
Vol.:(0123456789)

https://doi.org/10.1007/s11075-022-01381-0

1 3

ORIGINAL PAPER

Computing eigenvalues of semi‑infinite quasi‑Toeplitz
matrices

D. A. Bini1 · B. Iannazzo2 · B. Meini1 · J. Meng3 · L. Robol1

Received: 29 March 2022 / Accepted: 15 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
A quasi-Toeplitz (QT) matrix is a semi-infinite matrix of the form A = T(a) + E
where T(a) is the Toeplitz matrix with entries (T(a))i,j = aj−i , for aj−i ∈ ℂ , i, j ≥ 1 ,
while E is a matrix representing a compact operator in �2 . The matrix A is finitely
representable if ak = 0 for k < −m and for k > n , given m, n > 0 , and if E has a finite
number of nonzero entries. The problem of numerically computing eigenpairs of a
finitely representable QT matrix is investigated, i.e., pairs (�, v) such that Av = �v ,
with � ∈ ℂ , v = (vj)j∈ℤ+ , v ≠ 0 , and

∑∞

j=1
�vj�2 < ∞ . It is shown that the problem is

reduced to a finite nonlinear eigenvalue problem of the kind WU(�)� = 0 , where W
is a constant matrix and U depends on � and can be given in terms of either a Van-
dermonde matrix or a companion matrix. Algorithms relying on Newton’s method
applied to the equation det WU(�) = 0 are analyzed. Numerical experiments show
the effectiveness of this approach. The algorithms have been included in the CQT-
Toolbox [Numer. Algorithms 81 (2019), no. 2, 741–769].

Keywords Toeplitz matrices · Eigenvalues · Infinite matrices · Nonlinear eigenvalue
problem · MATLAB · Operators · Spectrum

Mathematics Subject Classification (2010) 15A18 · 15B05 · 47A75 · 65F15 · 65H17

1 Introduction

A quasi-Toeplitz (QT) matrix A is a semi-infinite matrix that can be written as
A = T(a) + E where T(a) = (ti,j)i,j∈ℤ+ is Toeplitz, i.e., ti,j = aj−i for a given sequence
{ak}k∈ℤ , and E is compact, that is, E is the limit of a sequence of semi-infinite matri-
ces Ei of finite rank. Here, convergence means that limi→∞ ‖E − Ei‖s = 0 , where

Dedicated to Claude Brezinski on the occasion of his 80th birthday.

 * J. Meng
 mengjie@ouc.edu.cn

Extended author information available on the last page of the article

Numerical Algorithms (2023) 92:89–118

/Published online: 15 August 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01381-0&domain=pdf

1 3

‖ ⋅ ‖s is the operator norm induced by the vector norm ‖v‖s = (
∑∞

i=1
�vi�s)

1

s , for
v = (vi)i∈ℤ+ , and the value of s ≥ 1 depends on the specific context where the math-
ematical model originates.

Matrices of this kind are encountered in diverse applications related to semi-
infinite domains. For instance, the analysis of queuing models, where buffers have
infinite capacity, leads to QT matrices where the compact correction reproduces the
boundary conditions of the model while the Toeplitz part describes the inner action
of the stochastic process. A typical paradigm in this framework is given by random
walks in the quarter plane. Some references in this regard can be found in the books
[5, 31, 33], and in the more recent papers [29, 35, 36]. Another classical and mean-
ingful example concerns the class of matrices that discretize boundary value prob-
lems by means of finite differences. In this case, the Toeplitz part of the QT matrix
describes the inner action of the differential operator, while the compact correction
expresses the boundary conditions imposed on the differential system. In this frame-
work, it is worth citing the two books [24, 25], which are a relevant reference on
a very close subject concerning Generalized Locally Toeplitz matrices (GLT) and
their applications, where a rich literature is cited.

Computational aspects in the solution of matrix equations with QT matrices in
bidimensional random walk have been recently investigated in [6, 7, 11], while gen-
eralizations including probabilistic models with restarts are analyzed in [8]. Other
applications of QT matrices have been considered in [3, 4, 10], concerning matrix
functions and means, and in [30, 37] concerning Sylvester equations. Important
sources of theoretical properties of QT matrices are given in the books [14, 15],
and [18]. In [9] a suitable Matlab toolbox, the CQT-toolbox, has been introduced
for performing arithmetic operations with QT matrices including the four arithmetic
operations and the more relevant matrix factorizations.

The analysis of the spectrum of Toeplitz matrices subjected to finite rank pertur-
bations (localized impurities) has been performed in several papers in the literature.
We refer in particular to [12] where semi-infinite and bi-infinite Toeplitz matrices
are considered, and to [13] where the case of band matrices of finite but large size,
with the perturbation in the m × m upper-left block, is analyzed. Spectral analysis
of general operators, including the case of QT matrices, with specific attention to
the control of the approximation error and with interesting applications to different
fields, is carried out in [20]. The eigenvalue problem for Jacobi operators, includ-
ing tridiagonal Toeplitz matrices plus a compact correction, is considered in [39],
while in [21] the eigenvalue problem for infinite matrices having a finite number
of nonzero entries in each column is treated by means of an infinite-dimensional
QR iteration. A pseudospectral collocation method for approximating eigenvalues of
evolution operators for linear renewal equations has been considered in [19].

90 Numerical Algorithms (2023) 92:89–118

1 3

1.1 Main results

In this paper, we deal with the computation of the eigenvalues of QT matrices, a
topic that was not covered in the CQT-Toolbox of [9]. Namely, we are interested in
the design and analysis of algorithms for computing the eigenvalues � and the cor-
responding eigenvectors v of a given QT matrix A, that is, v is such that Av = �v and
v ∈ �

s where 1 ≤ s < ∞ . Here �s is the set of vectors x = (xi)i≥1 such that ‖x‖s < ∞ .
For the sake of simplicity, in the following we will set s = 2 and use ‖ ⋅ ‖ to denote
the 2-norm. The attention is restricted to the case where A is finitely representable,
i.e., A = T(a) + E , where T(a) is a band Toeplitz matrix determined by a finite num-
ber of parameters a−m,… , an for m, n > 0 , with a−m, an ≠ 0 , E is a matrix having
infinitely many rows and columns but a finite number of nonzero entries. A matrix
of this kind represents a bounded linear operator from �2 in �2 . We associate with
the matrix A the Laurent polynomial a(z) =

∑n

i=−m
aiz

i.
Recall that the spectrum of a bounded operator A is the set of � ∈ ℂ such that

A − �I is not invertible, and the essential spectrum is the set of � ∈ ℂ such that
A − �I is not Fredholm. We wish to point out that, not all the points of the spectrum
or of the essential spectrum are necessarily eigenvalues of A. Moreover, while for
a Toeplitz matrix A the set of eigenvalues does not contain isolated points and can
be explicitly determined by the image a(�) of the unit circle � through the Laurent
polynomial a(z) and by the winding number of a(z) − � (see [14]), for a general QT
matrix having a nontrivial compact correction the set of eigenvalues may contain a
continuous part and a discrete part, the latter is formed by a set of isolated eigenval-
ues. As an example, see Fig. 1.

We prove that any isolated eigenvalue � of a QT matrix A is the solution of a
finite nonlinear eigenvalue problem of the form

Fig. 1 Isolated eigenvalues
(blue dots) and dense set of
eigenvalues (green area) of
the QT matrix associated with
a(z) = z

−3 − 3z−2 + 2z−1 − 2z + z
2 + 2z3

and with the correction E = (e
i,j) ,

e1,j = −2j , e2,j = −2(10 − j) ,
e3,j = −2 , for j = 1,… , 9 ,
e
i,j = 0 elsewhere

91Numerical Algorithms (2023) 92:89–118

1 3

where W is a q × k constant matrix and U(�) is a k × p matrix-valued function whose
size p and entries depend on � in an implicit way. Here k, q > 0 are integers depend-
ing on the given matrix A, while p is the number of zeros �j , j = 1,… , p of modulus
less than 1 of the Laurent polynomial a(z) − � . It is well known that the value of p
is given by p = m + w where w is the winding number of a(z) − � . Thus, it takes
constant values on each connected component Ω of the set ℂ ⧵ a(𝕋) (see Fig. 2 for
an example). Note that while p depends on � , it is locally constant on ℂ ⧵ a(𝕋) , and
thus we will not write explicitly the dependence on �.

We consider two different forms of U = (ui,j) : the Vandermonde version and the
Frobenius version. In the former version, U can be chosen as the Vandermonde
matrix with entries ui,j = �

i−1
j

 , i = 1,… , k , j = 1,… , p , provided that �i ≠ �j for
i ≠ j . In the latter, U is the truncation to size k × p of the matrix [I;G;G2;…] (we
adopted the Matlab notation where “;” separates block rows of the matrix), where
G = Fp is the p-th power of the p × p companion (Frobenius) matrix F associated
with the monic polynomial s(z) =

∏p

j=1
(z − �j) = zp +

∑p−1

j=0
sjz

j.
This formulation of the problem allows us to detect those components Ω that

constitute continuous sets of eigenvalues (for q < p), and to design numerical algo-
rithms for computing the isolated eigenvalues of A (for q ≥ p) by solving the cor-
responding nonlinear eigenvalue problem. Nonlinear eigenvalue problems have
recently received much attention in the literature. Here we refer to the survey paper
[27], to the subsequent paper [26], to the more recent works [23] and [28], and to the
references therein.

