
Vol.:(0123456789)

https://doi.org/10.1007/s11075-022-01372-1

1 3

ORIGINAL PAPER

A high‑order adaptive numerical algorithm for fractional 
diffusion wave equation on non‑uniform meshes

Rahul Kumar Maurya1,2 · Vineet Kumar Singh1

Received: 15 March 2021 / Accepted: 29 June 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract 
In this work, our motivation is to design an impressive new numerical approximation 
on non-uniform grid points for the Caputo fractional derivative in time C

0
D

�

t
 with the 

order α ∈ (1,2). An adaptive high-order stable implicit difference scheme is devel-
oped for the time-fractional diffusion wave equations (TFDWEs) by using estima-
tion of order O(N�−5

t
) for the Caputo derivative in the time domain on non-uniform 

mesh and well-known second-order central difference approximation for estimating 
the spatial derivative on a uniform mesh. The designed algorithm allows one to build 
adaptive nature where the scheme is adjusted according to the behaviour of α in order 
to keep the numerical errors very small and converge to the solution very fast as com-
pared to the previously investigated scheme. We rigorously analyze the local trunca-
tion errors, unconditional stability of the proposed method, and its convergence of (5 
− α)-th order in time and second-order in space for all values of α ∈ (1,2). A reduced 
order technique is implemented by using moving mesh refinement and assemble with 
the derived scheme in order to improve the temporal accuracy at several starting time 
levels. Furthermore, the numerical stability of the derived adaptive scheme is verified 
by imposing random external noises. Some numerical tests are given to show that the 
numerical results are consistent with the theoretical results.
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1 Introduction

The theory of non-integer derivatives is an emerging topic of applied math-
ematics, which attracted the attention of many researchers from various disci-
plines. The nonlocal properties of fractional operators attract a significant level 
of intrigue in the area of fractional calculus since it can give a superior way to 
deal with the complex phenomena in nature, such as biological systems [1], con-
trol theory [2], finance [3], signal and image processing [4, 5], sub-diffusion and 
super-diffusion process [6], viscoelastic fluid [7], electrochemical process [8], and 
so on. The main advantage of FDEs is that it provides a powerful tool for depict-
ing the systems with memory, long-range interactions and hereditary properties 
of several materials as opposed to the classical differential equations in which 
such effects are difficult to incorporate [9, 10]. Some applications of FDEs in dif-
ferent fields of real-life problems are discussed in [11].

A wide range of relevant physical phenomena are characterize by time-fractional 
diffusion equations (TFDEs) or TFDWEs [12, 13]. TFDEs are derived by replacing 
the first-order time derivative of the standard diffusion equations with α-order (0 < 
α < 1) fractional derivative and TFDWEs are derived by replacing the second-order 
time derivative of the classical diffusion or wave equations with α-order (1 < α < 2) 
fractional derivative. It is popular that the behaviour of diffusion and wave equations 
are completely different according to their reaction to localized disturbance. The 
propagation speed of the disturbance in the process described by the diffusion equa-
tion is infinitely fast, whereas, in the case of wave equations, it is constant. From 
a specific perspective, these two distinct reactions are interconnected to compose 
TFDWEs and thus become popular and satisfactory for many physical applications.

Most of the non-integer derivatives express in the form of convolution type 
integro-differential equations whose kernels are generally of weakly singular type 
since kernel of these fractional derivatives (FDs) contained the power-law term 
(t − s)−α. Due to which very few of FDEs have analytical solutions. A developing 
number of analysts have built up an interest in finding the analytical solution of 
FDEs. Usually, the analytical solutions of FDEs are investigated via the Laplace 
transform methods [14], homotopy analysis methods [15, 16], Adomian decom-
position method [17], method of separation of variables [18], and the Green func-
tion method [19]. In general, analytic solutions to most of the FDEs cannot be 
obtained explicitly or given in terms of multinomial Mittag-Leffler functions, 
which are extremely complex and difficult to evaluate [14, 15, 20–22]. Therefore, 
it is of great importance to develop some efficient numerical methods for find-
ing the approximate solutions of these models, especially for those cases where 
analytical solutions are either unavailable or extremely complex and difficult to 
evaluate. Some excellent numerical techniques have been developed in order to 
get approximate solution of different kind of fractional models, e.g., Galerkin 
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spectral method (GSM) [23], finite volume methods [24], finite element methods 
[25–27], finite difference methods (FDM) [28, 29], and many more.

G. Gao et  al. [30] solved distributed-order TFDWEs by using two difference 
schemes, N. H. Sweilam et al. [31] presented a weighted average FDM for solv-
ing fractional Cable equation and fractional reaction sub-diffusion equation, M. 
Dehghan et al. [32] applied the homotopy analysis method for solving the frac-
tional wave, Burgers, KdV, KdV-Burgers, and Klein-Gordon equations. Authors 
of [33] used ADI and Galerkin method approach for getting the approximate solu-
tion of distributed-order TFDEW. Authors of [34] used spectral element proce-
dure for simulating the neutral delay distributed-order fractional damped diffu-
sion wave equation. In 2018, K. Shah and M. Akram [35] have used the shifted 
Jacobi operational matrices for the numerical solution of a class of multi-term 
FDEs. The main aim of [36] is to develop several schemes based on the FDM for 
2D Schrödinger equation with Dirichlet’s boundary conditions.

In this article, the work focuses on developing a new and efficient adaptive differ-
ence scheme for solving the TFDWEs on a rectangular domain. The model problem 
considered here is the one-dimensional TFDWEs [37]:

Here, (1.2) and (1.3) are the initial and Dirichlet boundary conditions, respec-
tively. ξ is a constant diffusion-wave coefficient, Δx is the spatial Laplacian operator, 
the fractional derivative C

0
D

�

t
 is intended to be in the Caputo sense, 1 < α < 2, and 

(x,t) ∈Ω = [0,L] × [0,T].

1.1  Motivation and a brief description of the main results

There are many numerical methods available for the spatial domain, which can cre-
ate efficient high-order numerical methods while high-order numerical methods are 
rarely available for time-fractional operators compared to spatial operators because 
of the weakly singular kernel of many FDs in the time domain. Moreover, from the 
computational methods prospective, the availability of numerical methods are much 
less for TFDWEs than TFDEs. In this context, let us now review some results that 
motivated us to design a new high-order difference algorithm for time-fractional 
operator C

0
D

�

t
 on non-uniform meshes.

• M. Cui [38] have considered uniform meshes in space and time domain and 
used compact difference scheme to discretized the spatial operator �2

x
 and Grü

nwald-Letnikov difference scheme to discretized the Riemann–Liouville frac-

(1.1)C
0
D

�

t
U(x, t) = �ΔxU + f (x, t),

(1.2)U(x, 0) = �(x),
�U

�t

||||t=0 = �(x), 0 ≤ x ≤ L,

(1.3)U(0, t) = Φ1(t), U(L, t) = Φ2(t), t > 0.
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tional derivative RL
0
D

1−𝛾
t

(0 < 𝛾 < 1) of order 1 − γ, respectively, for TFDEs. 
The detailed analysis of stability and local truncation error are done by using the 
Fourier method. Moreover, the designed scheme have shown fourth-order accu-
racy in the spatial domain and first-order accuracy in the time domain.

• Soori et al. [39] developed a new high-order numerical scheme of order (3 − 
α), 0 < α < 1, for TFDEs on a non-uniform mesh.

• M. Dehghan et  al. [40] proposed GSM and compact FDM on uniform 
meshes for obtaining the approximate solution of multi-term TFDWEs and 
error analysis have been studied thoroughly concerning L∞−norm. It was 
proved that the developed method has fourth-order accuracy in spatial com-
ponent and (3 − α)-th, 1 < α < 2, order accuracy in time variables, respec-
tively.

• Various kinds of methods are discussed and developed by many researchers to 
get the numerical approximations of the FDs. The classical L1 method is suit-
able for the case 0 < α < 1 and the L2 and L2C methods are ideal for the case of 
1 < α < 2.

• The L1 method for approximating the Caputo FD in time is:

where Rn is the local truncation error and 0 = t0 < t1 < … < tn . For uni-
form mesh, authors of [41] have shown that ||Rn

|| = O(Δt2−�) , where 
Δt = tk+1 − tk, ∀ k = 0,… , n − 1.

• In case of 1 < α < 2,

and,

where (1.5) and (1.6) are the numerical approximation of the Caputo FD and 
obtained by using L2 and L2C methods, respectively. Moreover, L2 method con-
verges with order O(Δt3−�) on uniform mesh (see [42]).

• To improve the accuracy of the L1 method, authors of [43] used L1 method 
on a particular type of non-uniform mesh and derived a semi-discrete 
scheme for TFDEs. The unconditional stability and second-order conver-
gence of the scheme have shown for H1 norm. Moreover, they introduced 
some fictitious points on each sub-interval and developed a moving refine-
ment technique on that non-uniform mesh and demonstrated that the accu-
racy is improving further by using this technique.

