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Abstract

In this work, our motivation is to design an impressive new numerical approximation
on non-uniform grid points for the Caputo fractional derivative in time ng‘ with the
order @ € (1,2). An adaptive high-order stable implicit difference scheme is devel-
oped for the time-fractional diffusion wave equations (TFDWEs) by using estima-
tion of order O(N' f"s) for the Caputo derivative in the time domain on non-uniform
mesh and well-known second-order central difference approximation for estimating
the spatial derivative on a uniform mesh. The designed algorithm allows one to build
adaptive nature where the scheme is adjusted according to the behaviour of « in order
to keep the numerical errors very small and converge to the solution very fast as com-
pared to the previously investigated scheme. We rigorously analyze the local trunca-
tion errors, unconditional stability of the proposed method, and its convergence of (5
— a)-th order in time and second-order in space for all values of a € (1,2). A reduced
order technique is implemented by using moving mesh refinement and assemble with
the derived scheme in order to improve the temporal accuracy at several starting time
levels. Furthermore, the numerical stability of the derived adaptive scheme is verified
by imposing random external noises. Some numerical tests are given to show that the
numerical results are consistent with the theoretical results.
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1 Introduction

The theory of non-integer derivatives is an emerging topic of applied math-
ematics, which attracted the attention of many researchers from various disci-
plines. The nonlocal properties of fractional operators attract a significant level
of intrigue in the area of fractional calculus since it can give a superior way to
deal with the complex phenomena in nature, such as biological systems [1], con-
trol theory [2], finance [3], signal and image processing [4, 5], sub-diffusion and
super-diffusion process [6], viscoelastic fluid [7], electrochemical process [8], and
so on. The main advantage of FDEs is that it provides a powerful tool for depict-
ing the systems with memory, long-range interactions and hereditary properties
of several materials as opposed to the classical differential equations in which
such effects are difficult to incorporate [9, 10]. Some applications of FDEs in dif-
ferent fields of real-life problems are discussed in [11].

A wide range of relevant physical phenomena are characterize by time-fractional
diffusion equations (TFDEs) or TFDWE:s [12, 13]. TFDEs are derived by replacing
the first-order time derivative of the standard diffusion equations with a-order (0 <
a < 1) fractional derivative and TFDWEs are derived by replacing the second-order
time derivative of the classical diffusion or wave equations with @-order (1 < a <2)
fractional derivative. It is popular that the behaviour of diffusion and wave equations
are completely different according to their reaction to localized disturbance. The
propagation speed of the disturbance in the process described by the diffusion equa-
tion is infinitely fast, whereas, in the case of wave equations, it is constant. From
a specific perspective, these two distinct reactions are interconnected to compose
TFDWEs and thus become popular and satisfactory for many physical applications.

Most of the non-integer derivatives express in the form of convolution type
integro-differential equations whose kernels are generally of weakly singular type
since kernel of these fractional derivatives (FDs) contained the power-law term
(t — 5)™% Due to which very few of FDEs have analytical solutions. A developing
number of analysts have built up an interest in finding the analytical solution of
FDEs. Usually, the analytical solutions of FDEs are investigated via the Laplace
transform methods [14], homotopy analysis methods [15, 16], Adomian decom-
position method [17], method of separation of variables [18], and the Green func-
tion method [19]. In general, analytic solutions to most of the FDEs cannot be
obtained explicitly or given in terms of multinomial Mittag-Leffler functions,
which are extremely complex and difficult to evaluate [14, 15, 20-22]. Therefore,
it is of great importance to develop some efficient numerical methods for find-
ing the approximate solutions of these models, especially for those cases where
analytical solutions are either unavailable or extremely complex and difficult to
evaluate. Some excellent numerical techniques have been developed in order to
get approximate solution of different kind of fractional models, e.g., Galerkin
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spectral method (GSM) [23], finite volume methods [24], finite element methods
[25-27], finite difference methods (FDM) [28, 29], and many more.

G. Gao et al. [30] solved distributed-order TFDWEs by using two difference
schemes, N. H. Sweilam et al. [31] presented a weighted average FDM for solv-
ing fractional Cable equation and fractional reaction sub-diffusion equation, M.
Dehghan et al. [32] applied the homotopy analysis method for solving the frac-
tional wave, Burgers, KdV, KdV-Burgers, and Klein-Gordon equations. Authors
of [33] used ADI and Galerkin method approach for getting the approximate solu-
tion of distributed-order TFDEW. Authors of [34] used spectral element proce-
dure for simulating the neutral delay distributed-order fractional damped diffu-
sion wave equation. In 2018, K. Shah and M. Akram [35] have used the shifted
Jacobi operational matrices for the numerical solution of a class of multi-term
FDEs. The main aim of [36] is to develop several schemes based on the FDM for
2D Schrédinger equation with Dirichlet’s boundary conditions.

In this article, the work focuses on developing a new and efficient adaptive differ-
ence scheme for solving the TFDWEs on a rectangular domain. The model problem
considered here is the one-dimensional TFDWEs [37]:

SDM UK, 1) = ENU+ f(x,1), (1.1)

Ux,0)=¢x), 2| =y, 0<x<L, (1.2)
t=0

UWO, 1) = 0,1, UL, 1) = D,y(2), t>0. (1.3)

Here, (1.2) and (1.3) are the initial and Dirichlet boundary conditions, respec-
tively. £ is a constant diffusion-wave coefficient, A” is the spatial Laplacian operator,
the fractional derivative gD;’ is intended to be in the Caputo sense, 1 < a <2, and
(x,r) €Q =[0,L] X [0,T].

1.1 Motivation and a brief description of the main results

There are many numerical methods available for the spatial domain, which can cre-
ate efficient high-order numerical methods while high-order numerical methods are
rarely available for time-fractional operators compared to spatial operators because
of the weakly singular kernel of many FDs in the time domain. Moreover, from the
computational methods prospective, the availability of numerical methods are much
less for TFDWEs than TFDEs. In this context, let us now review some results that
motivated us to design a new high-order difference algorithm for time-fractional
operator OCD;’ on non-uniform meshes.

e M. Cui [38] have considered uniform meshes in space and time domain and

used compact difference scheme to discretized the spatial operator 0)% and Gril
nwald-Letnikov difference scheme to discretized the Riemann-Liouville frac-
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tional derlvatlve Dl "(0<y<1)of order 1 — y, respectively, for TFDEs.
The detailed analy51s of stability and local truncation error are done by using the
Fourier method. Moreover, the designed scheme have shown fourth-order accu-
racy in the spatial domain and first-order accuracy in the time domain.

e Soori et al. [39] developed a new high-order numerical scheme of order (3 —
a), 0 < a <1, for TFDEs on a non-uniform mesh.

e M. Dehghan et al. [40] proposed GSM and compact FDM on uniform
meshes for obtaining the approximate solution of multi-term TFDWEs and
error analysis have been studied thoroughly concerning L_—norm. It was
proved that the developed method has fourth-order accuracy in spatial com-
ponent and (3 — a)-th, 1 < a <2, order accuracy in time variables, respec-
tively.

e Various kinds of methods are discussed and developed by many researchers to
get the numerical approximations of the FDs. The classical L1 method is suit-
able for the case 0 < @ <1 and the L2 and L2C methods are ideal for the case of
l<a<?2.

e The L1 method for approximating the Caputo FD in time is:

el
1 k+1 Ik _
CDu(x, 1) = ; .t ) U, >ka (" =n)"dn+R,, 0<a<l, (14

where R, is the local truncation error and 0 =1 <! < ... <. For uni-
form mesh, authors of [41] have shown that |R,|= O(A*™®), where

At=r* — ¢ Vk=0,...,n— 1
e Incaseofl <a<?2,

n—1
DY 20, R (xR el
CDu(x, t)‘ ® o P ML O I [ ! A + R, (1.5)
and,
T z‘i a0 174 — a7 o ) e
¥ tew 207 T(1.6)
+R,

ne

where (1.5) and (1.6) are the numerical approximation of the Caputo FD and
obtained by using L2 and L2C methods, respectively. Moreover, L2 method con-
verges with order O(A#*~) on uniform mesh (see [42]).

e To improve the accuracy of the L1 method, authors of [43] used L1 method
on a particular type of non-uniform mesh and derived a semi-discrete
scheme for TFDEs. The unconditional stability and second-order conver-
gence of the scheme have shown for H ! norm. Moreover, they introduced
some fictitious points on each sub-interval and developed a moving refine-
ment technique on that non-uniform mesh and demonstrated that the accu-
racy is improving further by using this technique.

e C. Li et al. [44] used a special kind of non-uniform mesh for a class of non-
linear FDEs and detailed analysis are presented about error estimates, stabil-
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ity, and convergence. Besides, they verified that the proposed scheme has bet-
ter accuracy by using a particular kind of non-uniform mesh as compared to
the already existing scheme based on uniform mesh.

V. E. Lynch et al. [45] have shown that L2C method gives more accurate result
for @ < 1.5, while L2 method provides the more precise result for « > 1.5, and
both methods have similar behaviour around a =1.5.

M. M. Meerschaert et al. [46] presented a difference scheme for fractional advec-
tion-dispersion flow equations and shown that the implementation of standard
Griinwald-Letnikov approximation is making the scheme unstable while a con-
sistent and unconditionally stable scheme is developed when shifted Griinwald-
Letnikov approximation is used in place of standard Griinwald-Letnikov approxi-
mation.

R. Du et al. [47] proposed a difference scheme to approximate the Caputo frac-
tional derivative with convergence order O(AF*), a € (1,2), and presented a
difference scheme for fractional diffusion-wave equation on non-uniform mesh.

1.2 Purpose and contribution of the paper

Motivated by above achievements and combining with the moving refinement tech-
nique, we will present a high-order adaptive difference scheme by using a non-uni-
form mesh in the time domain which is based on the interpolation approximation for
the TFDWEs. The significant contributions of this paper are as follows:

Previous study has shown that the numerical approximations of FDs with non-
uniform mesh have better accuracy than the uniform mesh and there are only
very few numerical methods available with non-uniform mesh compare to uni-
form mesh for the case of 1 < a <2. The main goal of this manuscript is to
derive a new high-order approximation for Caputo FD in time ng’, l<a<?2
for a non-uniform mesh.

