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Abstract
A classical theorem due to Chebyshev, Markov and Stieltjes states that the Gauss-
Legendre quadrature of a generic function f is a Riemann sum of f. In this note we 
prove an analogue of this theorem for Romberg quadrature.

Keywords  Numerical quadrature · Romberg integration · Trapezoidal rule · 
Riemann sums

1  Introduction

Let (I�)�∈ℕ denote a sequence of quadrature  rules

(x�,� ∈ [a, b] ∀ �,� ), where n� + 1 is the number of points needed to evaluate I� . 
Fejér [8], Stekloff [, p. 350], and Pólya [15, 16], showed that, if the elements of 
(I�)� ∈ ℕ

 are of interpolatory type and have positive weights: w𝜏,� > 0 ∀ 𝜏,�, then 
(
I�[f ]

)
�∈ℕ

 converges to 
b∫
a

f (x)dx whenever f is Riemann integrable. By interpolatory 

type we mean

(1)I�[f ] =

n�∑
�=0

w�,�f (x�,�), ∀ f ∈ C0[a, b]

(2)I�[f ] =

b

∫
a

p[f ](x)dx ∀ f ,
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where p[f] is the unique polynomial of degree at most n� that interpolates f at the 
points x�,0, x�,1,… , x�,n� . However, Fejér highlighted that, for the interpolatory type 
quadrature of Gauss-Legendre (which is based on the zeros x�,0, x�,1,… , x�,n� of 
the Legendre polynomial of degree n� ), this convergence property follows directly 
from the separation theorem of Chebyshev, Markov and Stieltjes [16, Section 3.41], 
which states that 

In view of (3), we can rewrite the right-hand side of (1) as

with t0 = a and

that is, the Gauss-Legendre rule of f is a Riemann sum1 of f.
A natural question is whether (3) holds for other quadrature rules with positive 

weights. These include the interpolatory type quadratures of Fejér of the first and 
second kinds (based on Chebyshev points of the first and second kinds, respectively) 
and the Clenshaw-Curtis quadrature (based on extrema of Chebyschev polynomials 
of the first kind). However, although the weights for these rules are known in explicit 
form [8, 10, 13], their expressions are apparently not of much help in getting sharp 
bounds for the sums of consecutive quadrature weights. For instance, the weights for 
the Fejér quadrature ([a, b] = [−1, 1]) with Chebyshev points of the second kind

n� = � , are given by [8, p. 301]

where � is the largest odd integer that does not exceed � + 1.
Another class of quadrature rules that has positive weights and is guaranteed 

to converge for all Riemann integrable functions is the class of classical Romberg 

(3)x𝜏,s − a <

s∑
�=0

w𝜏,� < x𝜏,s+1 − a, s = 0, 1,… , n𝜏 − 1.

n�∑
�=0

f (t∗
�
)[t

�+1 − t
�
], t

�
≤ t∗

�
≤ t

�+1,

t∗
�
= x�,� , t�+1 = a +

�∑
i=0

w�,i,� = 0, 1,… , n� ,

x�,� = cos(�
�
),�

�
= [� + 1]

�

� + 2
,� = 0, 1,… , �,

w�,� =
1

� + 1

[
1 −

(
1 −

1

3

)
cos(2�

�
) −

(
1

3
−

1

5

)
cos(4�

�
) −…

−

(
1

� − 2
−

1

�

)
cos([� − 1]�

�
) −

1

�
cos([� + 1]�

�
)

]
,� = 0, 1,… , � + 1,

1  All of the integration rules we shall discuss here satisfy 
n�∑
i=0

w�,i = b − a , i.e., I� integrates the constant 
function f ≡ 1 exactly.
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integrals [1]. They are built with the aim of accelerating the convergence of the 
composite trapezoidal rule [3, 5]. Denote by

the composite trapezoidal rule of f with q subdivisions of [a, b] and, for fixed posi-
tive integers m and k, let

be an evenly spaced grid in [a, b], with 2km + 1 points. The Romberg integrals are 
defined recursively by

j = 1, 2,… , k, i = j, j + 1,… , k , where

The value Tj

i
 is the Romberg integral of order 2j + 2 of f with 2im subdivisions of 

[a, b]. We refer to it as the classical Romberg integral because it can be defined in a 
more general setting [4, 5, 6]. Tj

i
 is exact for polynomials of degree less than or equal 

to 2j + 1 and the integration error

for functions f of class C2j+2[a, b] is O
(
[2im]−(2j+2)