• C. Li et al. [44] used a special kind of non-uniform mesh for a class of non-
linear FDEs and detailed analysis are presented about error estimates, stabil-

(1.4)C
0
D

𝛼

t
u(x, t)

����tn ≈
1

Γ(1−𝛼)

n−1∑
k=0

u(x,tk+1)−u(x,tk)

Δt
∫ tk+1

tk
(tn − 𝜂)−𝛼d𝜂 +Rn, 0 < 𝛼 < 1,

(1.5)C
0
D

�

t
u(x, t)

����tn ≈
1

Γ(2−�)

n−1∑
k=0

u(x,tn−k−1)−2u(x,tn−k)+u(x,tn−k+1)

Δt2
∫ tk+1

tk
�
1−�d� +Rn,

(1.6)
C
0
D

�

t
u(x, t)

||||tn ≈
1

Γ(2−�)

n−1∑
k=0

u(x, tn−k−2) − u(x, tn−k−1) + u(x, tn−k+1) − u(x, tn−k)

2Δt2 ∫
tk+1

tk
�
1−�d�

+Rn,
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ity, and convergence. Besides, they verified that the proposed scheme has bet-
ter accuracy by using a particular kind of non-uniform mesh as compared to 
the already existing scheme based on uniform mesh.

• V. E. Lynch et al. [45] have shown that L2C method gives more accurate result 
for α < 1.5, while L2 method provides the more precise result for α > 1.5, and 
both methods have similar behaviour around α = 1.5.

• M. M. Meerschaert et al. [46] presented a difference scheme for fractional advec-
tion-dispersion flow equations and shown that the implementation of standard 
Grünwald-Letnikov approximation is making the scheme unstable while a con-
sistent and unconditionally stable scheme is developed when shifted Grünwald-
Letnikov approximation is used in place of standard Grünwald-Letnikov approxi-
mation.

• R. Du et al. [47] proposed a difference scheme to approximate the Caputo frac-
tional derivative with convergence order O(Δt4−�), � ∈ (1, 2) , and presented a 
difference scheme for fractional diffusion-wave equation on non-uniform mesh.

1.2  Purpose and contribution of the paper

Motivated by above achievements and combining with the moving refinement tech-
nique, we will present a high-order adaptive difference scheme by using a non-uni-
form mesh in the time domain which is based on the interpolation approximation for 
the TFDWEs. The significant contributions of this paper are as follows:

• Previous study has shown that the numerical approximations of FDs with non-
uniform mesh have better accuracy than the uniform mesh and there are only 
very few numerical methods available with non-uniform mesh compare to uni-
form mesh for the case of 1 < α < 2. The main goal of this manuscript is to 
derive a new high-order approximation for Caputo FD in time C

0
D

𝛼

t
, 1 < 𝛼 < 2 

for a non-uniform mesh.
• In order to get the high-order approximation to Caputo FD, we first use lin-

ear Newton interpolation approximation (NIA) in the first subinterval 
[t0,t1], quadratic NIA in second subinterval [t1,t2], and for rest of the subin-
tervals we apply cubic NIA on non-uniform meshes by using the points 
(tkt−3,U(tkt−3)), (tkt−2,U(tkt−2)), (tkt−1,U(tkt−1)) , and (tkt ,U(tkt )) for the inte-
grand U(t) on each subinterval [tkt−1, tkt ], 1 ≤ kt ≤ n . While applying a special 
non-uniform mesh, a new high-order approximation to the Caputo FD of order 
O(N𝛼−5

t
), 1 < 𝛼 < 2, is obtained.

• A high-order adaptive FDM for solving problem (1.1)–(1.3) is constructed by 
approximating the Caputo FD C

0
D

�

t
 by using approximation of order O(N�−5

t
) as 

it is for the case of 1 < α < 1.5, and for 1.5 ≤ α < 2, first we shift the mesh and 
then apply the approximation of order O(N�−5

t
) . Furthermore, for the spatial dis-

cretization of Laplacian operator Δx, the well-known second-order central differ-
ence formula is used.
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• The solvability, unconditional stability, and convergence of the derived scheme 
are investigated thoroughly using L∞-norm.

• It is shown that the proposed scheme has accuracy of the order O(N𝛼−5
t

+ ℏ
2) , 

where Nt and ℏ are discretization parameters.
• Numerical stability of the proposed scheme is also verified by introducing ran-

dom external disturbances.
• To improve the accuracy in the temporal direction, we combine the moving mesh 

technique with our derived scheme.
• Numerical experiments with the inclusion of test functions are performed to vali-

date the applicability and reliability of the method.

This manuscript is sectioned as follows:

• Section 2: Some basic definitions of different fractional operators are given.
• Section  3: New highly accurate approximation of Caputo’s time derivative 

and construction of high-order adaptive difference algorithm for TFDWEs are 
derived.

• Section 4: Stability and convergence analysis of the presented methods are rigor-
ously investigated.

• Section 5: To verify the numerical stability and in support of our theoretical find-
ings, numerical results are provided.

• Section 6: A conclusion and some future works are presented.

Notations Throughout this paper, we denote C as a generic positive constant which 
might be dependent on the given data of the problem and regularity of exact solu-
tion, but independent from the discretization parameter ℏ and Nt. Moreover, the set 
of integers and real numbers are represented by ℤ and ℝ , and set of non-negative 
integers and non-negative real numbers are represented by ℤ+ and ℝ+ , respectively. 
ℕ denotes the set of natural numbers.

2  Preliminaries

Unlike the classical derivative, there are more than one definitions of FDs. Out 
of these definitions, most frequently used definitions are Riemann-Liouville and 
Caputo derivative. Here, we introduce some fractional-order derivatives.

Definition 1 (Grünwald-Letnikov derivatives) The left and right Grünwald-Letnikov 
derivatives with order α > 0 of the given function u(t), t ∈ (a,b) are defined as

and

(2.1)GL
a
D

�

t
u(t) = lim

h→0
Nh=t−a

h−�
N∑
j=0

(−1)j
�
�

j

�
u(t − jh),
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respectively. For more information about the role of Grünwald and Letnikov to 
derive the above formula (2.1) and (2.2) one can see [2].

Definition 2 (Riemann-Liouville fractional derivative) The left and right Riemann-
Liouville FDs with order α > 0 of the given function u(t), t ∈ (a,b) are defined as

and

respectively, where m ∈ ℤ
+ satisfying m − 1 ≤ α < m.

Definition 3 (Caputo fractional derivative) The left and right Caputo FDs with order 
α > 0 of the given function u(t), t ∈ (a,b) are defined as

and

respectively, where m ∈ ℤ
+ satisfying m − 1 < α ≤ m.

Definition 4 (Riesz fractional derivative) The Riesz fractional derivative with order 
α > 0 of the given function u(t), t ∈ (a,b) is defined as

where c
�
= −

1

2 cos(��∕2)
, � ≠ 2k + 1, k = 0, 1,… . RZD

�

t
u(t) is sometimes expressed 

as �
�u(t)

�|t|� .

3  Formulation and analysis of the newly design high‑order 
approximation of Caputo‑fractional derivative

For temporal discretization, we discretized the time domain [0,T] into Nt non-equal 
length subintervals with 0 = t0 < t1 < ⋯ < tNt = T . We denote Δtkt as temporal 
step-size and Nt as some positive integer such that Δtkt = tkt+1 − tkt , where 
kt ∈ ℤ[0,Nt−1]

 . Meanwhile, the spatial interval [0, L] is divided into Nx equal subin-
tervals of length ℏ =

L

Nx

, where Nx is some positive integer. If the singularity is pre-

(2.2)GL
t
D

�

b
u(t) = lim

h→0
Nh=b−t

h−�
N∑
j=0

(−1)j
�
�

j

�
u(t + jh),

(2.3)RL
a
D

�

t
u(t) =

1

Γ(m − �)
dm

dtm
∫ t

a
(t − s)(m−�−1)u(s)ds,

(2.4)RL
t
D

�

b
u(t) =

(−1)m

Γ(m − �)
dm

dtm
∫ b

t
(s − t)(m−�−1)u(s)ds,

(2.5)C
a
D

�

t
u(t) =

1

Γ(m − �)
∫ t

a
(t − s)m−�−1u(m)(s)ds,

(2.6)C
t
D

�

b
u(t) =

(−1)m

Γ(m − �)
∫ b

t
(s − t)m−�−1u(m)(s)ds,

(2.7)RZD
�

t
u(t) = c

�

(
RL
a
D

�

t
u(t) + RL

t
D

�

b
u(t)

