ORIGINAL PAPER

Strong and linear convergence of projection‑type method with an inertial term for fnding minimum‑norm solutions of pseudomonotone variational inequalities in Hilbert spaces

Duong Viet Thong¹ · Xiaoxiao Li² · Qiao-Li Dong² · Vu Tien Dung³ · **Nguyen Phuong Lan1**

Received: 19 September 2021 / Accepted: 28 July 2022 / Published online: 25 August 2022© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

The purpose of this paper is to investigate pseudomonotone variational inequalities in real Hilbert spaces. For solving this problem, we introduce a new method. The proposed algorithm combines the advantages of the subgradient extragradient method and the projection and contraction method. We establish the strong convergence of the proposed algorithm under conditions pseudomonotonicity and Lipschitz continuity assumptions. Moreover, under additional strong pseudomonotonicity and Lipschitz continuity assumptions, the linear convergence of the sequence generated by the proposed algorithm is obtained. Numerical examples provide to illustrate the potential of our algorithms as well as compare their performances to several related results.

 \boxtimes Vu Tien Dung duzngvt@gmail.com Duong Viet Thong thongduongviet@gmail.com Xiaoxiao Li xiaoxiaolimath@163.com Qiao‑Li Dong dongql@lsec.cc.ac.cn Nguyen Phuong Lan nplantkt@gmail.com

- ¹ Faculty of Mathematical Economics, National Economics University, Hanoi City, Vietnam
- ² College of Science, Civil Aviation University of China, 300300 Tianjin, China
- ³ Department of Mathematics, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Keywords Subgradient extragradient method · Projection and contraction method · Variational inequality problem · Pseudomonotone mapping · Convergence rate

Mathematics Subject Classifcation 47H09 · 47J20 · 65K15 · 90C25

1 Introduction

Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $|| \cdot ||$. Let *C* be a nonempty, closed and convex subset of *H*. Let $F : H \to H$ be a single-valued continuous mapping. We consider classical variational inequality (VI) in the sense of Fichera $[14]$ $[14]$ and Stampacchia $[30]$ $[30]$ (see also Kinderlehrer and Stampacchia $[21]$) which is formulated as follows: find a point x^* ∈ *C* such that

$$
\langle Fx^*, x - x^* \rangle \ge 0 \quad \forall x \in C. \tag{1}
$$

We denote by $Sol(C, F)$ the solution set of the VI (1) (1) , which is assumed to be nonempty.

In this work, we assume that the following conditions hold:

Condition 1 The solution set $Sol(C, F)$ is nonempty.

Condition 2 The mapping $F : H \to H$ is pseudomonotone on *H*, that is,

 $\langle Fx, y - x \rangle > 0 \implies \langle Fy, y - x \rangle > 0 \quad \forall x, y \in H.$

Condition 3 The mapping $F : H \to H$ is Lipschitz continuous with constant $L > 0$, that is, there exists a number $L > 0$ such that

$$
||Fx - Fy|| \le L||x - y|| \quad \forall x, y \in H.
$$

Variational inequality (VI) is a very general mathematical model with numerous applications in economics, engineering mechanics, transportation, and many more, see, for example, [[2,](#page-29-0) [13](#page-30-3), [21](#page-30-2), [23](#page-30-4)]. During the last decades, many algorithms for solving VIs have been proposed in the literature, see, e.g., [\[3,](#page-29-1) [10](#page-29-2), [13,](#page-30-3) [15](#page-30-5), [16,](#page-30-6) [21](#page-30-2), [34,](#page-30-7) [37\]](#page-31-0).

The most well-known one is *extragradient method* proposed by Korpelevich [\[22\]](#page-30-8) (also by Antipin [\[1\]](#page-29-3) independently). However, the extragradient method requires the evaluation of two orthogonal projections onto *C* per iteration. The frst method which overcomes this obstacle is the *projection and contraction method* (PC) of He [\[18](#page-30-9)] and Sun [[33](#page-30-10)]. Their algorithm is of the form:

$$
y_n = P_C(x_n - \tau_n F x_n),
$$

and then the next iterate x_{n+1} is generated via the following

$$
x_{n+1} = x_n - \gamma \eta_n d(x_n, y_n),
$$

where $\gamma \in (0, 2)$,

$$
\eta_n := \frac{\langle x_n - y_n, d(x_n, y_n) \rangle}{\| d(x_n, y_n) \|^2},
$$

and

$$
d(x_n, y_n) := x_n - y_n - \tau_n (Fx_n - Fy_n),
$$

where $F: C \to \mathbb{H}$ be monotone and *L*-Lipschitz continuous operator and $\tau_n \in (0, 1/L)$ or τ_n is updated by some adaptive rule as follows:

$$
\tau_n \| F x_n - F y_n \| \le \mu \| x_n - y_n \|, \ \mu \in (0, 1).
$$
 (2)

Recently, projection and contraction type methods for solving VI have received great attention by many authors, see, e.g., [\[4](#page-29-4), [11](#page-30-11), [12](#page-30-12), [23](#page-30-4), [27](#page-30-13), [36](#page-30-14)].

The second extension of the extragradient method is known as the *subgradient extragradient method* proposed by Censor et al. [\[6–](#page-29-5)[8](#page-29-6)]. In this algorithm, the second projection onto the feasible set *C* is replaced by a projection onto an easy and constructible set that contains *C*. For each $n \in \mathbb{N}$ generate the follow– ing sequences,

$$
\begin{cases}\ny_n = P_C(x_n - \tau F x_n), \\
T_n = \{x \in H \mid \langle x_n - \tau F x_n - y_n, x - y_n \rangle \le 0\}, \\
x_{n+1} = P_{T_n}(x_n - \tau F y_n),\n\end{cases}
$$

where $\tau \in (0, 1/L)$.

Since the projection and contraction and the subgradient extragradient methods require calculating only one projection onto *C* per iteration, their computational efforts and performance have an advantage over other existing results in the literature. Recently, [[12\]](#page-30-12) introduced a modifcation of the subgradient extragradient method by using the direction of the projection and contraction method and stepsize rule τ_n satisfying ([2\)](#page-2-0).

This paper is motivated and inspired by the work of Censor et al. [\[6\]](#page-29-5), He [\[18\]](#page-30-9) and Sun [\[33\]](#page-30-10), frst, we investigate the strong convergence for solving the problem (VI) by our new algorithm which is a combination of the subgradient extragradient method and the projection and contraction method in Hilbert spaces. In the proposed method, we show that an advantage of the proposed algorithm is the computation of only two values of the variational inequality mapping and one projection onto the feasible set per one iteration, which distinguishes our method from most other projection-type methods for variational inequality problems with pseudomonotone mappings. Second, the convergence rate of the algorithm is presented under strong pseudomonotonicity and Lipschitz continuity of the cost operator. Specifcally, the proposed algorithm improves the results in the literature in the following ways:

- at each iteration step, a single projection is required to perform;
- an inertial term for speeding up convergence;
- step-sizes are not decreasing;
- without knowledge of the Lipschitz constant of the underline operator;
- without the assumption on the sequential weak continuity of the underline operator;
- strong convergence and moreover, a convergence estimate is established.

This paper is organized as follows: Section [2](#page-3-0) consists of the notations and basic definitions which are useful throughout the paper. In Section [3](#page-6-0), we propose our algorithm and prove the strong convergence of the iterative sequence to a solution of the variational inequality (1) (1) . The convergence rate of the proposed algorithm is presented in Section [4](#page-15-0). In Section [5,](#page-20-0) some numerical results in optimal control problems are reported to demonstrate the performance of the proposed method. Final conclusions are given in Section [6](#page-29-7).

2 Preliminaries

Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $|| \cdot ||$. The weak convergence of $\{x_n\}$ to *x* is denoted by $x_n \to x$ as $n \to \infty$, while the strong convergence of $\{x_n\}$ to *x* is written as $x_n \to x$ as $n \to \infty$. For all $x, y \in H$ we have

$$
||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle.
$$

Definition 2.1 Let $T : H \to H$ be an operator. Then

1. *T* is called *L*-Lipschitz continuous with constant *L >* 0 if

$$
||Tx - Ty|| \le L||x - y|| \quad \forall x, y \in H,
$$

if $L = 1$ then the operator *T* is called nonexpansive and if $L \in (0, 1)$, *T* is called a contraction.

2. *T* is called monotone if

$$
\langle Tx - Ty, x - y \rangle \ge 0 \quad \forall x, y \in H;
$$

3. *T* is called pseudomonotone in the sense of Karamardian [\[19](#page-30-15)] if

$$
\langle Tx, y - x \rangle \ge 0 \Longrightarrow \langle Ty, y - x \rangle \ge 0 \quad \forall x, y \in H; \tag{3}
$$

4. *T* is called α -strongly monotone if there exists a constant $\alpha > 0$ such that

$$
\langle Tx - Ty, x - y \rangle \ge \alpha ||x - y||^2 \ \forall x, y \in H;
$$

5. *T* is called α -strongly pseudomonotone if there exists a constant $\alpha > 0$ such that

$$
\langle Tx, y - x \rangle \ge 0 \Longrightarrow \langle Ty, y - x \rangle \ge \alpha ||x - y||^2 \quad \forall x, y \in H;
$$

6. The operator *T* is called sequentially weakly continuous if for each sequence ${x_n}$ we have: x_n converges weakly to x implies Tx_n converges weakly to Tx .

We note that (3) (3) (3) is only one of the definitions of pseudomonotonicity which can be found in the literature. For every point $x \in H$, there exists a unique nearest point in *C*, denoted by P_Cx such that $||x - P_Cx|| \le ||x - y|| \forall y \in C$. P_C is called the *metric projection* of *H* onto *C*. It is known that P_C is nonexpansive. For properties of the metric projection, the interested reader could be referred to Section 3 in [\[16](#page-30-6)].

Lemma 2.1 ([[16\]](#page-30-6)) *Let C be a nonempty closed convex subset of a real Hilbert space H*. Given $x \in H$ and $z \in C$. Then $z = P_C x \Longleftrightarrow \langle x - z, z - y \rangle \ge 0$ $\forall y \in C$. Moreover,

$$
||P_Cx - P_Cy||^2 \le \langle P_Cx - P_Cy, x - y \rangle \,\forall x, y \in C.
$$

Lemma 2.2 *Let H be a real Hilbert space*. *Then the following results hold*:

i) $||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2 \forall x, y \in H$; *ii*) $||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle \forall x, y \in H$.