)
 . For more information about the 

convergence of Romberg integrals see [1, 2, 5] and the references therein.
By (5) and (6), Tj

i
 is a linear combination of the values of f on the grid 

x0, x2k−i , x(2k−i)2, x(2k−i)3,… , x(2k−i)2im . Bauer, Rutishauser and Stiefel [1] showed that 
the coefficients �j,i,m,� in the functional representation

are all positive for m = 1 and satisfy

They proceed by showing that the following expression for �j,i,1,� is an alternating 
(finite) series with terms that decrease in magnitude:

(4)T[f ](a, b, q) =
b − a

q

(
1

2
f (a) +

q−1∑
i=1

f

(
a + i

b − a

q

)
+

1

2
f (b)

)

n = 2km, xi = a + ih, i = 0, 1,… , n, h =
b − a

n
,

(5)T
j

i
=

4jT
j−1

i
− T

j−1

i−1

4j − 1
,

(6)T0

i
∶= T[f ](a, b, 2im), i = 0, 1,… , k.

b

∫
a

f (x)dx − T
j

i

(7)f ⟼ T
j

i
[f ](a, b, 2im) =

b − a

2im

2im∑
�=0

�j,i,m,�f (x2k−i�)

1

3

( ∞∏
�=1

4�

4� − 1

)
≤ �j,i,1,� ≤

( ∞∏
�=1

4�

4� − 1

)
≈ 1.452 ∀ j, i,�.
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where 2s is the largest power of 2 that divides � ( s ≤ j).
The analogue of (3) for Tj

i
 is

r = 0, 1,… , 2im − 1. However, as in the cases of Fejér and Clenshaw-Curtis quadra-
tures, (8) does not seem to be very useful for bounding large sums of the Romberg 
coefficients. In this note we prove a stronger form of (9) without explicit manipula-
tion of (8).

For each j, i, m, r, j ≥ 0 , 0 ≤ r ≤ 2i−1m , let �j,i,m,r be defined by

�j,i,m,r =

�
r∑

�=0

�j,i,m,�

�
− r

and let

We have

Theorem 1 

Corollary 1  For j ≥ 0 and 0 ≤ r ≤ 2i−1m,

Remark 1  We do not need to consider �j,i,m,r with r > 2i−1m in (10) and (12) because 
the coefficients �j,i,m,� are symmetric with respect to �.

Remark 2  The upper and lower bounds of Theorem 1 can be improved for large val-
ues of j (see Table 1 in Section 3).

The following result follows immediately from (12).

Corollary 2  Tj

i
[f ](a, b, 2im) is always a Riemann sum of f.

(8)

�j,i,1,� =

s∑
�=0

2�−�

( j∏
� = 0

� ≠ j − �

4i−�

4i−� − 4�+i−j

)
, � =

{
1, � = 0 or � = 2i,

0, otherwise,

(9)x2k−ir − a <
b − a

2im

( r∑
�=0

𝛼j,i,m,�

)
< x2k−i(r+1) − a,

(10)�j = min
i,m,r

�j,i,m,r, Θj = max
i,m,r

�j,i,m,r.

(11)0.0555 ≤ �j ≤ Θj ≤ 0.8155 ∀j ≥ 0.

(12)
x2k−ir − a =r

b − a

2im
< (0.0555 + r)

b − a

2im
≤ b − a

2im

(
r∑

�=0

𝛼j,i,m,�

)

≤(0.8155 + r)
b − a

2im
< (1 + r)

b − a

2im
= x2k−i(r+1) − a.
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In the next two sections we make some considerations about the coefficients of 
the Romberg functionals and prove Theorem 1. In Section 4 we briefly discuss some 
problems related to other quadrature rules based on equally spaced abscissae.

2 � On the coefficients of the Romberg functionals

The proof of Theorem 1 is based on the simple observation that the Romberg integrals 
are composite rules, that is Tj

i
[f ](a, b, 2im) =

This fact can be easily checked by induction on j, using (5) and the fact that the trap-
ezoidal rule (4) is also composite. Thus, we have

This relation tells us how to build the vector of coefficients

of size 2im + 1 in terms of the vector

of size 2i−1m + 1:

(13)T
j

i−1
[f ]

(
a,

a + b

2
, 2i−1m

)
+ T

j

i−1
[f ]

(
a + b

2
, b, 2i−1m

)
, i ≥ j ≥ 1.