)
,
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sent at the origin, then the choice of the non-equidistant stepsizes should be non-
decreasing, i.e., Δti ≤Δti+ 1 [44]. Let Δtm+ = Δt0 +…+Δtm, m ∈ ℤ[0,Nt−1]

 , and 
Δt(− 1)+ = 0, thus the temporal and spatial meshes are given by

Then, the domain Ω = [0,L] × [0,T] is covered by Ω
ℏΔt ∶= Ω

ℏ
× ΩΔt . We denote 

V(xkx , tkt ) = V
kx
kt

 and let {Vkx
kt
∶ kt ∈ ℤ[0,Nt]

, kx ∈ ℤ[0,Nx]
} be the grid function space 

on Ω
ℏΔt . Moreover, we use the following finite difference notations:

Define the discrete inner product and norm as:

3.1  Derivation of a new numerical formula for Caputo non‑integer derivative 
on non‑uniform meshes

The linear Newton interpolating polynomial of U(t) at points 
(tkt−1, U(tkt−1)) and (tkt , U(tkt )) is given by

To increase the degree of interpolating polynomial upto cubic interpolation func-
tion, we need two more points (tkt−3, U(tkt−3)) and (tkt−2, U(tkt−2)) . Firstly, we are 
constructing quadratic interpolation polynomial Ξ2,kt (U(t)) of U(t) by adding an addi-
tional point (tkt−2, U(tkt−2)) , given as

For kt ≥ 3, to increase one more degree of interpolating polynomial, we add one 
more point (tkt−3, U(tkt−3)) and construct cubic interpolation function Ξ3,kt (U(t)) of 
U(t) . Then, we have:

ΩΔt = {tkt ∈ ℝ ∶ tkt = Δt(kt−1)+, kt ∈ ℤ[0,Nt]
}, Ω

ℏ
= {xkx ∈ ℝ ∶ xkx = kxℏ, kx ∈ ℤ[0,Nx]

}.

𝛿xV
kx =

Vkx − Vkx−1

ℏ

, 𝛿
2
x
Vkx =

𝛿xV
kx+1 − 𝛿xV

kx

ℏ

, 𝛿tVkt
=

Vkt
− Vkt−1

Δtkt−1
.

⟨U,V⟩ =
Nx−1�
kx=1

ℏUkxVkx , ‖V‖2
2
= ⟨V ,V⟩, ���Vkt

���∞ = max
xkx∈Ω

ℏ

���V
kx
kt

���.

(3.1)Ξ1,kt (U(t)) = Ukt−1

(
tkt−t

Δtkt−1

)
+ Ukt

(
t−tkt−1

Δtkt−1

)
.

(3.2)

Ξ2,kt (U(t)) = Ξ1,kt (U(t)) +
1

tkt−tkt−2

[
Ukt

−Ukt−1

tkt−tkt−1
−

Ukt−1
−Ukt−2

tkt−1−tkt−2

]
(t − tkt )(t − tkt−1),

= Ξ1,kt (U(t)) +
1

Δtkt−1+Δtkt−2

(
�tUkt

− �tUkt−1

)
(t − tkt )(t − tkt−1).

1912 Numerical Algorithms (2023) 92:1905–1950



1 3

For linear, quadratic and cubic interpolating polynomials, the following error 
estimates hold:

and

For simplicity, we define:

 and

For approximation of the Caputo FD in time C
0
D

�

t
 , we have taken linear interpolation 

in first sub-interval, quadratic in second, and then cubic for all next sub-intervals. As 
double derivative of the linear interpolation function vanishes causing more error, to 
avoid this computational error, we have taken interpolation of derivative function in the 
first sub-interval and derivative of interpolation function in all the next sub-intervals. 
Let v(s) = U

�(s) , then

(3.3)

Ξ3,kt (U(t)) = Ξ2,kt (U(t)) +
1

tkt−tkt−3

[
1

tkt−tkt−2

(
Ukt

−Ukt−1

tkt−tkt−1
−

Ukt−1
−Ukt−2

tkt−1−tkt−2

)

−
1

tkt−1−tkt−3

(
Ukt−1

−Ukt−2

tkt−1−tkt−2
−

Ukt−2
−Ukt−3

tkt−2−tkt−3

)]
(t − tkt )(t − tkt−1)(t − tkt−2),

= Ξ2,kt (U(t)) +
1

Δtkt−3+Δtkt−2+Δtkt−1

[
1

Δtkt−2+Δtkt−1

(
�tUkt

− �tUkt−1

)

−
1

Δtkt−3+Δtkt−2

(
�tUkt−1

+ �tUkt−2

)]
(t − tkt )(t − tkt−1)(t − tkt−2).

(3.4)
U(t) − Ξ1,kt (U(t)) =

U
��(�

kt
1
)

2!
(t − tkt−1)(t − tkt ), t ∈ [tkt−1, tkt ], �

kt
1
∈ (tkt−1, tkt ), 1 ≤ kt ≤ n,

(3.5)U(t) − Ξ2,kt (U(t)) =
U
���(�

kt
2
)

3!
(t − tkt−2)(t − tkt−1)(t − tkt ), t ∈ [tkt−1, tkt ],

�
kt
2
∈ (tkt−2, tkt ), 1 ≤ kt ≤ n,

(3.6)U(t) − Ξ3,kt (U(t)) =
U
(iv)(�

kt
3
)

4!
(t − tkt−3)(t − tkt−2)(t − tkt−1)(t − tkt ), t ∈ [tkt−1, tkt ],

�
kt
3
∈ (tkt−3, tkt ), 1 ≤ kt ≤ n.

A
2
t
Ukt

=
2

Δtkt−2 + Δtkt−1

(
�tUkt

− �tUkt−1

)
,

A
3
t
Ukt

=
1

(Δtkt−3+Δtkt−2+Δtkt−1)

[
1

Δtkt−2+Δtkt−1

(
�tUkt

− �tUkt−1

)

−
1

Δtkt−3+Δtkt−2

(
�tUkt−1

− �tUkt−2

)]
.

(3.7)

C
0
D

�

t
U(t) =

1

Γ(2−�)

n∑
kt=1

∫ tkt

tkt−1
(tn − s)1−�v�(s)ds,

=
1

Γ(2−�)

�∫ t1

t0
(tn − s)1−�v�(s)ds + ∫ t2

t1
(tn − s)1−�v�(s)ds

+
n∑

kt=3

∫ tkt

tkt−1
(tn − s)1−�v�(s)ds

�
,
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To remove the dummy point U−1 , we use the initial condition �U(x,t)
�t

||||t=0 = �(x) and 

take Δt− 1 = Δt0, therefore, U−1 = U0 − Δt0v0 = �(x) − Δt0�(x) . Noticing that

and

Using (3.9) and (3.10) in (3.8), we get the following numerical formula for FD C
0
D

�

t
U(t):

where H3,1

1
= H

1,1

1
> 0, H3,2

1
= H

1,2

1
> 0, and H3,2

2
= H

1,2

2
> 0. For n ≥ 3,

In this manuscript, we have taken the following non-uniform mesh

(3.8)

≈
1

Γ(2−�)

�∫ t1

t0
(tn − s)1−�

�
Ξ1,1v(s)

��
ds + ∫ t2

t1
(tn − s)1−�

�
Ξ2,2U(s)

���
ds

+
n∑

kt=3

∫ tkt

tkt−1
(tn − s)1−�

�
Ξ3,ktU(s)

���
ds

�
,

=
1

Γ(2−�)

�∫ t1

t0
(tn − s)1−�

�
�tU1−�tU0

Δt0

�
ds + ∫ t2

t1
(tn − s)1−�

�
A

2
t
U2

�
ds

+
∑n

kt=3
∫ tkt

tkt−1
(tn − s)1−�

�
A

2
t
Ukt

+A
3
t
Ukt

�
6s − 2

�
tkt−2 + tkt−1 + tkt

���
ds
�
,

=
1

Γ(2−�)

�
n∑

kt=1

∫ tkt

tkt−1
(tn − s)1−�

�
A

2
t
Ukt

�
ds

+
n∑

kt=3

∫ tkt

tkt−1
(tn − s)1−�

�
A

3
t
Ukt

�
6s − 2

�
tkt−2 + tkt−1 + tkt

���
ds

�
.

(3.9)
H

1,n

kt
=

2

Γ(2−�)
∫ tkt

tkt−1
(tn − s)1−� ds

=
2

Γ(3−�)

[(
tn − tkt−1

)2−�
−
(
tn − tkt

)2−�]
,

(3.10)

H
2,n

kt
=

1

Γ(2−�)

1

(Δtkt−3+Δtkt−2+Δtkt−1)
∫ tkt

tkt−1
(tn − s)1−�

(
6s − 2

(
tkt−2 + tkt−1 + tkt

))
ds

=
1

Γ(3−�)

1

(Δtkt−3+Δtkt−2+Δtkt−1)

{
6

(3−�)

[(
tn − tkt−1

)3−�
−
(
tn − tkt

)3−�]

+

[(
4tkt−1 − 2

(
tkt−2 + tkt

))(
tn − tkt−1

)2−�
−
(
4tkt − 2

(
tkt−2 + tkt−1

))(
tn − tkt

)2−�]}
.