In order to get the high-order approximation to Caputo FD, we first use lin-
ear Newton interpolation approximation (NIA) in the first subinterval
[°,¢'], quadratic NIA in second subinterval [¢!,/?], and for rest of the subin-
tervals we apply cubic NIA on non-uniform meshes by using the points
(53, U(R3)), (52, UE2)), (5L UESY)), and  (¢5,UE)) for the inte-
grand U(t) on each subinterval [#%~!,¢%], 1 <k, < n. While applying a special
non-uniform mesh, a new high-order approximation to the Caputo FD of order
O(N*), 1 < a < 2, is obtained.

A high-order adaptive FDM for solving problem (1.1)—(1.3) is constructed by
approximating the Caputo FD gD;’ by using approximation of order (’)(N;"S) as
it is for the case of 1 < @ < 1.5, and for 1.5 < a <2, first we shift the mesh and
then apply the approximation of order O(N;"S). Furthermore, for the spatial dis-
cretization of Laplacian operator A*, the well-known second-order central differ-
ence formula is used.

@ Springer



1910 Numerical Algorithms (2023) 92:1905-1950

e The solvability, unconditional stability, and convergence of the derived scheme
are investigated thoroughly using L_-norm.

e [t is shown that the proposed scheme has accuracy of the order (’)(Nt"“5 + h?),
where N, and 7 are discretization parameters.

e Numerical stability of the proposed scheme is also verified by introducing ran-
dom external disturbances.

e To improve the accuracy in the temporal direction, we combine the moving mesh
technique with our derived scheme.

e Numerical experiments with the inclusion of test functions are performed to vali-
date the applicability and reliability of the method.

This manuscript is sectioned as follows:

Section 2: Some basic definitions of different fractional operators are given.
Section 3: New highly accurate approximation of Caputo’s time derivative
and construction of high-order adaptive difference algorithm for TFDWEs are
derived.

e Section 4: Stability and convergence analysis of the presented methods are rigor-
ously investigated.

e Section 5: To verify the numerical stability and in support of our theoretical find-
ings, numerical results are provided.

e Section 6: A conclusion and some future works are presented.

Notations Throughout this paper, we denote C as a generic positive constant which
might be dependent on the given data of the problem and regularity of exact solu-
tion, but independent from the discretization parameter /2 and N,. Moreover, the set
of integers and real numbers are represented by Z and R, and set of non-negative
integers and non-negative real numbers are represented by Z* and R*, respectively.
N denotes the set of natural numbers.

2 Preliminaries

Unlike the classical derivative, there are more than one definitions of FDs. Out
of these definitions, most frequently used definitions are Riemann-Liouville and
Caputo derivative. Here, we introduce some fractional-order derivatives.

Definition 1 (Griinwald-Letnikov derivatives) The left and right Griinwald-Letnikov
derivatives with order a > 0 of the given function u(¢), t € (a,b) are defined as

N
SLDu(r) = }g% he ;)(—ly < j’ >u(r —Jjh, 2.1
Nh=t—a J=

and
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SLDYu(r) = hm h™e Z( 1Y( >u(t+Jh) (2.2)

Nioper 0
respectively. For more information about the role of Griinwald and Letnikov to

derive the above formula (2.1) and (2.2) one can see [2].

Definition 2 (Riemann-Liouville fractional derivative) The left and right Riemann-
Liouville FDs with order a >0 of the given function u(¢), t € (a,b) are defined as

NCATORS v b MG KOS (2.3)
and
FDR0 = Pt gy i/ 6 = D" s, @

respectively, where m € Z* satisfyingm —1 < a < m.

Definition 3 (Caputo fractional derivative) The left and right Caputo FDs with order
a >0 of the given function u(¢), t € (a,b) are defined as

CD u(t) = Fon =) e [ (t = sy U (5)ds, (2.5)
and

CD(r) = F(1(111)” 3 L0 = ym=eLum s)ds, (2.6)
respectively, where m € Z* satisfyingm —1 < a < m.

Definition 4 (Riesz fractional derivative) The Riesz fractional derivative with order
a >0 of the given function u(?), t € (a,b) is defined as

RZDu(t) = co ( REDu(t) + ReDu(r)), 2.7)
where ¢, = —m, a#2k+1, k=0,1,.... D) is sometimes expressed
u) s(ar
oltle

3 Formulation and analysis of the newly design high-order
approximation of Caputo-fractional derivative

For temporal discretization, we discretized the time domain [0,T] into N, non-equal
length subintervals with 0 = < ¢! < ... <V =T. We denote A% as temporal
step-size and N, as some positive integer such that Ar =kt — ¢k where
ki € Zyy - Meanwhile, the spatial interval [0, L] is divided into N, equal subin-
tervals of length 72 = 1% where N, is some positive integer. If the singularity is pre-
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sent at the origin, then the choice of the non-equidistant stepsizes should be non-
decreasing, ie., Af <At [44]. Let Ar,, = A+ ...+ A", m € Zyy ), and
At_yy; =0, thus the temporal and spatial meshes are given by

Qu=1{feR: & =A1y 1y, k €Zyy ), Q={eR: X =kh, k. €Zpy,}.

Then, the domain Q = [0,L] X [0,T] is covered by Q,,, := Q, X Q,,. We denote
Vxks, %) = Vlf* and let {V,l:“ Dk € Zygn)s ke € Zjg )} be the grid function space
on ,,,. Moreover, we use the following finite difference notations:

5 vk = Vhe — Vk)——l’ S2Vk = 5Vt — 5XV"»’ 5V, = Vi, = Vi
* h x h ’ Akl
Define the discrete inner product and norm as:
N,-1
(U,Vy = 2’1 AUNSVE, VI =(V, V), ||Vk,“°o = jax (fo :

3.1 Derivation of a new numerical formula for Caputo non-integer derivative
on non-uniform meshes

The linear Newton interpolating polynomial of U(¥) at points
(5, UEEYY) and (%, UH*)) is given by

ke k-1
B UD) = Uy (A’lk—’) +U, ( v ) G.D

To increase the degree of interpolating polynomial upto cubic interpolation func-
tion, we need two more points (%73, U(#%~3)) and (¢%~2, U(*?)). Firstly, we are
constructing quadratic interpolation polynomial 22 (14(¢)) of U(f) by adding an addi-
tional point (%72, U(t*2)), given as

_ _ U, ~U Uy U _
EhU) = EU) + i | - S - o - o,

= BYU) + oo (8, — 8L, )t — (e — 571,

Atk Arki=2

(3.2)

For k, >3, to increase one more degree of interpolating polynomial, we add one
more point (%73, U(#%~3)) and construct cubic interpolation function Z3* (4(t)) of
U(t). Then, we have:
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Uy, —Uy, Uy, 1 —Uy, > >

U@ =EHRWU0) + l[ l < T

ki —gki—3 | th—pki—2 \ hr —gke-1 k1 _gki—2

1 Uy 1—U o U 2=l 3 k-1 k—2
Tl g3 < kil_th—2  h—2_gk3 (t = )t = D = 72,
— =2,k 1 1 _
- = ’(Z/{(l)) + Atkt=3 1 Atk=2p Arki=1 | Atk=2 Arki—1 (atukt 5[“]{,—1)

(5 uk—l + 5Uk 2) (t — )t — 1Yt — t52).

m

(3.3)

For linear, quadratic and cubic interpolating polynomials, the following error
estimates hold:

Uty - B U) = “‘5' == 1h), re [N & e (L iR), 1<k <,
(3.4)
UGty — 2R U = L0 — )t — = ), e [, (3.5)
5;‘1 = (tk’_z,tk’), 1< kt <n, ’
and
Uty — Z34 ) = (5* A e (i (N L Y

53 € (t%3,tk), 1 <k, <n.

For simplicity, we define:

T _
A, = Atk=2 4 Akl (324, = 81 ).
and
3 _ 1 1 _
Atuk, T (At p At 2y Ak T) [A,k, 2+Atk, 1 (5 uk 5luk1—l)

T At ‘+At"/ ) (5 Z’lk 61“1(,—2)] :

For approximation of the Caputo FD in time SD;’, we have taken linear interpolation
in first sub-interval, quadratic in second, and then cubic for all next sub-intervals. As
double derivative of the linear interpolation function vanishes causing more error, to
avoid this computational error, we have taken interpolation of derivative function in the

first sub-interval and derivative of interpolation function in all the next sub-intervals.
Let v(s) = U/ (s), then

n ke
CDU(r) m‘_a) T [ " =)=V (5)ds,

F<2 o [f W =)V @ds + [L@ =)V (37

+ 2 / ;f_l(r" — )"/ (s)ds |,
k=3
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S s | = 91 (B ) ds + [0 = 917 (B22U) " ds
+ Z S = 91 (2U(s)) " ds
r(z ) [/ZO(ZJI )" Ot((m1 6uo>ds+ / (" — )= (AU, ) ds
P A= 9, + AU, (65— 24+ 57+ 5)) ] BB

- F(2 o lz ./zkz (" — ) (AT )ds

.S Sl = )1 [ AU, (65 = 2(42 + 1 4 tkf))]ds] :
k=3

oU(x.1)
o

To remove the dummy point ¢/_;, we use the initial condition —= = y(x) and

take Ar~! = A7, therefore, U_, = U, — At%vy = p(x) — ALy (x). Notlcmg that

Inm _ 2 it n_ \l-a
Hk, _r(z—a)/z*r“(t s) "% ds

= r(zz_a) [(tn - tk'_l)z_a - (tn - tk')2_a]’

(3.9)

20 _ 1 1 M a9 (k=2 o k=1 4k,
H" =0 Ty L@ = )17 (65 = 2(#2 + 71 k) )ds

1 1 6 n — 3—a 3 3—a
= TG-a) (AR + AR 24 AT { G- [(t - ) (=) ]
+[(4z"r‘1 — 252 k) ) (¢ — 91T = (Ak = 2 (2 4 1)) (1 — th)*“] }
(3.10)
Using (3.9) and (3.10) in (3.8), we get the following numerical formula for FD gD:’Z/{(t):
a n l.n 5ru,_5zuk,—1 n 2,n ‘Sruk,_ﬁru ;-1 512/{,—1_5zuk,—2
SD;U(I) = [ k= lHk, <Atk,k 1+A1A,—7> + Zk =3"Y, <AtA,—1+A;, 2 A[:, 2 A3 )]
8L~ qqon =0l

2 ln ‘”'{k, ‘SZ’{L,—I +Zn HZn i, 1 z 1
T k= " NN k=3""k, Ati-14Ak-2 k=2 k+1At‘: N

r

_ 2 3n 5Mk,_5uk,—1
YL vy B

k;

(3.11)
where H?’l = Hi’l >0, H?’z = H}’z > 0, and H;’z = Hé’z > 0.Forn >3,
M ifk, =1,
. Hln_HZ", if k, =2,
M =9k, ke (3.12)
' Ho+H, —Hk+1,1f3<k<n—1
H1"+H2" if k, = n.
In this manuscript, we have taken the following non-uniform mesh
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2T
NNA+1)"
in the following lemmas.

where py = Properties of the coefficients H}C’”, Hi’" and Hi’" have discussed

Lemma3.1 Forany a (1l < a <2) and{Hi’” 1<k <nandl1<n< N,}deﬁned
in (3.9), it holds that

0< H}’” <..< H/i:: < H,L’" <..< H:lfl <HM (3.14)

Proof Making use of (3.9) and Fundamental theorem of calculus, one can get

ILn _ 2 ik 1—
Hk, = r(22_0[)/t,q_,(t” —s5)7%ds, 1 <k, <n, 1<n<N,
_ k(i _ 1—a k=1 4k,
- F(Z—a)At (t Ck’) ’ Ckr € (t st )’

where At% and (1" — ¢ k{)l"” are monotonic increasing function for 1 < a@ <2. Hence,
we get the result.