Our algorithms follow the classical approach of applying Newton’s iteration, as
done in [23] and [27], to the scalar equation f (�) = 0 , where f (�) = det(WU(�))
by relying on the Jacobi identity f (�)∕f �(�) = 1∕trace((WU(�))−1WU�(�)) whenever
p = q , or q > p where W is modified to only take p rows into account; this last case
yields eigenvectors that will need to be checked a posteriori against the remaining
q − p equations. Here, the main problem is to exploit the specific features of the

WU(�)� = 0, � ∈ ℂ
p ⧵ {0},

Fig. 2 Connected com-
ponents of ℂ ⧵ a(𝕋) for
the Laurent polynomial
a(z) = 3z−3 − 2z−2 + z

−1 − z − 4z2 − 3z3 .
In green and orange the com-
ponents with winding numbers
1 and 2, respectively. In white
the components with winding
number 0

92 Numerical Algorithms (2023) 92:89–118

1 3

function f (�) through the design of efficient algorithms to compute U(�) and U�(�)
in both the Vandermonde and in the Frobenius formulation. This analysis leads to
the algorithmic study of some interesting computational problems such as comput-
ing the winding number of a(z) − � , or computing the coefficients of the polyno-
mial factor s(z) having zeros of modulus less than 1 together with their derivatives
with respect to � , or computing G = Fp and the derivative of Gj for j = 1, 2,… , with
respect to � . We will accomplish the above tasks by relying on the combination of
different computational tools such as Graeffe’s iteration [34], the Wiener-Hopf fac-
torization of a(z) − � computed by means of the cyclic reduction algorithm [5], and
the Barnett factorization of Fp [1].

The algorithms based on the Vandermonde and on the Frobenius versions require
either the computation of the zeros of the Laurent polynomial a(z) − � and the selec-
tion of those zeros �1,… , �p having modulus less than 1, or the computation of the
coefficients of the factor

∏p

j=1
(z − �j) . In principle, the latter approach is less prone

to numerical instabilities and avoids the theoretical difficulties encountered when
there are multiple or clustered zeros. This fact is confirmed by numerical tests and
analysis.

Our procedure uses Newton’s iteration as an effective tool for refining a given
approximation to an eigenvalue. In order to numerically compute all the eigenvalues
we have combined Newton’s iteration with a heuristic strategy based on choosing as
starting approximations the eigenvalues of the N × N matrix AN given by the leading
principal submatrix of A of sufficiently large size. In fact, we may show that for any
𝜖 > 0 , the �-pseudospectrum of AN gets closer to any isolated eigenvalue of A as N
gets large.

One could argue that a large value of N would provide an approximation of the
isolated eigenvalues of A, directly. Nevertheless, our approach requires only a rough
approximation of the isolated eigenvalues and thus a smaller value of N, followed
by Newton’s iteration, to compute the eigenvalues with the same accuracy. Numeri-
cal experiments show the effectiveness of this approach: examples are shown where
in order to obtain full-precision approximations of the eigenvalues of A from the
eigenvalues of AN would require large values of N (of the order of millions), while
starting Newton’s iteration with the eigenvalues of AN for moderate values of N (of
the order of few hundreds) provides very accurate approximations in few steps. It
is interesting to observe that a similar remark, concerning a different context, i.e.,
spectral factorization performed by means of Newton’s iteration, has been pointed
out in [17, page 4789].

1.2 Paper organization

The paper is organized as follows. In Section 2 we recall some preliminary proper-
ties that are useful in the subsequent analysis. In particular, Section 2.1 deals with
the eigenvalues of T(a) while Section 2.2 deals with the eigenvalues of T(a) + E .
Section 3 concerns the reduction of the original eigenvalue problem for QT opera-
tors to the form of a nonlinear eigenvalue problem for finite matrices in the Frobe-
nius and in the Vandermonde versions. Section 4 concerns further algorithmic

93Numerical Algorithms (2023) 92:89–118

1 3

issues. In particular, an efficient method for computing the winding number of a
Laurent polynomial is designed based on the Graeffe iteration; the problem of com-
puting a factor of the polynomial a(z) − � together with its derivative with respect
to � is analyzed relying on the Barnett factorization and on the solution of a linear
system associated with a resultant matrix; morever, in the same section we prove the
regularity of the function det(WU(�)) to which Newton’s iteration is applied. In Sec-
tion 5 we investigate on the relationships between the isolated eigenvalues of A and
the eigenvalues of AN when N gets large. The results of some numerical experiments
are reported in Section 6. Finally, Section 7 draws the conclusions and describes
some open problems.

The algorithms, implemented in Matlab, have been added to the CQT-Toolbox of
[9]. The main functions are eig_single and eig_all. The former computes a
single eigenvalue of a QT matrix starting from a given approximation, and, option-
ally, an arbitrary number of components of the corresponding eigenvector, the latter
provides the computation of all the eigenvalues. Other related functions integrate the
package. More information, together with the description of other auxiliary func-
tions and optional parameters can be found at https:// numpi. github. io/ cqt- toolb ox
while the software can be downloaded at https:// github. com/ numpi/ cqt- toolb ox.

2 Preliminaries

Let a(z) =
∑n

i=−m
aiz

i be a Laurent polynomial where a−m, an ≠ 0 , and define
T(a) = (ti,j)i,j=1,2,… , ti,j = aj−i , the Toeplitz matrix associated with a(z). Given
a semi-infinite matrix E = (ei,j)i,j=1,2,… , such that ei,j = 0 for i > k1 , or j > k2 ,
the matrix A = T(a) + E represents a bounded linear operator from the set
�
2 = {(vi)i∈ℤ+ ∶ vi ∈ ℂ,

∑∞

i=1
�vi�2 < ∞} to itself. Denote by B(�2) the set of

bounded linear operators from �2 to itself and by � the unit circle in the complex
plane.

Recall that A is invertible if there exists B ∈ B(�2) such that AB = BA = I , where
I is the identity on B(�2) . Moreover, A is Fredholm if there exists B ∈ B(�2) such
that AB − I and BA − I are compact, i.e., A is invertible modulo compact operators.
Recall also that for A ∈ B(�2) the spectrum of A is defined as

while the essential spectrum is defined as

so that spess(A) ⊂ sp(A).
It is well known that for a Laurent polynomial a(z), T(a) is invertible in �s if and

only if a(z) ≠ 0 for z ∈ � and wind(a) = 0 (see [15, Corollary 1.11]), where wind(a)
is the winding number of the curve a(�).

In the case where a(z) is a Laurent polynomial, we may write

sp(A) = {� ∈ ℂ ∶ A − �I is not invertible}

spess(A) = {� ∈ ℂ ∶ A − �I is not Fredholm},

94 Numerical Algorithms (2023) 92:89–118

https://numpi.github.io/cqt-toolbox
https://github.com/numpi/cqt-toolbox

1 3

where a�(z) =
∑n

j=−m
jajz

j−1 is the first derivative of a(z). Notice that wind(a − �) is
constant for � in each connected component Ω of the set ℂ ⧵ a(𝕋) . Consequently, we
have (see [15, Corollary 1.12])

moreover,

We say that (�, v) is an eigenpair (eigenvalue, eigenvector) if Av = �v and
v ∈ �

2 ⧵ {0}.

2.1 Eigenvalues of T(a)

The following results from [15] characterize the eigenpairs of the Toeplitz operator
T(a). In our statements and throughout the paper, we used a slightly different nota-
tion with respect to [15]. Namely, we denote the entries of T(a) as (T(a))i,j = aj−i ,
while in the classical literature they are denoted as (T(a))i,j = ai−j . The reason is that
this notation is more suited to fit the context of Markov chains and queueing models
where these matrices play an important role.

Lemma 1 [15, Proposition 1.20] Let 1 ≤ s ≤ ∞ . For a Laurent polynomial a(z), a point
� ∉ a(�) is an eigenvalue of T(a) as an operator on �s if and only if r ∶= wind (a − 𝜆) > 0 .
Moreover, the kernel of T(a) − �I has dimension r and if v ∈ ker (T(a) − �I) then v is expo-
nentially decaying.

If � ∈ a(�) a similar result can be given. Let �1,… , �q be the distinct zeros of
a(z) − � of modulus 1 and multiplicity �1,… , �q , respectively. Define

so that c(z) is a Laurent polynomial having no zero on � . Then we have the
following.

Lemma 2 [15, Proposition 1.22] Let 1 ≤ s ≤ ∞ . For a Laurent polynomial
a(z), a point � ∈ a(�) is an eigenvalue of T(a) as an operator on �s if and only
if r ∶= wind(c) > 0 . Moreover, the kernel of T(a) − �I has dimension r and if
v ∈ ker (T(a) − �I) then v is exponentially decaying.

Observe that according to the above lemmas, the eigenvalues of T(a) belong to
the set sp (T(a)) , which, in turn, can be explicitly described by means of (2).

(1)wind(a) =
1

2� ∫

2�

0

e�t
a�(e�t)

a(e�t)
dt,

(2)sp(T(a)) = a(𝕋) ∪ {� ∈ ℂ ⧵ a(𝕋) ∶ wind(a − �) ≠ 0},

(3)spess(T(a)) = a(�).

(4)c(z) = (a(z) − �)∕

q∏

j=1

(
1 −

z

�j

)�j

,

95Numerical Algorithms (2023) 92:89–118

1 3

Let Ω be a connected component of the set ℂ ⧵ a(𝕋) . The function wind (a − �) is
constant on Ω , and this means that if the winding number is r > 0 then all the values
� ∈ Ω are eigenvalues of T(a) of (geometric) multiplicity r, while if r ≤ 0 then no
� ∈ Ω is eigenvalue of T(a). We recall Proposition 1.25 from [15].

Lemma 3 If � ∈ a(�) is in the boundary of Ω , and � = wind (a − �) for � ∈ Ω ,
then � ≥ wind(c) , where c(z) is defined in (4).

From the above results it follows that (compare with Corollary 1.26 in [15]) if �
lies on the boundary of Ω such that wind(a − �) ≤ 0 for � ∈ Ω then � cannot be an
eigenvalue of T(a). That is, the eigenvalues of T(a) belong necessarily to those com-
ponents Ω for which wind(a − 𝜆) > 0 and to their boundaries. Therefore T(a) cannot
have isolated eigenvalues.

2.2 Eigenvalues of T(a) + E

From the definition of spectrum and of essential spectrum it follows that

for any compact operator E. In fact, to prove the equality, if A = T(a) + E is
a QT matrix, then A − �I is not Fredholm iff B(A − �I) − I and (A − �I)B − I
are not compact for any bounded operator B. That is, iff B(T(a) − �I) − I + BE
and (T(a) − �I)B − I + EB are not compact. This is equivalent to say that
B(T(a) − �I) − I and (T(a) − �I)B − I are not compact, i.e., T(a) − �I is not
Fredholm.

Another interesting property is given by the following.

Proposition 1 If A = T(a) + E is a QT matrix, then sp(T(a)) ⊂ sp(A).

