by SFEM, Algorithms 1, 2

1/h ∥p − ph∥0,Ω rate  ||||||p − ph||||||0,Ω rate  ‖p − ph
H
‖0,Ω rate

64 5.66985 ×  10− 3 − 2.15853 ×  10− 3 − 4.37666 ×  10− 3 −
144 1.57005 ×  10− 3 1.58343 5.94220 ×  10− 4 1.59068 1.19798 ×  10− 3 1.59773
256 6.39818 ×  10− 4 1.56019 2.41561 ×  10− 4 1.56445 4.85534 ×  10− 4 1.56969
400 3.20776 ×  10− 4 1.54708 1.20936 ×  10− 4 1.55026 2.42711 ×  10− 4 1.55366
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then we enlarge them to

We choose the continuous piecewise linear Lagrange basis functions as the partition 
of unity functions, which are presented in Fig. 1.

4.1  Example 1

In this example, we consider the Stokes problem (2.1) with the following exact 
solution

For simplicity, we set ν = 1, then the source term f can be derived.
The convergence rates in tables are obtained by

 where Ei denotes the error with the mesh size hi. Choose H =
1

8
,

1

12
,

1

16
,

1

20
 , h = H2, 

α = h, using the lowest equal-order finite element pair (P1-P1), with the uniform tri-
angulation. For the errors of velocity in H1 norm by SFEM (stabilized finite element 

Ω1 = (0, 0.75) × (0, 0.75), Ω2 = (0.25, 1) × (0, 0.75),

Ω3 = (0, 0.75) × (0.25, 1), Ω4 = (0.25, 1) × (0.25, 1).

u = [u1, u2] = [10x2(x − 1)2y(y − 1)(2y − 1),−10x(x − 1)(2x − 1)y2(y − 1)2],

p = 10(2x − 1)(2y − 1).

rate =
ln(Ei)∕ln(Ei+1)

ln(hi)∕ln(hi+1)
,

Table 3  The errors of velocity 
in L2 norm by SFEM and 
Algorithm 2

1/h ∥u − uh∥0,Ω rate  ‖u − uh
H
‖0,Ω rate

8 4.39938 ×  10− 3 − 4.30545 ×  10− 3 −
64 7.07656 ×  10− 5 1.98604 7.05634 ×  10− 5 1.97703
216 6.21475 ×  10− 6 1.99972 6.21119 ×  10− 6 1.99784
512 1.10612 ×  10− 6 1.99997 1.10591 ×  10− 6 1.99953
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(c) The L 2 error for the velocity
by SFEM and Algorithm 2.

Fig. 2  Rates analysis for velocity and pressure by three methods
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method), Algorithms 1, 2, we take the same mesh size h to compare these three algo-
rithms. The results are presented in Table 1. Table 1 indicates that the convergence 
rates of velocity in H1 norm by SFEM, Algorithms 1, 2, all agree with theoretical 
analysis. Table 2 shows that the errors of pressure in L2 norm by SFEM, Algorithms 
1, 2, arrive at the theoretical analysis above. In particular, we see that Algorithms 1, 
2 perform better than SFEM, namely, the local and parallel algorithm is necessary 
and the coarse grid correction is important for the Stokes problem.

(a) ν=1 (b) ν=0.1 (c) ν=0.01

Fig. 3  The streamlines of velocity by SFEM with different ν 

(a) ν=1 (b) ν=0.1 (c) ν=0.01

Fig. 4  The streamlines of velocity by Algorithm 1 with different ν 

(a) ν=1 (b) ν=0.1 (c) ν=0.01

Fig. 5  The streamlines of velocity by Algorithm 2 with different ν 
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Then, we set H =
1

4
,

1

16
,

1

36
,

1

64
, h2 = H3 . From Table 3, it is easy to see that SFEM 

and Algorithm 2 all yield optimal convergence rates which are in accordance with 
theorems, namely, the convergence rate of velocity in L2 norm could arrive at O(h2).

In order to describe visually the convergence rates of velocity and pressure 
obtained by SFEM, Algorithms 1, 2, the following pictures are presented. From 
Fig.  2(a), we notice that the convergence rates of velocity in H1 norm by all 
three algorithms are consistent with theoretical analysis. Figure 2(b) shows that 
the pressure by Algorithm 1 is better than that of SFEM which is in accord with 
Table  2. For Fig.  2(c), it illustrates that the convergence rate of velocity in L2 
norm by Algorithm 2 is similar to that of SFEM.

Example 2. In this example, we consider the cavity flow in [0,1] × [0,1] with 
different values of ν and α = h. In this square region, the exact solution is unknown 
with the following boundary conditions.

Set f = 0, h =
1

144
 , we obtain the following streamlines of velocity by SFEM, 

Algorithms 1, 2. From Figs.  3,  4, and  5, we can see that the streamlines of 
velocity obtained by three algorithms do not change much as the value of ν is 
taken, and the streamlines of Algorithms 1, 2 are close to those of SFEM.
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