(4j − 1)T
j

i
[f ](a, b, 2im)

(5)
=

4jT
j−1

i
[f ](a, b, 2im) − T

j−1

i−1
[f ](a, b, 2i−1m)

(13)
= 4jT

j−1

i−1
[f ]

�
a, (a + b)∕2, 2i−1m

�
+ 4jT

j−1

i−1
[f ]

�
(a + b)∕2, b, 2i−1m

�

−T
j−1

i−1
[f ](a, b, 2i−1m)

(7)
=4j

(b − a)∕2

2i−1m

⎛⎜⎜⎝

2i−1m�
�=0

�j−1,i−1,m,�f (x2k−i�) +

2i−1m�
�=0

�j−1,i−1,m,�f (x2k−i(2i−1m+�))

⎞⎟⎟⎠

−
b − a

2i−1m

2i−1m�
�=0

�j−1,i−1,m,�f (x2k−i+1�)

=
b − a

2im

⎛⎜⎜⎝

2i−1m�
�=0

4j�j−1,i−1,m,�f (x2k−i�) +

2im�
�=0

4j�j−1,i−1,m,�f (x2k−i(2i−1m+�))

−

2i−1m�
�=0

2�j−1,i−1,m,�f (x2k−i+1�)

⎞⎟⎟⎠
.

� = (u0, u1,… , u2im) ∶= (�j,i,m,0, �j,i,m,1, … , �j,i,m,2im)

� =(v0, v1,… , v2i−1m)

∶=(�j−1,i−1,m,0, �j−1,i−1,m,1, … , �j−1,i−1,m,2i−1m)
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Using (14), we can give another proof of the positivity of the Romberg coefficients 
(see Corollary 3 below). Let

An immediate consequence of (14) is that

for every j ≥ 1 and for every odd index2 � (recall that the weights for j = 0 are 
1∕2, 1,… , 1, 1∕2 ).

Lemma 1  For each j ≥ 1 and q ≥ 0 , we have Γj+q =
q∏

�=1

4j+�

4j+�−1
Γj and

Proof  The proof is by induction on q. Lemma 1 is true for q = 0 . Assume now that 
(16) holds for q and let us prove it for q + 1 . We have

(14)

� =
4j

4j − 1
(v0, v1, v2, v3, … , v2i−1m, 0, 0, 0, 0,… , 0)

+
4j

4j − 1
( 0, 0, 0, 0, … , v0 , v1, v2, v3, v4 … , v2i−1m)

−
2

4j − 1
(v0, 0, v1, 0, v2, 0,… , 0, v2i−1m).

�j = min
i,m,�

�j,i,m,� and Γj = max
i,m,�

�j,i,m,� .

(15)Γj =

j∏
�=1

4�

4� − 1
= �j,i,m,�

(16)�j+q ≥
(

q∏
�=1

4j+�

4j+� − 1

)[
�j − 2

(
q∑

�=1

1

4j+�

)
Γj

]
.

�j+q+1,i,m,�

(14)≥ 4j+q+1

4j+q+1 − 1
�j+q −

2

4j+q+1 − 1
Γj+q

(16)≥ 4j+q+1

4j+q+1 − 1

(
q∏

�=1

4j+�

4j+� − 1

)[
�j − 2

(
q∑

�=1

1

4j+�

)
Γj

]

−
2

4j+q+1 − 1

(
q∏

�=1

4j+�

4�+j − 1

)
Γj

=

(
q+1∏
�=1

4j+�

4j+� − 1

)[
�j − 2

(
q+1∑
�=1

1

4j+�

)
Γj

]
.

2  Note that, when m is odd, �1,1,m,m =
4

3

(
�0,0,m,0 + �0,0,m,m

)
=

4

3

(
1

2
+

1

2

)
=

4

3
= Γ1.
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Corollary 3 

Proof  The weights �j,i,m,� for j = 0 and j = 1 are those of the trapezoidal and Simp-
son’s rules, respectively, that is,

In addition, note that, for j = 1 and q ≥ 1,

This and (16) complete the proof.

3 � Proof of Theorem 1

The nice thing about (14) is that the same strategy used in the proof of Lemma 1 to 
bound the coefficients of the Romberg integrals can be used to bound the sums of 
these coefficients. In order to estimate �j and Θj in Theorem 1, let us also define

Note that, by (15),

that is

We have

Lemma 2  For each j ≥ 1 and q ≥ 0,

(17)�j ≥ 0 ∀ j ≥ 0.

(18)1∕2, 1, 1, … , 1, 1∕2 and 1∕3, 4∕3, 2∕3, 4∕3, 2∕3,… , 4∕3, 1∕3.

�j − 2

( q∑
�=1

1

4j+�

)
Γj ≥ 1

3
−

2

16

4

3

4

3
=

1

9
.

(19)
��
j
= min

i,m, r

r even

�j,i,m,r, and Θ�
j
= max

i,m, r

r even

�j,i,m,r.