The above result is an immediate consequence of the following

Lemma 4 If the QT matrix A = T(a) + E is invertible on �s (1 ≤ s ≤ ∞) , then T(a)
is also invertible on �s.

Proof Since A = T(a) + E is invertible, then 0 ∉ sp(A) . This implies
0 ∉ spess(A) = spess(T(a)) = a(�) so that a(z) ≠ 0 for all z ∈ � . To show T(a)
is invertible, it is sufficient to show that the winding number of a(z) is 0, that is,
wind(a) = 0 . To this end, suppose wind(a) = m and m ≠ 0 , then A is a Fredholm
operator and it follows from [38, Theorem 2.8] and [15, Theorem 1.9] that the index
of A is Ind A = IndT(a) = m ≠ 0 . On the other hand, since A is invertible, it follows
that dim Ker A = dim Coker A = 0 , where dim Ker A is the dimension of the kernel
of A and dim Coker A is the dimension of the cokernel of A. It follows from [15,
page 9] that the index of A is Ind A = dim Ker A− dim Coker A = 0 , from which we
get a contradiction. Hence, we must have wind(a) = 0.

spess(T(a)) = spess(T(a) + E) ⊂ sp(T(a) + E)

96 Numerical Algorithms (2023) 92:89–118

1 3

Observe that, in general, � ∈ sp (T(a) + E) does not imply � ∈ sp (T(a)) , as the
following example shows. Denote by trid (�, �, �) the tridiagonal Toeplitz matrix
associated with the Laurent polynomial �z−1 + � + �z . Let T(a) = trid (−2, 5,−2) ,
so that T(a) = UUT , U = trid(0, 2,−1) . Set A = T(a) − 4e1e

T
1
 , where

e1 = [1, 0,…]T , so that A = U diag (0, 1, 1,…)UT . Then 0 ∈ sp (A) since A is not
invertible (but it is Fredholm), while 0 ∉ sp (T(a)) since T(a) is invertible being
U and UT invertible operators. That is, adding a compact correction E to T(a)
there may be eigenvalues of A = T(a) + E not belonging to sp(T(a)).

The following two results are useful for our analysis.

Proposition 2 Let � ∉ a(�) and w = wind (a − �) . Then the Laurent polynomial
a(z) − � has p = m + w zeros of modulus less than 1.

Proof Since a(e�t)� = �e�ta�(e�t) , from (1) we get 1

2��
∫

2�

0

a(e�t)�

a(e�t)−�
dt = w , which

implies that the number p of zeros and the number m̂ of poles of a(z) − � in the open
unit disk are such that p − m̂ = w . Since m̂ = m , it follows p = m + w.

A similar result holds for � ∈ a(�).

Proposition 3 Let � ∈ a(�) and suppose that a(z) − � has q zeros �1,… , �q of
modulus 1 with multiplicities �1,… , �q , let c(z) be the Laurent polynomial in (4).
Then, a(z) − � has p = m + w − (�1 +…+ �q) zeros of modulus less than 1, where
w = wind(c).

3 Computational analysis

In this section, we aim at the design and analysis of numerical algorithms for
computing the eigenvalues of the finitely representable QT matrix A = T(a) + E
belonging to a given connected component Ω of ℂ ⧵ a(𝕋) , together with the corre-
sponding eigenvectors. For the sake of simplicity, the case � ∈ a(�) is not treated
in this paper.

If E = 0 then the spectrum and the essential spectrum of T(a) are explicitly
known (see (2), and (3)). Moreover, an eigenvalue � , together with its multiplic-
ity, can be explicitly characterized in terms of the winding number wind (a − �) ,
if � ∉ a(�) (see Lemma 1). Therefore the case of interest is E ≠ 0.

Recall the following notations: a(z) =
∑n

i=−m
aiz

i , while k1 is the row size of the
non zero part of the correction E. We set q = max(m, k1) , and denote p the num-
ber of zeros of modulus less than 1 of the Laurent polynomial a(z) − � . In view
of Proposition 2 we have p = m + wind(a − �) , moreover p is constant for � ∈ Ω .
Finally, for a given matrix A, we denote by Ar×s the leading principal submatrix
of A of size r × s , i.e., the submatrix formed by the entries in the first r rows and
in the first s columns. If r = s we write Ar in place of Ar×s.

97Numerical Algorithms (2023) 92:89–118

1 3

3.1 Reduction to a nonlinear eigenvalue problem

Consider an eigenpair (�, v) of A = T(a) + E so that u ∶= (A − �I)v = 0 . Observe that
the condition uk = 0 for k ≥ q + 1 can be written as the linear difference equation

whose characteristic polynomial is b(z) = (a(z) − �)zm . The dimension of the space
of solutions of (5) that belong to �2 depends on � and coincides with the number p
of roots of a(z) − � with modulus less than 1. Our two approaches differ in the way
the basis of the latter space is chosen.

If v(j) , j = 1,… , p is a basis of the space of solutions, then we may write the eigen-
vector v as a linear combination of v(j) , i.e., v =

∑p

j=1
�jv

(j) . Therefore, we may say that
(�, v) is an eigenpair for A if and only if v =

∑p

j=1
�jv

(j) and the conditions
u1 = … = uq = 0 are satisfied.

The latter conditions form a nonlinear system in q equations and p unknowns which
can be written as

In fact, � and the p components of � , normalized such that ‖�‖ = 1 , form a set of
p unknowns. It is clear that the system (6) is in the form of a nonlinear eigenvalue
problem (NEP).

This system has a nontrivial solution � for a given � if and only if � is eigenvalue
of A corresponding to the eigenvector v = V(�)� . Notice that, for p > q , this sys-
tem has always a solution since the matrix HV(�) − �Vq×p(�) has more columns
than rows so that ker(HV(�) − �Vq×p(�)) ≠ {0} and the multiplicity of � is given by
p − rank(HV(�) − �Vq×p(�)).

If p = q , (6) provides a balanced nonlinear eigenvalue problem that we are going to
analyze.

If p < q and if the pair (�,�) solves (6), then it solves also the balanced nonlinear
eigenvalue problem

formed by the first p equations of (6). Thus, we may look for solutions (�,�) of (7),
and, if any, we may check if these are also solutions of (6).

We may express the NEP (6) in a more convenient form by using the Toeplitz struc-
ture of T(a). This is the subject of the next section.

3.2 A different formulation

Let Z = (zi,j) be the shift matrix defined by zi,i+1 = 1 , zi,j = 0 elsewhere. Then for
any solution v of the linear difference equation (5), the shifted vector Zk

v is still

(5)
n∑

j=−m

ajvk+j − �vk = 0, k ≥ q + 1,

(6)
HV(�)� = �Vq×p(�)�, H = Aq×∞

V(�) = [v(1), v(2),… , v(p)], � ∈ ℂ
p, wind (a − �) = p − m.

(7)Hp×∞V(�)� = �Vp(�)�,

98 Numerical Algorithms (2023) 92:89–118

1 3

a solution for any k ≥ 0 . Moreover, if v ∈ �
2 then also Zk

v ∈ �
2 , and if v(1) and

v
(2) are linearly independent, then also Zk

v
(1) and Zk

v
(2) are linearly independ-

ent. To show the latter implication, assume that there exists a linear combina-
tion v = �1v

(1) + �2v
(2) ≠ 0 such that Zk

v = 0 . Then, vi = 0 for i ≥ k + 1 . But since
a−m ≠ 0 , we find that vk = … = v1 = 0 , i.e., v = 0 , which is a contradiction.

Therefore, if the columns of V(�) are a basis of the space of the solutions in
�
2 , then also the columns of U(�) = ZmV(�) form a basis of the same space. This

implies that the columns of U(�) are linear combinations of the columns of V(�) .
That is, there exists a non singular p × p matrix S(�) such that U(�) = V(�)S(�)
whence we have ZmV(�) = V(�)S(�).

If we multiply the rows from m + 1 to 2m of the Toeplitz matrix T(a) − �I by V(�) we get

Observing that V(�) = [Vm×p(�);Z
mV(�)] , we may rewrite the identity as

Since ZmV(�) = V(�)S(�) , we get

On the other hand, relying once again on the property ZmV(�) = V(�)S(�) , we find that

so that

The possibly nonzero rows of the matrix M are the first q = max(m, k1) rows, which
form the q ×∞ matrix N = Mq×∞ , i.e., M = [N;0] . It is interesting to observe that
the matrix EZm is obtained by shifting the columns of E to the right of m places.
This implies that the matrix N takes one of the following forms

⎡
⎢
⎢⎣

a−m … a−1 a0 − � a1 … a
n

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

a−m ⋯ a−1 a0 − � a1 ⋯ a
n

⎤
⎥
⎥⎦
V(�) = 0.

�
B (T(a) − �I)m,∞

�� Vm×p(�)

ZmV(�)

�
= 0, B =

⎡
⎢
⎢⎣

a−m … a−1
⋱ ⋮

a−m

⎤
⎥
⎥⎦
.

(T(a) − �I)V(�) =

[
−B

0∞×m

]
.V

m×p(�)S(�)
−1

(A − �I)V(�) = −

[
B

0∞×m

]
V
m×p(�)S(�)

−1 + EV(�)

=

(
−

[
B 0

m×∞

0∞×m 0∞×∞

]
V(�) + EZ

m
V(�)

)
S(�)−1

(8)(A − �I)V(�) = MV(�)S(�)−1, M =

[
−B 0m×∞
0∞×m 0∞×∞

]
+ EZm.

N =

[
−B E1

0(q−m)×m E2

]
, N =

[
−B E1

]
,

99Numerical Algorithms (2023) 92:89–118

1 3

depending on whether q > m or q = m , respectively, where E = [E1;E2] , and E1
has size m ×∞ while E2 has size (q − m) × ∞ . In other words, the submatrices E
and B do not overlap. This fact allows us to rewrite (6) as a set of q equations in p
unknowns in the more convenient form

Another observation is that multiplying equation (9) on the left by any invertible
matrix provides an equivalent formulation of the NEP@. In particular, if q > m ,
consider the rank revealing QR factorization E2 = QR of the matrix E2 , assume that
rank(E2) = r2 and denote R̃ the r2 ×∞ matrix formed by the first r2 rows of R so that
R = [R̃;0] and we may write E2 = Q[R̃;0(q−m−r2)×∞].

