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Abstract
The purpose of this paper is to investigate pseudomonotone variational inequali‑
ties in real Hilbert spaces. For solving this problem, we introduce a new method. 
The proposed algorithm combines the advantages of the subgradient extragradi‑
ent method and the projection and contraction method. We establish the strong 
convergence of the proposed algorithm under conditions pseudomonotonicity and 
Lipschitz continuity assumptions. Moreover, under additional strong pseudomonoto‑
nicity and Lipschitz continuity assumptions, the linear convergence of the sequence 
generated by the proposed algorithm is obtained. Numerical examples provide to 
illustrate the potential of our algorithms as well as compare their performances to 
several related results.
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1 Introduction

Let H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖ . Let C be a non‑
empty, closed and convex subset of H. Let F ∶ H → H be a single‑valued continuous 
mapping. We consider classical variational inequality (VI) in the sense of Fichera [14] 
and Stampacchia [30] (see also Kinderlehrer and Stampacchia [21]) which is formu‑
lated as follows: find a point x∗ ∈ C such that

We denote by Sol(C,  F) the solution set of the VI (1), which is assumed to be 
nonempty.

In this work, we assume that the following conditions hold:

Condition 1 The solution set Sol(C,F) is nonempty.

Condition 2 The mapping F ∶ H → H is pseudomonotone on H, that is,

Condition 3 The mapping F ∶ H → H is Lipschitz continuous with constant L > 0 , 
that is, there exists a number L > 0 such that

Variational inequality (VI) is a very general mathematical model with numerous 
applications in economics, engineering mechanics, transportation, and many more, see, 
for example, [2, 13, 21, 23]. During the last decades, many algorithms for solving VIs 
have been proposed in the literature, see, e.g., [3, 10, 13, 15, 16, 21, 34, 37].

The most well‑known one is extragradient method proposed by Korpelevich [22] 
(also by Antipin [1] independently). However, the extragradient method requires the 
evaluation of two orthogonal projections onto C per iteration. The first method which 
overcomes this obstacle is the projection and contraction method (PC) of He [18] and 
Sun [33]. Their algorithm is of the form:

and then the next iterate xn+1 is generated via the following

(1)⟨Fx∗, x − x∗⟩ ≥ 0 ∀x ∈ C.

⟨Fx, y − x⟩ ≥ 0 ⟹ ⟨Fy, y − x⟩ ≥ 0 ∀x, y ∈ H.

‖Fx − Fy‖ ≤ L‖x − y‖ ∀x, y ∈ H.

yn = PC(xn − �nFxn),

xn+1 = xn − ��nd(xn, yn),
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where � ∈ (0, 2),

and

where F ∶ C → ℍ be monotone and L‑Lipschitz continuous operator and 
�n ∈ (0, 1∕L) or �n is updated by some adaptive rule as follows:

Recently, projection and contraction type methods for solving VI have received great 
attention by many authors, see, e.g., [4, 11, 12, 23, 27, 36].

The second extension of the extragradient method is known as the subgradi-
ent extragradient method proposed by Censor et  al. [6–8]. In this algorithm, 
the second projection onto the feasible set C is replaced by a projection onto an 
easy and constructible set that contains C. For each n ∈ ℕ generate the follow‑
ing sequences,

where � ∈ (0, 1∕L).
Since the projection and contraction and the subgradient extragradient methods 

require calculating only one projection onto C per iteration, their computational 
efforts and performance have an advantage over other existing results in the lit‑
erature. Recently, [12] introduced a modification of the subgradient extragradient 
method by using the direction of the projection and contraction method and stepsize 
rule �n satisfying (2).

This paper is motivated and inspired by the work of Censor et al. [6], He [18] and 
Sun [33], first, we investigate the strong convergence for solving the problem (VI) by our 
new algorithm which is a combination of the subgradient extragradient method and the 
projection and contraction method in Hilbert spaces. In the proposed method, we show 
that an advantage of the proposed algorithm is the computation of only two values of the 
variational inequality mapping and one projection onto the feasible set per one iteration, 
which distinguishes our method from most other projection‑type methods for variational 
inequality problems with pseudomonotone mappings. Second, the convergence rate of the 
algorithm is presented under strong pseudomonotonicity and Lipschitz continuity of the 
cost operator. Specifically, the proposed algorithm improves the results in the literature in 
the following ways:

�n ∶=
⟨xn − yn, d(xn, yn)⟩

‖d(xn, yn)‖2
,

d(xn, yn) ∶= xn − yn − �n(Fxn − Fyn),

(2)�n‖Fxn − Fyn‖ ≤ �‖xn − yn‖, � ∈ (0, 1).

⎧⎪⎨⎪⎩

yn = PC(xn − �Fxn),

Tn = {x ∈ H ∣ ⟨xn − �Fxn − yn, x − yn⟩ ≤ 0},

xn+1 = PTn
(xn − �Fyn),
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– at each iteration step, a single projection is required to perform;
– an inertial term for speeding up convergence;
– step‑sizes are not decreasing;
– without knowledge of the Lipschitz constant of the underline operator;
– without the assumption on the sequential weak continuity of the underline 

operator;
– strong convergence and moreover, a convergence estimate is established.

This paper is organized as follows: Section  2 consists of the notations and basic 
definitions which are useful throughout the paper. In Section  3, we propose our 
algorithm and prove the strong convergence of the iterative sequence to a solution 
of the variational inequality (1). The convergence rate of the proposed algorithm 
is presented in Section  4. In Section  5, some numerical results in optimal control 
problems are reported to demonstrate the performance of the proposed method. Final 
conclusions are given in Section 6.

2  Preliminaries

Let H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖ . The weak 
convergence of {xn} to x is denoted by xn ⇀ x as n → ∞ , while the strong conver‑
gence of {xn} to x is written as xn → x as n → ∞. For all x, y ∈ H we have

Definition 2.1 Let T ∶ H → H be an operator. Then 

1. T is called L‑Lipschitz continuous with constant L > 0 if 

 if L = 1 then the operator T is called nonexpansive and if L ∈ (0, 1) , T is called 
a contraction.

2. T is called monotone if 

3. T is called pseudomonotone in the sense of Karamardian [19] if 

4. T is called �‑strongly monotone if there exists a constant 𝛼 > 0 such that 

‖x + y‖2 ≤ ‖x‖2 + 2⟨y, x + y⟩.

‖Tx − Ty‖ ≤ L‖x − y‖ ∀x, y ∈ H,

⟨Tx − Ty, x − y⟩ ≥ 0 ∀x, y ∈ H;

(3)⟨Tx, y − x⟩ ≥ 0 ⟹ ⟨Ty, y − x⟩ ≥ 0 ∀x, y ∈ H;

⟨Tx − Ty, x − y⟩ ≥ �‖x − y‖2 ∀x, y ∈ H;
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5. T is called �‑strongly pseudomonotone if there exists a constant 𝛼 > 0 such that 

6. The operator T is called sequentially weakly continuous if for each sequence {xn} 
we have: xn converges weakly to x implies Txn converges weakly to Tx.