Lemma 2.3 ([[9\]](#page-29-8)) *Consider the problem Sol*(*C*, *F*) *with C being a nonempty*, *closed*, *convex subset of a real Hilbert space H and* $F : C \rightarrow H$ *being pseudomonotone and continuous*. *Then*, *x*[∗] *is a solution of Sol*(*C*, *F*) *if and only if*

$$
\langle Fx, x - x^* \rangle \ge 0 \ \forall x \in C.
$$

Lemma 2.4 ([\[28](#page-30-16)]) Let $\{a_n\}$ be sequence of nonnegative real numbers, $\{\alpha_n\}$ be a *sequence of real numbers in* $(0, 1)$ *with* $\sum_{n=1}^{\infty} \alpha_n = \infty$ *and* $\{b_n\}$ *be a sequence of real numbers*. *Assume that*

$$
a_{n+1} \le (1 - \alpha_n)a_n + \alpha_n b_n \ \forall n \ge 1.
$$

If $\limsup_{k\to\infty} b_{n_k} \leq 0$ *for every subsequence* $\{a_{n_k}\}\$ *of* $\{a_n\}$ *satisfying* $\liminf_{k\to\infty} (a_{n_k+1} - a_{n_k}) \ge 0$ then $\lim_{n\to\infty} a_n = 0$.

Definition 2.2 ([\[26](#page-30-17)]) Let $\{x_n\}$ be a sequence in *H*.

i) {*x_n*} is said to converge *R*-linearly to *x*[∗] with rate ρ ∈ [0, 1) if there is a constant $c > 0$ such that

$$
||x_n - x^*|| \le c\rho^n \ \forall n \in \mathbb{N}.
$$

ii) $\{x_n\}$ is said to converge *Q*-linearly to x^* with rate $\rho \in [0, 1)$ if

$$
||x_{n+1} - x^*|| \le \rho ||x_n - x^*|| \quad \forall n \in \mathbb{N}.
$$

Initialization: Given $\tau_1 > 0, \mu \in (0,1), \gamma \in (0,2), \theta \in [0,1)$. Let $u_0, u_1 \in H$ be arbitrary and $\{\alpha_n\}$ be a nonnegative real numbers sequence such that $\sum_{n=1}^{\infty} \alpha_n < +\infty$. We assume that $\{\gamma_n\}$ and $\{\varepsilon_n\}$ are two positive sequences such that $\varepsilon_n = \circ(\gamma_n)$, means $\lim_{n\to\infty}\frac{\varepsilon_n}{\gamma_n} = 0$, where $\{\gamma_n\} \subset (0,1)$ satisfies the following conditions:

$$
\lim_{n\to\infty}\gamma_n=0,\quad\sum_{n=1}^\infty\gamma_n=\infty.
$$

Iterative Steps: Given the current iterate u_n , calculate u_{n+1} as follows:

Step 1. Compute $w_n = (1 - \gamma_n)(u_n + \theta_n(u_n - u_{n-1}))$ and

$$
v_n = P_C(w_n - \tau_n F w_n),
$$

where

$$
\theta_n = \begin{cases} \min\left\{\theta, \frac{\varepsilon_n}{\|u_n - u_{n-1}\|}\right\} & \text{if } u_n \neq u_{n-1}, \\ \theta & \text{otherwise.} \end{cases} \tag{4}
$$

If $w_n = v_n$ or $Fv_n = 0$ then stop and v_n is a solution of $Sol(C, F)$. Otherwise

Step 2. Compute

$$
u_{n+1} = P_{T_n}(w_n - \gamma \tau_n \eta_n F v_n)
$$

where

$$
T_n = \{x \in H \mid \langle w_n - \tau_n F w_n - v_n, x - v_n \rangle \le 0\}.
$$

$$
\eta_n := \begin{cases} \frac{\langle w_n - v_n, d_n \rangle}{\|d_n\|^2} & \text{if } d_n \ne 0, \\ 0 & \text{if } d_n = 0, \end{cases}
$$

and

$$
d_n := w_n - v_n - \tau_n (F w_n - F v_n).
$$

Step 3. Update

$$
\tau_{n+1} := \begin{cases} \min \left\{ \mu \frac{\|w_n - v_n\|}{\|Fw_n - Fv_n\|}, \tau_n + \alpha_n \right\} & \text{if } Fw_n \neq Fv_n, \\ \tau_n + \alpha_n & \text{otherwise.} \end{cases}
$$
(5)

Set $n := n + 1$ and go to Step 1.

3 Strong convergence analysis

First, we introduce the proposed algorithm:

Observe that the projection onto half-space T_n in Step 2 is explicit [\[5](#page-29-9), Section 4.1.3, p. 133], therefore, Algorithm 1 requires only one projection in Step 1. Moreover, the stepsize τ_n is updated adaptively in Step 3 without requiring the knowledge of the Lipschitz constant *L*. We start the convergence analysis by proving the following Lemmas.

Lemma 3.5 ([[24\]](#page-30-18)) Assume that F is L-Lipschitz continuous on H. Let $\{\tau_n\}$ be the *sequence generated by* (5). *Then*

$$
\lim_{n \to \infty} \tau_n = \tau \text{ with } \tau \in \left[\min \left\{ \tau_1, \frac{\mu}{L} \right\}, \tau_1 + \alpha \right],
$$

where $\alpha = \sum_{n=1}^{\infty} \alpha_n$ *. Moreover*

$$
||Fw_n - Fv_n|| \le \frac{\mu}{\tau_{n+1}} ||w_n - v_n||. \tag{6}
$$

Lemma 3.6 *Assume that F is Lipschitz continuous on H and pseudomonotone on C*. *Then for every* $x^* \in Sol(C, F)$, *there exists* $n_0 > 0$ *such that*

 $||u_{n+1} - x^*||^2 \le ||w_n - x^*||^2 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \eta_n^2 ||d_n||^2 \ \forall n \ge n_0.$

Proof Using ([6\)](#page-6-1), we have

$$
||d_n|| = ||w_n - v_n - \tau_n (Fw_n - Fv_n)||
$$

\n
$$
\ge ||w_n - v_n|| - \tau_n ||Fw_n - Fv_n||
$$

\n
$$
\ge ||w_n - v_n|| - \frac{\mu \tau_n}{\tau_{n+1}} ||w_n - v_n||
$$

\n
$$
= \left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right) ||w_n - v_n||.
$$
\n(7)

Since $\lim_{n\to\infty}$ $\left(1-\frac{\mu\tau_n}{\sigma}\right)$ τ _{n+1} $= 1 - \mu > 0$, there exists $n_0 \in \mathbb{N}$ such that $1 - \frac{\mu \tau_n}{\tau_n}$ $rac{\mu \tau_n}{\tau_{n+1}} > \frac{1-\mu}{2}$ $\frac{\mu}{2}$ $\forall n \geq n_0$.

Therefore, it follows from [\(7](#page-6-2)) that for all $n \ge n_0$ we get

$$
||d_n|| \ge \frac{1 - \mu}{2} ||w_n - v_n|| > 0.
$$
 (8)

Since x^* ∈ $Sol(C, F)$ ⊂ C ⊂ T_n , using Lemma 2.1 we have

$$
||u_{n+1} - x^*||^2 = ||P_{T_n}(w_n - \gamma \eta_n \tau_n F v_n) - P_{T_n} x^*||^2
$$

\n
$$
\leq \langle u_{n+1} - x^*, w_n - \gamma \eta_n \tau_n F v_n - x^* \rangle
$$

\n
$$
= \frac{1}{2} ||u_{n+1} - x^*||^2 + \frac{1}{2} ||w_n - \gamma \eta_n \tau_n F v_n - x^*||^2 - \frac{1}{2} ||u_{n+1} - w_n + \gamma \eta_n \tau_n F v_n||^2
$$

\n
$$
= \frac{1}{2} ||u_{n+1} - x^*||^2 + \frac{1}{2} ||w_n - x^*||^2 + \frac{1}{2} \gamma^2 \eta_n^2 \tau_n^2 ||F v_n||^2 - \langle w_n - x^*, \gamma \eta_n \tau_n F v_n \rangle
$$

\n
$$
- \frac{1}{2} ||u_{n+1} - w_n||^2 - \frac{1}{2} \gamma^2 \eta_n^2 \tau_n^2 ||F v_n||^2 - \langle u_{n+1} - w_n, \gamma \eta_n \tau_n F v_n \rangle
$$

\n
$$
= \frac{1}{2} ||u_{n+1} - x^*||^2 + \frac{1}{2} ||w_n - x^*||^2 - \frac{1}{2} ||u_{n+1} - w_n||^2 - \langle u_{n+1} - x^*, \gamma \eta_n \tau_n F v_n \rangle.
$$

This implies that

$$
||u_{n+1} - x^*||^2 \le ||w_n - x^*||^2 - ||u_{n+1} - w_n||^2 - 2\gamma \eta_n \tau_n \langle u_{n+1} - x^*, Fv_n \rangle.
$$
 (9)

Since $v_n \in C$ and $x^* \in Sol(C, F)$, we get $\langle Fx^*, v_n - x^* \rangle \ge 0$. By the pseudomonotonicity of *F*, we have $\langle Fv_n, v_n - x^* \rangle \ge 0$, which implies

$$
\langle Fv_n, u_{n+1} - x^* \rangle = \langle Fv_n, u_{n+1} - v_n \rangle + \langle Fv_n, v_n - x^* \rangle \ge \langle Fv_n, u_{n+1} - v_n \rangle.
$$

Thus, we obtain

$$
-2\gamma \eta_n \tau_n \langle Fv_n, u_{n+1} - x^* \rangle \le -2\gamma \eta_n \tau_n \langle Fv_n, u_{n+1} - v_n \rangle. \tag{10}
$$

On the other hand, from $u_{n+1} \in T_n$ we have

$$
\langle w_n - \tau_n F w_n - v_n, u_{n+1} - v_n \rangle \le 0.
$$

This implies that

$$
\langle w_n - v_n - \tau_n (F w_n - F v_n), u_{n+1} - v_n \rangle \le \tau_n \langle F v_n, u_{n+1} - v_n \rangle,
$$

thus

$$
\langle d_n, u_{n+1} - v_n \rangle \le \tau_n \langle Fv_n, u_{n+1} - v_n \rangle.
$$

Hence

$$
-2\gamma \eta_n \tau_n \langle F v_n, u_{n+1} - v_n \rangle \le -2\gamma \eta_n \langle d_n, u_{n+1} - v_n \rangle. \tag{11}
$$