Multiplying (9) to the left by diag (Im,Q∗) , where Q∗ is the transposed Hermitian of Q, yields

Observe that W is a constant matrix of full rank, with m + rank(E2) = m + r2 rows,
while V(�) is a matrix depending on � . The eigenvalue problem for QT matrices is
reduced to the NEP (10) which can take different forms according to the way a basis
of the solution of the difference equation (5) is chosen.

We may conclude with the following result.

Theorem 1 Let Ω be a connected component of the set ℂ ⧵ a(𝕋) , let � ∈ Ω and
p = m + wind(a − �) . Let V(�) be a matrix whose p columns form a basis of the space of
solutions of the difference equation (5) belonging to �2 . If p > q then all � ∈ Ω are eigen-
values of T(a) + E . If p ≤ q then � ∈ Ω is eigenvalue of A = T(a) + E corresponding to
the eigenvector v ∈ �

2 iff there exists � ∈ ℂ
p ⧵ {0} which solves the nonlinear eigenvalue

problem WV(�)� = 0 of (10). In this case, v = ZmV(�)�.

In what follows, without loss of generality, we assume that the nonlinear eigenvalue
problem is balanced. This case is encountered if p = q or if p < q where we consider
the subset of the first p equations in (10).

3.3 Choosing a basis: Vandermonde and Frobenius versions

Let the zeros �i of a(z) − � be simple and ordered as

and let V(�) = (�i−1
j

)i∈ℤ+,j=1,…,p be the ∞× p Vandermonde matrix associated with
�1,… , �p . The columns v(1),… , v(p) of V(�) provide a basis of the set of solutions of
the difference equation (5) that belong to �2 , so that v is an eigenvector of A corre-
sponding to � if and only if there exists � = (�i) ∈ ℂ

p ⧵ {0} such that v =
∑p

j=1
�jv

(j)

(9)NV(�)� = 0, N =

[
−B E1

0(q−m)×m E2

]
, � = S(�)−1�.

(10)WV(�)� = 0, W =

[
−B E1

0r2×m R̃

]
, v = V(�)S(�)� = ZmV(�)�.

|𝜉1| ≤ ⋯ ≤ |𝜉p| < 1 ≤ |𝜉p+1| ≤ ⋯ ≤ |𝜉m+n|,

100 Numerical Algorithms (2023) 92:89–118

1 3

and (6) is satisfied. The same argument can be applied in the case of confluent zeros
considering a generalized Vandermonde matrix.

The formulation (10) where V(�) is the (generalized) Vandermonde matrix associ-
ated with the roots �i of a(z) − � is referred to as the Vandermonde version of the prob-
lem. It is well known that the zeros of a polynomial are severely ill-conditioned if they
are clustered. This may make the choice of the basis v(i) , given by the columns of the
Vandermonde matrix, unsuited in some problems. A way to overcome this issue is to
consider the Frobenius version of the NEP obtained in the following way.

For the sake of notational simplicity, in the following we write V in place of V(�) . For
simple roots, write the Vandermonde matrix V in the form V = [Vp;VpD

p;VpD
2p;…] ,

with D = diag(�1,… , �p) , and define U ∶= VV−1
p

 . Recall that VpD
pV−1

p
= Fp , where

F = Zp − ep[s0, s1,… , sp−1] denotes the companion (Frobenius) matrix associated with
the polynomial s(z) = (z − �1)⋯ (z − �p) =

∑p−1

i=0
siz

i + zp , see for instance [5]. Here,
ep = [0,… , 0, 1]T ∈ ℝ

p . For multiple roots, a similar construction can be made with the gen-
eralized Vandermonde matrix and where D is a block diagonal matrix whose diagonal blocks
are Jordan blocks associated with the distinct roots of a(z) − � having modulus smaller than 1.

Denote G ∶= Fp so that the columns of U = VV−1
p

= [I;G;G2;…] provide a dif-
ferent basis of the set of solutions of the linear difference equation (5). The NEP
(10) can be equivalently rewritten as

We refer to (11) as the Frobenius version of the problem. Observe that in the Frobe-
nius form, it is not relevant if the roots of a(z) − � are multiple or numerically clus-
tered, in fact the matrix G = Fp exists and can be computed independently of the
location of the roots of s(z).

Notice that if m + r2 = p , then the matrix W can be partitioned into p × p blocks as
W = [W0,W1,W2,…] and WU can be rewritten in terms of a matrix power series as
WU =

∑∞

i=0
WiG

i . The following result provides information in this regard [5, Chapter 3].

Theorem 2 Assume that a(z) =
∑n

i=−m
aiz

i , where a−m, an ≠ 0 , has roots �i ,
i = 1,… ,m + n such that |𝜉1| ≤ ⋯ ≤ |𝜉p| < 1 ≤ |𝜉p+1| ≤ … ≤ |𝜉m+n| and denote
s(z) =

∏p

i=1
(z − �i) . Define Ak = (aj−i+kp−m+p)i,j=1,p for k = −1, 0, 1,… where we

assume a
�
= 0 if � < −m or � > n . Let F be the Frobenius matrix associated with

the factor s(z). Then G = Fp is the unique solution of the matrix equation

having minimum spectral radius �(G) , moreover, �(G) = |�p|.

Notice that the blocks Ak defined in the above theorem are obtained by partitioning the Toe-
plitz matrix T

(
zm−pa(z)

)
 into p × p blocks which are themselves Toeplitz. Moreover, since

T
(
zm−pa(z)

)
 is a banded matrix, then Ak = 0 for k sufficiently large. In the literature, there are

several effective algorithms for the numerical computation of G, based on fixed point iterations
or on doubling techniques. We refer the reader to [2, 5, 16], and [17], for more details.

(11)WU� = 0, v = ZmU�,

(12)
∞∑

k=−1

AkX
k+1 = 0,

101Numerical Algorithms (2023) 92:89–118

1 3

4 The numerical algorithms

In this section we describe our algorithms to refine a given approximation of an
eigenvalue � of A = T(a) + E , while in Section 5 we will discuss how to get the
initial approximation. The algorithms require: a function g(x) ∶ ℂ → ℂ such that the
fixed point iteration �

�+1 = g(�
�
) converges locally to the eigenvalue � , solution of

the NEP (10), and a choice of the basis V(�) of the solutions of (5) belonging to �2.
The general scheme is reported in the Template Algorithm 1. This algorithm,

for an initial approximation �0 ∈ Uw ∶= {� ∈ ℂ ⧵ a(𝕋) ∶ wind (a − �) = w} of
the eigenvalue, provides either a more accurate approximation to the corresponding
eigenpair, or a message with the following possible cases: 1) all the elements in the
set Uw are eigenvalues; 2) the generated sequence exited from Uw ; 3) it holds p < q
and the approximated solution solves the first p equations but not the full NEP (10);
4) convergence did not occur after the maximum number of allowed iterations.

Now, we deal with algorithmic issues encountered in the design of the fixed point
iterations to solve the nonlinear eigenvalue problem (10). This analysis is needed to
design algorithms to implement the function g(x) used in the Template Algorithm 1.

We essentially analyze Newton’s iteration applied to the determinantal versions of the
problem, that is, det(WV) = 0 , det(WU) = 0 , in the Vandermonde and in the Frobenius
forms, respectively. Before doing that, we discuss on how to compute the winding number
of a(z) − � , since this is a fundamental step in the design of the overall algorithm.

4.1 Computing the winding number

The winding number w of the Laurent polynomial a(z) − � can be computed in dif-
ferent ways. The most elementary one is to express w as w = p − m , where p is the
number of zeros of a(z) − � of modulus less than 1. Any root-finding algorithm
applied to the polynomial zm(a(z) − �) can be used for this purpose, for instance, the

102 Numerical Algorithms (2023) 92:89–118

1 3

command roots of Matlab provides approximations to all the roots of zm(a(z) − �) ,
and we may count how many roots have modulus less than 1. This approach has the
drawback that polynomial roots are ill-conditioned when clustered, so that we may
encounter instability if there are clusters of roots of modulus close to 1.

A second approach is based on equation (1) that expresses w as ratio of two integrals.
The integrals can be approximated by the trapezoid rule at the Fourier points using two
FFTs. In this case, the presence of roots of the polynomial close to the unit circle may lead
to a large number of Fourier points with a consequent slow down of the CPU time.

A third approach, which is the one we have implemented, relies on Graeffe’s iteration
[34], which is based on the following observations. Given a polynomial b(z) of degree
m + n , the polynomial c(z) = b(z)b(−z) is formed by monomials of even degree, i.e., there
exists a polynomial b1(z) of degree m + n such that b1(z2) = c(z) . Therefore, the roots of
b1(z) are the square of the roots of b(z). Consider the sequence defined by the Graeffe itera-
tion bk+1(z2) = bk(z)bk(−z) with initial value b0(z) = b(z) . It turns out that the winding
number of bk(z) is constant. Moreover, if b(z) has m zeros of modulus less than 1 and n
zeros of modulus greater than 1, then the limit for k → ∞ of bk(z)∕�k is zm . Here �k is the
coefficient of maximum modulus of bk(z) . This means that there exists an index k such that
the coefficient of zm in bk(z) has modulus greater than 1

2
‖bk(z)‖1 , where ‖bk(z)‖1 is the sum

of the moduli of all the coefficients of bk(z) . In view of Rouché theorem, the latter inequality
is a sufficient condition to ensure that bk(z) has m roots of modulus less than 1.

Indeed, if there are zeros of modulus 1 then this procedure might not terminate.
Therefore, if the number of Graeffe iterations exceeds a given upper bound, then the
explicit computation of the polynomial roots is performed. These arguments support
Algorithm 2 for counting the number of roots of a polynomial of modulus less than 1.

4.2 Implementing Newton’s iteration

In this section we analyze the computational issues concerning the implementation of
Newton’s iteration applied either to fV (�) = det�V (�) , where �V (�) = WV(�) in the
Vandermonde approach, or to fF(�) = det�F(�) , where �F(�) = WU(�) in the Frobe-
nius approach. We use the symbol �(�) to denote either �V (�) or �F(�) , similarly we
do for f (�) . In all cases, �(�) is assumed to be a p × p matrix. This is true if q = p ,
and also in the case where q > p when we consider only the first p rows of WV(�) or of
WU(�).