Lemma3.2 Foranya (1l < a <2) and{Hi’” :3<k<n and3<n< Nz}deﬁned
in (3.10), it holds that

0< ’Hg’” <..< Hi’fl < Hi’" <..< Hifl <H". (3.15)

Proof From (3.10), consider

f’k' L =) (65 = 2( 4+ 5 415 )ds = 2 [f'k (" = 5)¥ds

thi= e |/

.ﬁ{mw_AW4+m4»m_wfﬂ_@m4_uw4+w»w_ﬁﬂfﬂﬂ.
The well-known Trapezoidal error estimate formula yields that

fr"r I(tn _ s)l—a <6S _ 2(1‘/(1—2 + tkz_l + tk‘>)dS — —6< Afke )((t” _ 5)2—[1)//

k= 12

s=(y,

=22 Q-a)a - )" =4 ) & € (k).

It is easy to check that Hi’” > 0 and (" — s)™% is a monotonic increasing function
for every 1 < a <2 on [0,T], consequently we get the required result.

Lemma3.3 Foranya (1 < a<2) and{Hz’" 1<k <n and3<n< Nl}deﬁned
in (3.12), it holds that

) H">0,

3n 3n 30 3n 3.n
2) H7<...< Hk,—l < Hk, <. <K<K

Using the result of Lemma 3.1, Lemma 3.2, and definition of Hz’”, one can prove
the above result.
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Now, detail analysis of the truncation errors of the formula defined in (3.11) is
discussed in the following theorem:

Theorem 3.1 Forany 1 < a <2, and U(t) € C°[0, "], it holds that

A _1pe- —a ae
|R(Z/{(t1))| < B max e (U0 T7W, + 177, (3.16)

Ry < =2 { L max g, [U”(O|T3 40N, + 153

re—a)
26-2 1 8—
+[ e a)( a)] mMax <o lV)(t)‘T“ (N, + 1)*~ 4}
Z/{(‘V)(t)’T“’“(N, F 1)t

k| < 2 {maxtugs,u " () TN, + 173 + 16 max,op
(3.17)

= I2-a)

U @[T, + 1o }

2a 2 1 3(6=)
[(a—l ) + 24 (2—a)(3-a) ((4—a)(5—a) + 1>] maXo<i<m

(3.18)
Proof For n =1, and from (3.4) and (3.7), one gets:
Ruah) = 5=/ L — )17 [w(s) — EM()]'ds
= o | (v = EMv) (¢ - s)l‘“' _+a- a) [y [v(s) = ElIu(s)] (£ - s)“’]
= o |73 EDE = O =9+ @= DS WIVIED s - O - s)l-“]

_ @127 5 3—a a3 0
= s S U (DTN, + D2, ) e (010,

(3.19)

If n =2, then one can obtain the following result by using integration by parts and
then substituting the values of (3.7) and (3.5):

RU) = 5=/ ,n(rz —)'=%d[v(s) = E"'v(s)] + /! ] (2 — )17 [v(s) — Z220(s)]
= L0 7o) — EM)] (2 — )7 ds + /1 [(s) — B220(9)] (12 — $)"ds ,
(3.20)

T r@-a)

by (3.4), it follows

£ [v(s) = EMu(s)] (2 - )~ ds

'fz V() )( _ to)(ll _ s)(tz —5)"%ds

I

LI AP |1 = s
= "Dl 27,

substituting the value of u, we get

[ ()] TN, + 172, nf € (0,1,
(3.21)

o [v(s) = BV ()] (72 — s)~*ds
Sl |

— 22a
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and by (3.5) and definition of , it follows that

/ i, [v(s) - Ez*zv(s)] * — s)™%ds

'/t V' (52 — s —tH(s — ) — 5)"%ds

iv) 3— a 4—a 4—a
- 6(2 a)("i a) |Z/{( (77 )l ‘2 + (4 a)'u

262 lu{w)( 2)|(8 a>T4 YN, + 1)7- 4

3 22— a)(3 a)

IA

n2 e (..
(3.22)

Using (3.21) and (3.22) in (3.20), we get the result for n =2. Moreover, for n >3,
from (3.4)—(3.7) and using integration by parts, we get:

Ru(my) = r<z a) [ /! to(z” = )=*d[v(s) - EMw(s)] + f jf(r" = s)1=*d[v(s) — B22v(s)]

+k23 /,k;fl (" — 9'=ed[v(s) - B3k v(s)]:|

n

= _r<21— = [[v(s) —BMy(e)] (1" — 5)' ™ ,Fa-af ij [v(s) — EMv(e)] (" — 5)"ds

s=t

- a)/ﬁ (v(s) — E22u(s)) (1" - S)_“ds}

2

+{ (v(s) = E22v(s)) (" — 5)'™*

s=t
1kt
- a)jjfj,l (v(s) — B¥kip(s)) (1" — s)_”ds}]

s=t

+ i {(V(s) — Ehip(s)) (" - 5)! 7"
k=3
(1—

[ Lo [v(s) = EM ()] (" — sy~ ds + [, [v(s) — E22v(s)| (" — 5)™ds

- r(z a)
+ Z / et [V(9) — EMu(9)] (" - S)"’dS],
k=3

(3.23)
by (3.4), it follows

V! 1
S S8 (g = )5 — 1) — 5)~ds

2!

HZCDINONDE

4 [v(s) = ELIu(s)] (" — s)-eds

t! _
/t[)(t” —s)"%ds

IA

< LD A0 (1 = 1) [lyds
< U@ T W, + 1D,
(3.24)
by making use of (3.5), we get
S [vs) = E220(0) (" — sy7ds| = ’/ () (s~ 05 — )5 — )" — 9)™ds

<L |W(n ) (AMR (A0 + A [ = 5 “ds‘
< 53 WUN D] AMAL + A (¢ = 2y [, ds
< 24 |L{(1v)(’12)| T4 a(N + l)a 4

(3.25)
Moreover, by (3.5), it follows
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nh ke &)
't k — —
Y [ —r =t s =157

(s = K Hy(s = )" — s)~%ds
LU T [l (s = (s — )
(s =tk y(s — )" — s)‘”‘ds'
o UV [22:3 [(AR=12(AK2 4 Ak
kg
(A= A2 4 AR [ (7 50|
(25) ) T, + 1,

a—1

n—1
Z/ 1 [16) — E¥n()] 07 = 9)7ds

L& ek,
1

IA

A

(3.26)
where 7 € (°," ") and 3 < k, < n — 1. In addition, for k, = n

f::_l [v(s) - E”v(s)] (" — s)"%ds

no V) (£3
- ‘ S ) =3y (s - po2)

=1

(s — " H(s — (" — 5)"%ds

L E e,
1 v " n—. n—
7 UG [ =1 = 172)

(s — " H(E" - s5)'7ds|,

23—« (6—a) 15—
S 2-a)(3—a) [{ ((4—41)(5—:1) + 3 )T 0!}
L)) [V, + D3,

(3.27)
where 5, € @ 3,.

remark 1 The inequality (3.22) can be evaluated as:

/4 V”’ff) (s — ) (s — 1)(s — )2 — 5)~*ds

U (2)

5 v(s) = E220(9)] (2 = 5)~ds

/i(s = 0)(s — t")(#* — s)!7ds|.

1
6
Apply integration by parts, we get:
—(IZ _ S)Z—a s=

Q-
M

2
Fo [h@s = @+ @ - s)z_"ds]

J5 (s = B220(s)] (2 — s)~dis

= UM )

(s =) -1

s=t!
_

Again apply integration by parts, we get:
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o=
2 . - _ i), 2 (40 ==y g3 | 1
/zl [V(S) = V(S)](t s)~"ds| = |Z/[( (@ )|(2 a) [(2S ¢ +t)) - s=t!
to- a)/zl(tz =9 “ds]
1 i) , 2 a a
< Lo UV D] |APA )+ A

Substituting the values of A®, A¢' from (3.13) and making use of definition of u
in above equation, we get the required result (3.22).

remark 2 The inequality (3.25) can be evaluated as:

[ = 22209 = y7ds| = | /5 (s — )5 — 11)(s — )" — 5)7ds

<=z |U('V)(f1 )] /,1 (s = 2)(s — " )(s — A)(t" — 5)™*ds|.
(3.28)
. 1 2 (Atl)z . . 1, A
Since, max [(s—1 ) —17)| = is obtained at s = t' + =, so we have:
O<s<m 4 2

(s — tO)(s _ tl)(s l2) < (Al) <A o4 > ) < (Al) (Ato + Al‘l). (3.29)
Substituting the value of (3.29) into (3.28), we get

L) = B2 (" — )ds| < L UMD A PAL + ALY (7~ 2)= [ ds
= U] (AP AL + A (" = ).