We note that (3) is only one of the definitions of pseudomonotonicity which 
can be found in the literature. For every point x ∈ H , there exists a unique nearest 
point in C, denoted by PCx such that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C . PC is called the 
metric projection of H onto C. It is known that PC is nonexpansive. For proper‑
ties of the metric projection, the interested reader could be referred to Section 3 
in [16].

Lemma 2.1 ([16]) Let C be a nonempty closed convex subset of a real Hilbert space 
H. Given x ∈ H and z ∈ C . Then z = PCx ⟺ ⟨x − z, z − y⟩ ≥ 0 ∀y ∈ C. Moreover,

Lemma 2.2 Let H be a real Hilbert space. Then the following results hold: 

i) ‖x + y‖2 = ‖x‖2 + 2⟨x, y⟩ + ‖y‖2 ∀x, y ∈ H;

ii) ‖x + y‖2 ≤ ‖x‖2 + 2⟨y, x + y⟩ ∀x, y ∈ H.

Lemma 2.3 ([9]) Consider the problem Sol(C, F) with C being a nonempty, closed, 
convex subset of a real Hilbert space H and F ∶ C → H being pseudomonotone and 
continuous. Then, x∗ is a solution of Sol(C, F) if and only if

Lemma 2.4 ([28]) Let {an} be sequence of nonnegative real numbers, {�n} be a 
sequence of real numbers in (0, 1) with 

∑∞

n=1
�n = ∞ and {bn} be a sequence of real 

numbers. Assume that

If lim supk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying 
lim infk→∞(ank+1 − ank ) ≥ 0 then limn→∞ an = 0.

Definition 2.2 ([26]) Let {xn} be a sequence in H. 

i) {xn} is said to converge R‑linearly to x∗ with rate � ∈ [0, 1) if there is a constant 
c > 0 such that 

⟨Tx, y − x⟩ ≥ 0 ⟹ ⟨Ty, y − x⟩ ≥ �‖x − y‖2 ∀x, y ∈ H;

‖PCx − PCy‖2 ≤ ⟨PCx − PCy, x − y⟩ ∀x, y ∈ C.

⟨Fx, x − x∗⟩ ≥ 0 ∀x ∈ C.

an+1 ≤ (1 − �n)an + �nbn ∀n ≥ 1.

‖xn − x∗‖ ≤ c�n ∀n ∈ ℕ.
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ii) {xn} is said to converge Q‑linearly to x∗ with rate � ∈ [0, 1) if 

‖xn+1 − x∗‖ ≤ �‖xn − x∗‖ ∀n ∈ ℕ.
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3  Strong convergence analysis

First, we introduce the proposed algorithm:

Observe that the projection onto half‑space Tn in Step 2 is explicit [5, Sec‑
tion 4.1.3, p. 133], therefore, Algorithm 1 requires only one projection in Step 1. 
Moreover, the stepsize �n is updated adaptively in Step 3 without requiring the 
knowledge of the Lipschitz constant L. We start the convergence analysis by proving 
the following Lemmas.

Lemma 3.5 ([24]) Assume that F is L‑Lipschitz continuous on H. Let 
{
�n
}
 be the 

sequence generated by (5). Then

where � =
∑∞

n=1
�n . Moreover

Lemma 3.6 Assume that F is Lipschitz continuous on H and pseudomonotone on C. 
Then for every x∗ ∈ Sol(C,F) , there exists n0 > 0 such that

Proof Using (6), we have

Since limn→∞

(
1 −

𝜇𝜏n

𝜏n+1

)
= 1 − 𝜇 > 0 , there exists n0 ∈ ℕ such that

Therefore, it follows from (7) that for all n ≥ n0 we get

lim
n→∞

�n = � with � ∈

[
min

{
�1,

�

L

}
, �1 + �

]
,

(6)‖Fwn − Fvn‖ ≤
�

�n+1
‖wn − vn‖.

‖un+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − un+1 − ��ndn‖2 − (2 − �)��2
n
‖dn‖2 ∀n ≥ n0.

(7)

‖dn‖ =‖wn − vn − �n(Fwn − Fvn)‖
≥‖wn − vn‖ − �n‖Fwn − Fvn‖
≥‖wn − vn‖ −

��n

�n+1
‖wn − vn‖

=

�
1 −

��n

�n+1

�
‖wn − vn‖.

1 −
𝜇𝜏n

𝜏n+1
>

1 − 𝜇

2
∀n ≥ n0.

(8)‖dn‖ ≥
1 − 𝜇

2
‖wn − vn‖ > 0.
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Since x∗ ∈ Sol(C,F) ⊂ C ⊂ Tn , using Lemma 2.1 we have

This implies that

Since vn ∈ C and x∗ ∈ Sol(C,F),we get ⟨Fx∗, vn − x∗⟩ ≥ 0 . By the pseudomonoto‑
nicity of F, we have ⟨Fvn, vn − x∗⟩ ≥ 0 , which implies

Thus, we obtain

On the other hand, from un+1 ∈ Tn we have

This implies that

thus

Hence

On the other hand, we have

From (8), we have dn ≠ 0 ∀n ≥ n0 , thus �n =
⟨wn − vn, dn⟩

‖dn‖2
 , which means

‖un+1 − x∗‖2 =‖PTn
(wn − ��n�nFvn) − PTn

x∗‖2
≤⟨un+1 − x∗,wn − ��n�nFvn − x∗⟩
=
1

2
‖un+1 − x∗‖2 + 1

2
‖wn − ��n�nFvn − x∗‖2 − 1

2
‖un+1 − wn + ��n�nFvn‖2

=
1

2
‖un+1 − x∗‖2 + 1

2
‖wn − x∗‖2 + 1

2
�2�2

n
�2
n
‖Fvn‖2 − ⟨wn − x∗, ��n�nFvn⟩

−
1

2
‖un+1 − wn‖2 − 1

2
�2�2

n
�2
n
‖Fvn‖2 − ⟨un+1 − wn, ��n�nFvn⟩

=
1

2
‖un+1 − x∗‖2 + 1

2
‖wn − x∗‖2 − 1

2
‖un+1 − wn‖2 − ⟨un+1 − x∗, ��n�nFvn⟩.

(9)‖un+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖un+1 − wn‖2 − 2��n�n⟨un+1 − x∗,Fvn⟩.

⟨Fvn, un+1 − x∗⟩ = ⟨Fvn, un+1 − vn⟩ + ⟨Fvn, vn − x∗⟩ ≥ ⟨Fvn, un+1 − vn⟩.

(10)−2��n�n⟨Fvn, un+1 − x∗⟩ ≤ −2��n�n⟨Fvn, un+1 − vn⟩.

⟨wn − �nFwn − vn, un+1 − vn⟩ ≤ 0.

⟨wn − vn − �n(Fwn − Fvn), un+1 − vn⟩ ≤ �n⟨Fvn, un+1 − vn⟩,

⟨dn, un+1 − vn⟩ ≤ �n⟨Fvn, un+1 − vn⟩.

(11)−2��n�n⟨Fvn, un+1 − vn⟩ ≤ −2��n⟨dn, un+1 − vn⟩.

(12)−2��n⟨dn, un+1 − vn⟩ = −2��n⟨dn,wn − vn⟩ + 2��n⟨dn,wn − un+1⟩.