103Numerical Algorithms (2023) 92:89–118

1 3

Since U(�) = V(�)V−1
p

 then we have �V (�) = �F(�)Vp so that fV (�) = fF(�) detVp(�) .
We recall that if the function f (�) has continuous second derivative, then Newton’s method
applied to the equation f (�) = 0 , given by z

�+1 = z
�
− f (�

�
)∕f �(�

�
) , locally converges to a

zero of f (�) . The convergence is at least quadratic if the zero is simple, it is linear if the zero is
multiple. If �(�) has entries with continuous second derivative, then also f (�) = det�(�) has
continuous second derivative and for the Newton’s correction f (�)∕f �(�) we have

A simple calculation shows that if �(�) = P(�)Q(�) then

In particular, since U(�) = V(�)Vp , assuming fF(�) and fV (�) differentiable, we have

4.2.1 Vandermonde version

In order to apply Newton’s iteration in the Vandermonde version, we have to assume
that the roots �i(�) of the polynomial a(z) − � have continuous second derivative. It
is well known that if the coefficients of a polynomial p

�
(z) of degree � are analytic

functions of � , and if for a given �0 the polynomial has simple roots �1,… , �
�
 , then

for � in a neighborhood of �0 , there exist �1(�),… , �
�
(�) analytic functions that are

roots of p
�
(z) and �i(�0) = �i , for i = 1,… , � . Indeed, the polynomial zm(a(z) − �)

has coefficients that are analytic for � ∈ ℂ , therefore �i(�) are analytic functions as
long as the zeros remain simple. In this subsection we assume this condition.

In order to compute the Newton correction by means of (13) we need to compute
the entries of the Vandermonde matrix V(�) . Therefore we assume we are given a
polynomial rootfinder which approximates the roots of zm(a(z) − �) so that we may
select the p roots of modulus less than 1. For this task we rely on the Matlab com-
mand ‘roots’. Then we need to compute V �(�) , i.e., the derivative of the entries of
V(�) . Concerning this task we have (�i

j
)� = i�i−1

j
�
�
j
 . Moreover, since a(�j) − � = 0 ,

taking the derivative of this equation yields a�(�j)��j − 1 = 0 , whence ��
j
= 1∕a�(�j) .

Therefore, we are able to implement the Newton iteration where the Newton correc-
tion takes the form (13) with (V �(�))i,j = (i − 1)�i−2

j
∕a�(�j).

4.2.2 Frobenius version

Consider the case �(�) = WU(�) , where U(�) is the matrix defined in Section 3.3.
In order to evaluate the Newton correction, we have to compute the matrix G of
minimal spectral radius which solves the matrix equation (12), then evaluate, the
powers Gj and their derivatives (Gj)� , for j ≥ 0.

Firstly, we discuss on how to compute G. This matrix can be obtained by the coef-
ficients of the polynomial s(z) collecting the zeros of a(z) − � of modulus less than 1,
which yields the Frobenius matrix F and in turn G = Fp . In our implementation we

(13)f (�)∕f �(�) = 1∕trace(�(�)−1��(�)).

(14)f (�)∕f �(�) = 1∕
(
trace(P(�)−1P�(�)) + trace(Q(�)−1Q�(�))

)
.

fF(�)∕f
�

F
(�) = fV (�)∕f

�

V
(�) + trace(Vp(�)

−1V �

p
(�)).

104 Numerical Algorithms (2023) 92:89–118

1 3

compute directly the matrix G as the solution of minimal spectral radius of equation
(12) (compare Theorem 2). For this task, the algorithm of Cyclic Reduction, having
a quadratic convergence, can be effectively applied [2]. It is worth pointing out that
the first row of −G contains the coefficients s0,… , sp−1 of the sought monic factor
s(z), so that these coefficients are known once the matrix G has been computed.

Secondly, we show how to compute the derivative of the coefficients s0,… , sp−1 of s(z)
with respect to � . The polynomial zm(a(z) − �) can be factorized as zm(a(z) − �) = s(z)u(z) ,
where u(z) has zeros of modulus greater than or equal to 1, and s(z) has zeros of modulus
less than 1. Therefore, setting p̂ = m + n − p , we have the equation

Denote by U and S the two matrices in the above equation and observe that they
have size (m + n + 1) × (p + 1) and (m + n + 1) × (p̂ + 1) . Since sp = 1 and up̂ = an ,
then s�

p
= u�

p̂
= 0 . Set u = [u1,… , up̂]

T , s = [s0,… , sp]
T . Taking derivatives with

respect to � , and denoting em+1 the vector with null components except the (m + 1)-st
which is 1, yields the system −em+1 = Us

� + Su� which can be rewritten as

where ŝ = [s0,… , sp−1]
T , û = [u0,… , up̂−1]

T , and Û and Ŝ are the matrices obtained
from U and S, respectively, by removing the last column and the last row. This is a
system formed by m + n equations and m + n unknowns. Moreover, the matrix [Û, Ŝ]
is invertible since it is a resultant matrix associated with polynomials having no
zeros in common. Therefore we have

Thirdly, we explain how to compute G′ using the derivatives of s0,… , sp−1 . We
rely on the Barnett factorization [1] that provides an LU factorization of the matrix
G = Fp:

(15)

⎡
⎢
⎢
⎢
⎢⎣

a−m
⋮

a0 − �

⋮

an

⎤
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

u0
u1 u0
⋮ ⋱ ⋱

up̂ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ u0
⋱ ⋱ u1

⋱ ⋮

up̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

s0
s1
⋮

sp

⎤
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

s0
s1 s0
⋮ ⋱ ⋱

sp ⋱ ⋱ ⋱

⋱ ⋱ ⋱ s0
⋱ ⋱ s1

⋱ ⋮

sp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

u0
u1
⋮

up̂

⎤
⎥
⎥
⎥⎦

.

(16)[Û, Ŝ]

[
ŝ
�

û
�

]
= −em+1,

[
ŝ
�

û
�

]
= −[Û, Ŝ]−1em+1.

(17)Fp = −L−1
U, L =

⎡
⎢
⎢
⎢⎣

sp
sp−1 sp
⋮ ⋱ ⋱

s1 … sp−1 sp

⎤
⎥
⎥
⎥⎦

, U =

⎡
⎢
⎢
⎢⎣

s0 s1 … sp−1
s0 ⋱ ⋮

⋱ s1
s0

⎤
⎥
⎥
⎥⎦

,

105Numerical Algorithms (2023) 92:89–118

1 3

where L and U are lower triangular and upper triangular Toeplitz matrices, respec-
tively. Applying the Barnett factorization (17) to our problem, we have

where L′ and U′ are the derivatives of L and U , respectively, that are determined by
the derivative s′

j
 , j = 0, 1,… , p . We may observe that the cost of computing (Fp)� by

means of (18) amounts to O(p3) arithmetic operations which, due to the triangular
Toeplitz structure and to the fast algorithms for triangular Toeplitz matrix inversion
and for Toeplitz-vector multiplication can be lowered to O(p2 log p).

Finally, we discuss on how to compute Gj and (Gj)� given G′ . From the relation
Gj = Gj−1G we obtain (Gj)� = (Gj−1)�G + Gj−1G� . This expression allows us to com-
pute (Gi)� and Gi for i = 1,… , k according to the following equations

Clearly, the cost of this computation is 2(k − 1) matrix multiplications and k − 1
matrix additions, for an overall cost of 2(k − 1)p3 + O(kp2) arithmetic operations.

In our implementation, we have adopted the algorithm based on the Barnett fac-
torization for its simplicity, but other effective techniques can be used. For instance,
a different approach is based on the structure of F and on the fact that F� = −eps

�T .
Indeed, (Fk)� is such that (Fk)� = (Fk−1)�F + Fk−1F�, F� = −eps

�T . This implies that

where f 0 = −ep . A careful computational analysis shows that this computation can
be performed in O(p2) arithmetic operations.

A slightly different approach can be carried out as follows. Recall that the last
row of F is −sT and that F� = −eps

�T . Given s and s′ , write

where v
�
= F�

ep . Observe that the vector v
�
 is such that v

�
=
[
0… 0�p … �p−�

]T
,

with �p = 1 and �p−� = −
∑�

h=1
sp−h�p−�+h , for � = 1,… , p − 1 . For the rows

r
T
1
,… , rT

p
 of (Fp)� we have

and rT
1
= �ps

�T = s
�T . The cost of the procedure is given by the computation of

�1,… , �p that requires p2 − p operations, and the recursion for rT
1
,… , rT

p
 that

requires about 4p2 operations.

(18)(Fp)� = −L−1
U
� + L

−1
L
�
L
−1
U,

Gi = GGi−1

(Gi)� = (Gi−1)�G + Gi−1G� i = 2,… , k.

(Fk)� = (Fk−1)�F + f k−1s
�T , f k = Ff k−1, k = 1,… , p,

(Fp)� = −

p−1∑

�=0

Fp−1−�
eps

�TF� = −

p−1∑

�=0

vp−1−�s
�TF� ,

r
T
𝓁
=�p−𝓁+1s

�T + r
T
𝓁−1

F

=�p−𝓁+1s
�T + (Fp)�

𝓁−1,p
s
T + [0 (Fp)�

𝓁−1,1
⋯ (Fp)�

𝓁−1,p−1
], 𝓁 = 2,… , p

106 Numerical Algorithms (2023) 92:89–118

1 3

4.2.3 Convergence of Newton’s iteration

We have seen that in the Vandermonde formulation, the function fV (�) is holomor-
phic in ℂ ⧵ a(𝕋) as long as the roots of the Laurent polynomial a(z) − � are simple.
Here we prove that the function fF(�) is holomorphic in ℂ ⧵ a(𝕋) under no addi-
tional condition. We rely on the implicit function theorem for functions of complex
variable given in the following form [22, Theorem 15].