(3.11)

C
0
D

�

t
U(t) =

�∑n

kt=1
H

1,n

kt

�
�tUkt

−�tUkt−1

Δtkt−1+Δtkt−2

�
+
∑n

kt=3
H

2,n

kt

�
�tUkt

−�tUkt−1

Δtkt−1+Δtkt−2
−

�tUkt−1
−�tUkt−2

Δtkt−2+Δtkt−3

��

=
∑n

kt=1
H

1,n

kt

�
�tUkt

−�tUkt−1

Δtkt−1+Δtkt−2

�
+
∑n

kt=3
H

2,n

kt

�tUkt
−�tUkt−1

Δtkt−1+Δtkt−2
−
∑n−1

kt=2
H

2,n

kt+1

�tUkt
−�tUkt−1

Δtkt−1+Δtkt−2

=
∑n

kt=1
H

3,n

kt

�
�tUkt

−�tUkt−1

Δtkt−1+Δtkt−2

�
,

(3.12)H
3,n

kt
=

⎧
⎪⎪⎨⎪⎪⎩

H
1,n

kt
, if kt = 1,

H
1,n

kt
−H

2,n

kt+1
, if kt = 2,

H
1,n

kt
+H

2,n

kt
−H

2,n

kt+1
, if 3 ≤ kt ≤ n − 1,

H
1,n
n

+H
2,n
n
, if kt = n.

(3.13)Δtn = (n + 1)�, 0 ≤ n ≤ Nt − 1,
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where � =
2T

Nt(Nt+1)
 . Properties of the coefficients H1,n

kt
, H

2,n

kt
 and H3,n

kt
 have discussed 

in the following lemmas.

Lemma 3.1 For any α (1 < α < 2) and 
{
H

1,n

kt
∶ 1 ≤ kt ≤ n, and 1 ≤ n ≤ Nt

}
 defined 

in (3.9), it holds that

Proof Making use of (3.9) and Fundamental theorem of calculus, one can get

where Δtkt and (tn − �kt
)1−� are monotonic increasing function for 1 < α < 2. Hence, 

we get the result.

Lemma 3.2 For any α (1 < α < 2) and 
{
H

2,n

kt
∶ 3 ≤ kt ≤ n, and 3 ≤ n ≤ Nt

}
 defined 

in (3.10), it holds that

Proof From (3.10), consider

The well-known Trapezoidal error estimate formula yields that

It is easy to check that H2,n

kt
> 0 and (tn − s)−α is a monotonic increasing function 

for every 1 < α < 2 on [0,T], consequently we get the required result.

Lemma 3.3 For any α (1 < α < 2) and 
{
H

3,n

kt
∶ 1 ≤ kt ≤ n, and 3 ≤ n ≤ Nt

}
 defined 

in (3.12), it holds that

1)  H3,n

kt
> 0,

2)  H3,n

1
< … < H

3,n

kt−1
< H

3,n

kt
< … < H

3,n

n−1
< H

3,n
n
.

Using the result of Lemma 3.1, Lemma 3.2, and definition of H3,n

kt
 , one can prove 

the above result.

(3.14)0 < H
1,n

1
< … < H

1,n

kt−1
< H

1,n

kt
< … < H

1,n

n−1
< H

1,n
n
.

H
1,n

kt
=

2

Γ(2−�)
∫ tkt

tkt−1
(tn − s)1−� ds, 1 ≤ kt ≤ n, 1 ≤ n ≤ Nt,

=
2

Γ(2−�)
Δtkt (tn − �kt

)1−� , �kt ∈ (tkt−1, tkt ),

(3.15)0 < H
2,n

3
< … < H

2,n

kt−1
< H

2,n

kt
< … < H

2,n

n−1
< H

2,n
n
.

∫ tkt

tkt−1
(tn − s)1−�

(
6s − 2

(
tkt−2 + tkt−1 + tkt

))
ds =

6

(2−�)

[∫ tkt

tkt−1
(tn − s)2−�ds

−
1

6

{(
4tkt − 2

(
tkt−2 + tkt−1

))(
tn − tkt

)2−�
−
(
4tkt−1 − 2

(
tkt−2 + tkt

))(
tn − tkt−1

)2−�}]
.

∫ t
kt

tkt−1
(tn − s)1−�

(
6s − 2

(
t
k
t
−2 + t

k
t
−1 + t

k
t

))
ds = −6

(
Δtkt

12

)(
(tn − s)2−�

)��||||s=�
kt

,

=
Δtkt

2
(2 − �)(� − 1)(tn − �

k
t

)−� , �
k
t

∈ (tkt−1, tkt ).
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Now, detail analysis of the truncation errors of the formula defined in (3.11) is 
discussed in the following theorem:

Theorem 3.1 For any 1 < α < 2, and U(t) ∈ C5[0, tn] , it holds that

Proof For n = 1, and from (3.4) and (3.7), one gets:

If n = 2, then one can obtain the following result by using integration by parts and 
then substituting the values of (3.7) and (3.5):

by (3.4), it follows

substituting the value of μ, we get

(3.16)
|||R̂(U(t1))

||| ≤ (𝛼−1)2(2−𝛼)

Γ(4−𝛼)
maxt0≤t≤t1 ||U���(t)||T3−𝛼(Nt + 1)𝛼−3,

(3.17)

|||R̂(U(t2))
||| ≤ (𝛼−1)

Γ(2−𝛼)

{
1

22𝛼
max

t0≤t≤t1 ||U���(t)||T3−𝛼(N
t
+ 1)𝛼−3

+

[
26−2𝛼

3

1

(2−𝛼)(3−𝛼)

(
8−𝛼

4−𝛼

)]
max

t0≤t≤t2 |||U
(iv)(t)

|||T
4−𝛼(N

t
+ 1)𝛼−4

}
,

|||R̂(U(tn))
||| ≤ (𝛼−1)

Γ(2−𝛼)

{
max

t0≤t≤t1 ||U���(t)||T3−𝛼(N
t
+ 1)𝛼−3 + 16max

t0≤t≤t2 |||U
(iv)(t)

|||T
4−𝛼(N

t
+ 1)𝛼−4

(3.18)

[(
2�

�−1

)
+

26−�

24

1

(2−�)(3−�)

(
3(6−�)

(4−�)(5−�)
+ 1

)]
maxt0≤t≤tn |||U

(v)(t)
|||T

5−�(Nt + 1)�−5
}
.

(3.19)

R̂(U(t1)) =
1

Γ(2−𝛼)
∫ t1

t0
(t1 − s)1−𝛼

[
v(s) − Ξ1,1v(s)

]�
ds

=
1

Γ(2−𝛼)

[(
v(s) − Ξ1,1v(s)

)(
t1 − s

)1−𝛼||||
t1

s=t0
+ (1 − 𝛼)∫ t1

t0

[
v(s) − Ξ1,1v(s)

](
t1 − s

)−𝛼
]

=
1

Γ(2−𝛼)

[
−

1

2
v��(𝜉1

1
)(s − t0)(t1 − s)2−𝛼

||||
t1

s=t0
+ (𝛼 − 1)∫ t1

t0
1

2
v��(𝜉1

1
)(s − t0)(t1 − s)1−𝛼

]

=
(𝛼−1)22−𝛼

Γ(4−𝛼)
U
���(𝜂1

1
)T3−𝛼(Nt + 1)𝛼−3, 𝜂1

1
∈ (t0, t1).