�j,i,m,2�+1 = �j,i,m,2� + �j,i,m,2�+1 − 1 ≥ �j,i,m,2� ≥ ��
j
,

(20)�j = ��
j
∀ j ≥ 0.

(21)�1+q ≥ 1

18
and Θ1+q ≤ 0.8155,
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and ��
j+q

≥

Proof  The inequalities in (21) follow by (22) and (23). Because ��
1
= Θ�

1
=

1

3
 (see 

(18)), we get

Using this in (23) for j = 1 , we obtain

In the same fashion, for j = 1 , (22) gives

The second inequality of (22) follows directly by the previous one and the fact that, 
for � odd,

The proof of the other inequalities is by induction on q. Lemma 2 is true for q = 0 . 
Assume now that (22) holds for q and let us prove it for q + 1.

(22)

Θ�
j+q

≤
q∏

�=1

(
4j+�

4j+� − 1

)
Θ�

j
,

Θj+q ≤
(

q∏
�=1

4j+�

4j+� − 1

)[
Θ�

j
+

j∏
�=1

4�

4� − 1

]
− 1

(23)

(
q∏

�=1

4j+�

4j+� − 1

)[
��
j
− 2

(
q∑

�=1

1

4j+�

)(
Θ�

j
+

j∏
�=1

4�

4� − 1

)]
+

q∑
�=1

2

4j+� − 1
.

��
1
− 2

( q∑
�=1

1

41+�

)(
Θ�

1
+

1∏
�=1

4�

4� − 1

)
≥��

1
− 2

( ∞∑
�=1

1

41+�

)(
Θ�

1
+

1∏
�=1

4�

4� − 1

)

=

[
1

3
−

(
2

3

1

4

)(
1

3
+

4

3

)]
=

1

18
.

�1+q
(20)
= ��

1+q
≥

(
q∏

�=1

41+�

41+� − 1

)
1

18
+

q∑
�=1

2

4j+� − 1
≥ 1

18
.

Θ1+q ≤
(

∞∏
𝜂=2

4𝜂

4𝜂 − 1

)[
1

3
+

4

3

]
− 1 < 0.8155.

�j+q,i,m,�
(15)
= Γj+q =

j+q∏
�=1

4�

4� − 1
and Θj+q

(15)
= Θ�

j+q
+ Γj+q − 1.
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By (14), for every even r with r < 2�−1m , we have

Because (22) and (23) hold for q, (21) does for q as well. Hence, for j = 1 , we can 
use

to obtain

This also holds for j ≠ 1 (see Remark 3). Hence, by the induction hypothesis,

This proves the first inequality of (22) for q + 1 . In addition, by (24) and the induc-
tion hypothesis, we obtain

(24)

�j+q+1,i,m,r =

(
r∑

�=0

�j+q+1,i,m,�

)
− r

=

(
4j+q+1

4j+q+1 − 1

r∑
�=0

�j+q,i,m,� −
2

4j+q+1 − 1

r∕2∑
�=0

�j+q,i,m,�

)
− r

=

(
4j+q+1

4j+q+1 − 1

[
�j+q,i,m,r + r

]
−

2

4j+q+1 − 1

[
�j+q,i,m,r∕2 + r∕2

])
− r

=
4j+q+1

4j+q+1 − 1
�j+q,i,m,r −

2

4j+q − 1
�j+q,i,m,r∕2.

(25)�j+q,i,m,r∕2 ≥ �j+q ≥ 1

18
≥ 0

Θ�
j+q+1

≤ 4j+q+1

4j+q+1 − 1
Θ�

j+q
.

(26)Θ�
j+q+1

≤
q+1∏
�=1

(
4j+�

4j+� − 1

)
Θ�

j
.

��
j+q+1,i,m,r

≥ 4j+q+1

4j+q+1 − 1
��
j+q

−
2

4j+q+1 − 1
Θj+q

≥ 4j+q+1

4j+q+1 − 1

(
q∏

�=1

4j+�

4j+� − 1

)[
��
j
− 2

(
q∑

�=1

1

4j+�

)(
Θ�

j
+

j∏
�=1

4�

4� − 1

)]

+

q∑
�=1

2

4j+� − 1
−

2

4j+q+1 − 1

(
q∏

�=1

4j+�

4j+� − 1

)[
Θ�

j
+

j∏
�=1

4�

4� − 1

]
+

2

4j+q+1 − 1

=
4j+q+1

4j+q+1 − 1

(
q∏

�=1

4j+�

4j+� − 1

)[
��
j
− 2

(
q+1∑
�=1

1

4j+�

)(
Θ�

j
+

j∏
�=1

4�

4� − 1

)]

+

q+1∑
�=1

2

4j+� − 1
.
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Therefore,

This proves (23) for q + 1.