Theorem 3 Let F ∶ V ⊂ C
k × C

q
→ C

q be a holomorphic mapping such that the
linear mapping �F

�w
(z0,w0) ∶ C

q
→ C

q is invertible, where (z0,w0) ∈ V . Then there
are neighborhoods U and A , (z0,w0) ∈ U , z0 ∈ A , and a holomorphic mapping
g ∶ A → ℂ

q , such that F(z,w) = F(z0,w0) if and only if w = g(z) for (z,w) ∈ U.

Observe that for � ∈ Ω the winding number of a(z) − � is constant, where Ω is
a connected component of ℂ ⧵ a(𝕋) . Therefore, the polynomial zm(a(z) − �) has
p = m + w roots of modulus less than 1 and p̂ = m + n − p roots of modulus greater
than 1. Thus, there exists the Wiener-Hopf factorization zm(a(z) − �) = s(z)u(z) ,
where s(z) is the monic polynomial of degree p, with coefficients si , i = 0,… , p ,
having roots of modulus less than 1, while u(z), of degree p̂ and coefficients
ui , i = 0,… , p̂ , has roots of modulus greater than 1. Consider the function
F(�;s0,… , sp−1, u0,… , up̂) = Us − â = Su − â , where s = (s0,… , sp−1, 1)

T ,
u = (u0,… , up̂)

T , â = (a−m,… , a−1, a0 − �, a1,… , an)
T , and where the matrices U

and S are defined in (15). The function F is defined in ℂ × ℂ
m+n+1 and takes values in

ℂ
m+n+1 . A direct computation shows that the matrix of partial derivatives of F with

respect to si and to uj is given by [Ũ, S] , where Ũ is the matrix obtained by removing
the last column of U. This matrix is invertible since its last row is [0,… , 0, 1] and
the leading principal submatrix of size m + n coincides with [Û, Ŝ] in (16) that is
invertible.

Therefore, we may apply Theorem 3 to the function F with k = 1 , q = m + n + 1 ,
where F(z0,w0) = 0 , and conclude with the following result.

Theorem 4 Let Ω be any connected component of ℂ ⧵ a(𝕋) . Then, for � ∈ Ω the
function fF(�) = det�F(�) is holomorphic.

5 Choosing the initial approximation

The algorithms presented in the previous sections can be used for refining a given
approximation to an isolated eigenvalue of a QT matrix A, once an initial approxi-
mation is available. In this section, we investigate the problem of determining initial
approximations to each isolated eigenvalue of A. More specifically, we show that, if
A is Hermitian then for any isolated eigenvalue � of A, and for any 𝜖 > 0 there exists
an integer N and an eigenvalue � of the N × N leading principal submatrix AN (finite
section) of A such that |� − �| ≤ � . That is, for each isolated eigenvalue � of A we

107Numerical Algorithms (2023) 92:89–118

1 3

may find a sufficiently close approximation to � among the eigenvalues of the N × N
matrix AN for a sufficiently large value of N.

For non-Hermitian matrices we have a weaker result: we show that for
any eigenvalue � of A and for any positive � , there exists N0 > 0 such that
for any N ≥ N0 , � belongs to the �-pseudospectrum sp

�
 of AN defined as

sp
�
(AN) = {z ∈ ℂ ∶ ‖(AN − zI)−1‖ ≥ �

−1}.
This fact enables us to implement a heuristic approach that, given A, selects a

sufficiently large value of N, computes all the eigenvalues of AN and applies to each
eigenvalue of AN one of the fixed point methods described in the previous section,
and finally selects the values for which the numerical convergence occurs.

Since we do not have an explicit formal relation between � and N, and since we
do not have a theoretical bound to the radius of the convergence neighborhood of
Newton’s iteration, this strategy remains a heuristics approach. Nevertheless, from
our implementation and from the experiments that we performed, this strategy turns
out to be practically effective.

5.1 The case of Hermitian matrices

If A is Hermitian then the Bauer-Fike theorem provides a helpful tool to show that
the isolated eigenvalues of A can be approximated by the eigenvalues of AN.

Let A = T(a) + E be a QT matrix, a(z) =
∑n

j=−m
ajz

j , E compact correction with
support h1 × h2 , i.e., its entries outside the leading h1 × h2 submatrix are zero. Let
AN be the N × N leading principal submatrix of A. Let Av = �v be such that � is an
isolated eigenvalue of A and v = (vi) has exponential decay, i.e., limj |vj|

1

j = � for
0 < 𝜉 < 1 , and

∑
j �vj�2 = 1 . Denote by Y ∈ ℂ

n×n the lower triangular Toeplitz matrix
whose first column is (an,… , a1)

T . Due to the exponential decay of vi , for any 𝜖 > 0
there exists N0 > 0 such that for any N ≥ N0 it holds that ‖YwN‖ ≤ ‖Y‖ ‖wN‖� ,
where wN = (vN+1,… , vN+n)

T.
If N > max(m, n, h1, h2,N0) set vN = (v1,… , vN)

T , uN = [0N−n;YwN] and rewrite
the condition Av = �v as

Defining CN =
1

v
∗
N
vN

uNv
∗
N

 , we may rewrite (19) as (AN + CN)vN = �vN . That is, � is
eigenvalue of an N × N matrix which differs from AN by the correction CN . Observe
also that the matrix CN satisfies the inequality ‖CN‖ ≤

1

‖vN‖
‖Y‖ ⋅ ‖wN‖ ≤

1

‖vN‖
�.

That is, we may look at an isolated eigenvalue � of A as an eigenvalue of a finite
matrix obtained by perturbing the finite matrix AN . Therefore we may invoke the
classical perturbation theorems for eigenvalues of finite matrices. For instance we
can apply the Bauer-Fike theorem.

Theorem 5 (Bauer-Fike) Let A be a diagonalizable matrix, i.e., there exists
S such that S−1AS = D , D diagonal, and let ‖ ⋅ ‖ be an absolute norm. Then,
for any eigenvalue � of A + C there exists an eigenvalue � of A such that
�� − �� ≤ ‖C‖ ⋅ ‖S‖ ⋅ ‖S−1‖.

(19)ANvN + uN = �vN .

108 Numerical Algorithms (2023) 92:89–118

1 3

Observe that the p-norms are absolute, i.e., ‖v‖ = ‖(�vi�)‖ for any v = (vi).
Therefore, if A is Hermitian, then AN is Hermitian and consequently S can be

chosen to be unitary so that for the 2-norm we have ‖S‖ = ‖S−1‖ = 1 and by the
Bauer-Fike theorem we may conclude that for any eigenvalue � of AN + CN , that
is for any isolated eigenvalue � of A, there exists an eigenvalue �N of AN such that
�� − �N� ≤ ‖CN‖ ≤ �∕‖vN‖ . Therefore, |�N − �| → 0 exponentially with N.

5.2 The general case

The case of nonsymmetric matrices seems more tricky. In fact, the Bauer-Fike theo-
rem can be still applied if AN is diagonalizable but the bound turns into

where S−1
N
ANSN = D is a diagonal matrix. Therefore, in this case we need that AN

be diagonalizable and that limN ‖wN‖ ⋅ ‖SN‖ ⋅ ‖S−1N ‖ = 0 . This condition is satisfied
if, say, the condition number ‖SN‖ ⋅ ‖S−1N ‖ is uniformly bounded from above by a
constant.

Unfortunately, the condition number of SN may grow very fast with N. Think
for instance to the tridiagonal matrix trid(1∕2, 0, 2) = D̂−1trid(1, 0, 1)D̂ where
D̂ = diag(1, 2, 22,… , 2N−1) , having SN = QND̂ as eigenvector matrix with Q orthog-
onal. Clearly cond (SN) = cond (D̂) = 2N−1.

On the other hand, from (19) we find that if � is not eigenvalue of AN , then
(AN − �I)−1uN = −vN , that is, ‖(AN − �I)−1‖ ≥ ‖vN‖∕‖uN‖ ≥ ��

−1 for some con-
stant 𝛾 > 0 . This implies that � ∈ sp

�−1�
(AN) for any N > N0.

Therefore, we may say that for any eigenvalue � of the QT matrix A and for any
𝜖 > 0 there exists an integer N0 such that for any N ≥ N0 the matrix AN has an �
-pseudo eigenvalue � equal to � . This fact motivates using the eigenvalues of AN , for
sufficiently large values of N, as starting approximations for Newton’s iteration.

6 Implementation and numerical results

We have implemented the algorithms described in the previous sections in Mat-
lab and added them to the CQT-Toolbox of [9]. The functions allow the compu-
tation in high precision arithmetic relying on the package Advanpix, see https://
advan pix. com. The main functions are eig_single and eig_all. The func-
tion eig_single computes the approximation of a single eigenvalue by relying
on Newton’s iteration, in both the Vandermonde and the Frobenius version, start-
ing from a given approximation �0 . The function eig_all computes approxi-
mations to all the eigenvalues starting from the eigenvalues of the matrix AN for
N = � max(h1, h2,m + n) , where � is a small constant that can be set by the user,
by default � = 3 . The iterations are halted if the modulus of the difference between
two subsequent approximations is less than 103u , where u is the machine precision,

��N − �� ≤
‖wN‖
‖vN‖

‖Y‖ ⋅ ‖SN‖ ⋅ ‖S−1N ‖

109Numerical Algorithms (2023) 92:89–118

https://advanpix.com
https://advanpix.com

1 3

and if this value is not smaller than the value obtained at the previous step. After the
halting condition is satisfied, a further Newton step is applied to refine the approxi-
mation. The iterations are halted with the failure flag if wind(�k) ≠ wind(�k−1) for
some k or if |�k| is larger than ‖A‖∞ or if the maximum number of 20 iterations has
been reached. For detailed information, including the description of other auxiliary
functions and optional parameters, see https:// numpi. github. io/ cqt- toolb ox, while
one can download the software at https:// github. com/ numpi/ cqt- toolb ox.

6.1 The tests

We have performed several tests to validate our algorithms. Here, we describe the results
of the most meaningful ones. In the following, we denote by am and ap two vectors such
that am= [a0, a−1,… , a−m] and ap= [a0, a1,… , an] , where a(z) =

∑n

i=−m
aiz

i is the
Laurent polynomial associated with the QT matrix A = T(a) + E . We refer to Algorithm
V for the Vandermonde approach and Algorithm F for the Frobenius approach. The tests
have been run on a laptop with Intel I5 CPU and with Matlab version R2021b.