(3.20)

R̂(U(t2)) =
1

Γ(2−𝛼)

[∫ t1

t0
(t2 − s)1−𝛼d

[
v(s) − Ξ1,1v(s)

]
+ ∫ t2

t1
(t2 − s)1−𝛼d

[
v(s) − Ξ2,2v(s)

]]

=
(1−𝛼)

Γ(2−𝛼)

[∫ t1

t0

[
v(s) − Ξ1,1v(s)

]
(t2 − s)−𝛼ds + ∫ t2

t1

[
v(s) − Ξ2,2v(s)

]
(t2 − s)−𝛼ds

]
,

||||∫
t1

t0

[
v(s) − Ξ1,1v(s)

]
(t2 − s)−�ds

|||| =
||||∫

t0

t1

v��(�1
1
)

2
(s − t0)(t1 − s)(t2 − s)−�ds

||||
≤ 1

8
|U���(�1

1
)| (Δt0)2 ||||∫

t0

t1
(t2 − s)−�ds

||||
=

1

8
|U���(�1

1
)| �3 2−��−� ,

(3.21)

||||∫
t1

t0

[
v(s) − Ξ1,1v(s)

]
(t2 − s)−�ds

|||| ≤
1

22�
|U���(�1

1
)| T3−�(Nt + 1)�−3, �1

1
∈ (t0, t1),
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and by (3.5) and definition of μ, it follows that

Using (3.21) and (3.22) in (3.20), we get the result for n = 2. Moreover, for n ≥ 3, 
from (3.4)–(3.7) and using integration by parts, we get:

by (3.4), it follows

by making use of (3.5), we get

Moreover, by (3.5), it follows

(3.22)

||||∫
t
2

t1

[
v(s) − Ξ2,2

v(s)
]
(t2 − s)−�ds

|||| =
||||∫

t
2

t1

v
���(�2

2
)

6
(s − t

0)(s − t
1)(s − t

2)(t2 − s)−�ds
||||

≤ 1

6

1

(2−�)(3−�)
|U(iv)(�2

2
)| ||||2

3−�
�
4−� +

25−�

(4−�)
�
4−�

||||
≤ 26−2�

3

1

(2−�)(3−�)
|U(iv)(�2

2
)|
(

8−�

4−�

)
T
4−�(N

t
+ 1)�−4,

�
2

2
∈ (t0, t2).

(3.23)

R̂(U(tn)) =
1

Γ(2−𝛼)

�∫ t
1

t0
(tn − s)1−𝛼d

�
v(s) − Ξ1,1

v(s)
�
+ ∫ t

2

t1
(tn − s)1−𝛼d

�
v(s) − Ξ2,2

v(s)
�

+
n∑

kt=3

∫ t
kt

tkt−1
(tn − s)1−𝛼d

�
v(s) − Ξ3,kt v(s)

��

=
1

Γ(2−𝛼)

��
v(s) − Ξ1,1

v(s)
�
(tn − s)1−𝛼

����
t
1

s=t0
+ (1 − 𝛼)∫ t

1

t0

�
v(s) − Ξ1,1

v(s)
�
(tn − s)−𝛼ds

+

��
v(s) − Ξ2,2

v(s)
�
(tn − s)1−𝛼

����
t
2

s=t1
+ (1 − 𝛼)∫ t

2

t1

�
v(s) − Ξ2,2

v(s)
�
(tn − s)−𝛼ds

�

+
n∑

kt=3

��
v(s) − Ξ3,kt v(s)

�
(tn − s)1−𝛼

����
t
kt

s=tkt−1
+ (1 − 𝛼)∫ t

kt

tkt−1

�
v(s) − Ξ3,kt v(s)

�
(tn − s)−𝛼ds

��

=
(1−𝛼)

Γ(2−𝛼)

�∫ t
1

t0

�
v(s) − Ξ1,1

v(s)
�
(tn − s)−𝛼ds + ∫ t

2

t1

�
v(s) − Ξ2,2

v(s)
�
(tn − s)−𝛼ds

+
n∑

kt=3

∫ t
kt

tkt−1

�
v(s) − Ξ3,kt v(s)

�
(tn − s)−𝛼ds

�
,

(3.24)

||||∫
t1

t0

[
v(s) − Ξ1,1v(s)

]
(tn − s)−�ds

|||| =
||||∫

t1

t0

v��(�1
1
)

2!
(s − t0)(s − t1)(tn − s)−�ds

||||
≤ 1

8
|U���(�1

1
)| (Δt0)2 ||||∫

t1

t0
(tn − s)−�ds

||||≤ 1

8
|U���(�1

1
)| (Δt0)2 (tn − t1)−�∫ t1

t0
ds

≤ |U���(�1
1
)| T3−�(Nt + 1)�−3,

(3.25)

||||∫
t2

t1

[
v(s) − Ξ2,2v(s)

]
(tn − s)−�ds

|||| =
||||∫

t2

t1

v���(�2
2
)

3!
(s − t0)(s − t1)(s − t2)(tn − s)−�ds

||||
≤ 1

24
|U(iv)(�2

2
)| (Δt1)2 (Δt0 + Δt1)

||||∫
t2

t1
(tn − s)−�ds

||||≤ 1

24
|U(iv)(�2

2
)| (Δt1)2(Δt0 + Δt1) (tn − t2)−�∫ t2

t1
ds

≤ 24 |U(iv)(�2
2
)| T4−�(Nt + 1)�−4.
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where η ∈ (t0,tn− 1) and 3 ≤ kt ≤ n − 1. In addition, for kt = n

where ηn ∈ (tn− 3,tn).

remark 1 The inequality (3.22) can be evaluated as:

Apply integration by parts, we get:

Again apply integration by parts, we get:

(3.26)

����
n−1∑
kt=3

∫ t
kt

tkt−1

�
v(s) − Ξ3,kt v(s)

�
(tn − s)−�ds

���� =
����
n−1∑
kt=3

∫ t
kt

tkt−1

v
(iv)(�3

kt
)

4!
(s − t

kt−3)(s − t
kt−2)

(s − t
kt−1)(s − t

kt )(tn − s)−�ds
����, �

3

kt
∈ (tkt−3, tkt ),

≤ 1

24
�U(v)(�)� ∑n−1

kt=3

����∫
t
kt

tkt−1
(s − t

kt−3)(s − t
kt−2)

(s − t
kt−1)(s − t

kt )(tn − s)−�ds
����

≤ 1

96
�U(v)(�)�

�∑n−1

kt=3

�
(Δtkt−1)2(Δtkt−2 + Δtkt−1)

(Δtkt−3 + Δtkt−2 + Δtkt−1)
�∫ t

kt

tkt−1
(tn − s)−�ds

�

≤ �
2�

�−1

�
�U(v)(�)� T5−�(N

t
+ 1)�−5,

(3.27)

||||∫
tn

tn−1

[
v(s) − Ξ3,nv(s)

]
(tn − s)−�ds

|||| =
||||∫

tn

tn−1
v(iv)(�3

n
)

4!
(s − tn−3)(s − tn−2)

(s − tn−1)(s − tn)(tn − s)−�ds
||||, �

3
n
∈ (tn−3, tn),

=
||||
1

24
U
(v)(�n)∫ tn

tn−1
(s − tn−3)(s − tn−2)

(s − tn−1)(tn − s)1−�ds
||||,

≤ 23−�

(2−�)(3−�)

[{(
(6−�)

(4−�)(5−�)
+

1

3

)
T5−�

}

|U(v)(�n)|
]
(Nt + 1)�−5,

||||∫
t2

t1

[
v(s) − Ξ2,2v(s)

]
(t2 − s)−�ds

|||| =
||||∫

t2

t1

v���(�2
2
)

6
(s − t0)(s − t1)(s − t2)(t2 − s)−�ds

||||
=

1

6

||||U
(iv)(�2

2
)
||||
||||∫

t2

t1
(s − t0)(s − t1)(t2 − s)1−�ds

||||.

����∫
t2

t1

�
v(s) − Ξ2,2v(s)

�
(t2 − s)−�ds

���� =
1

6
�U(iv)(�2

2
)�����

⎡
⎢⎢⎢⎢⎣
(s − t0)(s − t1)

−(t2 − s)2−�

(2 − �)

����
s=t2

s=t1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+
1

(2−�)
∫ t2

t1
(2s − (t0 + t1))(t2 − s)2−�ds

�����.
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Substituting the values of Δt0, Δt1 from (3.13) and making use of definition of μ 
in above equation, we get the required result (3.22).

remark 2 The inequality (3.25) can be evaluated as:

Since, max
t0≤s≤tn

||||(s − t1)(s − t2)
|||| =

(Δt1)2

4
 is obtained at s = t1 +

Δt1

2
 , so we have:

Substituting the value of (3.29) into (3.28), we get

Consider,

where, (n − 2)−α ≤ 1 and (n + 3)−α ≤ 1, for n ≥ 3. Now, using (3.31) and (3.13) into 
(3.30), we get the required inequality (3.25).

remark 3 The inequality (3.26) can be evaluated as:

Since, max
t0≤s≤tn

||||(s − tkt−1)(s − tkt )
|||| =

(Δtkt−1)2

4
 is obtained at s = tkt−1 +

Δtkt−1

2
 , so we have:

||||∫
t2

t1

[
v(s) − Ξ2,2v(s)

]
(t2 − s)−�ds

|||| =
1

6
|U(iv)(�2

2
)| 1

(2−�)

||||

[
(2s − (t0 + t1))

−(t2−s)3−�

(3−�)

||||
s=t2

s=t1

+
2

(3−�)
∫ t2

t1
(t2 − s)3−�ds

]||||
≤ 1

6

1

(2−�)(3−�)
|U(iv)(�2

2
)| ||||Δt

0(Δt1)3−� +
2

(4−�)
(Δt1)4−�

||||.