(3.30)

IA

Consider,

n—1 n—1

M- = E Af"= Y (m+ Dp = %(n—Z)(n+3), (3.31)
m=2

where, (n —2)™* <1 and (n +3)™* <1, for n >3. Now, using (3.31) and (3.13) into
(3.30), we get the required inequality (3.25).

remark 3 The inequality (3.26) can be evaluated as:

[v(s) —-=% krv(v)] (" —s)~*ds W " (5k’ — ) (s — k)

t"/

(s =57 D(s — )" — s)™0ds|, & € (3,14,

A

Jh(s = t3)(s = 472

n—1
< 5wl T

(s — tfDY(s — (@ — s)~ds|.

(3.32)
(A2

Since, max |(s — f (s = )| = Tlsobtamedats =t 4 A7 oo we have:
V<s<t"
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(5= #73)(5 = m2)(s = b — ) < GO (ol g B0 o8 ) (ot B )
(A’Z—l)z(At"l + AR 4 At (A 2+At’ﬂ“).
(3.33)

I/\

Substituting the value of (3.33) into (3.32), we get

IA

n—1
T [l [v(s) — Bw(e)] (7 — s)eds
6=3

n—1
5 UV [2 [(AF—D2 A2 + A

(A3 4 A2 4 A% [0 (1 = ) "ds]

IA

AR )] k2_23 [(A=3 (AR + Ak

(A3 4 A2 4 A (1 — o).

(3.34)
Consider,

n—1 n—1
= 2 A=Y (m+ Du=Sn—-k)n+k+1), (3.35)

m=k, m=k,

where, (n + k,+1)"% <1, forall n >3, and
n—1 — 0
a 1 1

Tkt =1+ §k—51+k§3zf<a1) (3.36)

Now, using (3.35), (3.36), and (3.13) into (3.34), we get the required inequality
(3.26).

remark 4 The inequality (3.27) can be evaluated as:

/;:71 (S _ tn—3)(s _ tn—Z)(s _ tn—l)(tn _ S)l—n(ds — (z_a)1(3_a) [(tn—l _ tn—2) (tn—l _ tn—3)(A[n—l)3—a

(z(tn—l —2) + z(tn—] _ tn_3))(A[n_l )4—0:

(5 )(Atn 1y5- a}]

= —(2 e [Ar=2 (A3 + A2) (A Ty3e

{(2Atn 2+Atn 3)(Atn 1)4 o
(Al” 1)5 a}]

1
(4 11)

(4)

(5 a)
= m[ - D@n =3Py
+ a){3(”_1)"4 a S-a 3 - a) 5 aMS—a}]7
(3.37)
by using (3.37), it follows that
Lo o) = B3] (@ = 5) "ds‘ < 55 U0 G5 [N 2N, N~ “%

d—a ZSaTSa 3 5_q 25@ TS«
taa {3N N NI <5—a>N’ NN+ 1) }]
(3.38)

after simplification of (3.38), we get (3.27).
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3.2 Fully discrete difference scheme for fractional-diffusion wave equation
on non-uniform meshes

In the current subsection, a high-order fully discrete difference scheme is derived for
the proposed one-dimensional TFDWEs (1.1)—(1.3). V. E. Lynch et al. (2003) verify
that one will get a better result from L2C method in comparison with L2 method for
1 < a < 1.5, while the reverse happens in the case of 1.5 < @ <2. Motivated with the
work of [45, 46, 48], we develop a scheme that depends on two cases of a. For 1 < a
< 1.5, we use (3.11) in (1.1)—(1.3) as it is, while for the case of 1.5 < a <2, first we
shift the non-uniform mesh (3.13) and then apply (3.11) on the problem (1.1)—(1.3).

Case-1 Whenl <a <1.5.

" sUr—s U
P2 H" <#> = EAUCR, 1) + £, + (R (3.39)
=1

t
1

Furthermore, we have

+1 -1
x 2(//<nx +(//<nx
2

A UK, 1) = U . + (Rx)fl",

where |(Rx)]ff| = O(h?). Then, we can obtain the following scheme:

\ ,
i (BT etk ke
kzl Hkt ( A[/"r/*1+A[/"x*2 = 2 +fVJL( + Rn ’ (340)

where Rf," = (R,)ﬁ" + O(#?). For non-uniform mesh (3.13), it holds that
IR = O S +#?), 1<k <N, 1<n<N., (3.41)

Replacing Z//]Zj with its numerical approximation U]]z'l‘, we get the following differ-
ence scheme:

N A A arike | ok,
kz1 Hk; INCEEYN=1 gﬁxU'i th', 1< kx < Nx’ l<n< Nt' (3.42)

Case-2 For 1.5 < a <2, shift the non-uniform mesh (3.13), i.e., A" = (n +2)u, 0 <
n <N, —1. Now, apply (3.42), we get the value of Uy, ..., Uy _;, Uy, (Fig. 1).
To evaluate the value at final time T, we use

keyrke kg k k k
UL‘)JLU‘I1 UT‘ UN, —1 U‘Vﬂi UNﬂ‘;H
p Ny+1
141 v2

Fig. 1 Distribution of mesh after shifting
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(3.43)

wherev, = T— M land v, = V! - T.

3.3 Matrix representations of the derived scheme

. S N-1
If we write (3.42) at each grid point and set U,, [U1 U2 U O

the following matrix—vector form of the proposed method

17, we can obtain

50, - 8U _5U U, +F
AU, = ~2a0 10 U1 = &:Uol + (At1+At0) Pt Atl(At1+At0) 1+ 5
< 3 n Hl n H2n
AUy = Zk =l Apk—! +At’< 510U ~ Ul (A= + A= 2)
M -
| Atn_l(Atn_]JrAtn_z)Un_l +F,, n=3,...,N.
(3.44)
In which
_£ @0, 2 _£
Ar m[ h2’ (1"(3—0!) tw hz](NA—l)x(NX—l)’ (3.45)
S - y? ¢
Ay =i [_ﬁ’ <(A11+A10)Atl ) Tm VoDV 1)’ (3.46)
A =il-& () e
= n2’ (A +A)Af! > "2 (N~ DN _1)’ (3.47)
and
[ @ Aty He L0 ] i
g @™
fL+(@? - Ay s 1
F, = W= ) n=2,..,N,
le B At" N z)f(f)ﬂ) e
. (A0)® Ne=l | &N,
AT @ sty B LUl ST Uy a8

Proof The matrix-vector forms
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4 Analysis of difference scheme
4.1 Solvability
We use Gershgorin circle theorem to show the solvability of our scheme (3.42).
Theorem 4.1 The difference scheme (3.42) is uniquely solvable.
of the difference scheme (3.42) are given in (3.44). By the Gershgorin circle theo-

rem, the matrices A;, A, and A are invertible. These invertibility guarantee the solv-
ability of proposed scheme.

4.2 Stability and convergence analysis

Theorem 4.2 The difference scheme (3.42) is unconditionally stable.

Proof To analyze the stability of the present difference algorithm (3.42), first, we mention
some crucial notions. Suppose U be an estimation of the numerical scheme (3.42), and define

k T
ph=Us-0U", 0<k, <N, 1<n<N,
Letp, = (0", p!, ... , o7, and use the norm

k

X

ol

ol = pax,

It follows from (3.42) that

s,Uk s U n—1 5 U —s UK X P
3.n '+ Yn — 3.n T ! _ 27 1K T
H <—> +k21Hk/ <;> =&U + /" 1<k <N,, 1<n<N,

A=l Am-2 Atk A2

After simplification of terms, we have

ke 1 ip3n
U —U x ur -u* H,
— _1 2 _ & 2 1 k ky ky
b o SUL + - o X AT (Uk» _Ukk_l)
7 k=1 ! !
n—1 ,H?n
1 ke ke ke
+_7:‘3,n I\EJ v (Uk,_l U/q—z ’
n— 1
ky+1 k k k
KU, ( AT _ZIC)U +ICU;1 = H‘sn Z ﬁlk,( k;— ) ~3u Z p (U/\j 1 Uk:_Q)
k. k Ky
+ Unl—l + Unkl Un 2 + f//;
YN N 7o
n
“.1)
3.n & 3. ~3.n
~3n My H, H
where =—+t— pf" =—— p' = and I = —
My, = saran P, = za Py, = 7 HZI"m
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After some simple calculations, one can get

Zﬁ kx + Uf{il _ 1 n _pn ka
~'§u k k 1 N - ,Hln 1,k,+1 l,kl kz, (42)

" k= k=0

and,

1 nil ﬁn ka _ ka + Un 1 quz _ -1 z n Y ka
ﬂi.n = 2.k k—1 k=2 A2 = g 2,k +1 2.k, k=1
=

", k=0
. . 43)
Inserting (4.2) and (4.3) into (4.1), one can get
ke+1 k=1 nl n n ky < n n ky
Ku, "+ (A )U +RU = ﬁ [kz()( L+~ 1,k,>Uk, -EU (Bz,k,+1 - 2,k,>Uk,—1:|
f;l
H,‘,”
4.4)

By making use of (4.4), one can obtain the following roundoff error equation

n—1 n
ko1 _ 1 n _pn Ky n _pn ky
Koy +(A,n_ ZIC)Pn + Koy ™! = 7 ["ZO( Lk +1 l,k,)pk, kzo (ﬁZ,k,Jrl ﬁZ,k,)pk,l:|'
n = =
4.5)

For simplicity of the formulas in our further consideration, we define

Ly = Kpy™ + ( - ZIC)pn + Ky (4.6)

A=l

n—1 n

koyo_ 1 k, k,
Lyp,y) = 7 Lz_:o( k1 ™ rf,k,)”k, - 1;—:0( 2kl T ;,k,)pk,—l]' 4.7

Grouping (4.6) and (4.7) with (4.5), then (4.5) can be re-written as:
Ly(py) = Ez(p’,?_l)-

Consider,

Z

n—1

(P =
Lk, +1 1k,
o

k

X

+ —

ﬁn _Qn
2k 41 24 1

4.8)

‘ﬁz(ﬂn 1)’ ﬂ

P

~%n

<Clp

k
where ' P,

= |pk

0<k <n 1

HmhscmeISnSM, (4.9)

which is the required result for unconditional stability of proposed scheme.