(13)⟨wn − vn, dn⟩ = �n‖dn‖2 ∀n ≥ n0.
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Moreover

Substituting (13) and (14) into (12) we get for all n ≥ n0 that

Combining (11) and (15), we obtain

Again, combining (10) and (16), we get

Substituting (17) into (9) we get

Theorem  3.1 Assume that Conditions 1–3 hold. In addition, we assume that the 
mapping F ∶ H → H satisfies the following condition

Then the sequence {un} is generated by Algorithm 1 converges strongly to an ele-
ment z ∈ Sol(C,F) , where z = PSol(C,F)(0).

Proof Claim 1. The sequence {un} is bounded. Indeed, we have 

 On the other hand, since (4) we have 

(14)

2��n⟨dn,wn − un+1⟩ =2⟨��ndn,wn − un+1⟩
=‖wn − un+1‖2 + �2�2

n
‖dn‖2 − ‖wn − un+1 − ��ndn‖2.

(15)

−2��n⟨dn, un+1 − vn⟩ ≤ − 2��2
n
‖dn‖2 + ‖wn − un+1‖2 + �2�2

n
‖dn‖2 − ‖wn − un+1 − ��ndn‖2

=‖wn − un+1‖2 − ‖wn − un+1 − ��ndn‖2 − (2 − �)��2
n
‖dn‖2.

(16)

−2��
n
�
n
⟨Fv

n
, u

n+1 − v
n
⟩ ≤ − 2��2

n
‖d

n
‖2 + ‖w

n
− u

n+1‖2 + �2�2
n
‖d

n
‖2 − ‖w

n
− u

n+1 − ��
n
d
n
‖2

=‖w
n
− u

n+1‖2 − ‖w
n
− u

n+1 − ��
n
d
n
‖2 − (2 − �)��2

n
‖d

n
‖2.

(17)

−2��
n
�
n
⟨Fv

n
, u

n+1 − x
∗⟩ ≤ − 2��2

n
‖d

n
‖2 + ‖w

n
− u

n+1‖2 + �2�2
n
‖d

n
‖2 − ‖w

n
− u

n+1 − ��
n
d
n
‖2

=‖w
n
− u

n+1‖2 − ‖w
n
− u

n+1 − ��
n
d
n
‖2 − (2 − �)��2

n
‖d

n
‖2.

(18)
‖un+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − un+1 − ��ndn‖2 − (2 − �)��2

n
‖dn‖2 n ≥ n0.

(19)whenever {un} ⊂ C, un ⇀ z, one has ‖Fz‖ ≤ lim inf
n→∞

‖Fun‖.

(20)

‖wn − z‖ =‖(1 − �n)(un + �n(un − un−1)) − z‖
=‖(1 − �n)(un − z) + (1 − �n)�n(un − un−1) − �nz‖
≤(1 − �n)‖un − z‖ + (1 − �n)�n‖un − un−1‖ + �n‖z‖
=(1 − �n)‖un − z‖ + �n[(1 − �n)

�n

�n
‖un − un−1‖ + ‖z‖].

�n

�n
‖un − un−1‖ ≤

�n

�n
→ 0
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 this implies that limn→∞

�
(1 − �n)

�n

�n
‖un − un−1‖ + ‖z‖

�
= ‖z‖ , thus there exists 

M > 0 such that 

 Combining (20) and (21) we obtain 

 Moreover, we have limn→∞(1 − 𝜇
𝜏n

𝜏n+1
) = 1 − 𝜇 >

1 − 𝜇

2
 , thus there exists n0 ∈ ℕ 

such that 1 − 𝜇
𝜏n

𝜏n+1
> 0 ∀n ≥ n0, by Claim 1 we obtain 

 Thus 

 Therefore, the sequence {un} is bounded.
Claim 2. 

 Indeed, we have ‖wn − z‖ ≤ (1 − �n)‖un − z‖ + �nM , this implies that 

 where M1 ∶= max{2(1 − �n)M‖un − z‖ + �nM
2 ∶ n ∈ ℕ} . Substituting (23) into 

(18) we get 

 Or equivalently 

Claim 3. 

(21)(1 − �n)
�n

�n
‖un − un−1‖ + ‖z‖ ≤ M.

‖wn − z‖ ≤ (1 − �n)‖un − z‖ + �nM.

(22)‖un+1 − z‖ ≤ ‖wn − z‖ ∀n ≥ n0.

‖un+1 − z‖ ≤(1 − �n)‖un − z‖ + �nM

=max{‖un − z‖,M} ≤ ... ≤ max{‖un0 − z‖,M}.

‖wn − un+1 − ��ndn‖2 + (2 − �)��2
n
‖dn‖2 ≤ ‖un − z‖2 − ‖un+1 − z‖2 + �nM1.

(23)

‖wn − z‖2 ≤(1 − �n)
2‖un − z‖2 + 2�n(1 − �n)M‖un − z‖ + �2

n
M2

≤‖un − z‖2 + �n[2(1 − �n)M‖un − z‖ + �nM
2]

≤‖un − z‖2 + �nM1,

‖un+1 − x∗‖2 ≤ ‖un − z‖2 + �nM1 − ‖wn − un+1 − ��ndn‖2 − (2 − �)��2
n
‖dn‖2.

‖wn − un+1 − ��ndn‖2 + (2 − �)��2
n
‖dn‖2 ≤ ‖un − z‖2 − ‖un+1 − z‖2 + �nM1.

�
1 −

��
n

�
n+1

�2

�
1 +

��
n

�
n+1

�2
‖w

n
− v

n
‖2 ≤ �2

n
‖d

n
‖2 ∀n ≥ n0.
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 We have 

 Hence 

 or equivalently 

 Again, we find 

 Hence for all n ≥ n0

 and 

 Combining (24) and (25), we get 

‖dn‖ ≤ ‖wn − vn‖ + �n‖Fwn − Fvn‖ ≤
�
1 +

��n

�n+1

�
‖wn − vn‖.

‖dn‖2 ≤
�
1 +

��n

�n+1

�2

‖wn − vn‖2,

1

‖dn‖2
≥

1�
1 +

��n

�n+1

�2

‖wn − vn‖2
.

⟨wn − vn, dn⟩ =‖wn − vn‖2 − �n⟨wn − vn,Fwn − Fvn⟩
≥‖wn − vn‖2 − �n‖wn − vn‖‖Fwn − Fvn‖
≥‖wn − vn‖2 −

��n

�n+1
‖wn − vn‖2

=

�
1 −

��n

�n+1

�
‖wn − vn‖2.

(24)�n‖dn‖2 = ⟨wn − vn, dn⟩ ≥
�
1 −

��n

�n+1

�
‖wn − vn‖2

(25)�n =
⟨wn − vn, dn⟩

‖dn‖2
≥

�
1 −

��n

�n+1

�

�
1 +

��n

�n+1

�2
.

(26)�2
n
‖dn‖2 ≥

�
1 −

��n

�n+1

�2

�
1 +

��n

�n+1

�2
‖wn − vn‖2 ∀n ≥ n0.
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Claim 4. 