(3.28)

||||∫
t2

t1

[
v(s) − Ξ2,2v(s)

]
(tn − s)−�ds

|||| =
||||∫

t2

t1

v���(�2
2
)

3!
(s − t0)(s − t1)(s − t2)(tn − s)−�ds

||||
≤ 1

6
|U(iv)(�2

2
)|||||∫

t2

t1
(s − t0)(s − t1)(s − t2)(tn − s)−�ds

||||.

(3.29)(s − t0)(s − t1)(s − t2) ≤ (Δt1)2

4

(
Δt0 +

Δt1

2

) ≤ (Δt1)2

4

(
Δt0 + Δt1

)
.

(3.30)

||||∫
t2

t1

[
v(s) − Ξ2,2v(s)

]
(tn − s)−�ds

|||| ≤
1

24
|U(iv)(�2

2
)| (Δt1)2(Δt0 + Δt1) (tn − t2)−�∫ t2

t1
ds

=
1

24
|U(iv)(�2

2
)| (Δt1)3(Δt0 + Δt1) (tn − t2)−� .

(3.31)tn − t2 =
n−1∑
m=2

Δtm =
n−1∑
m=2

(m + 1)� =
�

2
(n − 2)(n + 3),

(3.32)

����
n−1∑
k
t
=3

∫ t
kt

tkt−1

�
v(s) − Ξ3,k

t v(s)
�
(tn − s)−�ds

���� =
����
n−1∑
k
t
=3

∫ t
kt

tkt−1

v
(iv)(�3

kt
)

4!
(s − t

k
t
−3)(s − t

k
t
−2)

(s − t
k
t
−1)(s − t

k
t )(tn − s)−�ds

����, �
3

k
t

∈ (tkt−3, tkt ),

≤ 1

24
�U(v)(�)�

n−1∑
k
t
=3

����∫
t
kt

tkt−1
(s − t

k
t
−3)(s − t

k
t
−2)

(s − t
k
t
−1)(s − t

k
t )(tn − s)−�ds

����.
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Substituting the value of (3.33) into (3.32), we get

Consider,

where, (n + kt + 1)−α ≤ 1, for all n ≥ 3, and

Now, using (3.35), (3.36), and (3.13) into (3.34), we get the required inequality 
(3.26).

remark 4 The inequality (3.27) can be evaluated as:

by using (3.37), it follows that

after simplification of (3.38), we get (3.27).

(3.33)

(s − tkt−3)(s − tkt−2)(s − tkt−1)(s − tkt ) ≤ (Δtkt−1)2

4

(
tkt−1 +

Δtkt−1

2
− tkt−3

)(
tkt−1 +

Δtkt−1

2
− tkt−2

)

≤ (Δtkt−1)2

4

(
Δtkt−3 + Δtkt−2 + Δtkt−1

)(
Δtkt−2 + Δtkt−1

)
.

(3.34)

����
n−1∑
kt=3

∫ tkt

tkt−1

�
v(s) − Ξ3,kt v(s)

�
(tn − s)−�ds

���� ≤
1

96
�U(v)(�)�

�
n−1∑
kt=3

�
(Δtkt−1)2(Δtkt−2 + Δtkt−1)

(Δtkt−3 + Δtkt−2 + Δtkt−1)
�∫ tkt

tkt−1
(tn − s)−�ds

�

≤ 1

96
�U(v)(�)�

�
n−1∑
kt=3

�
(Δtkt−1)3(Δtkt−2 + Δtkt−1)

(Δtkt−3 + Δtkt−2 + Δtkt−1)
�
(tn − tkt )−�

�
.

(3.35)tn − tkt =
n−1∑
m=kt

Δtm =
n−1∑
m=kt

(m + 1)� =
�

2
(n − kt)(n + kt + 1),

(3.36)
n−1∑
kt=3

(n − kt)
−� = 1 +

n−2∑
kt=3

1

kt
�
≤ 1 +

∞∑
kt=3

1

kt
�
≤ �

�

�−1

�
.

(3.37)

∫ t
n

tn−1
(s − t

n−3)(s − t
n−2)(s − t

n−1)(tn − s)1−�ds =
1

(2−�)(3−�)

[(
t
n−1 − t

n−2
)(
t
n−1 − t

n−3
)
(Δtn−1)3−�

+
1

(4−�)

{(
2(tn−1 − t

n−2) + 2(tn−1 − t
n−3)

)
(Δtn−1)4−�

+
6

(5−�)
(Δtn−1)5−�

}]

=
1

(2−�)(3−�)

[
Δtn−2

(
Δtn−3 + Δtn−2

)
(Δtn−1)3−�

+
2

(4−�)

{(
2Δtn−2 + Δtn−3

)
(Δtn−1)4−�

+
3

(5−�)
(Δtn−1)5−�

}]

=
1

(2−�)(3−�)

[
(n − 1)(2n − 3)n3−��5−�

+
2

(4−�)

{
3(n − 1)n4−��5−� +

3

(5−�)
n
5−�

�
5−�

}]
,

(3.38)

||||∫
tn

tn−1

[
v(s) − Ξ3,nv(s)

]
(tn − s)−�ds

|||| ≤
1

24
|U(v)(�n)| 1

(2−�)(3−�)

[
Nt 2Nt Nt

3−� 25−� T5−�

Nt
5−�(Nt+1)

5−�

+
2

(4−�)

{
3Nt Nt

4−� 25−� T5−�

Nt
5−�(Nt+1)

5−�
+

3

(5−�)
Nt

5−� 25−� T5−�

Nt
5−�(Nt+1)

5−�

}]
,
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3.2  Fully discrete difference scheme for fractional‑diffusion wave equation 
on non‑uniform meshes

In the current subsection, a high-order fully discrete difference scheme is derived for 
the proposed one-dimensional TFDWEs (1.1)–(1.3). V. E. Lynch et al. (2003) verify 
that one will get a better result from L2C method in comparison with L2 method for 
1 < α < 1.5, while the reverse happens in the case of 1.5 < α < 2. Motivated with the 
work of [45, 46, 48], we develop a scheme that depends on two cases of α. For 1 < α 
< 1.5, we use (3.11) in (1.1)–(1.3) as it is, while for the case of 1.5 ≤ α < 2, first we 
shift the non-uniform mesh (3.13) and then apply (3.11) on the problem (1.1)–(1.3).

Case‑1 When 1 < α < 1.5.

Furthermore, we have

where |(Rx)
kx
n | = O(ℏ2) . Then, we can obtain the following scheme:

where Rkx
n = (Rt)

kx
n +O(ℏ2) . For non-uniform mesh (3.13), it holds that

Replacing Ukx
kt

 with its numerical approximation Ukx
kt

 , we get the following differ-
ence scheme:

Case‑2 For 1.5 ≤ α < 2, shift the non-uniform mesh (3.13), i.e., Δtn = (n + 2)μ, 0 ≤ 
n ≤ Nt − 1. Now, apply (3.42), we get the value of U1,…,UNt−1

,UNt+1
 (Fig. 1).

To evaluate the value at final time T, we use

(3.39)
n∑

kt=1

H
3,n

kt

�
�tU

kx
kt
−�tU

kx
kt−1

Δtkt−1+Δtkt−2

�
= �ΔxU(xkx , tn) + f

kx
n + (Rt)

kx
n .

ΔxU(xkx , tn) =
U
kx+1
n

−2Ukx
n
+Ukx−1

n

ℏ
2

+ (Rx)
kx
n ,

(3.40)
n∑

kt=1

H
3,n

kt

�
𝛿tU

kx
kt
−𝛿tU

kx
kt−1

Δtkt−1+Δtkt−2

�
= 𝜉

U
kx+1
n

−2Ukx
n
+Ukx−1

n

ℏ
2

+ f
kx
n + R

kx
n ,

(3.41)|Rkx
n | = O(Nt

𝛼−5 + ℏ
2), 1 ≤ kx ≤ Nx, 1 ≤ n ≤ Nt.

(3.42)
n∑

kt=1

H
3,n

kt

�
�tU

kx
kt
−�tU

kx
kt−1

Δtkt−1+Δtkt−2

�
= ��

2
x
U

kx
n + f

kx
n , 1 ≤ kx ≤ Nx, 1 ≤ n ≤ Nt.

Fig. 1  Distribution of mesh after shifting
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where �1 = T − tNt−1 and �2 = tNt+1 − T.