In Test 1 we have set m = 3 and n = 2 , where am= [0,−1, 1,−1] , ap= [0,−1,−1] .
We have applied two kinds of corrections, namely, the 20 × 100 matrix E2 hav-
ing null entries except the last column which is equal to [1, 2, 3,… , 20]T , and the
3 × 100 matrix E1 having null entries except in the last column which is equal to
8[1, 2, 3]T . We refer to these two corrections as Case 1 and Case 2, respectively.

In Test 2 we have set m = 7 and n = 2 where am= [0,−1, 1,−1, 0, 0, 0, 1] ,
ap= [0,−1,−1] . We have applied two kinds of corrections, namely, E1 and E2 ,
where E1 is the same as in Test 1, while E2 has size 7 × 100 with null entries except
the last column which is equal to 8[1, 2, 3,… , 7]T . We refer to these two corrections
as Case 1 and Case 2, respectively.

Test 3 has been designed in order to show that the Vandermonde approach may
strongly suffer of numerical instability when the characteristic equation a(z) − � = 0
has some clustered roots that, consequently, are ill-conditioned. For this test, we
have constructed a(z) in terms of a Mignotte-like polynomial [32]. More precisely,
we set a(z) = z−mb(z) , where b(z) is of the form b(z) = (10−1 + z)3 + 10zn+m . This
polynomial has a very tight cluster of 3 zeros close to 10−1 . In our test we set m = 10
and n = 2 and E = 10−5[012, I12].

In all the three tests the matrix A is not symmetric.

6.2 Details on the implementation

The algorithms have been applied in the double precision floating point arithmetic.
The basins of attraction have been constructed as follows. A generic point in the pic-
ture, corresponding to the complex number �0 has been colored with a color depend-
ing on the limit of the sequence generated by fixed point iteration �k+1 = g(�k) for
k ≥ 0 . Different colors, randomly generated, have been used for different limits. Dif-
ferent levels of gray have been used to denote that the iteration has been halted with

110 Numerical Algorithms (2023) 92:89–118

https://numpi.github.io/cqt-toolbox
https://github.com/numpi/cqt-toolbox

1 3

no convergence. The color light green has been used for the values �0 belonging to a
continuous set of eigenvalues.

6.3 The results

In the figures where the eigenvalues are reported, red circles indicate the eigenvalues
of the finite section AN , blue dots represent isolated eigenvalues of A, while red cir-
cles containing a green dot represent eigenvalues of AN that belong to a continuous
set of eigenvalues. The light blue curve denotes the set a(�) . In Fig. 4 displaying the
basins of attraction, the light green area indicates a continuous set of eigenvalues.
For this set of figures, Algorithm V has been applied.

Figure 3 displays the eigenvalues of A + E1 , for the matrix of Test 1, and the
basins of attraction of Newton’s iteration, together with a zoom of a specific area.

Figure 4 displays the analogous images for the matrix A + E2 of Test 1. Here, it is
interesting to observe the existence of a connected component formed by a continu-
ous set of eigenvalues denoted by a green triangle-shaped figure. Observe also that
the corresponding red circles in this component contain a green dot.

The smallest value of N0 for which the number of computed eigenvalues is con-
stant for N ≥ N0 is N0 = 400 for the Case 1, while it is N0 = 200 for the Case 2. In

Fig. 3 Test 1, Case 1: Eigenvalues of the QT matrix A (blue dots) and of the finite section A
N

 (red cir-
cles), together with the basins of attraction for Newton’s iteration computed by Algorithm V. On the right
the zoom of a portion

111Numerical Algorithms (2023) 92:89–118

1 3

both cases, the geometry of the basins of attraction, together with the distribution of
the eigenvalues of AN , explains why Newton’s iteration converges to all the eigen-
values, when starting from the eigenvalues of AN for a quite small value of N, even
though the latter eigenvalues are far from the eigenvalues of A. This latter property
is more evident in Case 1, where several blue dots are not contained inside red cir-
cles, see Fig. 3, zoomed part.

The number of iterations to arrive at convergence is quite small and is the same
for both algorithms. Namely, concerning Case 1, it ranges from 3 to 18 with the
avergae value of 7.5; concerning Case 2, it ranges from 3 to 10 with average 3.3.

Fig. 4 Test 1, Case 2: Eigenvalues of the QT matrix A (blue dots) and of the finite section A
N

 (red cir-
cles), together with the basins of attraction for Newton’s iteration computed by Algorithm V. On the right
the zoom of a portion

Table 1 Test1, Case 1: Distances of some eigenvalues of A from the closest eigenvalue of A
N

 for differ-
ent values of N. A “–” denotes a value below 1.e-15

� ∖ N 200 400 800 1600 3200 6400

–4.0e-01±1.2e+00i 4.1e-04 1.3e-08 –
–3.1e-01±1.3e+00i 3.0e-03 3.9e-06 5.3e-12 –
–2.2e-01±1.5e+00i 5.4e-03 6.1e-05 5.9e-09 –
–1.4e-01±1.6e+00i 2.6e-02 2.0e-03 2.7e-05 1.9e-10 –
–5.9e-02±1.6e+00i 6.5e-02 3.5e-02 1.1e-02 3.5e-04 9.2e-07 3.8e-13

112 Numerical Algorithms (2023) 92:89–118

1 3

Another interesting issue to investigate, independently of the algorithm used, is
to analyze how large must be N in order that the eigenvalues of AN approximate all
the eigenvalues of A within the machine precision u = 2.22e-16 so that no step
of Newton’s iteration would be necessary. It turns out that for the Test 1, Case 1,
almost all the eigenvalues are well approximated already for N = 800 , while there
are few eigenvalues that require a pretty larger size. Table 1 shows a few significant
cases. Typically, the eigenvalues closest to the light blue curve are the ones that need
a large value of the truncation level N to be properly approximated by a correspond-
ing eigenvalue of AN . For instance, from Table 1 it turns out that N = 3200 is not
enough to approximate the rightmost eigenvalue. Even N = 6400 does not provide a
full accuracy approximation. A similar situation holds for the Case 2.

Fig. 5 Test 1. Relative errors in each eigenvalue computed with Algorithm V (blue circle) and with
Algorithm F (red cross). Case 1 and case 2 on the left and on the right, respectively. Eigenvalues are
sorted with respect to the real part

Fig. 6 Test 2, In the first line the eigenvalues of Case 1 (left) and Case 2 (right) are displayed with a blue
dot. In the second line, some portion of the domain where the eigenvalues of Case 1 are located are dis-
played; more specifically, from the left, the area with all the eigenvalues, the second leftmost eigenvalue,
and the last rightmost eigenvalue are zoomed, respectively

113Numerical Algorithms (2023) 92:89–118

1 3

Concerning the accuracy of approximation, Fig. 5 shows the relative errors of
approximating the eigenvalues of A with the Vandermonde approach (blue circle)
and with the Frobenius approach (red cross) in the two cases of Test 1. Here, the
eigenvalues have been sorted according to the real part. The relative errors have
been obtained by comparing the eigenvalues computed in the double precision
floating point arithmetic with those computed in the quadruple precision relying on
Advanpix. Observe that the results obtained by the Frobenius version are generally
more accurate than the ones obtained with the Vandermonde version.

Finally, concerning the CPU time, the two algorithms have similar performances
even though, for this test, Algorithm F generally requires a double time.

Test 2, Case 1, points out in a more evident manner that the eigenvalues of A which
are close to the curve a(�) can be hardly approximated by the eigenvalues of a finite
section AN of A, unless N is extremely large. In fact, as clearly shown in Fig. 6 and in
the zoomed areas, out of the 8 eigenvalues of A, there is a group of few eigenvalues that
lie very close to the light blue curve. In particular, the second (from the left) eigenvalue
and the last one. The distances of these eigenvalues to the closest eigenvalue of AN for
different values of N are reported in Table 2. It turns out that in order to approximate
such eigenvalues within the machine precision u without applying Newton’s iteration,

Fig. 7 Relative errors in each eigenvalue computed with Algorithm V (blue circle) and with Algorithm
F (red cross). Case 1 and case 2 on the left and on the right, respectively. Eigenvalues are sorted with
respect to the real part

Table 2 Test 2, Case 1: Distances of the real eigenvalues of A from the closest eigenvalue of A
N

 for dif-
ferent values of N. A “–” denotes a value below 1.e-15

� ∖ N 400 1600 6400 25600 102400 409600 1638400

–1.9 1.4e-01 8.3e-02 4.1e-05 –
–1.6 7.6e-01 2.3e-01 9.8e-02 5.8e-02 2.9e-03 2.6e-03 1.4e-07
–1.3 4.2e-01 1.2e-01 1.5e-04 –
–9.6e-01 1.6e-01 5.2e-06 –
–5.8e-01 3.0e-03 7.3e-11 –
–8.5e-04 6.8e-02 1.0e-01 9.2e-02 7.8e-03 2.9e-04 5.3e-13 –

114 Numerical Algorithms (2023) 92:89–118

1 3

one would need truncation levels larger than 1.6 millions, whereas Newton’s iteration
converges quickly just starting from the eigenvalues of AN , with N = 3200.

Also in this test, the number of iterations required by Algorithm V and Algorithm
F is the same. Namely, for Case 1 it ranges between 5 and 12 with average value
7.25, for Case 2 it ranges between 2 and 4 with average value 3.0. Algorithm F turns
out to be more accurate than Algorithm V as shown in Fig. 7.

Concerning Test 3, the matrix A has a set S of 22 eigenvalues, shown in Fig. 8,
that can be grouped into 3 subsets S1 , S2 , S3 . The subset S1 is formed by 4 entries of
modulus in the range [0.25, 1.7], while S2 and S3 are formed by 9 entries of modulus
roughly 20, and 30, respectively. Recall that the Mignotte-like polynomial zma(z)
has a tight cluster formed by three ill-conditioned zeros. For � ∈ S the polynomial
zm(a(z) − �) still has a cluster of ill-conditioned zeros, where the cluster is tighter
and consequently the zeros are more ill-conditioned the smaller is |�| . This explains
why the errors of the algorithm based on the Vandermonde formulation are much
higher in the leftmost part of the graph shown in Fig. 8.