On the other hand, we have

$$
-2\gamma\eta_n\langle d_n, u_{n+1} - v_n \rangle = -2\gamma\eta_n\langle d_n, w_n - v_n \rangle + 2\gamma\eta_n\langle d_n, w_n - u_{n+1} \rangle. \tag{12}
$$

From [\(8](#page-6-3)), we have $d_n \neq 0 \ \forall n \geq n_0$, thus $\eta_n = \frac{\langle w_n - v_n, d_n \rangle}{\|d_n\|^2}$ $\frac{h^2 - h^2}{\|d_n\|^2}$, which means

$$
\langle w_n - v_n, d_n \rangle = \eta_n \| d_n \|^2 \ \forall n \ge n_0. \tag{13}
$$

 \mathcal{D} Springer

Moreover

$$
2\gamma \eta_n \langle d_n, w_n - u_{n+1} \rangle = 2 \langle \gamma \eta_n d_n, w_n - u_{n+1} \rangle
$$

= $||w_n - u_{n+1}||^2 + \gamma^2 \eta_n^2 ||d_n||^2 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2$. (14)

Substituting [\(13](#page-7-0)) and [\(14](#page-8-0)) into [\(12](#page-7-1)) we get for all $n \ge n_0$ that

$$
-2\gamma\eta_n\langle d_n, u_{n+1} - v_n \rangle \le -2\gamma\eta_n^2 \|d_n\|^2 + \|w_n - u_{n+1}\|^2 + \gamma^2\eta_n^2 \|d_n\|^2 - \|w_n - u_{n+1} - \gamma\eta_n d_n\|^2
$$

= $||w_n - u_{n+1}||^2 - \|w_n - u_{n+1} - \gamma\eta_n d_n\|^2 - (2 - \gamma)\gamma\eta_n^2 \|d_n\|^2.$ (15)

Combining (11) (11) and (15) (15) , we obtain

$$
-2\gamma \eta_n \tau_n \langle Fv_n, u_{n+1} - v_n \rangle \le -2\gamma \eta_n^2 \|d_n\|^2 + \|w_n - u_{n+1}\|^2 + \gamma^2 \eta_n^2 \|d_n\|^2 - \|w_n - u_{n+1} - \gamma \eta_n d_n\|^2
$$

= $||w_n - u_{n+1}||^2 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \eta_n^2 \|d_n\|^2.$ (16)

Again, combining (10) (10) and (16) (16) , we get

$$
-2\gamma \eta_n \tau_n \langle Fv_n, u_{n+1} - x^* \rangle \le -2\gamma \eta_n^2 ||d_n||^2 + ||w_n - u_{n+1}||^2 + \gamma^2 \eta_n^2 ||d_n||^2 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2
$$

= $||w_n - u_{n+1}||^2 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \eta_n^2 ||d_n||^2$. (17)

Substituting (17) (17) into (9) (9) we get

$$
||u_{n+1} - x^*||^2 \le ||w_n - x^*||^2 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \eta_n^2 ||d_n||^2 \quad n \ge n_0.
$$
\n(18)

Theorem 3.1 *Assume that Conditions* 1*–*3 *hold*. *In addition*, *we assume that the mapping* $F : H \to H$ *satisfies the following condition*

whenever
$$
\{u_n\} \subset C, u_n \to z
$$
, one has $||Fz|| \le \liminf_{n \to \infty} ||Fu_n||$. (19)

Then the sequence $\{u_n\}$ *is generated by Algorithm 1 converges strongly to an element* $z \in Sol(C, F)$, where $z = P_{Sol(C, F)}(0)$.

Proof Claim 1. The sequence $\{u_n\}$ is bounded. Indeed, we have

$$
||w_n - z|| = ||(1 - \gamma_n)(u_n + \theta_n(u_n - u_{n-1})) - z||
$$

\n= $||(1 - \gamma_n)(u_n - z) + (1 - \gamma_n)\theta_n(u_n - u_{n-1}) - \gamma_n z||$
\n $\leq (1 - \gamma_n) ||u_n - z|| + (1 - \gamma_n)\theta_n ||u_n - u_{n-1}|| + \gamma_n ||z||$
\n= $(1 - \gamma_n) ||u_n - z|| + \gamma_n [(1 - \gamma_n) \frac{\theta_n}{\gamma_n} ||u_n - u_{n-1}|| + ||z||].$ (20)

On the other hand, since (4) we have

$$
\frac{\theta_n}{\gamma_n} \|u_n - u_{n-1}\| \le \frac{\epsilon_n}{\gamma_n} \to 0
$$

this implies that $\lim_{n\to\infty}$ $\sqrt{ }$ $(1 - \gamma_n) \frac{\theta_n}{\gamma_n}$ $\frac{n}{\gamma_n} \|u_n - u_{n-1}\| + \|z\|$ 1 $= ||z||$, thus there exists $M > 0$ such that

$$
(1 - \gamma_n) \frac{\theta_n}{\gamma_n} \| u_n - u_{n-1} \| + \| z \| \le M. \tag{21}
$$

Combining (20) (20) and (21) (21) we obtain

$$
||w_n - z|| \le (1 - \gamma_n) ||u_n - z|| + \gamma_n M.
$$

Moreover, we have $\lim_{n\to\infty} (1 - \mu \frac{\tau_n}{\tau_{n+1}}) = 1 - \mu > \frac{1 - \mu}{2}$, thus there exists $n_0 \in \mathbb{N}$ such that $1 - \mu \frac{\tau_n}{\tau_{n+1}} > 0 \ \forall n \ge n_0$, by Claim 1 we obtain

$$
||u_{n+1} - z|| \le ||w_n - z|| \quad \forall n \ge n_0.
$$
 (22)

Thus

$$
||u_{n+1} - z|| \leq (1 - \gamma_n) ||u_n - z|| + \gamma_n M
$$

= max{ ||u_n - z||, M} $\leq ... \leq \max{ ||u_{n_0} - z||, M}.$

Therefore, the sequence $\{u_n\}$ is bounded.

Claim 2.

$$
||w_n - u_{n+1} - \gamma \eta_n d_n||^2 + (2 - \gamma)\gamma \eta_n^2 ||d_n||^2 \le ||u_n - z||^2 - ||u_{n+1} - z||^2 + \gamma_n M_1.
$$

Indeed, we have $||w_n - z|| \le (1 - \gamma_n) ||u_n - z|| + \gamma_n M$, this implies that

$$
||w_n - z||^2 \le (1 - \gamma_n)^2 ||u_n - z||^2 + 2\gamma_n (1 - \gamma_n)M ||u_n - z|| + \gamma_n^2 M^2
$$

\n
$$
\le ||u_n - z||^2 + \gamma_n [2(1 - \gamma_n)M ||u_n - z|| + \gamma_n M^2]
$$

\n
$$
\le ||u_n - z||^2 + \gamma_n M_1,
$$
\n(23)

where $M_1 := \max\{2(1 - \gamma_n)M\|u_n - z\| + \gamma_n M^2 : n \in \mathbb{N}\}\$. Substituting [\(23](#page-9-1)) into (18) (18) we get

$$
||u_{n+1} - x^*||^2 \le ||u_n - z||^2 + \gamma_n M_1 - ||w_n - u_{n+1} - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \eta_n^2 ||d_n||^2.
$$

Or equivalently

$$
||w_n - u_{n+1} - \gamma \eta_n d_n||^2 + (2 - \gamma)\gamma \eta_n^2 ||d_n||^2 \le ||u_n - z||^2 - ||u_{n+1} - z||^2 + \gamma_n M_1.
$$

Claim 3.

$$
\frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2} \|w_n - v_n\|^2 \leq \eta_n^2 \|d_n\|^2 \ \forall n \geq n_0.
$$

We have

$$
||d_n|| \le ||w_n - v_n|| + \tau_n ||Fw_n - Fv_n|| \le \left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right) ||w_n - v_n||.
$$

Hence

$$
||d_n||^2 \le \left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2 ||w_n - v_n||^2,
$$

or equivalently

$$
\frac{1}{\|d_n\|^2} \ge \frac{1}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2 \|w_n - v_n\|^2}.
$$

Again, we fnd

$$
\langle w_n - v_n, d_n \rangle = ||w_n - v_n||^2 - \tau_n \langle w_n - v_n, Fw_n - Fv_n \rangle
$$

\n
$$
\ge ||w_n - v_n||^2 - \tau_n ||w_n - v_n|| ||Fw_n - Fv_n||
$$

\n
$$
\ge ||w_n - v_n||^2 - \frac{\mu \tau_n}{\tau_{n+1}} ||w_n - v_n||^2
$$

\n
$$
= \left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right) ||w_n - v_n||^2.
$$

Hence for all $n \geq n_0$

$$
\eta_n \|d_n\|^2 = \langle w_n - v_n, d_n \rangle \ge \left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right) \|w_n - v_n\|^2 \tag{24}
$$

and

$$
\eta_n = \frac{\langle w_n - v_n, d_n \rangle}{\|d_n\|^2} \ge \frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}.
$$
\n(25)

Combining [\(24](#page-10-0)) and [\(25](#page-10-1)), we get

$$
\eta_n^2 \|d_n\|^2 \ge \frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2} \|w_n - v_n\|^2 \ \forall n \ge n_0.
$$
 (26)

Claim 4.

$$
||u_{n+1} - z||^2 \le (1 - \gamma_n) ||u_n - z||^2 + \gamma_n \left[2(1 - \gamma_n) ||u_n - z|| \frac{\theta_n}{\gamma_n} ||u_n - u_{n-1}|| + \theta_n ||u_n - u_{n-1}|| \frac{\theta_n}{\gamma_n} ||u_n - u_{n-1}|| + 2||z|| ||u_n - u_{n+1}|| + 2(-z, u_{n+1} - z) \right]
$$