Theorem 4.3 Let TFDWESs (1.1)~(1.3) has smooth solution U(x,t) € C=;, and (3.42)
have the approximate solution {Uﬁ*l 0 <k, <N, 1 <n<N,}, where, the non-uni-

form mesh defined by (3.13) is taken for temporal domain discretization. Then,
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e, i - U |

_SCWN T+ 1), 1<n <N, (4.10)

Proof Suppose Eﬁ = UQEH, ) — Uﬁ*, 0<k, <N, 0<n<N, Now, subtracting
(3.42) from (3.40), one can obtain

LES = LES +RY, 1<k, <N,—1, 1<n<N,
and from initial and boundary conditions given in (1.2)—(1.3), we get
E’=EY=0, 1<n<N,

n

kX
Ef=0, 0<k <N,

Consider,
1Bl = max, |Ev| = |2
Then,
1Bl = 2| = |£iEd| = |.EL, +R',§’L,
< |LE] |+ R,
SB[l + R
where, R, = max RY|. Forn =1, we have
IE:llco < [1Eollao + Riax = R
Hence,
IE )l € Rparr 1SRN, @.11)

Now, inserting the value of (3.18) in (4.11), we get the required result (4.10).

From Theorem 4.3, we conclude that our derived scheme (3.44) has (5 — a)-th
order global accuracy in the time domain for all time levels n and second-order
global accuracy in the spatial direction. It is seen from the analysis part of local
truncation error (in Theorem 3.1) that the (5 — a)-th order accuracy in time direc-
tion has achieved for a sufficiently large value of n. Although a little larger errors
are obtained at starting time levels (when »n is small), the impacts of these errors
caused on the accompanying time levels are more fragile and more vulnerable with
the end goal so that they can be overlooked when the value of n is sufficiently large.
Consequently, we can presume that the convergence rate will be better when # is
large enough, which is confirmed by the numerical investigations in the upcoming
Section 5.
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5 Numerical experiments

In the current section, we will test some problems to verify the theoretical results and
numerical stability of our proposed adaptive algorithm. The following formulas dem-
onstrate the effectiveness of the algorithm:

N,-1
. Z h‘u(xkx, Ny — 1;/;; |2, forj =2,
EWNy N, = ”u_u”Lj = k=1 I
max forj = o0
0<k,<N
(5.1)

To calculate the temporal and spatial convergence orders, we utilize the following
computational order formula:

ol
Ell,
—le . or space,

(Order),, = 1 v (5.2)

—Nq’, for time.

From Theorem 4.3 and Theorem 3.1, we conclude that the rate of convergence of
our developed scheme is of order O(N,*~> + 4?) for sufficient large value of n and
errors obtained at starting time levels are little larger, respectively. In order to improve
the accuracy and efficiency of our scheme, moving refinement approach has been intro-

duced on our non-uniform mesh (3.13) by inserting some fictitious points
24k

2 k=1 4k —

(k » t(k ) (k ) in the subinterval [#~", /], and let w T
A+ _ . .

where,

I k-1
iy =17+ i, + Doy

To improve the accuracy of the proposed scheme at initial time levels, we upgrade
the proposed adaptive scheme by inserting the following process, where U, denotes
the numerical approximation on the time level #*:

e Step 1: Firstly evaluate U, by us1nﬁ initial value U, and proposed scheme (3.44)
onthe grid £ <1/, <1} < <t} <th

e Step 2: With the help of U, and scheme (3.44) compute U, on
O <t <t <1y << té) <r

e Step 3: After receiving U, and U, from above two steps, we proceed the follow-

ing process for further time levels:
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Case-I For 1 < a <1.5, evaluate {U,}}_, by scheme (3.44) on the non-uniform
grid® <t <2 <. <1

Case-II For 1.5 < a <2, evaluate {U,};:;’"Jrl by using scheme (3.44) on non-
uniform refined mesh

— _ J,
O<th <o <<y < <t < <l <ae < e < g <

‘/n—]
(n=1) (n=1) (n) (n) (
We now analyze the stability of the modified Adaptive Algorithm 2. Theorem 3.1
shows that the Adaptive Algorithm 1 has rate of convergence of order (3 — ) and (4
— a) for starting time levels n =1 and n =2, respectively. When we compute U, on a
new time grid from Step 1, it follows from Theorem 3.1 that |R(U(t1))| =005 -a),

since there are only J, additional node points in new time grid which is generated
with the help of A% and w, . Similarly, when we compute U, on new time grid from
Step 2, we get 'R(U(tz))| = O(5 — a). Thus, by mathematical induction method, one
can easily obtained the stability of upgraded Adaptive Algorithm 2.

Based on developed numerical scheme (3.44) and moving refinement technique,

we now present two adaptive algorithms for the approximate solutions of proposed
problem (1.1)—(1.3) (Fig. 2):

Algorithm 1: An adaptive algorithm for the numerical solution of the proposed problem
(1.1)-(1.3)
Input: Ni, Na, 2, ¢(z), ¥(z), P1(t), P2(t), a; {N: € N\{1} = total number of grid points
in temporal domain, N, € N\{1} = total number of grid points in spatial domain, 2 = the
domain, ¢(z) & ¢ (x) are initial conditions, P1(t) & P2(t) are boundary conditions, and
o € R(LQ).} .
for 1 <a<2do
if 1 << 1.5 then
e Generate non-unifrom mesh by using At" = (n+ 1)p, 0 <n < Ny — 1.
e Evaluate {U;};-; by using the proposed scheme (3.44) on non-uniform mesh
P <tt<...<t™, 1<n< N
else if 1.5 < a < 2 then
o Shift the mesh by setting At" = (n+2)pu, 0 <n < Ny — 1.
e Now calculate {Uz};:ll’"Jrl with the help of the proposed scheme (3.44) on non-uniform
mesh t© < ! < ... <"t <t
e Approximated value U,, on time level t" can be obtained by:

viUn—1 +1v2Un41

U, =~
" Vi + 12
where v1 and v are shown in Fig 1.
end if
Discrete approximations Uy, for different time levels the,
end for

return Get approximate solution U.
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Algorithm 2: An upgraded adaptive algorithm for the numerical solution of the proposed
problem (1.1)-(1.3)
Input: N, Ni, 2, ¢(z), ¥(x), P1(t), P2(t), o; {Nt € N\{1} = total number of grid points
in temporal domain, N, € N\{1} = total number of grid points in spatial domain, {2 = the
domain, ¢(x) & 1(z) are initial conditions, @1 (t) & P2(t) are boundary conditions, and
(oS R(LQ)'} .
for 1 <a<2do
e Generate non-unifrom mesh by using At" = (n+1)u, 0 <n < Ny — 1.
if 1 <o < 1.5 then
o Refine the first and second subinterval, i.e. [t°,t!] & [t!,#?] by inserting some fictitious
points t° <ty < tfy) <--- <tf}) <thand ' <ty <1y <o <13 < t*, respectively.
e Making use of given initial and boundary conditions evaluate Uy & Uz on refine grids
0 <thy <thy <o <t <t <ty <tlyy < <t <t
e Once Uy & Uy are obtained, find {U;};_3 by using (3.44).
else if 1.5 < a < 2 then
e Shift the mesh by setting At"™ = (n+2)p, 0 <n < N; — 1.
e Determine Uy & Uz by using given initial and boundary conditions and Step 1 & Step 2
of moving refinement technique.

e Now calculate {U; ;”;;*"H with the help of (3.44) on non-uniform refined mesh

<t << TR, < <t < T <y <Ry <<t <t

e Approximated value U, on time level t" can be obtained by:

viUn—1 +12Un41
Uy —

)

Vi + 2
where v1 and v are shown in Fig 1.
end if
Discrete approximations Uy, for different time levels the,
end for

return Get approximate solution U.

Test Problem 5.1 [49] We consider the 1D problem (1.1)—(1.3) with an exact ana-
lytic solution U(x, ) = £* sin(zx) in the domain Q = [0,1] x [0,1]. Corresponding
forcing term and initial and boundary conditions are:

6137 sin(zx)

_ 23
flx, ) ==t s1n(7rx)+r(2_a) 652t

d) =y (x) =0, @,(1) = @y(1) = 0.

Recently, above problem has been solved in [49] by using finite difference
method on uniform mesh and achieved the convergence order O(z3%) in the time
domain. After implementation of proposed high-order adaptive Algorithm 1 and
Algorithm 2, the numerical outcomes on non-uniform mesh are described in
detail as below:

e Exact and numerical solutions obtained by proposed Algorithm 1 for N,
=100, N, =20, and @ = 1.2 are given in Figs. 3 and 4, respectively. Good sim-
ilarity of both the figures ensure that the proposed numerical scheme work
effectively.

e To test the absolute errors and convergence orders on a non-uniform mesh
concerning L and L, discrete error norms in the time domain, allowing
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Fig. 2 Flowchart of the proposed adaptive algorithm
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Exact solution

Fig.

/ — 1
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0.8 = 0.7
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0.4
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0
1

1
0.8
0-5 0-6
t 0.4
0.2 X-axis
0 o
3 Graph of exact solution of Test Problem 5.1 for N, =100, N, =20, J, =5, J, =5, and a =1.2 at

different time level without any noisy data

N, to change and fixing N, =1000 adequately large to avoid contamination
of the spatial errors. Tables 1, 2, and 3 give the results at time T = 1 and
Jy=5,J,=5,Jy_; =Jy =10. These tables clearly show that the adap-
tive algorithm 2 improve the accuracy of numerical solutions as compare to
the numerical solutions obtained by adaptive algorithm 1. Moreover, from
Tables 1, 2, and 3 we can conclude that the upgraded adaptive algorithm 2
gets (5 — a)-th order temporal accuracy with respect to L., and L, discrete
error norms, respectively.

A comparative results is demonstrated in Tables 1 and 2. From the results of both
the tables, it can be seen that our adaptive scheme on non-uniform mesh giving
far better result than the scheme discussed in [49] on uniform mesh.

The outcomes of Table 3 verify the stability and accuracy of the proposed adap-
tive scheme when @ — 1 or @ — 2. We can see that the upgraded adaptive algo-
rithm 2 has (5§ — a)-th order accuracy in temporal direction when @ — lora — 2.
A similar process is also done in Tables 4 and 5 by using adaptive algorithm 1
for analyze the behavior of numerical solution in spatial domain. The outcomes
of both the tables shown that the adaptive numerical scheme has second-order
accuracy in spatial direction with respect to L, and L, discrete error norms,
respectively.
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Fig.4 Graph of numerical solution of Test Problem 5.1 for N, =100, N, =20, J, =5, J, =5, and a =1.2
at different time level without any noisy data

e The numerical results obtained in Tables 1-5 for different values of a verify
our theoretical findings discussed in Section 4.