∀n ≥ n0 . Indeed, using Lemma 2.2 ii) and (22) we get 

Claim 5. {‖un − z‖2} converges to zero. Indeed, by Lemma 2.4 it suffices to show 
that lim supk→∞⟨−z, unk+1 − z⟩ ≤ 0 and lim supk→∞ ‖unk − unk+1‖ ≤ 0 for every sub‑
sequence {‖unk − z‖} of {‖un − z‖} satisfying 

For this, suppose that {‖unk − z‖} is a subsequence of {‖un − z‖} such that 
lim infk→∞(‖unk+1 − z‖ − ‖unk − z‖) ≥ 0. Then

By Claim 2 we obtain

This implies that

‖un+1 − z‖2 ≤(1 − �n)‖un − z‖2 + �n

�
2(1 − �n)‖un − z‖�n

�n
‖un − un−1‖

+ �n‖un − un−1‖
�n

�n
‖un − un−1‖ + 2‖z‖‖un − un+1‖ + 2⟨−z, un+1 − z⟩

�

‖x
n+1 − z‖2 ≤‖w

n
− z‖2 ∀n ≥ n0

=‖(1 − �
n
)(u

n
− z) + (1 − �

n
)�

n
(u

n
− u

n−1) − �
n
z‖2 ∀n ≥ n0

≤‖(1 − �
n
)(u

n
− z) + (1 − �

n
)�

n
(u

n
− u

n−1)‖2 + 2�
n
⟨−z,w

n
− z⟩ ∀n ≥ n0

=(1 − �
n
)2‖u

n
− z‖2 + 2(1 − �

n
)�

n
‖u

n
− z‖‖u

n
− u

n−1‖ + �2
n
‖u

n
− u

n−1‖2
+ 2⟨−z, u

n
− u

n+1⟩ + 2⟨−z, u
n+1 − z⟩ ∀n ≥ n0

≤(1 − �
n
)‖u

n
− z‖2 + �

n

�
2(1 − �

n
)‖u

n
− z‖�n

�
n

‖u
n
− u

n−1‖

+ �
n
‖u

n
− u

n−1‖
�
n

�
n

‖u
n
− u

n−1‖ + 2‖z‖‖u
n
− u

n+1‖ + 2⟨−z, u
n+1 − z⟩

�
∀n ≥ n0.

lim inf
k→∞

(‖unk+1 − z‖ − ‖unk − z‖) ≥ 0.

lim inf
k→∞

(‖unk+1 − z‖2 − ‖unk − z‖2) = lim inf
k→∞

[(‖unk+1 − z‖ − ‖unk − z‖)(‖unk+1 − z‖ + ‖unk − z‖)] ≥ 0.

lim sup
k→∞

�
‖wnk

− unk+1 − ��nkdnk‖2 + (2 − �)��2
nk
‖dnk‖2

�

≤ lim sup
k→∞

�
‖unk − z‖2 − ‖unk+1 − z‖2 + �nkM1

�

≤ lim sup
k→∞

�
‖unk − z‖2 − ‖unk+1 − z‖2

�
+ lim sup

k→∞

�nkM1

= − lim inf
k→∞

�
‖unk+1 − z‖2 − ‖u

nk

− z‖2
�

≤0.

lim
k→∞

‖wnk
− unk+1 − ��nkdnk‖ = 0 and lim

k→∞
��2

nk
‖dnk‖ = 0.
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We have

Combining (25) and (28) we get

This implies that

From Claim 3 we also have

Moreover, we have

From (29), (30) and (31), we get

Since the sequence {unk} is bounded, it follows that there exists a subsequence {unkj } 
of {unk} , which converges weakly to some z∗ ∈ H , such that

Using (31), we get

Using (30), we obtain

(27)
‖wnk

− unk+1‖ ≤‖wnk
− unk+1 − ��nkdnk‖ + �‖�nkdnk‖

=‖wnk
− unk+1 − ��nkdnk‖ + �

1

�nk

�2
nk
‖dnk‖.

(28)

‖wnk
− unk+1‖ ≤‖wnk

− unk+1 − ��nkdnk‖ + ��nk‖dnk‖
=‖wnk

− unk+1 − ��nkdnk‖ + �
1

�nk

�2
nk
‖dnk‖

=‖wnk
− unk+1 − ��nkdnk‖ + �

�
1 +

��n

�n+1

�2

�
1 − �

�n

�n+1

��2
nk
‖dnk‖.

(29)lim
k→∞

‖wnk
− unk+1‖ = 0.

(30)lim
k→∞

‖vnk − wnk
‖ = 0.

(31)‖unk − wnk
‖ = �nk‖unk − unk−1‖ = �nk .

�nk

�nk

‖unk − unk−1‖ → 0.

(32)‖unk+1 − unk‖ ≤ ‖unk+1 − wnk
‖ + ‖wnk

− vnk‖ + ‖vnk − unk‖ → 0.

(33)lim sup
k→∞

⟨−z, unk − z⟩ = lim
j→∞

⟨−z, unkj − z⟩ = ⟨−z, z∗ − z⟩.

wnk
⇀ z∗ as k → ∞,

vnk ⇀ z∗ as k → ∞.
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Now, we show that z∗ ∈ Sol(C,F) . Indeed, since vnk = PC(wnk
− �nkFwnk

) , we have

or equivalently

Consequently

Being weakly convergent, {wnk
} is bounded. Then, by the Lipschitz continuity of F, 

{Fwnk
} is bounded. As ‖wnk

− vnk‖ → 0 , {vnk} is also bounded and �nk ≥ min{�1,
�

L
} . 

Passing (34) to limit as k → ∞ , we get

Moreover, we have

Since limk→∞ ‖wnk
− vnk‖ = 0 and F is L‑Lipschitz continuous on H, we get

which, together with (35) and (36) implies that

Next, we choose a sequence {�k} of positive numbers decreasing and tending to 0. 
For each k, we denote by Nk the smallest positive integer such that

Since {�k} is decreasing, it is easy to see that the sequence {Nk} is increasing. Fur‑
thermore, for each k, since {vNk

} ⊂ C we can suppose FvNk
≠ 0 (otherwise, vNk

 is a 
solution) and, setting

we have ⟨FvNk
, tNk

⟩ = 1 for each k. Now, we can deduce from (37) that for each k

⟨wnk
− �nkFwnk

− vnk , x − vnk⟩ ≤ 0 ∀x ∈ C,

1

�nk

⟨wnk
− vnk , x − vnk⟩ ≤ ⟨Fwnk

, x − vnk⟩ ∀x ∈ C.

(34)
1

�nk

⟨wnk
− vnk , x − vnk⟩ + ⟨Fwnk

, vnk − wnk
⟩ ≤ ⟨Fwnk

, x − wnk
⟩ ∀x ∈ C.

(35)lim inf
k→∞

⟨Fwnk
, x − wnk

⟩ ≥ 0 ∀x ∈ C.

(36)
⟨Fvnk , x − vnk⟩ = ⟨Fvnk − Fwnk

, x − wnk
⟩ + ⟨Fwnk

, x − wnk
⟩ + ⟨Fvnk ,wnk

− vnk⟩.

lim
k→∞

‖Fwnk
− Fvnk‖ = 0

lim inf
k→∞

⟨Fvnk , x − vnk⟩ ≥ 0.