 $∀n ≥ n₀$. Indeed, using Lemma 2.2 ii) and ([22\)](#page-9-2) we get

$$
||x_{n+1} - z||^2 \le ||w_n - z||^2 \quad \forall n \ge n_0
$$

\n= $||(1 - \gamma_n)(u_n - z) + (1 - \gamma_n)\theta_n(u_n - u_{n-1}) - \gamma_n z||^2 \quad \forall n \ge n_0$
\n $\le ||(1 - \gamma_n)(u_n - z) + (1 - \gamma_n)\theta_n(u_n - u_{n-1})||^2 + 2\gamma_n \langle -z, w_n - z \rangle \quad \forall n \ge n_0$
\n= $(1 - \gamma_n)^2 ||u_n - z||^2 + 2(1 - \gamma_n)\theta_n ||u_n - z|| ||u_n - u_{n-1}|| + \theta_n^2 ||u_n - u_{n-1}||^2$
\n+ $2\langle -z, u_n - u_{n+1} \rangle + 2\langle -z, u_{n+1} - z \rangle \quad \forall n \ge n_0$
\n $\le (1 - \gamma_n) ||u_n - z||^2 + \gamma_n \left[2(1 - \gamma_n) ||u_n - z|| \frac{\theta_n}{\gamma_n} ||u_n - u_{n-1}|| + 2\|z\| ||u_n - u_{n+1}|| + 2\langle -z, u_{n+1} - z \rangle \right] \quad \forall n \ge n_0.$

Claim 5. { $||u_n - z||^2$ } converges to zero. Indeed, by Lemma 2.4 it suffices to show that $\limsup_{k\to\infty}\langle -z, u_{n_k+1} - z \rangle \leq 0$ and $\limsup_{k\to\infty}||u_{n_k} - u_{n_k+1}|| \leq 0$ for every subsequence $\{\|u_{n_k} - z\|\}$ of $\{\|u_n - z\|\}$ satisfying

$$
\liminf_{k \to \infty} (\|u_{n_k+1} - z\| - \|u_{n_k} - z\|) \ge 0.
$$

For this, suppose that $\{||u_{n_k} - z||\}$ is a subsequence of $\{||u_n - z||\}$ such that lim inf_{k→∞}($||u_{n_k+1} - z|| - ||u_{n_k} - z||$) ≥ 0. Then

 $\liminf_{k \to \infty} (\|u_{n_k+1} - z\|^2 - \|u_{n_k} - z\|^2) = \liminf_{k \to \infty} [(\|u_{n_k+1} - z\| - \|u_{n_k} - z\|)(\|u_{n_k+1} - z\| + \|u_{n_k} - z\|)] \ge 0.$

By Claim 2 we obtain

$$
\limsup_{k \to \infty} \left[||w_{n_k} - u_{n_k+1} - \gamma \eta_{n_k} d_{n_k}||^2 + (2 - \gamma) \gamma \eta_{n_k}^2 ||d_{n_k}||^2 \right]
$$
\n
$$
\leq \limsup_{k \to \infty} \left[||u_{n_k} - z||^2 - ||u_{n_k+1} - z||^2 + \gamma_{n_k} M_1 \right]
$$
\n
$$
\leq \limsup_{k \to \infty} \left[||u_{n_k} - z||^2 - ||u_{n_k+1} - z||^2 \right] + \limsup_{k \to \infty} \gamma_{n_k} M_1
$$
\n
$$
= - \liminf_{k \to \infty} \left[||u_{n_k+1} - z||^2 - ||u_{n_k} - z||^2 \right]
$$
\n
$$
\leq 0.
$$

This implies that

$$
\lim_{k \to \infty} ||w_{n_k} - u_{n_k + 1} - \gamma \eta_{n_k} d_{n_k}|| = 0 \text{ and } \lim_{k \to \infty} \gamma \eta_{n_k}^2 ||d_{n_k}|| = 0.
$$

 $\circled{2}$ Springer

We have

$$
||w_{n_k} - u_{n_k+1}|| \le ||w_{n_k} - u_{n_k+1} - \gamma \eta_{n_k} d_{n_k}|| + \gamma ||\eta_{n_k} d_{n_k}||
$$

= $||w_{n_k} - u_{n_k+1} - \gamma \eta_{n_k} d_{n_k}|| + \gamma \frac{1}{\eta_{n_k}} \eta_{n_k}^2 ||d_{n_k}||.$ (27)

Combining (25) (25) and (28) (28) we get

$$
||w_{n_k} - u_{n_k+1}|| \le ||w_{n_k} - u_{n_k+1} - \gamma \eta_{n_k} d_{n_k}|| + \gamma \eta_{n_k} ||d_{n_k}||
$$

\n
$$
= ||w_{n_k} - u_{n_k+1} - \gamma \eta_{n_k} d_{n_k}|| + \gamma \frac{1}{\eta_{n_k}} \eta_{n_k}^2 ||d_{n_k}||
$$

\n
$$
= ||w_{n_k} - u_{n_k+1} - \gamma \eta_{n_k} d_{n_k}|| + \gamma \frac{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 - \mu \frac{\tau_n}{\tau_{n+1}}\right)^2} \eta_{n_k}^2 ||d_{n_k}||.
$$

\n(28)

This implies that

$$
\lim_{k \to \infty} \|w_{n_k} - u_{n_k + 1}\| = 0.
$$
\n(29)

From Claim 3 we also have

$$
\lim_{k \to \infty} ||v_{n_k} - w_{n_k}|| = 0.
$$
\n(30)

Moreover, we have

$$
||u_{n_k} - w_{n_k}|| = \theta_{n_k} ||u_{n_k} - u_{n_{k-1}}|| = \gamma_{n_k} \cdot \frac{\theta_{n_k}}{\gamma_{n_k}} ||u_{n_k} - u_{n_{k-1}}|| \to 0.
$$
 (31)

From (29) (29) , (30) (30) and (31) (31) , we get

$$
||u_{n_k+1} - u_{n_k}|| \le ||u_{n_k+1} - w_{n_k}|| + ||w_{n_k} - v_{n_k}|| + ||v_{n_k} - u_{n_k}|| \to 0.
$$
 (32)

Since the sequence $\{u_{n_k}\}\$ is bounded, it follows that there exists a subsequence $\{u_{n_{k_j}}\}$ of $\{u_{n_k}\}\$, which converges weakly to some $z^* \in H$, such that

$$
\limsup_{k \to \infty} \langle -z, u_{n_k} - z \rangle = \lim_{j \to \infty} \langle -z, u_{n_{k_j}} - z \rangle = \langle -z, z^* - z \rangle.
$$
 (33)

Using (31) (31) , we get

$$
w_{n_k} \rightharpoonup z^* \text{ as } k \to \infty,
$$

Using (30) (30) , we obtain

$$
v_{n_k} \rightharpoonup z^* \text{ as } k \to \infty.
$$

Now, we show that $z^* \in Sol(C, F)$. Indeed, since $v_{n_k} = P_C(w_{n_k} - \tau_{n_k} F w_{n_k})$, we have

$$
\langle w_{n_k} - \tau_{n_k} F w_{n_k} - v_{n_k}, x - v_{n_k} \rangle \leq 0 \ \forall x \in C,
$$

or equivalently

$$
\frac{1}{\tau_{n_k}} \langle w_{n_k} - v_{n_k}, x - v_{n_k} \rangle \le \langle F w_{n_k}, x - v_{n_k} \rangle \ \forall x \in C.
$$

Consequently

$$
\frac{1}{\tau_{n_k}} \langle w_{n_k} - v_{n_k}, x - v_{n_k} \rangle + \langle F w_{n_k}, v_{n_k} - w_{n_k} \rangle \le \langle F w_{n_k}, x - w_{n_k} \rangle \ \forall x \in C. \tag{34}
$$

Being weakly convergent, $\{w_{n_k}\}\$ is bounded. Then, by the Lipschitz continuity of *F*, *Evanta Letters and* $\{Fw_{n_k}\}$ *is bounded. As* $\|w_{n_k} - v_{n_k}\| \to 0$, $\{v_{n_k}\}$ is also bounded and $\tau_{n_k} \ge \min\{\tau_1, \frac{\mu}{L}\}.$ Passing [\(34](#page-13-0)) to limit as $k \to \infty$, we get

$$
\liminf_{k \to \infty} \langle Fw_{n_k}, x - w_{n_k} \rangle \ge 0 \quad \forall x \in C. \tag{35}
$$

Moreover, we have

$$
\langle Fv_{n_k}, x - v_{n_k} \rangle = \langle Fv_{n_k} - Fw_{n_k}, x - w_{n_k} \rangle + \langle Fw_{n_k}, x - w_{n_k} \rangle + \langle Fv_{n_k}, w_{n_k} - v_{n_k} \rangle. \tag{36}
$$

Since $\lim_{k\to\infty} ||w_{n_k} - v_{n_k}|| = 0$ and *F* is *L*-Lipschitz continuous on *H*, we get

$$
\lim_{k \to \infty} ||Fw_{n_k} - Fv_{n_k}|| = 0
$$

which, together with (35) (35) and (36) (36) implies that

$$
\liminf_{k \to \infty} \langle Fv_{n_k}, x - v_{n_k} \rangle \ge 0.
$$

Next, we choose a sequence $\{\epsilon_k\}$ of positive numbers decreasing and tending to 0. For each k , we denote by N_k the smallest positive integer such that

$$
\langle Fv_{n_j}, x - v_{n_j} \rangle + \epsilon_k \ge 0 \quad \forall j \ge N_k. \tag{37}
$$

Since $\{\epsilon_k\}$ is decreasing, it is easy to see that the sequence $\{N_k\}$ is increasing. Fur– thermore, for each *k*, since $\{v_{N_k}\}\subset C$ we can suppose $Fv_{N_k}\neq 0$ (otherwise, v_{N_k} is a solution) and, setting

$$
t_{N_k} = \frac{F v_{N_k}}{\|F v_{N_k}\|^2},
$$

we have $\langle Fv_{N_k}, t_{N_k} \rangle = 1$ for each *k*. Now, we can deduce from [\(37](#page-13-3)) that for each *k*

$$
\langle Fv_{N_k}, x + \epsilon_k t_{N_k} - v_{N_k} \rangle \ge 0.
$$

 $\circled{2}$ Springer

From *F* is pseudomonotone on *H*, we get

$$
\langle F(x + \epsilon_k t_{N_k}), x + \epsilon_k t_{N_k} - \nu_{N_k} \rangle \ge 0.
$$

This implies that

$$
\langle Fx, x - v_{N_k} \rangle \ge \langle Fx - F(x + \epsilon_k t_{N_k}), x + \epsilon_k t_{N_k} - v_{N_k} \rangle - \epsilon_k \langle Fx, t_{N_k} \rangle. \tag{38}
$$

Now, we show that $\lim_{k\to\infty} \epsilon_k t_{N_k} = 0$. Indeed, since $w_{n_k} \to z$ and lim_{k→∞} $||w_{n_k} - v_{n_k}|| = 0$, we obtain $v_{N_k} \to z$ as $k \to \infty$. By $\{v_n\} \subset C$, we obtain z^* ∈ *C*. Since *F* satisfies Condition [\(19](#page-8-6)), we have

$$
0 < \|F\mathbf{z}^*\| \le \liminf_{k \to \infty} \|F\mathbf{v}_{n_k}\|.
$$

Since $\{v_{N_k}\}\subset \{v_{n_k}\}\$ and $\epsilon_k \to 0$ as $k \to \infty$, we obtain

$$
0 \le \limsup_{k \to \infty} ||\epsilon_k t_{N_k}|| = \limsup_{k \to \infty} \left(\frac{\epsilon_k}{||Fv_{n_k}||}\right) \le \frac{\limsup_{k \to \infty} \epsilon_k}{\liminf_{k \to \infty} ||Fv_{n_k}||} = 0,
$$

which implies that $\lim_{k\to\infty} \epsilon_k t_{N_k} = 0$.