Test Problem 5.2 [49] We consider the problem (1.1)
SD;”L{(x, 1 =AU+ f(x, 1), (x,))=Q€[0,1]1x[0,1], | <a <2,

with an exact analytic solution U(x, f) = £x42(1 — x). It can be checked that the cor-
responding initial and boundary conditions are ¢(x) = y(x) =0 and ® (1) = D,(?)
=0, respectively, and value of forcing term is:

6t3‘“(x _ l)xl+a

_ 3.a 31 — a-1 _
fOu ) =20+ ) —a(l+ @) (1 —0x" = me— e e

This problem has been considered in [49] and solved numerically by finite dif-
ference method on uniform mesh. We analyze the behavior of numerical solution

@ Springer



1932 Numerical Algorithms (2023) 92:1905-1950

of same problem by a newly design adaptive numerical scheme based on finite
difference method on a non-uniform mesh. The detail outcomes are pointed as:

e Behavior of exact and numerical solutions for discretization parameter N,
=100, N, =20, J, =5, J, =5, and a =1.4 are shown in Figs. 5 and 6, respec-
tively. It clearly shows that, the approximate solutions are in good agreement
with the exact solutions at each time level.

e To verify the computational performance and convergence order in temporal
direction of our adaptive algorithm, first we set up the value of N, =1000 in
Tables 6 and 7 to ensure that the computational errors in spacial direction are
small enough and do not affect the temporal computational errors. After that var-
ying the temporal discretization parameter N, to observe the L and L, errors and
convergence order in time domain for different values of a. Results of both the
tables shown that the better result obtained from modified adaptive algorithm 2
as compare to the adaptive algorithm 1. Furthermore, we can see that the devel-
oped difference scheme on non-uniform mesh has (5 — a)-th order accuracy in
time direction.

e Moreover, Tables 6 and 7 demonstrate the comparison of our proposed numeri-
cal scheme and the method discussed in [49] with respect to L, and L, discrete
error norms, respectively. From the results of both the tables, one can conclude
that the scheme presented in this paper is far superior than the scheme consid-
ered in [49].

e Numerical results of our adaptive algorithm 1 for spatial direction are discussed
in Tables 8 and 9, respectively. Specifically, we take N, =1000 and varying the
values of N, then we get second-order spatial accuracy for different values of a.

e All the numerical results of Tables 6-9 are supported our theoretical results
obtained in Section 4.

Test Problem 5.3 [21, 50] Consider the time fractional wave equation
D 2u(x, 1) = Au, (x,1) = Q € (0,11 (0,11,
subject to the initial conditions
u(x, 0) = sin(x), u,(x,0) = —sin(x),
and boundary conditions
u(0,1) =0, u(l, 1) = sin(l)(E3/2‘1(—t3/2) - tE3/2,2(—t3/2)).

Momani et al [21] showed that its exact solution is
Ej ) (—1/%)sin(x) — tE3 5 (=1/?) sin(x), where E  (2) is the two parameters Mit-
tag—Lefller function defined by:

@ Springer



Numerical Algorithms (2023) 92:1905-1950 1933

[e]
n

Z
Ey s ()= ) ————.
P ;0 T(Bin+B,)

Table 10 presents the L and L, errors obtained by our proposed adaptive algo-
rithms at time 7 = 1, a—15 N, =1000, J; =5, J, =5, Jy_; =10, Jy =10 for
the Test Problem 5.3. Also, Table 10 illustrates that theoretical results are closed to
computational orders in the temporal direction.

Test Problem 5.4 The considered problem (1.1)
ng’L{(x, 1 = AUx, D+ f(x, 0, (x,))=Q€e[0,11X[0,1], 1 <a <2,

with an exact analytic solution U(x, ) = ¢’ sin(x). The initial and boundary condi-
tions are ¢(x) = w(x) = sin(x) and ®,(¢) =0, ®,(¢) = €' sin(1), respectively, and
value of forcing term f{x,f) can be obtained from the exact solution for different
choices of a. After implementation of proposed schemes, the numerical outcomes
on non-uniform mesh are described in detail as below:

e Outcomes of L and L, errors and computational orders for different values of a,
discretization parameter N, = 1000, Jy =Jy_; = 10, and J; = J, =5 are given
in Table 11. It clearly shows that the proposed adaptive algorithm 2 achieves (5
— a)-th order accuracy in temporal direction with respect to L, and L, discrete
error norms, respectively.

e To test the behavior of numerical solution and convergence rates in spatial direc-
tion, allowing N, to change and fixing N, =1000. Tables 12-13 demonstrate that
adaptive algorithm 1 achieve second-order accuracy in spatial direction with
respect to L, and L, discrete error norms, respectively.

e All the numerical results of Tables 11-13 are supported our theoretical results
obtained in Section 4.

5.1 Numerical stability

In this part, we investigate the numerical stability of our proposed numerical
scheme. For this aim, we have added some random noises to the linear source term
and given initial data of the problem (1.1)—(1.3) according as [51].

In the above Test Problems 5.1 and 5.2, initial data and source term without any
noisy inputs are represented as ¢(x), w(x), and f{x,f) respectively; while noisy initial
data and source terms are denoted by ¢°(x), w(x), and f°(x,t), respectively. The noisy
profiles ¢°(x), w(x), and f°(x,f) are obtained by introducing a random noise € to f(x,?),
¢(x), and w(x), respectively. To control the upper limit of the input noises, we have
used two parameters m and §, where m € R is adjusted according to the test prob-
lems and §; € [—1,1] such that ¢¢(x*) = p(xk) + €5;, we(xk) = w(k) + €5, and
fe@k, T) = f(xk,T) + €5;, where xk=kh, k,=0,...,N'/h, Nh=L, and
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Table1 L,— errors and temporal orders at T = 1, N, = 1000, J, =5, J, =5, Jy _; = 10, Jy =10, and
different values of a for Test Problem 5.1

a N, Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]

EN Ny (Order), _ EN N (Order),, _ EN Ny (Order), _

1.1 1/5 5.9383e-03 - 3.6425e-03 - 1.2043e-02 -
1710 4.5825e-04 3.6958 2.3098e-04 3.9791 3.2290e-03 1.8990
1/20  3.3635e-05 3.7681 1.4796e-05 3.9645 8.7585e-04 1.8823
1740 2.7960e-06 3.5885 9.7023e-07 3.9307 2.3823e-04 1.8783
1/80  7.4026e-07 1.9172 6.4739¢-08 3.9056 6.5075e-05 1.8722
1.5 1/5 9.7289e-02 - 3.6526e-03 - 4.4340e-02 -
1/10  1.1300e-02 3.1059 3.1030e-04 3.5572 1.6016e-02 1.4691
1720 1.4442¢-03 2.9680 2.7118e-05 3.5163 5.5990e-03 1.5163
1/40  1.8477e-04 2.9665 2.2812e-06 3.5714 1.9600e-03 1.5143
1/80  2.3748e-05 2.9598 2.0165e-07 3.4998 6.9029e-04 1.5056
1.9 1/5 1.3850e-01 - 1.4115e-02 - 1.3259¢-01 -
1/10  1.4115e-02 3.2945 1.6400e-03 3.1055 7.0107e-02 0.9193
1/20  1.4104e-03 3.3231 1.8563e-04 3.1432 3.5332e-02 0.9886
1740 1.7740e-04 2.9910 2.2331e-05 3.0553 1.7197e-02 1.0388
1/80  2.3096e-05 2.9413 2.5907e-06 3.1076 8.1965e-03 1.0691

Table2 L, — errors and temporal orders at T = 1, N, = 1000, J, =5, J, =5, Jy_; = 10, Jy = 10, and
different values of a for Test Problem 5.1

a N, Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]
5(NX,N,)Lz (Order) L, EN,,N,) L, (Order) L, E(h, 7L, (Order) L,
1.1 1/5 4.1990e-03 - 3.5573e-03 - 8.5162e-03 -
1/10 3.2403e-04 3.6958 2.2559e-04 3.9790 2.2833e-03 1.8991
120 2.3783e-05 3.7681 1.4451e-05 3.9645 6.1932¢-04 1.8824
1/40 1.9771e-06 3.5885 9.4763e-07 3.9307 1.6846e-04 1.8783
1/80 5.2345e-07 1.9172 6.3227e-08 3.9057 4.6015e-05 1.8722
1.5 1/5 6.8794e-02 - 1.2306e-03 - 3.1353e-02 -
1/10 7.9905e-03 3.1059 1.0454e-04 3.5572 1.1325e-02 1.4691
1720 1.0212¢-03 2.9680 9.1363e-06 3.5163 3.9591e-03 1.5163
1/40 1.3065e-04 2.9665 7.6855e-07 3.5714 1.3859¢-03 1.5143
1/80 1.6793e-05 2.9598 6.7841e-08 3.5019 4.8811e-04 1.5055
1.9 1/5 9.7933e-02 - 9.9809e-03 - 9.375%-02 -
1/10 9.9809e-03 3.2945 1.1596e-03 3.1055 4.9573e-02 0.9194
1720 9.9729¢-04 3.3231 1.3125¢-04 3.1432 2.4983e-02 0.9886
1/40 1.2544e-04 2.9910 1.5789¢-05 3.0553 1.2160e-02 1.0388
1/80 1.6332¢-05 2.9413 1.8317¢-06 3.1077 5.7958e-03 1.0691
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Tab|e3 L and L, - errors and temporal orders with T = 1,
N, = 1000 J =5 J,= 5 Jy,—1 =10, Jy, = 10, and different a for Test Problem 5.1
a N, Adaptive algorithm 1~ Adaptive algorithm 2 Adaptive algorithm 1 ~ Adaptive algorithm 2
&N N, &, )y, &, ),  (Order),
&N N,),_ (Order), (Order),_ (Order),,
1.001 1/5 8.1821e-04 - 6.1839¢-04 - 5.7566e-04 — 4.6485e-05 —

1710 6.6074e-05 3.6303  3.8902e-05 3.9906  4.6458e-05 3.6312 2.8868e-06 4.0092
1/20  4.8257e-06 3.7753  2.2826e-06 4.0911 3.3894e-06 3.7768  1.7984e-07 4.0047
1/40  3.2270e-07 3.9025  1.4086e-07 4.0183  2.2641e-07 3.9040 1.1093e-08 4.0190
1/80 2.0319e-08 3.9893  8.7456e-09 4.0096 1.4136e-08 4.0015  6.8928e-10 4.0084
1.999 1/5 1.2742e-02 - 8.2752e-03 - 8.695%¢-03 - 4.8041e-03 —
1/10  1.3105e-03 3.2814  9.6841e-04 3.0951 9.3892e-04 3.2113  5.8975e-04 3.0261
1/20 1.4686e-04 3.1577  1.1872e-04 3.0281 9.2604e-05 3.3419  7.2744e-05 3.0192
1/40 1.8998e-05 2.9505  1.4714e-05 3.0123 1.1404e-05 3.0216  9.0502e-06 3.0068
1/80 2.3545e-06 3.0123  1.8487e-06 2.9926 1.3933e-06 3.0329 1.1253e-06 3.0076

oJax, B (M) — P oJax, | ) -] <e, and
Jmax lfe(x < T) —f(xk~*,T)| <e

In order to demonstrate the efficiency and numerical stability of the schemes,
we have imposed two different kind of random noises, namely, ¢€; as €, =0 and
€, = m% of o, where oy, are average deviation given in (5.2) for j =2 case.