(37)⟨Fvnj , x − vnj⟩ + �k ≥ 0 ∀j ≥ Nk.

tNk
=

FvNk

‖FvNk
‖2 ,

⟨FvNk
, x + �ktNk

− vNk
⟩ ≥ 0.
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From F is pseudomonotone on H, we get

This implies that

Now, we show that limk→∞ �ktNk
= 0 . Indeed, since wnk

⇀ z and 
limk→∞ ‖wnk

− vnk‖ = 0, we obtain vNk
⇀ z as k → ∞ . By {vn} ⊂ C , we obtain 

z∗ ∈ C . Since F satisfies Condition (19), we have

Since {vNk
} ⊂ {vnk} and �k → 0 as k → ∞ , we obtain

which implies that limk→∞ �ktNk
= 0.

Now, letting k → ∞ , then the right‑hand side of (38) tends to zero by F is uni‑
formly continuous, {wNk

}, {tNk
} are bounded and limk→∞ �ktNk

= 0 . Thus, we get

Hence, for all x ∈ C we have

By Lemma 2.3, we get

Since (33) and the definition of z = PSol(C,F)(0) , we have

Combining (32) and (39), we have

Hence, by (40), limn→∞

�n

�n
‖un − un−1‖ = 0 , limk→∞ ‖unk+1 − unk‖ = 0 , Claim 5 and 

Lemma 2.4, we have limn→∞ ‖un − z‖ = 0 . That is the desired result.

⟨F(x + �ktNk
), x + �ktNk

− vNk
⟩ ≥ 0.

(38)⟨Fx, x − vNk
⟩ ≥ ⟨Fx − F(x + �ktNk

), x + �ktNk
− vNk

⟩ − �k⟨Fx, tNk
⟩.

0 < ‖Fz∗‖ ≤ lim inf
k→∞

‖Fvnk‖.

0 ≤ lim sup
k→∞

‖�ktNk
‖ = lim sup

k→∞

�
�k

‖Fvnk‖

�
≤

lim supk→∞ �k

lim infk→∞ ‖Fvnk‖
= 0,

lim inf
k→∞

⟨Fx, x − vNk
⟩ ≥ 0.

⟨Fx, x − z∗⟩ = lim
k→∞

⟨Fx, x − vNk
⟩ = lim inf

k→∞
⟨Fx, x − vNk

⟩ ≥ 0.

z∗ ∈ Sol(C,F).

(39)lim sup
k→∞

⟨−z, unk − z⟩ = ⟨−z, z∗ − z⟩ ≤ 0.

(40)

lim sup
k→∞

⟨−z, unk+1 − z⟩ ≤ lim sup
k→∞

⟨−z, unk − z⟩
=⟨−z, z∗ − z⟩
≤0.

2257



Numerical Algorithms (2023) 92:2243–2274

1 3

4  Convergence rate

In this section, we provide a result on the convergence rate of the iterative sequence 
generated by Algorithm 1 with �n = 0 and the mapping F is L‑Lipschitz continuous 
on H and �‑strongly pseudomonotone on C. The algorithm is of the form:

Using the technique in [35] we obtain the following result.

Theorem  4.2 Assume that F is L‑Lipschitz continuous on H and �‑strongly pseu-
domonotone on C. Let � ∈ (0, 1) be arbitrary and � be such that

(41)

0 ≤ � ≤ min

�
�

2 + �
,

√
(1 + ��)2 + 4�� − (1 + ��)

2
, (1 − �)

�
1 −

(1 − �)�(1 − �)2

2(1 + �)2

��
,
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where � ∶=
1 − �

�
. Then the sequence {un} generated by Algorithm  2 converges 

strongly to the unique solution x∗ of (1) with an R‑linear rate.

Proof First, we will shall that, there exists �, � ∈ (0, 1) such that

Indeed, under assumptions made, it was proved that (1) has a unique solution [20]. 
From the �‑strong pseudomonotonicity of F, we have ⟨Fvn, vn − x∗⟩ ≥ �‖vn − x∗‖2 . 
This implies that

Therefore

Substituting (42) into (9), we get

Again, substituting (16) into (43), we obtain

Combining (26) and (44), we get

It follows from (45) that

‖un+1 − x∗‖2 ≤�‖wn − x∗‖2 − �‖un+1 − wn‖2.

⟨Fvn, un+1 − x∗⟩ = ⟨Fvn, un+1 − vn⟩ + ⟨Fvn, vn − x∗⟩ ≥ ⟨Fvn, un+1 − vn⟩
≥ �‖vn − x∗‖2 + ⟨Fvn, un+1 − vn⟩.

(42)
−2��n�n⟨Fvn, un+1 − x∗⟩ ≤ −2��n�n�‖vn − x∗‖2 − 2��n�n⟨Fvn, un+1 − vn⟩.

(43)
‖zn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖zn − wn‖2 − 2��n�n�‖vn − x∗‖2 − 2��n�n⟨Fvn, zn − vn⟩.

(44)
‖zn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − zn − ��ndn‖2 − (2 − �)��2

n
‖dn‖2 − 2��n�n�‖vn − x∗‖2.

(45)

‖zn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − zn − ��ndn‖2 − (2 − �)�

�
1 −

��n

�n+1

�2

�
1 +

��n

�n+1

�2
‖wn − vn‖2

− 2��n�n�‖vn − x∗‖2 ∀n ≥ n0.

(46)

‖zn − x∗‖2 ≤ ‖wn − x∗‖2 − (2 − �)�

�
1 −

��n

�n+1

�2

�
1 +

��n

�n+1

�2
‖wn − vn‖2 − 2��n�n�‖vn − x∗‖2 ∀n ≥ n0.
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On the other hand, we have

Since the definition of {un} we deduce wn − zn =
1

�
(un+1 − wn) . Thus,

Substituting (46) into (47), we get

Substituting (25) into (48), we deduce

Setting

we have

and

‖un+1 − x∗‖2 =‖(1 − �)wn − �zn − x∗‖2
=(1 − �)‖wn − x∗‖2 + �‖zn − x∗‖2 − �(1 − �)‖wn − zn‖2.

(47)

‖un+1 − x∗‖2 = (1 − �)‖wn − x∗‖2 + �‖zn − x∗‖2 − 1

�
(1 − �)‖un+1 − wn‖2.

(48)

‖un+1 − x∗‖2 =‖wn − x∗‖2 − �(2 − �)�

�
1 −

��n

�n+1

�2

�
1 +

��n

�n+1

�2
‖wn − vn‖2 − 2���n�n�‖vn − x∗‖2

−
1

�
(1 − �)‖un+1 − wn‖2 ∀n ≥ n0.

(49)

‖un+1 − x
∗‖2 =‖wn − x

∗‖2 − �(2 − �)�

�
1 −

��n

�n+1

�2

�
1 +

��n

�n+1

�2
‖wn − vn‖2 − 2��

1 − �
�n

�n+1

(1 + �
�n

�n+1
)2
�n�‖vn − x

∗‖2

−
1

�
(1 − �)‖un+1 − wn‖2 ∀n ≥ n0.