3.3  Matrix representations of the derived scheme

If we write (3.42) at each grid point and set U
n
= [U1

n
, U2

n
,… ,U

Nx−1
n ]T , we can obtain 

the following matrix–vector form of the proposed method

In which

and

Proof The matrix-vector forms

(3.43)U
kx
Nt
=

�1U
kx
Nt−1

+�2U
kx
Nt+1

�1+�2
,

(3.44)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

A
1
U

1
=

2(Δt0)−�

Γ(3−�)
U

0
+ F

1
,

A
2
U

2
= −

H
1,2

1

2Δt0
[�tU1

− �tU0
] +

H
1,2

2

(Δt1+Δt0)
�tU1

+
H

1,2

2

Δt1(Δt1+Δt0)
U

1
+ F

2
,

AU
n

= −
�n−1

kt=1

H
3,n

kt

Δtkt−1 + Δtkt−2
[�tUkt

− �tUkt−1
] +

H
1,n
n

+H
2,n
n

(Δtn−1 + Δtn−2)
�tUn-1

+
H

1,n
n
+H2,n

n

Δtn−1(Δtn−1+Δtn−2)
U

n-1
+ F

n
, n = 3,…,Nt.

(3.45)A
1
= tri

[
−

𝜉

ℏ
2
,

(
(Δt0)−𝛼

Γ(3−𝛼)
+

2𝜉

ℏ
2

)
, −

𝜉

ℏ
2

]
(Nx−1)×(Nx−1)

,

(3.46)A
2
= tri

[
−

𝜉

ℏ
2
,

(
H

1,2

2

(Δt1+Δt0)Δt1
+

2𝜉

ℏ
2

)
, −

𝜉

ℏ
2

]

(Nx−1)×(Nx−1)

,

(3.47)A = tri
[
−

𝜉

ℏ
2
,

(
H

1,n
n
+H2,n

n

(Δt1+Δt0)Δt1
+

2𝜉

ℏ
2

)
, −

𝜉

ℏ
2

]
(Nx−1)×(Nx−1)

,

(3.48)

F
1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
1

1
+ (�1 − Δt0�1)

(Δt0)−�

Γ(3−�)
+

�

h2
U

0

1

f
2

1
+ (�2 − Δt0�2)

(Δt0)−�

Γ(3−�)

⋮

⋮

f
N
x
−2

1
+ (�N

x
−2 − Δt0�N

x
−2)

(Δt0)−�

Γ(3−�)

f
N
x
−1

1
+ (�N

x
−1 − Δt0�N

x
−1)

(Δt0)−�

Γ(3−�)
+

�

h2
U

N
x

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N

x
−1)×1

, F
n
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
1

n
+

�

h2
U

0

n

f
2

n

⋮

⋮

f
N
x
−2

n

f
N
x
−1

n +
�

h2
U

N
x

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N

x
−1)×1

, n = 2,… ,N
t
.
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4  Analysis of difference scheme

4.1  Solvability

We use Gershgorin circle theorem to show the solvability of our scheme (3.42).

Theorem 4.1 The difference scheme (3.42) is uniquely solvable.

of the difference scheme (3.42) are given in (3.44). By the Gershgorin circle theo-
rem, the matrices A1, A2 and A are invertible. These invertibility guarantee the solv-
ability of proposed scheme.

4.2  Stability and convergence analysis

Theorem 4.2 The difference scheme (3.42) is unconditionally stable.

Proof To analyze the stability of the present difference algorithm (3.42), first, we mention 
some crucial notions. Suppose Ũ be an estimation of the numerical scheme (3.42), and define

Let �n = (�0
n
, �1

n
,… , �

Nx

n )T , and use the norm

It follows from (3.42) that

After simplification of terms, we have

 where ̃H3,n

kt
=

H
3,n

kt

Δtkt−1+Δtkt−2
, βn

1,kt
=

̃H
3,n

kt

Δtkt−1
, βn

2,kt
=

̃H
3,n

kt

Δtkt−2
, and K =

−𝜉

̃H
3,n

kt
ℏ
2
.

𝜌
kx
n
= U

kx
n
− Ũ

kx
n
, 0 ≤ kx ≤ Nx, 1 ≤ n ≤ Nt.

‖‖�n‖‖∞ = max
0≤kx≤Nx

|||�
kx
n

||| =
|||�

j
n

|||.

H
3,n
n

�
�tU

kx
n −�tU

kx
n−1

Δtn−1+Δtn−2

�
+

n−1∑
kt=1

H
3,n

kt

�
�tU

kx
kt
−�tU

kx
kt−1

Δtkt−1+Δtkt−2

�
= ��

2
x
U

kx
n + f

kx
n , 1 ≤ kx ≤ Nx, 1 ≤ n ≤ Nt.

(4.1)

U
kx
n −U

kx

n−1

Δtn−1
−

U
kx

n−1
−U

kx

n−2

Δtn−2
=

𝜉

̃H
3,n

n

𝛿
2

x
U
kx
n +

f
kx
n

̃H
3,n

n

−
1

̃H
3,n

n

n−1∑
kt=1

̃H
3,n

kt

Δtkt−1

�
U
kx

kt
− U

kx

kt−1

�

+
1

̃H
3,n

n

n−1∑
kt=1

̃H
3,n

kt

Δtkt−2

�
U
kx

kt−1
− U

kx

kt−2

�
,

KU
kx+1
n +

�
1

Δtn−1
− 2K

�
U
kx
n +KU

kx−1
n =

−1

̃H
3,n

n

n−1∑
kt=1

βn
1,kt

�
U
kx

kt
− U

kx

kt−1

�
+

1

̃H
3,n

n

n−1∑
kt=1

βn
2,kt

�
U
kx

kt−1
− U

kx

kt−2

�

+
U
kx

n−1

Δtn−1
+

U
kx

n−1
−U

kx

n−2

Δtn−2
+

f
kx
n

̃H
3,n

n

,
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After some simple calculations, one can get

and,

Inserting (4.2) and (4.3) into (4.1), one can get

By making use of (4.4), one can obtain the following roundoff error equation

For simplicity of the formulas in our further consideration, we define

Grouping (4.6) and (4.7) with (4.5), then (4.5) can be re-written as:

Consider,

where |||�
kx
n−1

||| = max
0≤kt≤n−1

|||�
kx
kt

||| . Using (4.6) and (4.8), we get

which is the required result for unconditional stability of proposed scheme.

Theorem 4.3 Let TFDWEs (1.1)–(1.3) has smooth solution U(x, t) ∈ C
2,5
x,t , and (3.42) 

have the approximate solution {Ukx
n
| 0 ≤ kx ≤ Nx, 1 ≤ n ≤ Nt} , where, the non-uni-

form mesh defined by (3.13) is taken for temporal domain discretization. Then,

(4.2)−1

̃H
3,n

n

n−1∑
kt=1

βn
1,kt

�
U

kx
kt
− U

kx
kt−1

�
+

U
kx
n−1

Δtn−1
=

1

̃H
3,n

n

n−1∑
kt=0

�
βn
1,kt+1

− βn
1,kt

�
U

kx
kt
,

(4.3)

1

̃H
3,n

n

n−1∑
kt=1

βn
2,kt

�
U

kx
kt−1

− U
kx
kt−2

�
+

U
kx
n−1

−U
kx
n−2

Δtn−2
=

−1

̃H
3,n

n

n∑
kt=0

�
βn
2,kt+1

− βn
2,kt

�
U

kx
kt−1

.

(4.4)

KU
kx+1
n +

�
1

Δtn−1
− 2K

�
U
kx
n +KU

kx−1
n =

1

̃H
3,n

n

�
n−1∑
kt=0

�
βn
1,kt+1

− βn
1,kt

�
U
kx

kt
−

n∑
kt=0

�
βn
2,kt+1

− βn
2,kt

�
U
kx

kt−1

�

+
f
kx
n

̃H
3,n

n

,

(4.5)

K𝜌
kx+1
n +

�
1

Δtn−1
− 2K

�
𝜌
kx
n +K𝜌

kx−1
n =

1

̃H
3,n

n

�
n−1∑
kt=0

�
βn
1,kt+1

− βn
1,kt

�
𝜌
kx

kt
−

n∑
kt=0

�
βn
2,kt+1

− βn
2,kt

�
𝜌
kx

kt−1

�
.

(4.6)L1(�
kx
n ) = K�

kx+1
n +

(
1

Δtn−1
− 2K

)
�
kx
n +K�

kx−1
n ,

(4.7)L2(𝜌
kx
n−1

) =
1

̃H
3,n

n

�
n−1∑
kt=0

�
βn
1,kt+1

− βn
1,kt

�
𝜌
kx
kt
−

n∑
kt=0

�
βn
2,kt+1

− βn
2,kt

�
𝜌
kx
kt−1

�
.

L1(�
kx
n ) = L2(�

kx
n−1

).