Now, letting $k \to \infty$, then the right-hand side of [\(38](#page-14-0)) tends to zero by *F* is uni– formly continuous, $\{w_{N_k}\}\$, $\{t_{N_k}\}$ are bounded and $\lim_{k\to\infty} \epsilon_k t_{N_k} = 0$. Thus, we get

$$
\liminf_{k \to \infty} \langle Fx, x - v_{N_k} \rangle \ge 0.
$$

Hence, for all $x \in C$ we have

$$
\langle Fx, x - z^* \rangle = \lim_{k \to \infty} \langle Fx, x - v_{N_k} \rangle = \liminf_{k \to \infty} \langle Fx, x - v_{N_k} \rangle \ge 0.
$$

By Lemma 2.3, we get

$$
z^* \in Sol(C, F).
$$

Since [\(33](#page-12-4)) and the definition of $z = P_{Sol(C,F)}(0)$, we have

$$
\limsup_{k \to \infty} \langle -z, u_{n_k} - z \rangle = \langle -z, z^* - z \rangle \le 0. \tag{39}
$$

Combining (32) (32) and (39) (39) , we have

$$
\limsup_{k \to \infty} \langle -z, u_{n_k+1} - z \rangle \le \limsup_{k \to \infty} \langle -z, u_{n_k} - z \rangle
$$

=\langle -z, z^* - z \rangle (40)
 $\le 0.$

Hence, by ([40\)](#page-14-2), $\lim_{n\to\infty} \frac{\theta_n}{\alpha}$ $\frac{\nu_n}{\gamma_n}$ ||*u_n* − *u_{n−1}*|| = 0, lim_{*k*→∞} ||*u_{n_k*+1} − *u_{n_k*}|| = 0, Claim 5 and Lemma 2.4, we have $\lim_{n\to\infty} ||u_n - z|| = 0$. That is the desired result.

4 Convergence rate

In this section, we provide a result on the convergence rate of the iterative sequence generated by Algorithm 1 with $\gamma_n = 0$ and the mapping *F* is *L*-Lipschitz continuous on H and κ -strongly pseudomonotone on C . The algorithm is of the form:

Initialization: Given $\tau_1 > 0, \mu \in (0,1), \gamma \in (0,2), \theta \in [0,1), \beta \in (0,1)$. Let $u_0, u_1 \in H$ be arbitrary and $\{\alpha_n\}$ be a nonnegative real numbers sequence such that $\sum_{n=1}^{\infty} \alpha_n < +\infty$.

Iterative Steps: Given the current iterate u_n , calculate u_{n+1} as follows:

Step 1. Compute $w_n = u_n + \theta(u_n - u_{n-1})$

$$
v_n = P_C(w_n - \tau_n F w_n).
$$

If $w_n = v_n$ or $Fv_n = 0$ then stop and v_n is a solution of $Sol(C, F)$. Otherwise

Step 2. Compute

$$
z_n=P_{T_n}(w_n-\gamma\tau_n\eta_nFv_n),
$$

where

$$
T_n = \{x \in H \mid \langle w_n - \tau_n F w_n - v_n, x - v_n \rangle \le 0\},
$$

$$
\eta_n := \begin{cases} \frac{\langle w_n - v_n, d_n \rangle}{\|d_n\|^2} & \text{if } d_n \ne 0, \\ 0 & \text{if } d_n = 0, \end{cases}
$$

and

$$
d_n := w_n - v_n - \tau_n (Fw_n - Fv_n).
$$

 $u_{n+1} = (1 - \beta)w_n + \beta z_n,$

Step 3. Compute

update

$$
\mathbf{r}_{n+1} := \begin{cases} \min \left\{ \mu \frac{\|w_n - v_n\|}{\|F w_n - F v_n\|}, \tau_n + \alpha_n \right\} & \text{if } F w_n \neq F v_n \\ \tau_n + \alpha_n & \text{otherwise.} \end{cases}
$$

Set $n := n + 1$ and go to Step 1.

Using the technique in [[35\]](#page-30-19) we obtain the following result.

Theorem 4.2 *Assume that F is L-Lipschitz continuous on H and x-strongly pseudomonotone on C. Let* $\delta \in (0,1)$ *be arbitrary and* θ *be such that*

$$
0 \le \theta \le \min\left\{\frac{\xi}{2+\xi}, \frac{\sqrt{(1+\delta\xi)^2+4\delta\xi}-(1+\delta\xi)}{2}, (1-\delta)\left(1-\frac{(1-\gamma)\gamma(1-\mu)^2}{2(1+\mu)^2}\right)\right\},\tag{41}
$$

where $\xi := \frac{1 - \beta}{\beta}$. *Then the sequence* $\{u_n\}$ generated by Algorithm 2 converges *strongly to the unique solution x*[∗] *of* ([1\)](#page-1-0) *with an R*-*linear rate*.

Proof First, we will shall that, there exists $\rho, \xi \in (0, 1)$ such that

$$
||u_{n+1} - x^*||^2 \le \rho ||w_n - x^*||^2 - \xi ||u_{n+1} - w_n||^2.
$$

Indeed, under assumptions made, it was proved that [\(1](#page-1-0)) has a unique solution [[20\]](#page-30-20). From the *k*-strong pseudomonotonicity of *F*, we have $\langle Fv_n, v_n - x^* \rangle \ge \kappa ||v_n - x^*||^2$. This implies that

$$
\langle Fv_n, u_{n+1} - x^* \rangle = \langle Fv_n, u_{n+1} - v_n \rangle + \langle Fv_n, v_n - x^* \rangle \ge \langle Fv_n, u_{n+1} - v_n \rangle
$$

$$
\ge \kappa ||v_n - x^*||^2 + \langle Fv_n, u_{n+1} - v_n \rangle.
$$

Therefore

$$
-2\gamma \eta_n \tau_n \langle Fv_n, u_{n+1} - x^* \rangle \le -2\gamma \eta_n \tau_n \kappa \|v_n - x^*\|^2 - 2\gamma \eta_n \tau_n \langle Fv_n, u_{n+1} - v_n \rangle. \tag{42}
$$

Substituting (42) (42) into (9) (9) , we get

$$
||z_n - x^*||^2 \le ||w_n - x^*||^2 - ||z_n - w_n||^2 - 2\gamma \eta_n \tau_n \kappa ||v_n - x^*||^2 - 2\gamma \eta_n \tau_n \langle Fv_n, z_n - v_n \rangle. \tag{43}
$$

Again, substituting (16) (16) into (43) (43) , we obtain

$$
||z_n - x^*||^2 \le ||w_n - x^*||^2 - ||w_n - z_n - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \eta_n^2 ||d_n||^2 - 2\gamma \eta_n \tau_n \kappa ||v_n - x^*||^2.
$$
\n
$$
(44)
$$

Combining (26) (26) and (44) (44) , we get

$$
||z_n - x^*||^2 \le ||w_n - x^*||^2 - ||w_n - z_n - \gamma \eta_n d_n||^2 - (2 - \gamma)\gamma \frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2} ||w_n - v_n||^2
$$

- 2 $\gamma \eta_n \tau_n \kappa ||v_n - x^*||^2 \quad \forall n \ge n_0.$ (45)

It follows from ([45\)](#page-16-3) that

$$
||z_n - x^*||^2 \le ||w_n - x^*||^2 - (2 - \gamma)\gamma \frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2} ||w_n - v_n||^2 - 2\gamma \eta_n \tau_n \kappa ||v_n - x^*||^2 \quad \forall n \ge n_0.
$$
\n
$$
(46)
$$

On the other hand, we have

$$
||u_{n+1} - x^*||^2 = ||(1 - \beta)w_n - \beta z_n - x^*||^2
$$

= $(1 - \beta)||w_n - x^*||^2 + \beta||z_n - x^*||^2 - \beta(1 - \beta)||w_n - z_n||^2$.

Since the definition of $\{u_n\}$ we deduce $w_n - z_n = \frac{1}{\beta}(u_{n+1} - w_n)$. Thus,

$$
||u_{n+1} - x^*||^2 = (1 - \beta)||w_n - x^*||^2 + \beta||z_n - x^*||^2 - \frac{1}{\beta}(1 - \beta)||u_{n+1} - w_n||^2.
$$
\n(47)

Substituting (46) (46) into (47) (47) , we get

$$
||u_{n+1} - x^*||^2 = ||w_n - x^*||^2 - \beta(2 - \gamma)\gamma \frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2} ||w_n - v_n||^2 - 2\beta\gamma\eta_n\tau_n\kappa||v_n - x^*||^2
$$

$$
- \frac{1}{\beta}(1 - \beta)||u_{n+1} - w_n||^2 \quad \forall n \ge n_0.
$$
(48)

Substituting (25) (25) into (48) (48) , we deduce

$$
||u_{n+1} - x^*||^2 = ||w_n - x^*||^2 - \beta(2 - \gamma)\gamma \frac{\left(1 - \frac{\mu \tau_n}{\tau_{n+1}}\right)^2}{\left(1 + \frac{\mu \tau_n}{\tau_{n+1}}\right)^2} ||w_n - v_n||^2 - 2\beta\gamma \frac{1 - \mu \frac{\tau_n}{\tau_{n+1}}}{(1 + \mu \frac{\tau_n}{\tau_{n+1}})^2} \tau_n \kappa ||v_n - x^*||^2
$$

$$
- \frac{1}{\beta}(1 - \beta) ||u_{n+1} - w_n||^2 \quad \forall n \ge n_0.
$$
(49)