�∗ ∶= min

{
(2 − �)�(1 − �)2

2(1 + �)2
, ��

1 − �

(1 + �)2
��

}
where � = lim

n→∞
�n,

1 > lim
n→∞

(2 − 𝛾)𝛾

(
1 − 𝜇

𝜆n

𝜆n+1

)2

(
1 + 𝜇

𝜆n

𝜆n+1

)2
=

(2 − 𝛾)𝛾(1 − 𝜇)2

(1 + 𝜇)2
≥ 2𝛽∗.

lim
n→∞

��

1 − �
�n

�n+1

(1 + �
�n

�n+1
)2
�n� = ��

1 − �

(1 + �)2
�� ≥ �∗.
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Using (49), hence there exists n1 > n0 such that for all n ≥ n1

where � ∶= 1 − �∗ ∈ (0, 1) and � ∶=
1 − �

�
.

Next, we prove that the sequence {un} converges strongly to x∗ with an R linear 
rate. Indeed, we have

and

Combining these inequalities with (50) we obtain for all n ≥ n1 that

or equivalently

Setting

since � ∈ (0, 1) we can write

(50)

‖un+1 − x∗‖2 ≤‖wn − x∗‖2 − �‖un+1 − wn‖2 − 2�∗‖wn − vn‖2 − 2�∗‖vn − x∗‖2
≤(1 − �∗)‖wn − x∗‖2 − �‖un+1 − wn‖2
=�‖wn − x∗‖2 − �‖un+1 − wn‖2,

‖wn − x∗‖2 =‖(1 + �)(un − x∗) − �(un−1 − x∗)‖2
=(1 + �)‖un − x∗‖2 − �‖un−1 − x∗‖2 + �(1 + �)‖un − un−1‖2

‖un+1 − wn‖2 =‖un+1 − un − �(un − un−1)‖2
=‖un+1 − un‖2 + �2‖un − un−1‖2 − 2�

�
un+1 − un, un − un−1

�

≥‖un+1 − un‖2 + �2‖un − un−1‖2 − 2�‖un+1 − un‖‖un − un−1‖
≥‖un+1 − un‖2 + �2‖un − un−1‖2 − �‖un+1 − un‖2 − �‖un − un−1‖2
≥(1 − �)‖un+1 − un‖2 − �(1 − �)‖un − un−1‖2.

‖un+1 − x∗‖2 ≤�(1 + �)‖un − x∗‖2 − ��‖un−1 − x∗‖2 + ��(1 + �)‖un − un−1‖2
− �(1 − �)‖un+1 − un‖2 + ��(1 − �)‖un − un−1‖2,

‖un+1 − x∗‖2 − ��‖un − x∗‖2 + �(1 − �)‖un+1 − un‖2
≤�

�‖un − x∗‖2 − �‖un−1 − x∗‖2 + �(1 − �)‖un − un−1‖2
�

− (��(1 − �) − ��(1 + �) − ��(1 − �))‖un − un−1‖2.

an ∶= ‖un − x∗‖2 − �‖un−1 − x∗‖2 + �(1 − �)‖un − un−1‖2,

an+1 ≤‖un+1 − x∗‖2 − ��‖un − x∗‖2 + �(1 − �)‖un+1 − un‖2
≤�an − (��(1 − �) − ��(1 + �) − ��(1 − �))‖un − un−1‖2.
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Note that from (41) we have

which implies

Since

it holds

or equivalently

Hence

From (51) and (52) we deduce

Moreover, since � ≤ �

2+�
 , we have � ≤ �(1−�)

2
 , which implies

Hence for all n ≥ n1 it holds

This follows that

which implies that 
{
un
}
 converges R‑linearly to x∗.

� ≤(1 − �)

(
1 −

(1 − �)�(1 − �)

2(1 + �)

)

≤(1 − �)

(
1 −min

{
(2 − �)�(1 − �)2

2(1 + �)2
, ��

1 − �

(1 + �)2
��

})
= (1 − �)�,

(51)��(1 − �) ≤ (1 − �)��(1 − �).

� ≤

√
(1 + ��)2 + 4�� − (1 + ��)

2

�2 + (1 + ��)� − �� ≤ 0,

�(1 + �) ≤ ��(1 − �).

(52)��(1 + �) ≤ ���(1 − �).

��(1 − �) − ��(1 + �) − ��(1 − �) ≥ 0.

an =(1 − �(1 − �))‖un − x∗‖2 + �(1 − �)
�‖un − x∗‖2 + ‖un − un−1‖2

�
− �‖un−1 − x∗‖2

≥(1 − �(1 − �))‖un − x∗‖2 + �(1 − �)

2
‖un−1 − x∗‖2 − �‖un−1 − x∗‖2

≥(1 − �(1 − �))‖un − x∗‖2 ≥ 0.

an+1 ≤ �an ≤ ... ≤ �n−n1+1an1 .

‖un − x∗‖2 ≤ an1

�n1(1 − �(1 − �))
�n,
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5  Numerical experiments

In this section, we first present computational experiments to illustrate our newly 
proposed algorithm for solving variational inequality arising in optimal control 
problem.

Let T be a positive number. Denote by L2([0, T],ℝm) the Hilbert space of 
square integrable, measurable vector functions u ∶ [0, T] → ℝ

m with inner product 
⟨u, v⟩ = ∫ T

0
⟨u(t), v(t)⟩dt, and norm ‖u‖2 =

√⟨u, u⟩. We consider the following 
optimal control problem:

on the interval [0,  T] and assume that such a control exists. Here U is the set of 
admissible controls, which has the form of an m‑dimensional box and consists of 
piecewise continuous function:

Specially, the control can be bang‑bang (piecewise constant function). The terminal 
objective has the form

where � is a convex and differentiable function, defined on the attainability set.
Suppose that the trajectory x(t) ∈ L2([0, T]) satisfies constraints in the form of 

a system of linear differential equation:

where A(t) ∈ ℝ
n×n , B(t) ∈ ℝ

n×m are given continuous matrices for every t ∈ [0, T] . 
By the Pontryagin Maximum Principle there exists a function p∗ ∈ L2([0, T]) such 
that the triple (x∗, p∗, u∗) solves for a.e. t ∈ [0, T] the system

where NU(u) is the normal cone to U at u. Denoting Gu(t) ∶= B(t)⊤p(t) , it is known 
that Gu is the gradient of the objective cost function z (see [38] and the references 
contained therein). We can write the inclusion problem (54) as a variational 
inequality problem: find u ∈ U such that

u∗(t) = argmin{z(u) ∶ u ∈ U},

U =
{
u(t) ∈ L2([0, T],ℝ

m) ∶ ui(t) ∈ [u−
i
, u+

i
], i = 1, 2,… ,m

}
.

z(u) = �(x(T)),

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, t ∈ [0, T],

{
ẋ∗(t) = A(t)x∗(t) + B(t)u∗(t)

x∗(0) = x0,

{
ṗ∗(t) = −A(t)⊤p∗(t)

p∗(T) = ∇𝜙(x(T)),

0 ∈ B(t)⊤p∗(t) + NU(u
∗(t)),

⟨Gu, v − u⟩ ≥ 0, ∀v ∈ U.
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Discretizing the continuous functions and choosing a natural number N with the 
mesh size h ∶= T∕N , we identify any discretized control uN ∶= (u0, u1,… , uN−1) 
with its piecewise constant extension:

Moreover, we identity any discretized state xN ∶= (x0, x1,… , xN) with its piecewise 
linear interpolation

Similarly we get the co‑state variable pN ∶= (p0, p1,… , pN) (see [38] for more 
details).