7 Conclusions and open problems

We have reformulated the problem of computing the eigenvalues of a QT matrix as a
nonlinear eigenvalue problem, for which Newton’s method has been analyzed, both
in the Vandermonde and in the Frobenius version. We use the eigenvalues of the
truncated matrix AN for a moderate N as initial approximation for starting the itera-
tion. Our approach is shown to be effective by numerical tests, while approximat-
ing all the eigenvalues to the machine precision directly from the eigenvalues of the
truncated matrix AN , without using Newton’s iteration, is shown to be infeasible due
to the huge values needed for N. The algorithm based on the Frobenius formulation
turned out to be more accurate even though slightly slower. A Matlab implementa-
tion of the algorithm has been provided and the software has been included in the
CQT-toolbox of [9].

In order to make the software more robust and effective we plan to provide an
optimized implementation of polynomial spectral factorization relying on the algo-
rithms of [16] and [17]. Another important issue is to find theoretical estimates of

Fig. 8 Test 3. From the left: Geometry of the eigenvalues with a zoom of the cluster computed by Algo-
rithm F; relative errors for each eigenvalue computed by Algorithm V (blue circle) and by Algorithm F
(red cross), where eigenvalues are sorted by increasing modulus

115Numerical Algorithms (2023) 92:89–118

1 3

the truncation parameter N that guarantees the approximation to all the eigenvalues
of A, starting from those of AN . Other approaches to solving the nonlinear eigen-
value problem, say the ones based on rational approximation, could be the subject of
subsequent research.

Acknowledgements The first author wishes to thank Matthew Colbrook and Mark Embree for helpful
conversations and comments. The second author would like to thank Dimitri Breda for useful discussions.

Funding This work has been partially supported by University of Pisa’s project PRA_2020_61, and by
GNCS of INdAM.

Data availability The data used in this paper are available from the corresponding author under request.

Declarations

Conflict of interest The authors declare no competing interests.

References

 1. Barnett, S.: Polynomials and linear control systems, volume 77 of Monographs and Textbooks in
Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1983)

 2. Bini, D.A., Fiorentino, G., Gemignani, L., Meini, B.: Effective fast algorithms for polynomial spec-
tral factorization. Numer. Algorithms 34(2–4), 217–227 (2003)

 3. Bini, D.A., Iannazzo, B., Meng, J.: Algorithms for approximating means of semi-infinite quasi-Toe-
plitz matrices. In: Nielsen, B.F. (ed) Geometric Science of Information, GSI 2021, volume 12829 of
Lecture Notes in Computer Science, pp. 405–414. Springer

 4. Bini, D.A., Iannazzo, B., Meng, J.: Geometric means of quasi-Toeplitz matrices. arXiv preprint.
(2021)

 5. Bini, D.A., Latouche, G., Meini, B.: Numerical methods for structured Markov chains. Numerical
Mathematics and Scientific Computation. Oxford University Press, New York (2005)

 6. Bini, D.A., Massei, S., Meini, B.: Semi-infinite quasi-Toeplitz matrices with applications to QBD
stochastic processes. Math. Comp. 87(314), 2811–2830 (2018)

 7. Bini, D.A., Massei, S., Meini, B., Robol, L.: On quadratic matrix equations with infinite size coef-
ficients encountered in QBD stochastic processes. Numer. Linear Algebra Appl. 25(6), 2128, 12
(2018)

 8. Bini, D.A., Massei, S., Meini, B., Robol, L.: A computational framework for two-dimensional ran-
dom walks with restarts. SIAM J. Sci. Comput. 42(4), A2108–A2133 (2020)

 9. Bini, D.A., Massei, S., Robol, L.: Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox. Numerical
Algorithms 81(2), 741–769 (2019)

 10. Bini, D.A., Meini, B.: On the exponential of semi-infinite quasi-Toeplitz matrices. Numer. Math.
141(2), 319–351 (2019)

 11. Bini, D.A., Meini, B., Meng, J.: Solving quadratic matrix equations arising in random walks in the
quarter plane. SIAM J. Matrix Anal. Appl. 41(2), 691–714 (2020)

 12. Böttcher, A., Embree, M., Sokolov, V.I.: Infinite Toeplitz and Laurent matrices with localized impu-
rities. Linear Algebra Appl. 343—-344, 101–118 (2002)

 13. Böttcher, A., Embree, M., Sokolov, V.I.: On large Toeplitz band matrices with an uncertain block.
Linear Algebra Appl 366, 87–97 (2003)

 14. Böttcher, A., Grudsky, S.M.: Toeplitz matrices, asymptotic linear algebra, and functional analysis.
Birkhäuser Verlag, Basel (2000)

 15. Böttcher, A., Grudsky, S.M.: Spectral properties of banded Toeplitz matrices. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA (2005)

 16. Böttcher, A., Halwass, M.: A Newton method for canonical Wiener-Hopf and spectral factorization
of matrix polynomials. Electron. J. Linear Algebra 26, 873–897 (2013)

116 Numerical Algorithms (2023) 92:89–118

1 3

 17. Böttcher, A., Halwass, M.: Wiener-Hopf and spectral factorization of real polynomials by Newton’s
method. Linear Algebra Appl. 438(12), 4760–4805 (2013)

 18. Böttcher, A., Silbermann, B.: Introduction to large truncated Toeplitz matrices. Universitext.
Springer-Verlag, New York (1999)

 19. Breda, D., Liessi, D.: Approximation of Eigenvalues of Evolution Operators for Linear Renewal
Equations. SIAM J. Numer. Anal. 56(3), 1456–1481 (2018)

 20. Colbrook, M..J., Roman Bogdan, B., Hansen, A.C.: How to compute spectra with error control.
Phys. Rev. Lett 122(25), 250201, 6 (2019)

 21. Colbrook, M.J., Hansen, A.C.: On the infinite-dimensional QR algorithm. Numer. Math. 143(1),
17–83 (2019)

 22. D’Angelo, J.P.: Several complex variables and the geometry of real hypersurfaces. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL (1993)

 23. Gander, W.: New algorithms for solving nonlinear eigenvalue problems. Comput. Math. Math. Phys.
61(5), 761–773 (2021)

 24. Garoni, C., Serra-Capizzano, S.: Generalized locally Toeplitz sequences: theory and applications,
vol. I. Springer, Cham (2017)

 25. Garoni, C., Serra-Capizzano, S.: Generalized locally Toeplitz sequences: theory and applications,
vol. II. Springer, Cham (2018)

 26. Gavin, B., Międlar, A., Polizzi, E.: FEAST eigensolver for nonlinear eigenvalue problems. J. Com-
put. Sci. 27, 107–117 (2018)

 27. Güttel, S., Tisseur, F.: The nonlinear eigenvalue problem. Acta Numer. 26, 1–94 (2017)
 28. Hochstenbach, M.E., Plestenjak, B.: Computing several eigenvalues of nonlinear eigenvalue prob-

lems by selection. Calcolo, 57(2), Paper No. 16, 25 (2020)
 29. Jackson, J.R.: Networks of waiting lines. Operations Res. 5, 518–521 (1957)
 30. Kim, H.-M., Meng, J.: Structured perturbation analysis for an infinite size quasi-Toeplitz matrix

equation with applications. BIT Numerical Mathematics 61, 859–879 (2021)
 31. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling.

ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA (1999)
 32. Mignotte, M.: Some useful bounds. In: Computer algebra, pp. 259–263. Springer, Vienna (1983)
 33. Neuts, M.F.: Matrix-geometric solutions in stochastic models: An algorithmic approach, volume 2

of Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
Md. (1981)

 34. Ostrowski, A.: Recherches sur la méthode de Graeffe et les zéros des polynomes et des séries de
Laurent. Acta Mathematica 72, 99–155 (1940)

 35. Ozawa, T.: Stability condition of a two-dimensional QBD process and its application to estimation
of efficiency for two-queue models. Performance Evaluation 130, 101–118 (2019)

 36. Ozawa, T.: Asymptotic properties of the occupation measure in a multidimensional skip-free
Markov-modulated random walk. Queueing Syst. 97(1–2), 125–161 (2021)

 37. Robol, L.: Rational Krylov and ADI iteration for infinite size quasi-Toeplitz matrix equations. Lin-
ear Algebra Appl. 604, 210–235 (2020)

 38. Schechter, M.: Basic theory of Fredholm operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21(3)261–
280 (1967)

 39. Webb, M., Olver, S.: Spectra of Jacobi operators via connection coefficient matrices. Commun.
Math. Phys. 382, 657–707 (2021)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

117Numerical Algorithms (2023) 92:89–118

1 3

Authors and Affiliations

D. A. Bini1 · B. Iannazzo2 · B. Meini1 · J. Meng3 · L. Robol1

 D. A. Bini
 dario.bini@unipi.it

 B. Iannazzo
 bruno.iannazzo@unipg.it

 B. Meini
 beatrice.meini@unipi.it

 L. Robol
 leonardo.robol@unipi.it

1 University of Pisa, Pisa, Italy
2 University of Perugia, Perugia, Italy
3 Ocean University of China, Qingdao, China

118 Numerical Algorithms (2023) 92:89–118

	Computing eigenvalues of semi-infinite quasi-Toeplitz matrices
	Abstract
	1 Introduction
	1.1 Main results
	1.2 Paper organization

	2 Preliminaries
	2.1 Eigenvalues of T(a)
	2.2 Eigenvalues of

	3 Computational analysis
	3.1 Reduction to a nonlinear eigenvalue problem
	3.2 A different formulation
	3.3 Choosing a basis: Vandermonde and Frobenius versions

	4 The numerical algorithms
	4.1 Computing the winding number
	4.2 Implementing Newton’s iteration
	4.2.1 Vandermonde version
	4.2.2 Frobenius version
	4.2.3 Convergence of Newton’s iteration

	5 Choosing the initial approximation
	5.1 The case of Hermitian matrices
	5.2 The general case

	6 Implementation and numerical results
	6.1 The tests
	6.2 Details on the implementation
	6.3 The results

	7 Conclusions and open problems
	Acknowledgements
	References