Setting

$$
\beta^* := \min\left\{\frac{(2-\gamma)\gamma(1-\mu)^2}{2(1+\mu)^2}, \beta\gamma\frac{1-\mu}{(1+\mu)^2}\kappa\tau\right\}
$$
 where $\tau = \lim_{n\to\infty}\tau_n$,

we have

$$
1 > \lim_{n \to \infty} \frac{(2 - \gamma)\gamma \left(1 - \mu \frac{\lambda_n}{\lambda_{n+1}}\right)^2}{\left(1 + \mu \frac{\lambda_n}{\lambda_{n+1}}\right)^2} = \frac{(2 - \gamma)\gamma (1 - \mu)^2}{(1 + \mu)^2} \ge 2\beta^*.
$$

and

$$
\lim_{n\to\infty}\beta\gamma\frac{1-\mu\frac{\tau_n}{\tau_{n+1}}}{(1+\mu\frac{\tau_n}{\tau_{n+1}})^2}\tau_n\kappa=\beta\gamma\frac{1-\mu}{(1+\mu)^2}\kappa\tau\geq\beta^*.
$$

² Springer

Using ([49\)](#page-17-2), hence there exists $n_1 > n_0$ such that for all $n \ge n_1$

$$
||u_{n+1} - x^*||^2 \le ||w_n - x^*||^2 - \xi ||u_{n+1} - w_n||^2 - 2\beta^*||w_n - v_n||^2 - 2\beta^*||v_n - x^*||^2
$$

\n
$$
\le (1 - \beta^*)||w_n - x^*||^2 - \xi ||u_{n+1} - w_n||^2
$$

\n
$$
= \rho ||w_n - x^*||^2 - \xi ||u_{n+1} - w_n||^2,
$$

\n(50)

where $\rho := 1 - \beta^* \in (0, 1)$ and $\xi := \frac{1 - \beta}{\beta}$.

Next, we prove that the sequence $\{u_n\}$ converges strongly to x^* with an *R* linear rate. Indeed, we have

$$
||w_n - x^*||^2 = ||(1 + \theta)(u_n - x^*) - \theta(u_{n-1} - x^*)||^2
$$

= $(1 + \theta)||u_n - x^*||^2 - \theta||u_{n-1} - x^*||^2 + \theta(1 + \theta)||u_n - u_{n-1}||^2$

and

$$
||u_{n+1} - w_n||^2 = ||u_{n+1} - u_n - \theta(u_n - u_{n-1})||^2
$$

\n
$$
= ||u_{n+1} - u_n||^2 + \theta^2 ||u_n - u_{n-1}||^2 - 2\theta \langle u_{n+1} - u_n, u_n - u_{n-1} \rangle
$$

\n
$$
\ge ||u_{n+1} - u_n||^2 + \theta^2 ||u_n - u_{n-1}||^2 - 2\theta ||u_{n+1} - u_n|| ||u_n - u_{n-1}||
$$

\n
$$
\ge ||u_{n+1} - u_n||^2 + \theta^2 ||u_n - u_{n-1}||^2 - \theta ||u_{n+1} - u_n||^2 - \theta ||u_n - u_{n-1}||^2
$$

\n
$$
\ge (1 - \theta) ||u_{n+1} - u_n||^2 - \theta (1 - \theta) ||u_n - u_{n-1}||^2.
$$

Combining these inequalities with ([50\)](#page-18-0) we obtain for all $n \ge n_1$ that

$$
||u_{n+1} - x^*||^2 \le \rho(1+\theta) ||u_n - x^*||^2 - \rho\theta ||u_{n-1} - x^*||^2 + \rho\theta(1+\theta) ||u_n - u_{n-1}||^2
$$

$$
- \xi(1-\theta) ||u_{n+1} - u_n||^2 + \xi\theta(1-\theta) ||u_n - u_{n-1}||^2,
$$

or equivalently

$$
||u_{n+1} - x^*||^2 - \rho\theta ||u_n - x^*||^2 + \xi(1 - \theta)||u_{n+1} - u_n||^2
$$

\n
$$
\leq \rho [||u_n - x^*||^2 - \theta ||u_{n-1} - x^*||^2 + \xi(1 - \theta)||u_n - u_{n-1}||^2]
$$

\n
$$
- (\rho\xi(1 - \theta) - \rho\theta(1 + \theta) - \xi\theta(1 - \theta))||u_n - u_{n-1}||^2.
$$

Setting

$$
a_n := \|u_n - x^*\|^2 - \theta \|u_{n-1} - x^*\|^2 + \xi(1 - \theta) \|u_n - u_{n-1}\|^2,
$$

since $\rho \in (0, 1)$ we can write

$$
a_{n+1} \le ||u_{n+1} - x^*||^2 - \rho\theta ||u_n - x^*||^2 + \xi(1 - \theta) ||u_{n+1} - u_n||^2
$$

\n
$$
\le \rho a_n - (\rho\xi(1 - \theta) - \rho\theta(1 + \theta) - \xi\theta(1 - \theta)) ||u_n - u_{n-1}||^2.
$$

Note that from (41) (41) we have

$$
\theta \leq (1 - \delta) \left(1 - \frac{(1 - \gamma)\gamma(1 - \mu)}{2(1 + \mu)} \right)
$$

$$
\leq (1 - \delta) \left(1 - \min \left\{ \frac{(2 - \gamma)\gamma(1 - \mu)^2}{2(1 + \mu)^2}, \beta \gamma \frac{1 - \mu}{(1 + \mu)^2} \kappa \tau \right\} \right) = (1 - \delta)\rho,
$$

which implies

$$
\xi \theta (1 - \theta) \le (1 - \delta) \rho \xi (1 - \theta). \tag{51}
$$

Since

$$
\theta \le \frac{\sqrt{(1+\delta\xi)^2 + 4\delta\xi} - (1+\delta\xi)}{2}
$$

it holds

$$
\theta^2 + (1 + \delta \xi)\theta - \delta \xi \le 0,
$$

or equivalently

$$
\theta(1+\theta) \le \delta \xi(1-\theta).
$$

Hence

$$
\rho \theta (1 + \theta) \le \delta \rho \xi (1 - \theta). \tag{52}
$$

From (51) (51) and (52) (52) we deduce

$$
\rho \xi(1-\theta) - \rho \theta(1+\theta) - \xi \theta(1-\theta) \ge 0.
$$

Moreover, since $\theta \le \frac{\xi}{2+\xi}$, we have $\theta \le \frac{\xi(1-\theta)}{2}$, which implies

$$
a_n = (1 - \xi(1 - \theta)) \|u_n - x^*\|^2 + \xi(1 - \theta) (\|u_n - x^*\|^2 + \|u_n - u_{n-1}\|^2) - \theta \|u_{n-1} - x^*\|^2
$$

\n
$$
\geq (1 - \xi(1 - \theta)) \|u_n - x^*\|^2 + \frac{\xi(1 - \theta)}{2} \|u_{n-1} - x^*\|^2 - \theta \|u_{n-1} - x^*\|^2
$$

\n
$$
\geq (1 - \xi(1 - \theta)) \|u_n - x^*\|^2 \geq 0.
$$

Hence for all $n \geq n_1$ it holds

$$
a_{n+1} \le \rho a_n \le \dots \le \rho^{n-n_1+1} a_{n_1}.
$$

This follows that

$$
||u_n - x^*||^2 \le \frac{a_{n_1}}{\rho^{n_1}(1 - \xi(1 - \theta))} \rho^n,
$$

which implies that $\{u_n\}$ converges *R*-linearly to x^* .

5 Numerical experiments

In this section, we frst present computational experiments to illustrate our newly proposed algorithm for solving variational inequality arising in optimal control problem.

Let *T* be a positive number. Denote by $L_2([0,T], \mathbb{R}^m)$ the Hilbert space of square integrable, measurable vector functions $u : [0, T] \to \mathbb{R}^m$ with inner product $\langle u, v \rangle = \int_0^T \langle u(t), v(t) \rangle dt$, and norm $||u||_2 = \sqrt{\langle u, u \rangle}$. We consider the following optimal control problem:

$$
u^*(t) = \operatorname{argmin}\{z(u) : u \in U\},\
$$

on the interval [0, *T*] and assume that such a control exists. Here *U* is the set of admissible controls, which has the form of an *m*-dimensional box and consists of piecewise continuous function:

$$
U = \left\{ u(t) \in L_2([0, T], \mathbb{R}^m) : u_i(t) \in [u_i^-, u_i^+], i = 1, 2, \dots, m \right\}.
$$

Specially, the control can be bang-bang (piecewise constant function). The terminal objective has the form

$$
z(u) = \phi(x(T)),
$$

where ϕ is a convex and differentiable function, defined on the attainability set.

Suppose that the trajectory $x(t) \in L_2([0, T])$ satisfies constraints in the form of a system of linear diferential equation:

$$
\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(0) = x_0, \quad t \in [0, T],
$$

where $A(t) \in \mathbb{R}^{n \times n}$, $B(t) \in \mathbb{R}^{n \times m}$ are given continuous matrices for every $t \in [0, T]$. By the Pontryagin Maximum Principle there exists a function $p^* \in L_2([0, T])$ such that the triple (x^*, p^*, u^*) solves for a.e. $t \in [0, T]$ the system

$$
\begin{cases}\n\dot{x}^*(t) = A(t)x^*(t) + B(t)u^*(t) \\
x^*(0) = x_0,\n\end{cases}
$$
\n
$$
\begin{cases}\n\dot{p}^*(t) = -A(t)^\top p^*(t) \\
p^*(T) = \nabla \phi(x(T)),\n\end{cases}
$$
\n
$$
0 \in B(t)^\top p^*(t) + N_U(u^*(t)),
$$

where $N_U(u)$ is the normal cone to *U* at *u*. Denoting $Gu(t) := B(t)^\top p(t)$, it is known that Gu is the gradient of the objective cost function z (see [\[38](#page-31-1)] and the references contained therein). We can write the inclusion problem (54) (54) as a variational inequality problem: find $u \in U$ such that

$$
\langle Gu, v - u \rangle \ge 0, \ \forall v \in U.
$$

Discretizing the continuous functions and choosing a natural number *N* with the *mesh size* $h := T/N$, we identify any discretized control $u^N := (u_0, u_1, \dots, u_{N-1})$ with its piecewise constant extension:

$$
u^N(t) = u_i \text{ for } t \in [t_i, t_{i+1}), \ i = 0, 1, \dots, N.
$$

Moreover, we identity any discretized state $x^N := (x_0, x_1, \dots, x_N)$ with its piecewise linear interpolation

$$
x^{N}(t) = x_{i} + \frac{t - t_{i}}{h} (x_{i+1} - x_{i}), \text{ for } t \in [t_{i}, t_{i+1}), i = 0, 1, ..., N - 1.
$$

Similarly we get the co-state variable $p^N := (p_0, p_1, \ldots, p_N)$ (see [\[38](#page-31-1)] for more details).