Next, we consider three examples in which the terminal function is not linear.
In the numerical results listed in the following tables, ’Iter.’ denotes the num‑

ber of iterations and ’CPU in s’ denotes the execution time in seconds. Besides, 
’–’ means that the algorithm can’t reach the error conditions because the inner 
loop of the algorithm reaches infinite loop after some steps.

In the following three examples, we take N = 100 . The initial control u0(t) is 
chosen randomly in [−1, 1] , and the termination condition is controlled by the 
relative solution error, defined by (Table 1)

at the current un.

Example 1 (See [39, Rocket Car])

The corresponding exact optimal control is

where � = 3.5174292.

In Fig. 1 and Fig. 2, we take RSE ≤ 0.3 . Figure 1 displays the approximate optimal 
control and the corresponding trajectories. Other parameters are selected as follows:

Algorithm  1: �1 = 0.5,� = 0.7, � = 1.9, � = 0.5, �n =
1

3000(n+1)
, �n =

1

3000(n+1)1.1
 

and �n =
1

n2
;

uN(t) = ui for t ∈
[
ti, ti+1

)
, i = 0, 1,… ,N.

xN(t) = xi +
t − ti

h

(
xi+1 − xi

)
, for t ∈

[
ti, ti+1

)
, i = 0, 1,… ,N − 1.

RSE =
‖un − u∗‖

‖un‖

minimize
1

2

((
x1(5)

)2
+
(
x2(5)

)2)

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 5],

x1(0) = 6, x2(0) = 1,

u(t) ∈ [−1, 1].

u∗(t) =

{
1 if t ∈ (�, 5]

− 1 if t ∈ (0, �],
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Algorithm 3.3 in [31]: � = 0.1, � = 0.6 and �n =
1

3000(n+1)
;

Algorithm 2 in [32]: �0 = 0.6,� = 0.9 and �n =
1

3000(n+1)
.

The corresponding results reported in Fig. 2 and Table 1 illustrate that Algorithm 1 
behaves better than Algorithm 3.3 in [31] and Algorithm 2 in [32] in term of time and 
steps.

Fig. 1  Random initial control (green) and optimal control (red) on the left and optimal trajectories on the 
right computed by Alg. 1 for Example 1

Fig. 2  Comparison of Alg. 1 
with Alg. 3.3 in [31] and Alg. 2 
in [32] for Example 1

Table 1  Numerical results for Algorithm 1, Algorithm 3.3 in [31] and Algorithm 2 in [32] in Example 1

RSE Iter. CPU in s

Alg. 1 Alg. 3.3 in [31] Alg. 2 in [32] Alg. 3.1 Alg. 3.3 in [31] Alg. 2 in [32]

0.8 7 33 19 0.0030 0.0413 0.0069
0.5 14 – 29 0.0055 – 0.0104
0.3 35 – 132 0.0240 – 0.0465
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Example 2 (See [40, Example 6.3])

The corresponding exact optimal control is

In Fig. 3 and Fig. 4, we take RSE ≤ 10−5 . Figure 3 displays the approximate 
optimal control and the corresponding trajectories. Other parameters are selected 
as follows:

Algorithm  1: �1 = 0.2,� = 0.8, � = 1.9, � = 0.5, �n =
1

10000(n+1)
, �n =

1

10000(n+1)1.1
 

and �n =
1

n2
;

Algorithm 3.3 in [31]: � = 0.1, � = 0.3 and �n =
1

10000(n+1)
;

Algorithm 2 in [32]: �0 = 0.3,� = 0.9 and �n =
1

10000(n+1)
.

In Fig. 4 and Table 2, we can obtain that the performance of our Algorithm 1 
in time and steps is better than Algorithm 2 in [32] and Algorithm 3.3 in [31].

Example 3 (control of a harmonic oscillator)

minimize − x1(2) +
(
x2(2)

)2
subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 2],

x1(0) = 0, x2(0) = 0,

u(t) ∈ [−1, 1].

u∗ =

{
1 if t ∈ [0, 6∕5)

− 1 if t ∈ (6∕5, 2],

minimize x2(3𝜋)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t), ∀t ∈ [0, 3𝜋],

x(0) = 0,

u(t) ∈ [−1, 1].

Fig. 3  Random initial control (green) and optimal control (red) on the left and optimal trajectories on the 
right computed by Algorithm 1 for Example 2
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The exact optimal control in this problem is known:

In Fig.  5 and Fig.  6, we take RSE ≤ 0.1 . Figure  5 displays the approximate 
optimal control and the corresponding trajectories. Other parameters are selected 
as follows:

Algorithm 1: �1 = 1.9,� = 0.8, � = 1.2, � = 0.5, �n =
1

100(n+1)
, �n =

1

100(n+1)1.1
 and 

�n =
1

n2
;

Algorithm 3.3 in [31]: � = 0.0001, � = 0.1 and �n =
1

100(n+1)
;

Algorithm 2 in [32]: �0 = 1.9,� = 0.9 and �n =
1

100(n+1)
.

As shown in Fig.  6 and Table  3, Algorithm  1 performs better than Algo‑
rithm 3.3 in [31] and Algorithm 2 in [32].

Next we provide several numerical examples to demonstrate the efficiency of 
the proposed algorithm compared to some known algorithms.

u∗ =

{
1 if t ∈ [0,�∕2) ∪ (3�∕2, 5�∕2)

− 1 if t ∈ (�∕2, 3�∕2) ∪ (5�∕2, 3�].

Fig. 4  Comparison of Alg. 1 
with Alg. 3.3 in [31] and Alg. 2 
in [32] for Example 2

Table 2  Numerical results for Algorithm 1, Algorithm 3.3 in [31] and Algorithm 2 in [32] in Example 2

RSE Iter. CPU in s

Alg. 1 Alg. 3.3 in 
[31]

Alg. 2 in [32] Alg. 3.1 Alg. 3.3 in 
[31]

Alg. 2 in [32]

10−1 82 – 161 0.0270 – 0.0523

10−3 366 – 719 0.1209 – 0.2348

10−5 595 – 1196 0.2153 – 0.3976
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Example 4 In the example, we study an important Nash‑Cournot oligopolistic mar‑
ket equilibrium model, which was proposed originally by Murphy et. al. [25] as a 
convex optimization problem. Later, Harker reformulated it as a monotone varia‑
tional inequality in [17]. We provide only a short description of the problem, for 

Fig. 5  Random initial control (green) and optimal control (red) on the left and optimal trajectories on the 
right computed by Algorithm 1 for Example 3

Fig. 6  Comparison of Alg. 1 
with Alg. 3.3 in [31] and Alg. 2 
in [32] for Example 3

Table 3  Numerical results for Algorithm 1, Algorithm 3.3 in [31] and Algorithm 2 in [32] in Example 3

RSE Iter. CPU in s

Alg. 1 Alg. 3.3 in 
[31]

Alg. 2 in [32] Alg. 3.1 Alg. 3.3 in [31] Alg. 2 in [32]

0.7 1 3 1 0.0005 0.0009 0.0007
0.2 2 – 3 0.0014 – 0.0016
0.1 4 – 7 0.0077 – 0.0096
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more details we refer to [13, 17, 25]. There are N firms, each of them supplies a 
homogeneous product in a non‑cooperative fashion. Let qi ≥ 0 be the ith firm’s sup‑
ply at cost fi(qi) and p(Q) be the inverse demand curve, where Q ≥ 0 is the total 
supply in the market, i.e., Q =

∑N

i=1
qi . A Nash equilibrium solution for the market 

defined above is a set of nonnegative output levels (q∗
1
, q∗

2
, ..., q∗

N
) such that q∗

i
 is an 

optimal solution to the following problem for all i = 1, 2...,N:

where

A variational inequality equivalent to (53) is (see [17])

where F(q∗) = (F1(q
∗),F2(q

∗), ...,FN(q
∗)) and

As in the classical example of the Nash‑Cournot equilibrium [17, 25], we consider 
an oligopoly with N = 5 firms, each with the inverse demand function p and the cost 
function fi take the form

and the parameters ci, Li, �i as in [25], see Table 4.