The point-wise absolute errors are evaluated by

Table4 L_ — errors and spatial orders with T = 1, N, =1000, and different values of & for Test Prob-
lem 5.1

h a=1.1 a=15 a=19

EN N, (Order),_ EN N, (Order), ENLN) (Order),,_
1/5 2.3019e-02 - 5.0333e-03 - 3.6095e-03 -
1/10 6.0061¢-03 1.9383 1.2574¢-03 2.0010 9.0308e-04 1.9989
1/20 1.4987¢-03 2.0027 3.1431e-04 2.0002 2.2582¢-04 1.9997
1/40 3.7450e-04 2.0007 7.8582¢-05 1.9999 5.6467e-05 1.9997
1/80 9.3614e-05 2.0002 1.9654e-05 1.9994 1.4126e-05 1.9991

U= = et - 8

sk € 2Ny ki € Zyg - (5.3)

Remark 5.1 In all figures given below u}, UJ’ and E]’:, i=1,....3;j=1,...,9, repre-
sent the exact solutions, approximate solutions, and absolute errors at various time
level T, respectively.
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Table5 L, — errors and spatial orders with T = 1, N, =1000, and different values of a for Test Prob-
lem 5.1

/] a=1.1 a=15 a=1.9

EN,,N,) L (Order) L, EN,,N,) L, (Order) L E(N,,N,) L, (Order) L,
1/5 1.7115e-02 - 3.5591e-03 - 2.5523e-03 -
1/10 4.2469¢-03 2.0107 8.8913e-04 2.0010 6.3857e-04  1.9989
1/20 1.0597e-03 2.0027 2.2225e-04 2.0002 1.5968e-04  1.9997
1/40 2.6481e-04 2.0007 5.5566¢-05 1.9999 3.9928e-05  1.9997
1/80 6.6195e-05 2.0002 1.3898e-05 1.9994 9.9886e-06  1.9991

0.13

0.1

10.08

0.05 0.06

Exact solution

0.04

0.02

0 o0

Fig.5 Graph of exact solution of Test Problem 5.2 for N, =100, N, =20, J; =5,J, =5, and a = 1.4 at dif-
ferent time level without any noisy data

For Test Problem 5.1 Following facts about Figs. 7, 8,9, 10, and 11 that characterize
the numerical stability of the Test Problem 5.1 should be noticed:

e For labeling the graph in Fig. 7, we scale the graph as
uh = 1072 XUk, T) +0.0G = 1), j = 1,...,9; 12y = 3X 1072 X UK, T) + 0.0 = 10),
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Fig.6 Graph of numerical solution of Test Problem 5.2 for N, =100, N, =20,J, =5, J, =5, and a =1.4

at different time level without any noisy data

Table6 L, — errors and temporal orders at T = 1, N, = 1000, J, =5, J, =5, Jy _; = 10, Jy = 10, and
different values of a for Test Problem 5.2

a N, Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]
EN N, (Order),,_ ENN,),_~ (Order), EN N, (Order),,_
1.1 1/5 8.0222¢-04 - 8.0226e-04 - 1.4799¢-03 -
1/10  6.1838e-05 3.6974 5.3121e-05 3.9167 3.9689¢-04 1.8987
1720 4.4310e-06 3.8028 3.5490e-06 3.9038 1.0758e-04 1.8833
1740 2.6032e-07 4.0893 2.2940e-07 3.9515 2.9182e-05 1.8823
1/80  6.1075e-08 2.0916 1.4923e-08 3.9423 7.8901e-06 1.8870
1.5 1/5 1.0954e-02 - 9.8042¢-04 - 4.3235e-03 -
1/10  1.3612e-03 3.0085 8.2972e-05 3.5627 1.5597e-03 1.4709
1720 1.7658e-04 2.9465 7.0815e-06 3.5505 5.4584e-04 1.5147
1/40  2.2538e-05 2.9698 6.2207e-07 3.5089 1.9114e-04 1.5138
1/80  2.7899e-06 3.0141 5.4642e-08 3.5090 6.7250e-05 1.5070
1.9 1/5 1.1891e-02 - 1.2472¢-03 - 1.0400e-02 -
1/10  1.2472e-02 3.2531 1.4428e-04 3.1117 5.4445e-03 0.9337
1720 1.5200e-04 3.0366 1.6519¢-05 3.1267 2.7264e-03 0.9978
1/40  1.9625e-05 2.9533 1.9142¢-06 3.1093 1.3223e-03 1.0439
1/80  2.4287e-06 3.0144 2.2256e-07 3.1045 6.2913e-04 1.0716
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Table7 L, — errors and temporal orders with T = 1, N, = 1000, J, =5, J, =5, Jy_; = 10, Jy =10,
and different a for Test Problem 5.2

a N, Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]
&N, N,)L2 (Order)L2 &N, N,)L2 (Order) L, &(h, ‘r)L2 (Order) L,
1.1 1/5 5.6465e-04 - 5.6468e-04 - 1.0381e-03 -
1710 4.3438e-05 3.7003 3.7382e-05 3.9170 2.7833e-04 1.8991
1720 3.1005e-06 3.8084 2.4974e-06 3.9038 7.5432e-05 1.8835
1/40 1.7483e-07 4.1484 1.6142¢-07 3.9515 2.0454e-05 1.8828
1/80 3.4718e-08 2.3322 1.0500e-08 3.9424 5.5238e-06 1.8887
1.5 1/5 7.1471e-03 - 6.9422e-04 - 3.0298e-03 -
1/10 8.6044e-04 3.0542 5.8747e-05 3.5628 1.0939¢-03 1.4697
1720 1.1086e-04 2.9563 5.0139¢-06 3.5505 3.8251e-04 1.5159
1/40 1.4119e-05 2.9730 4.4044e-07 3.5089 1.3386e-04 1.5148
1/80 1.7305e-06 3.0284 3.8688e-08 3.5090 4.7079e-05 1.5076
1.9 1/5 8.0031e-03 - 8.3034e-04 - 7.2953e-03 -
1/10 8.3034e-04 3.2688 9.6060e-05 3.1117 3.8455e-03 0.9238
1720 9.1742e-05 3.1780 1.0998e-05 3.1267 1.9347e-03 0.9911
1/40 1.1717e-05 2.9690 1.2744¢-06 3.1094 9.4082e-04 1.0401
1/80 1.4419e-06 3.0226 1.4817e-07 3.1045 4.4818e-04 1.0698

Table 8 L — errors and spatial orders with T = 1, N, =1000, and different « for Test Problem 5.2
n a=1.1 a=1.5 a=19

EN N, (Order), _ EN N, (Order), ENLN) (Order), _

1/5 2.6753e-03 - 3.6674e-03 - 3.8179e-03 -

1/10 6.7891e-04 1.9784 9.9007e-04 1.8892 9.7940e-04 1.9628
1/20 1.5978e-04 2.0871 2.5961e-04 1.9312 2.4812e-04 1.9808
1/40 3.7527e-05 2.0901 6.6892e-05 1.9564 6.2182e-05 1.9965
1/80 9.3221e-06 2.0092 1.7061e-04 1.9711 1.5560e-05 1.9987

Table9 L, — errors and spatial orders with T = 1, N, = 1000, and different a for Test Problem 5.2

n a=1.1 a=15 a=1.9

e(N.N,), (Order),, e(N,N,), (Order),,  &(h,7)

: ? (Order)L2

1/5 1.9881e-03 - 2.7266¢-03 - 2.9352¢-03 -
1/10 5.0354e-04 1.9812 7.3840e-04 1.8846 7.5342e-04 1.9620
1/20 1.1851e-04 2.0871 1.9337e-04 1.9331 1.8989¢-04 1.9883
1/40 2.7834e-05 2.0901 4.9806e-05 1.9569 4.7615e-05 1.9957
1/80 6.9143e-06 2.0092 1.2704e-05 1.9710 1.1918e-05 1.9983
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Tabl

el10 L and L, - errors and temporal orders at T = 1,

N, =1000, J, =5, J, =5, Jy_; = 10, Jy =10, and a =1.5 for Test Problem 5.3

N,

t

Adaptive algorithm 1 Adaptive algorithm 2 Adaptive algorithm 1 Adaptive algorithm 2

&NN)) (Order), &N,N), ~ (Order), ~ &EN,.N),, (Order),, &WN,,N,),, (Order),

1/5

1/10
1720
1/40
1/80

2.8663e-03 — 2.3265e-03 - 2.8095e-03 - 2.8000e-03 -

2.5855e-04 3.4707 1.9349e-04  3.5878 2.5340e-04 3.4708 2.3284e-04  3.5880
2.8194e-05 3.1970 1.6676e-05 3.5364 2.7624e-05 3.1974 2.1726e-05  3.5439
3.5514e-06 2.9889 1.4988e-06  3.4759 3.2383e-06  3.0926 1.9083e-06  3.5091
3.4716e-07 3.3547 1.3092e-07  3.5170 3.0858e-07  3.3915 1.6530e-07  3.5291

J=10, 18508 =50 X 1072 XU, T) + 0.0 - 19), j =19, ...,27, and
k,=0,...,N,. In similar way, we label the graph in Fig. 8 as
Ul = 1072 X UGk, T +0.0G - 1), j=1,...,9; U2 = 3x 1072 X Uk, T) + 0.0( — 10),
J=10,., 18 U2 =50 X 1072 X Uk, T) +0.0( = 19), j = 19,...,27, and
k,=0,...,N,. To label the graph in Fig. 9, we multiply Ej2 =4 X [U—U| and
153—102 xU-ul,j=1,...9.