Next, we consider three examples in which the terminal function is not linear.

In the numerical results listed in the following tables, 'Iter.' denotes the number of iterations and 'CPU in s' denotes the execution time in seconds. Besides, '–' means that the algorithm can't reach the error conditions because the inner loop of the algorithm reaches infnite loop after some steps.

In the following three examples, we take $N = 100$. The initial control $u_0(t)$ is chosen randomly in [−1, 1], and the termination condition is controlled by the relative solution error, defned by (Table [1\)](#page-22-0)

$$
RSE = \frac{\|u_n - u^*\|}{\|u_n\|}
$$

at the current u_n .

Example 1 (See [\[39](#page-31-2), Rocket Car])

minimize
$$
\frac{1}{2} ((x_1(5))^2 + (x_2(5))^2)
$$

\nsubject to $\dot{x}_1(t) = x_2(t)$,
\n $\dot{x}_2(t) = u(t), \forall t \in [0, 5]$,
\n $x_1(0) = 6, x_2(0) = 1$,
\n $u(t) \in [-1, 1]$.

The corresponding exact optimal control is

$$
u^*(t) = \begin{cases} 1 & \text{if } t \in (\tau, 5] \\ -1 & \text{if } t \in (0, \tau], \end{cases}
$$

where $\tau = 3.5174292$.

In Fig. [1](#page-22-1) and Fig. [2,](#page-22-2) we take RSE \leq 0.3. Figure [1](#page-22-1) displays the approximate optimal control and the corresponding trajectories. Other parameters are selected as follows:

Algorithm 1: $\tau_1 = 0.5, \mu = 0.7, \gamma = 1.9, \theta = 0.5, \gamma_n = \frac{1}{3000(n+1)}, \epsilon_n = \frac{1}{3000(n+1)^{1.1}}$ and $\alpha_n = \frac{1}{n^2}$;

Fig. 1 Random initial control (green) and optimal control (red) on the left and optimal trajectories on the right computed by Alg. 1 for Example 1

Algorithm 3.3 in [[31](#page-30-21)]: $\sigma = 0.1$, $\gamma = 0.6$ and $\alpha_n = \frac{1}{3000(n+1)}$; Algorithm 2 in [\[32](#page-30-22)]: $\lambda_0 = 0.6$, $\mu = 0.9$ and $\alpha_n = \frac{1000(n+1)}{3000(n+1)}$.

The corresponding results reported in Fig. [2](#page-22-2) and Table [1](#page-22-0) illustrate that Algorithm 1 behaves better than Algorithm 3.3 in [[31](#page-30-21)] and Algorithm 2 in [\[32](#page-30-22)] in term of time and steps.

Table 1 Numerical results for Algorithm 1, Algorithm 3.3 in [[31\]](#page-30-21) and Algorithm 2 in [\[32](#page-30-22)] in Example 1

RSE	Iter.			CPU in s		
	Alg. 1	Alg. 3.3 in [31]	Alg. $2 \text{ in } [32]$	Alg. 3.1	Alg. 3.3 in [31]	Alg. 2 in [32]
0.8		33	19	0.0030	0.0413	0.0069
0.5	14		29	0.0055		0.0104
0.3	35	-	132	0.0240	-	0.0465

Example 2 (See [\[40](#page-31-3), Example 6.3])

minimize
$$
-x_1(2) + (x_2(2))^2
$$

\nsubject to $\dot{x}_1(t) = x_2(t)$,
\n $\dot{x}_2(t) = u(t), \forall t \in [0, 2]$,
\n $x_1(0) = 0, x_2(0) = 0$,
\n $u(t) \in [-1, 1]$.

The corresponding exact optimal control is

$$
u^* = \begin{cases} 1 & \text{if } t \in [0, 6/5) \\ -1 & \text{if } t \in (6/5, 2], \end{cases}
$$

In Fig. [3](#page-23-0) and Fig. [4,](#page-24-0) we take RSE $\leq 10^{-5}$. Figure [3](#page-23-0) displays the approximate optimal control and the corresponding trajectories. Other parameters are selected as follows:

Algorithm 1: $\tau_1 = 0.2$, $\mu = 0.8$, $\gamma = 1.9$, $\theta = 0.5$, $\gamma_n = \frac{1}{10000(n+1)}$, $\epsilon_n = \frac{1}{10000(n+1)^{1.1}}$ and $\alpha_n = \frac{1}{n^2}$;

Algorithm 3.3 in [[31](#page-30-21)]: $\sigma = 0.1$, $\gamma = 0.3$ and $\alpha_n = \frac{1}{10000(n+1)}$; Algorithm 2 in [\[32](#page-30-22)]: $\lambda_0 = 0.3$, $\mu = 0.9$ and $\alpha_n = \frac{1}{10000(n+1)}$.

In Fig. [4](#page-24-0) and Table [2](#page-24-1), we can obtain that the performance of our Algorithm 1 in time and steps is better than Algorithm 2 in [[32\]](#page-30-22) and Algorithm 3.3 in [[31](#page-30-21)].

Example 3 (control of a harmonic oscillator)

minimize
$$
x_2(3\pi)
$$

\nsubject to $x_1(t) = x_2(t)$,
\n $\dot{x}_2(t) = -x_1(t) + u(t), \forall t \in [0, 3\pi]$,
\n $x(0) = 0$,
\n $u(t) \in [-1, 1]$.

Fig. 3 Random initial control (green) and optimal control (red) on the left and optimal trajectories on the right computed by Algorithm 1 for Example 2

Table 2 Numerical results for Algorithm 1, Algorithm 3.3 in [[31\]](#page-30-21) and Algorithm 2 in [\[32](#page-30-22)] in Example 2

The exact optimal control in this problem is known:

$$
u^* = \begin{cases} 1 & \text{if } t \in [0, \pi/2) \cup (3\pi/2, 5\pi/2) \\ -1 & \text{if } t \in (\pi/2, 3\pi/2) \cup (5\pi/2, 3\pi]. \end{cases}
$$

In Fig. [5](#page-25-0) and Fig. [6](#page-25-1), we take RSE \leq 0.1. Figure [5](#page-25-0) displays the approximate optimal control and the corresponding trajectories. Other parameters are selected as follows:

Algorithm 1: $\tau_1 = 1.9$, $\mu = 0.8$, $\gamma = 1.2$, $\theta = 0.5$, $\gamma_n = \frac{1}{100(n+1)}$, $\epsilon_n = \frac{1}{100(n+1)^{1.1}}$ and $\alpha_n = \frac{1}{n^2};$

Algorithm 3.3 in [[31](#page-30-21)]: $\sigma = 0.0001$, $\gamma = 0.1$ and $\alpha_n = \frac{1}{100(n+1)}$;

Algorithm 2 in [\[32](#page-30-22)]: $\lambda_0 = 1.9$, $\mu = 0.9$ and $\alpha_n = \frac{1}{100(n+1)}$.

As shown in Fig. [6](#page-25-1) and Table [3](#page-25-2), Algorithm 1 performs better than Algorithm 3.3 in $[31]$ $[31]$ $[31]$ and Algorithm 2 in $[32]$ $[32]$.

Next we provide several numerical examples to demonstrate the efficiency of the proposed algorithm compared to some known algorithms.

Fig. 5 Random initial control (green) and optimal control (red) on the left and optimal trajectories on the right computed by Algorithm 1 for Example 3

Table 3 Numerical results for Algorithm 1, Algorithm 3.3 in [[31\]](#page-30-21) and Algorithm 2 in [\[32](#page-30-22)] in Example 3

Example 4 In the example, we study an important Nash-Cournot oligopolistic mar ket equilibrium model, which was proposed originally by Murphy et. al. $[25]$ $[25]$ as a convex optimization problem. Later, Harker reformulated it as a monotone variational inequality in [\[17](#page-30-24)]. We provide only a short description of the problem, for more details we refer to [\[13](#page-30-3), [17,](#page-30-24) [25\]](#page-30-23). There are *N* frms, each of them supplies a homogeneous product in a non-cooperative fashion. Let $q_i \geq 0$ be the *i*th firm's supply at cost $f_i(q_i)$ and $p(Q)$ be the inverse demand curve, where $Q \ge 0$ is the total supply in the market, i.e., $Q = \sum_{i=1}^{N} q_i$. A Nash equilibrium solution for the market defined above is a set of nonnegative output levels $(q_1^*, q_2^*, ..., q_N^*)$ such that q_i^* is an optimal solution to the following problem for all $i = 1, 2, ..., N$:

$$
\max_{q_i \ge 0} q_i p(q_i + Q_i^*) - f_i(q_i) \tag{53}
$$

where

$$
Q_i^* = \sum_{j=1, j\neq i}^N q_j^*.
$$

A variational inequality equivalent to (53) (53) is (see [[17\]](#page-30-24))

find $(q_1^*, q_2^*, ..., q_N^*) \in \mathbb{R}_+^N$ such that $\langle F(q^*), q - q^* \rangle \ge 0 \quad \forall q \in \mathbb{R}_+^N$, (54)

where $F(q^*)=(F_1(q^*), F_2(q^*), ..., F_N(q^*))$ and

$$
F_i(q^*) = f'_i(q_i^*) - p\left(\sum_{j=1}^N q_j^*\right) - q_i^* p'\left(\sum_{j=1}^N q_j^*\right).
$$

As in the classical example of the Nash-Cournot equilibrium [\[17](#page-30-24), [25\]](#page-30-23), we consider an oligopoly with $N = 5$ firms, each with the inverse demand function p and the cost function f_i take the form

$$
p(Q) = 5000^{1/1.1}Q^{-1/1.1}
$$
 and $f_i(q_i) = c_i q_i + \frac{\beta_i}{\beta_i + 1}L_i^{\frac{-1}{\beta_i}}q_i^{\frac{\beta_i+1}{\beta_i}}$

and the parameters c_i , L_i , β_i as in [[25\]](#page-30-23), see Table [4](#page-26-2).