The process is started with the initial x0 = (10, 10, 10, 10)T and x1 = 0.9 ∗ x0 and 
stopping conditions is Residual ∶= ‖wn − vn‖ ≤ 10−9 or the number of iterations ≥ 
200 for all algorithms. Other parameters are selected as follows:

Algorithm 1: �1 = 1.8,� = 0.7, � = 1.99, � = 0.5, �n =
1

10000000∗(n+1)
 and �n =

1

n2

(53)max
qi≥0

qip(qi + Q∗
i
) − fi(qi)

Q∗
i
=

N∑
j=1,j≠i

q∗
j
.

(54)find (q∗
1
, q∗

2
, ..., q∗

N
) ∈ ℝ

N
+

such that ⟨F(q∗), q − q∗⟩ ≥ 0 ∀q ∈ ℝ
N
+
,

Fi(q
∗) = f �

i
(q∗

i
) − p

(
N∑
j=1

q∗
j

)
− q∗

i
p�

(
N∑
j=1

q∗
j

)
.

p(Q) = 50001∕1.1Q−1∕1.1 and fi(qi) = ciqi +
�i

�i + 1
L

−1

�i

i
q

�i+1

�i

i

Table 4  Parameters for 
experiment

Firm i c
i

L
i

�
i

1 10 5 1.2
2 8 5 1.1
3 6 5 1.0
4 4 5 0.9
5 2 5 0.8
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Algorithm 1 in [29]: �0 = 1, � = 0.9 and �n = � = 0.4.
Algorithm 2 in [32]: �0 = 1,� = 0.7 and �n =

1

10000000∗(n+1)
 . The numerical results 

are described in Fig. 7.

Example 5 Consider the following fractional programming problem:

subject to x ∈ X ∶= {x ∈ ℝ
m ∶ bTx + b0 > 0},

where Q is an m × m symmetric matrix, a, b ∈ ℝ
m , and a0, b0 ∈ ℝ . It is well 

known that f is pseudo‑convex on X when Q is positive‑semidefinite. We consider 
the following cases:

Case 1: 

 We minimize f over C ∶= {x ∈ ℝ
4 ∶ 1 ≤ xi ≤ 10, i = 1, ..., 4} ⊂ X . It is easy to verify 

that Q is symmetric and positive definite in ℝ4 and consequently f is pseudo‑convex on X.

The process is started with the initial x0 = (20,−20, 20,−20)T and x1 = 0.9 ∗ x0 
and stopping conditions is Residual ∶= ‖un − qn‖ ≤ 10−9 or the number of itera‑
tions ≥ 200 for all algorithms. Other parameters are selected as follows:

Algorithm  1: �1 = 0.6,� = 0.6, � = 1.5, � = 0.5, �n =
1

n2
 and �n =

1

C∗(n+1)
 with 

C = 107.
Algorithm 1 in [29]: �0 = 1, � = 0.9.� = 0.6 and �n = � = 0.4.

min f (x) =
xTQx + aTx + a0

bTx + b0

Q =

⎛⎜⎜⎜⎝

5 − 1 2 0

−1 5 − 1 3

2 − 1 3 0

0 3 0 5

⎞
⎟⎟⎟⎠
, a =

⎛
⎜⎜⎜⎝

1

−2

−2

1

⎞
⎟⎟⎟⎠
, b =

⎛
⎜⎜⎜⎝

2

1

1

0

⎞
⎟⎟⎟⎠
, a0 = −2, b0 = 4.

Fig. 7  Comparison of Alg. 1 
with Alg. 1 in [29] and Alg. 2 
in [32] for Example 4. Execu‑
tion times of the Algorithms 
respectively are 0.019, 0.048, 
0.07 (seconds)

Iterations

R
es

id
ua

l
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Algorithm 2 in [32]: �0 = 0.6,� = 0.6 and �n =
1

C∗(n+1)
 . The numerical results 

are described in Fig. 8.
Case 2: In the second experiment, to make the problem even more challeng‑

ing. Let matrix A ∶ ℝ
m×m

→ ℝ
m×m , vectors c, d, y0 ∈ ℝ

m and c0, d0 are gen‑
erated from a normal distribution with mean zero and unit variance. We put 
e = (1, 1, ..., 1)T ∈ ℝ

m,Q = ATA + I, a ∶= e + c, b ∶= e + d, a0 = 1 + c0, b0 = 1 + d0 . 
We minimize f over C ∶= {x ∈ ℝ

m ∶ 1 ≤ xi ≤ 10, i = 1, ...,m} ⊂ X . Because Matrix 
Q is symmetric and positive definite in ℝm and consequently f is pseudo‑convex on 
X. The process is started with the initial x0 ∶= m ∗ y0 and x1 = 0.9 ∗ x0 , stopping 
conditions and parameters as Case 1. The numerical results are described in Fig. 9.

The corresponding results reported in Figs. 7, 8, and 9 show that Alg. 1 behaves 
better than Algorithm 1 in [29] and Algorithm 2 in [32].

Fig. 8  Comparison of Alg. 1 
with Alg. 1 in [29] and Alg. 2 
in [32] for Example 5. Execu‑
tion times of the Algorithms 
respectively are 0.18, 0.24, 0.8 
(seconds)

Iterations

R
es

id
ua

l

Fig. 9  Comparison of Alg. 1 
with Alg. 1 in [29] and Alg. 
2 in [32] for Example 5 with 
n = 100 . Execution times of 
the Algorithms respectively are 
0.24, 0.37, 1.25 (seconds)

Iterations

R
es

id
ua

l
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6  Conclusions

In this paper, we introduce some results of the modified subgradient extragradient 
method for solving pseudomonotone variational inequalities in real Hilbert spaces. 
The algorithm only needs to calculate one projection onto the feasible set C per 
iteration and does not require the prior information of the Lipschitz constant of the 
cost mapping. First, we prove a sufficient condition for a strong convergence of the 
proposed algorithm under relaxed assumptions. Second, the proposed algorithm 
is proved to converge strongly with an R‑linear convergence rate, under Lipschitz 
continuity and strong pseudomonotonicity assumptions. Finally, several numerical 
results are presented to illustrate the efficiency and advantages of the proposed 
method.
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