Flgures 7 and 8 show a good s1m11ar1ty between exact and approximate solutions
of Test Problem 5.1 for different values of a at different time level T when we
fixed the discretization parameter N, = N, = 100, J, =J, =5, Jy_; =Jy =10,
and add a noise ¢, in given initial data and linear source term.

Figure 7 shows the absolute errors between exact and approximate solu-
tion obtained by the proposed adaptive numerical algorithm for the noise ¢,
in initial data and linear source term when we fix the discretization parameter
N,=N,=100, J, =J, =5, Jy_; =Jy = 10.

ForN’— 100, « =12, N, = 100 N, —20 J, =J, =35, and m =20, the abso-
lute errors between exact and approximate solutions at different time levels are
shown in Fig. 10 when we force noise ¢, in linear source term.

Figure 11 reflects the absolute errors between exact and approximate solutions
when we add noise ¢, in both initial data and linear source term for the param-
eters N = 100, « = 1.2, N, = 100, N, =20, J, = J, = 5,and m =20.

From the error Figs. 7, 8, 9, 10, and 11 it is evident that the effect of noises ¢,
and e, in given initial data and source term are almost negligible and hence it can
be concluded that the proposed method is numerically stable.
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Table 12 L — errors and spatial orders with T = 1, N, = 1000, and different « for Test Problem 5.4

h a=1.1 a=15 a=19

EN N, (Order),_ EN N, (Order), ENLN) (Order),,_
1/5 4.3737e-02 - 3.6492¢-02 - 4.0483e-02 -
1/10 1.1411e-02 1.9383 9.5710e-03 1.9308 1.0584e-02 1.9353
1/20 2.8477e-03 2.0026 2.3966¢-03 1.9977 2.6438e-03 2.0012
1/40 7.1174e-04 2.0004 6.0468e-04 1.9868 6.6207e-04 1.9975
1/80 1.7805e-04 1.9990 1.5679¢-04 1.9473 1.6684¢-04 1.9885

Table 13 L, — errors and spatial orders with T = 1, N, = 1000, and different a for Test Problem 5.4

h a=1.1 a=15 a=1.9

EN,,N,) L., (Order); &N, N,) L. (Order); E(N,, AT (Order); .
1/5 3.2518e-02 - 2.7132e-02 - 3.0099e-02 -
1/10 8.0692¢-03 2.0107 6.7677e-03 2.0032 7.4846e-03  2.0077
1/20 2.0136e-03 2.0026 1.6947¢-03 1.9977 1.8695e-04  2.0012
1/40 5.0327e-04 2.0004 4.2757e-04 1.9868 4.6816e-04 19975
1/80 1.2590e-04 1.9990 1.1087e-04 1.9473 1.1797e-04  1.9885

For Test Problem 5.2 Following facts about Figs. 12, 13, 14, 15, and 16 that charac-
terize the numerical stability of the Test Problem 5.2 should be noticed:

u?

J

For labeling the graph in Fig. 12, we scale the graph as

=3 X UG, T); uj3 =50 X U, T), j=1,...,9,and k, = 0, ..., N_. In similar way,
we label the graph in Fig. 13 aLsUj2 = 3 X UK, T); Uj3 =50 x U, T), j=1,...,9,
and k, =0, ..., N,. To label the graph in Fig. 14, we multiply Ej2 =5X|U—-U|and
E=10xU-U.j=1....9.

Figures 12, 13 show a good similarity between exact and approximate solutions of
Test Problem 5.2 for different values of « at different time level T when we fixed
the discretization parameter N, =N, =100, J; =J, =5, Jy_; =Jy =10, and
add a noise € in given initial data and linear source term.

Figure 14 shows the absolute errors between exact and approximate solu-
tion obtained by the proposed adaptive numerical algorithm for the noise €,
in initial data and linear source term when we fix the discretization parameter
N,=N,=100, J, =J, =5, Jy_; =Jy = 10.

For N' =100, « = 1.4, N, = 100, N, =20, J, = J, = 5, and m =40, the abso-
lute errors between exact and approximate solutions at different time levels
are shown in Fig. 15 when we force noise ¢, in linear source term.
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Fig.7 Graph of exact solutions of Test Problem 5.1 for different value of « at different time levels T with

noise € in initial data and linear source term when N, = N, = 1

00, Jy =0y =5, Jy_ =Jy =10

e Figure 16 reflects the absolute errors between exact and approximate solu-
tions when we add noise €, in both initial data and linear source term for
the parameters N’ =100, a =14, N, =100, N, =20, J, =J, =35, and m
=40.
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Fig. 8 Graph of numerical solutions of Test Problem 5.1 for different value of « at different time levels T
with noise ¢, in initial data and linear source term when N, =N, =100, J; =J, =5, Jy _; =Jy =10
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Fig.9 Graph of absolute errors of Test Problem 5.1 without any noisy data for different val-
ues of a at different time levels T with noise e; in initial data and linear source term when
N,=N,=100, Jy, =J,=5,Jy_ =Jy =10
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Fig. 10 Graph of absolute errors of Test Problem 5.1 for N, =100, N, =20, J, = J, =5, and a =1.2 at
different time levels with noisy data in linear source term
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Fig. 11 Graph of absolute errors of Test Problem 5.1 for N, =100, N, =20, J, = J, =5, and a =1.2 at
different time levels with noisy inputs in initial data and linear source term
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Fig. 12 Graph of exact solutions of Test Problem 5.2 for different values of « at different time levels T
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Fig. 13 Graph of numerical solutions of Test Problem 5.2 for different values of « at different time levels
TwhenN, =N, =100, J, =J, =5, Jy_; =Jy =10

e From the error Figs. 12, 13, 14, 15, and 16, it is evident that the effect of noises €,
and e, in given initial data and source term are almost negligible and hence it can
be concluded that the proposed adaptive numerical scheme is numerically stable.
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Fig. 14 Graph of absolute errors of Test Problem 5.2 without any noisy data for different values of a at
different time levels T when N, = N, = 100, J, =J, =5, In-1=Jy, = 10
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Fig. 15 Graph of absolute errors of Test Problem 5.2 for N, =100, N, =20, J, = J, =5, and a =1.4 at
different time levels with noisy data in linear source term

6 Concluding remarks and future work

Most of the existing numerical schemes for the time-fractional Caputo derivative
(():D;" with order a € (1,2) have convergence rate (3 — @) and based on uniform mesh.
There are very less study on numerical methods which have convergence rate more
than (3 — a), and especially for the case of non-uniform mesh as compare to the
uniform mesh till now. So develop some high convergence rate schemes based on
the non-uniform mesh are really a challenging and interesting task. This investiga-
tion proposes a new convergent approximation for the Caputo fractional derivative
with convergence rate (5 — a) on a non-uniform mesh. Using this approximation of
Caputo derivative in the time direction and second-order central difference discre-
tization in the spatial direction, we proposed a high-order adaptive numerical algo-
rithm to solve the TFDWEs numerically. Setup of the designed algorithm is such
that the algorithm changes its behavior automatically according to the value of a. A
detailed analysis of the local truncation error of the scheme is given in Theorem 3.1,
and stability and convergence analysis of the numerical methods are given in The-
orem 4.2 and 4.3, respectively. Optimal error bounds of the numerical methods
show that the proposed scheme has (5 — a)-th order accuracy in the time direction
and second-order accuracy in the spatial direction. To improve the temporal error
accuracy of the numerical solutions, we assemble a moving mesh technique with
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Fig. 16 Graph of absolute errors of Test Problem 5.2 for N, =100, N, =20, J, = J, =5, and a =14 at
different time levels with noisy inputs in initial data and linear source term both

our proposed scheme. Moreover, the numerical stability of the proposed scheme is
verified by imposing some random noises in the initial data and non-homogeneous
source term (see: Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16). From error tables, we
can see that our proposed numerical scheme based on non-uniform mesh gives bet-
ter convergence rate as compare to the numerical scheme based on uniform mesh
given in [49] (see: Tables 1-3, 67, 10—11). Finally, our derived numerical method
has the advantage over previous works that the rate of convergence is far better as
compared to the numerical methods based on uniform mesh.

6.1 Future work

Now, we proposed some future works for the readers which is based on the scheme
presented in this manuscript:

¢ Extend the developed adaptive algorithm for more complex boundary conditions [52]:

OCD;’u(x, 1) — Au(x,t) = h()f(x), x€ Q, r€(0,7) 6.1)
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with initial and boundary conditions:

u(x,0) =uy(x), x € Q,
u,(x,0) =vy(x), x € Q,
u(x,t) =0, (x,f)€T,x%(0,T), 6.2)
- th“u(x, 1) —vulx,).v =oxt), (x,1) €l'px(0,7),

where a € (1,2), Q c R? is bounded with the Lipschitz boundary I, T >0,
Ipnly =0, Tpuly =T, |Tp|l >0, vis aouter normal vector on I', and 'y, is
the dynamical boundary conditions.

e Extension of the proposed method for non-linear problem in higher dimension.
Consider the problem [53]:

K N

1 Bs Bs
I (D=3 (52 + 2 Juwy. 0+ tuny ), (63)

with initial and boundary conditions:

u(x,y,0) = ¢p(x), u,(x,y,0)=0x), (r,y) € Q, (6.4)

ux,y,0) =0, (x,y) €0Q, 0<r<T, (6.5)

where, Q = (0,L,) X (O,Ly), 0Q, and Q are the boundary and closure of Q, respec-
tively. f{x,y,t,u) is a nonlinear function of unknown u, and satisfies the Lipschitz
condition with respect to u. ¢(x,y) and ®@(x,y) are known sufficiently smooth func-
tions. Furthermore, K and S are two integers, ] < agx <ax_; < <y <a; <2
and1 < fg <P < <Py <Py <2.

e Analysis of the derived scheme proposed for sufficiently smooth solution. Exten-
sion of the current work for non-smooth solution will be a work for readers.

Acknowledgements The authors sincerely thank the Editor for taking time to handle the manuscript and
two reviewers for carefully reading the manuscript and their constructive comments and suggestions that
really improved the quality of the manuscript.
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