The process is started with the initial $x_0 = (10, 10, 10, 10)^T$ and $x_1 = 0.9 * x_0$ and stopping conditions is Residual := $||w_n - v_n|| \le 10^{-9}$ or the number of iterations ≥ 200 for all algorithms. Other parameters are selected as follows:

Algorithm 1:
$$
\tau_1 = 1.8
$$
, $\mu = 0.7$, $\gamma = 1.99$, $\theta = 0.5$, $\gamma_n = \frac{1}{10000000*(n+1)}$ and $\alpha_n = \frac{1}{n^2}$

Algorithm 1 in [[29\]](#page-30-25): $v_0 = 1$, $\theta = 0.9$ and $\rho_n = \rho = 0.4$.

Algorithm 2 in [\[32](#page-30-22)]: $\lambda_0 = 1$, $\mu = 0.7$ and $\alpha_n = \frac{1}{10000000*(n+1)}$. The numerical results are described in Fig. [7](#page-27-0).

Example 5 Consider the following fractional programming problem:

$$
\min f(x) = \frac{x^T Q x + a^T x + a_0}{b^T x + b_0}
$$

subject to $x \in X := \{x \in \mathbb{R}^m : b^T x + b_0 > 0\}$,

where *Q* is an $m \times m$ symmetric matrix, $a, b \in \mathbb{R}^m$, and $a_0, b_0 \in \mathbb{R}$. It is well known that *f* is pseudo-convex on *X* when *Q* is positive-semidefnite. We consider the following cases:

Case 1:

$$
Q = \begin{pmatrix} 5 & -1 & 2 & 0 \\ -1 & 5 & -1 & 3 \\ 2 & -1 & 3 & 0 \\ 0 & 3 & 0 & 5 \end{pmatrix}, a = \begin{pmatrix} 1 \\ -2 \\ -2 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}, a_0 = -2, b_0 = 4.
$$

We minimize *f* over *C* ∶ = { $x \in \mathbb{R}^4$ ∶ 1 ≤ x_i ≤ 10, *i* = 1, ..., 4} ⊂ *X*. It is easy to verify that *Q* is symmetric and positive definite in \mathbb{R}^4 and consequently *f* is pseudo-convex on *X*.

The process is started with the initial $x_0 = (20, -20, 20, -20)^T$ and $x_1 = 0.9 * x_0$ and stopping conditions is Residual := $||u_n - q_n|| \le 10^{-9}$ or the number of iteracions > 200 for all algorithms. Other presentations are selected as follows: tions ≥ 200 for all algorithms. Other parameters are selected as follows:

Algorithm 1: $\tau_1 = 0.6$, $\mu = 0.6$, $\gamma = 1.5$, $\theta = 0.5$, $\alpha_n = \frac{1}{n^2}$ and $\gamma_n = \frac{1}{C*(n+1)}$ with $C = 10^{7}$.

Algorithm 1 in [\[29](#page-30-25)]: $v_0 = 1, \theta = 0.9, \mu = 0.6$ and $\rho_n = \rho = 0.4$.

Fig. 7 Comparison of Alg. 1 with Alg. 1 in $[29]$ $[29]$ and Alg. 2 in $[32]$ $[32]$ for Example 4. Execution times of the Algorithms respectively are 0.019, 0.048, 0.07 (seconds)

Algorithm 2 in [\[32\]](#page-30-22): $\lambda_0 = 0.6$, $\mu = 0.6$ and $\alpha_n = \frac{1}{C*(n+1)}$. The numerical results are described in Fig. [8.](#page-28-0)

Case 2: In the second experiment, to make the problem even more challeng– ing. Let matrix $A: \mathbb{R}^{m \times m} \to \mathbb{R}^{m \times m}$, vectors $c, d, y_0 \in \mathbb{R}^m$ and c_0, d_0 are generated from a normal distribution with mean zero and unit variance. We put $e = (1, 1, ..., 1)^T \in \mathbb{R}^m$, $Q = A^T A + I$, $a := e + c$, $b := e + d$, $a_0 = 1 + c_0$, $b_0 = 1 + d_0$ We minimize *f* over $C := \{x \in \mathbb{R}^m : 1 \le x_i \le 10, i = 1, ..., m\} \subset X$. Because Matrix *Q* is symmetric and positive defnite in ℝ*^m* and consequently *f* is pseudo-convex on *X*. The process is started with the initial $x_0 := m * y_0$ and $x_1 = 0.9 * x_0$, stopping conditions and parameters as Case 1. The numerical results are described in Fig. [9.](#page-28-1)

The corresponding results reported in Figs. [7](#page-27-0), [8,](#page-28-0) and [9](#page-28-1) show that Alg. 1 behaves better than Algorithm 1 in [[29\]](#page-30-25) and Algorithm 2 in [[32\]](#page-30-22).

Fig. 8 Comparison of Alg. 1 with Alg. 1 in $[29]$ $[29]$ and Alg. 2 in [[32\]](#page-30-22) for Example 5. Execution times of the Algorithms respectively are 0.18, 0.24, 0.8 (seconds)

Fig. 9 Comparison of Alg. 1 with Alg. 1 in [\[29](#page-30-25)] and Alg. 2 in [[32\]](#page-30-22) for Example 5 with $n = 100$. Execution times of the Algorithms respectively are 0.24, 0.37, 1.25 (seconds)

6 Conclusions

In this paper, we introduce some results of the modifed subgradient extragradient method for solving pseudomonotone variational inequalities in real Hilbert spaces. The algorithm only needs to calculate one projection onto the feasible set *C* per iteration and does not require the prior information of the Lipschitz constant of the cost mapping. First, we prove a sufficient condition for a strong convergence of the proposed algorithm under relaxed assumptions. Second, the proposed algorithm is proved to converge strongly with an R-linear convergence rate, under Lipschitz continuity and strong pseudomonotonicity assumptions. Finally, several numerical results are presented to illustrate the efficiency and advantages of the proposed method.

Acknowledgements The authors are thankful to the handling editor and two anonymous reviewers for comments and remarks which substantially improved the quality of the paper. The authors would like to thank Professor Pham Ky Anh for drawing our attention to the subject and for many useful discussions. This research is funded by National Economics University, Hanoi, Vietnam.

Data availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Confict of interest The authors declare no competing interests.

References

- 1. Antipin, A.S.: On a method for convex programs using a symmetrical modifcation of the Lagrange function. Ekonomika i Mat. Metody. **12**, 1164–1173 (1976)
- 2. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1984)
- 3. Boţ, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. Eur. J. Oper. Res. **287**, 49–60 (2020)
- 4. Cai, X., Gu, G., He, B.: On the *O*(1∕*t*) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. **57**, 339–363 (2014)
- 5. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, vol. 2057. Springer, Berlin (2012)
- 6. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational ine‑ qualities in Hilbert space. J. Optim. Theory Appl. **148**, 318–335 (2011)
- 7. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Meth. Softw. **26**, 827–845 (2011)
- 8. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space. Optimization **61**, 1119–1132 (2011)
- 9. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. **75**, 281–295 (1992)
- 10. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modifed extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. **51**, 757–765 (2015)
- 11. Dong, L.Q., Cho, J.Y., Zhong, L.L., Rassias, MTh.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. **70**, 687–704 (2018)
- 12. Dong, Q.L., Gibali, A., Jiang, D.: A modified subgradient extragradient method for solving the variational inequality problem. Numer. Algor. **79**, 927–940 (2018)
- 13. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II. Springer, New York (2003)
- 14. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. **34**, 138–142 (1963)
- 15. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. **17**, 775–811 (2015)
- 16. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
- 17. Harker, P.T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Mathematical Programming **30**, 105–111 (1984)
- 18. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. **35**, 69–76 (1997)
- 19. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. **66**, 37–46 (1990)
- 20. Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. **10**, 1669–1679 (2016)
- 21. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Academic, New York (1980)
- 22. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Mat. Metody. **12**, 747–756 (1976)
- 23. Linh, H.M., Reich, S., Thong, D.V., et al.: Analysis of two variants of an inertial projection algorithm for fnding the minimum-norm solutions of variational inequality and fxed point problems. Numer. Algor. **89**, 1695–1721 (2022)
- 24. Liu, H., Yang, J.: Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput. Optim. Appl. **77**, 491-508 (2020)
- 25. Murphy, F.H., Sherali, H.D., Soyster, A.L.: A mathematical programming approach for determining oligopolistic market equilibrium. Mathematical Programming **24**, 92–106 (1982)
- 26. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
- 27. Reich, S., Thong, D.V., Cholamjiak, P., et al.: Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space. Numer. Algor. **88**, 813–835 (2021)
- 28. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. **75**, 742–750 (2012)
- Shehu, S., Iyiola, O.S., Yao, J.C.: New projection methods with inertial steps for variational inequalities. Optimization (2021). <https://doi.org/10.1080/02331934.2021.1964079>
- 30. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. **258**, 4413–4416 (1964)
- 31. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algor. **81**, 269–291 (2019)
- 32. Yang, J., Liu, H., Liu, Z.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization **67**, 2247–2258 (2018)
- 33. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. **91**, 123–140 (1996)
- 34. Thong, D.V., Shehu, Y., Iyiola, O.S.: Weak and strong convergence theorems for solving pseudomonotone variational inequalities with non-Lipschitz mappings. Numer. Algor. **84**, 795–823 (2020)
- 35. Thong, D.V., Vuong, P.T.: R-linear convergence analysis of inertial extragradient algorithms for strongly pseudo-monotone variational inequalities. J. Comput. Appl. Math. **406**, 114003 (2022)
- 36. Thong, D.V., Dong, Q.L., Liu, L.L., Triet, N.A., Lan, P.N.: Two fast converging inertial subgradient extragradient algorithms with variable stepsizes for solving pseudo-monotone VIPs in Hilbert spaces. J. Comput. Appl. Math. **410**, 114260 (2022)
- 37. Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. **176**, 399–409 (2018)
- 38. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algor. **81**(1), 269–291 (2019)
- 39. Alt, W., Baier, R., Gerdts, M., Lempio, F.: Error bounds for Euler approximation of linearquadratic control problems with bang-bang solutions. Numer. Algebra. Control Optim. **2**, 547–570 (2012)
- 40. Bressan, B., Piccoli, B.: Introduction to the mathematical theory of control, In: Volume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences. (AIMS), Springfeld, MO (2007)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.