Remark 3  Note that the proof of Lemma 2 for j = 1 is independent of the proof for 
other values of j. Hence, once we proved (21) we have (25), since

Using (20), Lemma 2 yields the following result

Corollary 4  For each j ≥ 1 and q ≥ 0,

and

provided that the term in brackets in (28) is non-negative.

Theorem 1 follows by (21). Slightly sharper bounds can be obtained by com-
puting the right-hand sides of (27) and (28) for some larger values of j and q as is 
shown in Table 1.

��
j+q+1

≥
(

q+1∏
�=1

4j+�

4j+� − 1

)[
��
j
− 2

(
q+1∑
�=1

1

4j+�

)(
Θ�

j
+

j∏
�=1

4�

4� − 1

)]

+

q+1∑
�=1

2

4j+� − 1
.

�j+q,i,m,r∕2 ≥ �j+q ≥ 0.

(27)Θj+q ≤
(

∞∏
�=j+1

4�

4� − 1

)[
Θ�

j
+

j∏
�=1

4�

4� − 1

]
− 1

(28)�j+q ≥
[
��
j
−

2

3

1

4j

(
Θ�

j
+

j∏
�=1

4�

4� − 1

)]
+

q∑
�=1

2

4j+� − 1
,

Table 1   The right-hand sides of (27) and (28) for some values of j 

j q Lower bound for �j+1 �j+1 Upper bound for Θj+1 Θj+1

1 1 0.1888889 0.2666667 0.8154421 0.6444444
2 1 0.2261905 0.2476190 0.7700560 0.7298060
3 1 0.2372082 0.2426891 0.7615461 0.7516451
4 1 0.2400678 0.2414457 0.7596015 0.7571364
5 1 0.2407892 0.2411342 0.7591269 0.7585112

2374



Numerical Algorithms (2023) 92:2365–2376

1 3

4 � Some problems on quadrature formulae based on equally spaced 
points

According to Pólya [15], if the sequence (1) satisfies

for every polynomial p, then 
(
I�[f ]

)
� ∈ ℕ

 converges to 
b∫
a

f (x)dx for every continuous 

function f if and only if

is bounded in �.
For the (interpolatory) Newton-Cotes quadrature, which is based on the 

equally spaced abscissae

the weights w�,� are all positive only for � ≤ 7 and � = 9 [7, p. 534]. Moreover, they 
do not satisfy (30) [12, 14]. In fact, it was shown by Wilson [17] that a sequence of 
quadrature formulae at equally spaced abscissae with positive weights can only exist 
if n� is at least proportional to d2

�
 , where d� is the exactness degree of I� , that is, the 

largest positive integer such that

holds for every polynomial p of degree at most d�.
Following some ideas of Wilson [18], Huybrechs [9] introduced a method for 

obtaining quadrature rules for equally spaced points (with positive weights) based 
on least squares. The main idea is to choose the weights w�,� ,� = 0, 1,… , n� in (1) 
that satisfy (31) and minimize

Huybrechs showed that the weights obtained by this method are all positive pro-
vided that n� is sufficiently larger than d� . It remains to check whether these rules 
represent Riemann sums in the sense of (3).

Lastly, Klein and Berrut [11] introduced a method for approximating definite integrals 
via the integration of Floater-Hormann rational interpolants. The resulting quadrature rules 
Qn,d[f ] , indexed by the parameters n + 1 (the number of nodes used) and d (the degree of 

(29)lim
�→∞

I�[p] =

b

∫
a

p(x)dx

(30)||I� || ∶=

n�∑
�=0

|w�,�|

x�,� = a + �
b − a

�
, � = 0, 1,… , �(n� = �),

(31)I�[p] =

b

∫
a

p(x)dx

n�∑
�=0

w2

�,�
.
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exactness according to (31)), converge to 
b∫
a

f (x)dx with order 
(

b−a

n

)d+2

 whenever f is of 

class Cd+3[a, b] when n → ∞ (for fixed d). However, convergence may fail when n → ∞ 
for d ≈ n because, for d = n , their method reduces to the Newton-Cotes quadrature. For 
fixed d, Qn,d satisfies (29) (for n in the place of � ). In light of (30), it is not known whether 
these quadrature rules have positive weights for n sufficiently larger than d or even whether 
convergence of Qn,d[f ] can be ensured for arbitrary continuous functions f when n → ∞.
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