(4.8)

���L2(𝜌
kx
n−1

)
��� ≤ 1

̃H
3,n

n

���𝜌
kx
n−1

���
n−1∑
kt=0

����
�
βn
1,kt+1

− βn
1,kt

����� +
1

̃H
3,n

n

���𝜌
kx
n−1

���
n−1∑
kt=0

����
�
βn
2,kt+1

− βn
2,kt

�����,
≤ C

���𝜌
kx
n−1

���,

(4.9)‖‖�n‖‖∞ ≤ C‖‖�0‖‖∞, 1 ≤ n ≤ Nt,
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Proof Suppose Ekx
n = U(xkx , tn) − Ukx

n
, 0 ≤ kx ≤ Nx, 0 ≤ n ≤ Nt. Now, subtracting 

(3.42) from (3.40), one can obtain

and from initial and boundary conditions given in (1.2)–(1.3), we get

Consider,

Then,

where, Rmax = max
n,kj

|||R
kj
n
||| . For n = 1, we have

Hence,

Now, inserting the value of (3.18) in (4.11), we get the required result (4.10).

From Theorem  4.3, we conclude that our derived scheme (3.44) has (5 − α)-th 
order global accuracy in the time domain for all time levels n and second-order 
global accuracy in the spatial direction. It is seen from the analysis part of local 
truncation error (in Theorem 3.1) that the (5 − α)-th order accuracy in time direc-
tion has achieved for a sufficiently large value of n. Although a little larger errors 
are obtained at starting time levels (when n is small), the impacts of these errors 
caused on the accompanying time levels are more fragile and more vulnerable with 
the end goal so that they can be overlooked when the value of n is sufficiently large. 
Consequently, we can presume that the convergence rate will be better when n is 
large enough, which is confirmed by the numerical investigations in the upcoming 
Section 5.

(4.10)
‖‖‖U(xkx , tn) − Ukx

n

‖‖‖∞ ≤ C(Nt
𝛼−5 + ℏ

2), 1 ≤ n ≤ Nt.

L1E
kx
n
= L2E

kx
n−1

+ Rkx
n
, 1 ≤ kx ≤ Nx − 1, 1 ≤ n ≤ Nt,

E0
n
= ENx

n
= 0, 1 ≤ n ≤ Nt,

E
kx
1
= 0, 0 ≤ kx ≤ Nx.

‖‖En
‖‖∞ = max

0≤kx≤Nx

|||E
kx
n

||| =
|||E

kj
n
|||.

‖‖En
‖‖∞ =

|||E
kj
n
||| =

|||L1E
kj
n
||| =

|||L2E
kj

n−1
+ R

kj
n
|||,≤ |||L2E

kj

n−1

||| +
|||R

kj
n
|||,≤ ‖‖En−1

‖‖∞ + Rmax,

‖‖E1
‖‖∞ ≤ ‖‖E0

‖‖∞ + Rmax = Rmax.

(4.11)‖‖En
‖‖∞ ≤ Rmax, 1 ≤ n ≤ Nt.
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5  Numerical experiments

In the current section, we will test some problems to verify the theoretical results and 
numerical stability of our proposed adaptive algorithm. The following formulas dem-
onstrate the effectiveness of the algorithm:

To calculate the temporal and spatial convergence orders, we utilize the following 
computational order formula:

From Theorem 4.3 and Theorem 3.1, we conclude that the rate of convergence of 
our developed scheme is of order O(Nt

𝛼−5 + ℏ
2) for sufficient large value of n and 

errors obtained at starting time levels are little larger, respectively. In order to improve 
the accuracy and efficiency of our scheme, moving refinement approach has been intro-
duced on our non-uniform mesh (3.13) by inserting some fictitious points 
t1
(kt)

, t2
(kt)

, ..., t
Jkt
(kt)

 in the subinterval [tkt−1, tkt ], and let �kt
=

2Δtkt

(Jkt+1)(Jkt+2)
,

where,

To improve the accuracy of the proposed scheme at initial time levels, we upgrade 
the proposed adaptive scheme by inserting the following process, where Ukt

 denotes 
the numerical approximation on the time level tkt:

• Step 1: Firstly evaluate  U1 by using initial value  U0 and proposed scheme (3.44) 
on the grid t0 < t1

(1)
< t2

(1)
< ⋯ < t

J1
(1)

< t1.
• Step 2: With the help of  U1 and scheme (3.44) compute  U2 on 

t0 < t1 < t1
(2)

< t2
(2)

< ⋯ < t
J2
(2)

< t2.
• Step 3: After receiving  U1 and  U2 from above two steps, we proceed the follow-

ing process for further time levels:

(5.1)

E(Nx,Nt)Lj =
��U − ̄U��Lj =

⎧
⎪⎪⎨⎪⎪⎩

����Nx−1�
kx=1

ℏ
���U(x

kx , tNt ) − ̄U
kx
Nt

���
2

, for j = 2,

max
0≤kx≤Nx

���U(x
kx , tNt ) − ̄U

kx
Nt

���, for j = ∞.

(5.2)(Order)Lj =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

log
‖E(Nx1

,Nt )‖j‖E(Nx2
,Nt )‖j

log
Nx1

Nx2

, for space,

log
‖E(Nx ,Nt1

)‖j‖E(Nx ,Nt2
)‖j

log
Nt1

Nt2

, for time.

t
j+1

(kt)
= t

j

(kt)
+ (Jkt + 1 − j)�kt

, 1 ≤ j ≤ Jkt − 1,

t1
(kt)

= tkt−1 + (Jkt + 1)�kt
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Case-I For 1 < α < 1.5, evaluate {Ul}
n
l=3

 by scheme (3.44) on the non-uniform 
grid t0 < t1 < t2 < ⋯ < tn.

Case-II For 1.5 ≤ α < 2, evaluate {Ul}
n−1,n+1

l=3
 by using scheme (3.44) on non-

uniform refined mesh 
t0 < t1 < ⋯ < tn−2 < t1

(n−1)
< ⋯ < t

Jn−1
(n−1)

< tn−1 < t1
(n)

< t2
(n)

< ⋯ < t
Jn
(n)

< tn+1.  

We now analyze the stability of the modified Adaptive Algorithm 2. Theorem 3.1 
shows that the Adaptive Algorithm 1 has rate of convergence of order (3 − α) and (4 
− α) for starting time levels n = 1 and n = 2, respectively. When we compute  U1 on a 
new time grid from Step 1, it follows from Theorem 3.1 that |||R̂(U(t1))

||| = O(5 − 𝛼) , 
since there are only J1 additional node points in new time grid which is generated 
with the help of Δtkt and �kt

 . Similarly, when we compute  U2 on new time grid from 
Step 2, we get |||R̂(U(t2))

||| = O(5 − 𝛼) . Thus, by mathematical induction method, one 
can easily obtained the stability of upgraded Adaptive Algorithm 2.

Based on developed numerical scheme (3.44) and moving refinement technique, 
we now present two adaptive algorithms for the approximate solutions of proposed 
problem (1.1)–(1.3) (Fig. 2):
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Test Problem 5.1 [49] We consider the 1D problem (1.1)–(1.3) with an exact ana-
lytic solution U(x, t) = t3 sin(�x) in the domain Ω = [0,1] × [0,1]. Corresponding 
forcing term and initial and boundary conditions are:

Recently, above problem has been solved in [49] by using finite difference 
method on uniform mesh and achieved the convergence order O(�3−�) in the time 
domain. After implementation of proposed high-order adaptive Algorithm 1 and 
Algorithm  2, the numerical outcomes on non-uniform mesh are described in 
detail as below:

• Exact and numerical solutions obtained by proposed Algorithm  1 for Nx 
= 100, Nt = 20, and α = 1.2 are given in Figs. 3 and 4, respectively. Good sim-
ilarity of both the figures ensure that the proposed numerical scheme work 
effectively.

• To test the absolute errors and convergence orders on a non-uniform mesh 
concerning L∞ and L2 discrete error norms in the time domain, allowing 

f (x, t) = �
2t3 sin(�x) +

6t3−� sin(�x)

Γ(2 − �) (6 − 5� + �
2)
, �(x) = �(x) = 0, Φ1(t) = Φ2(t) = 0.
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Fig. 2  Flowchart of the proposed adaptive algorithm

1929Numerical Algorithms (2023) 92:1905–1950



1 3

Nt to change and fixing Nx = 1000 adequately large to avoid contamination 
of the spatial errors. Tables  1,  2, and  3 give the results at time T = 1 and 
J1 = 5, J2 = 5, JNt−1

= JNt
= 10 . These tables clearly show that the adap-

tive algorithm 2 improve the accuracy of numerical solutions as compare to 
the numerical solutions obtained by adaptive algorithm  1. Moreover, from 
Tables  1,  2, and  3 we can conclude that the upgraded adaptive algorithm  2 
gets (5 − α)-th order temporal accuracy with respect to L∞ and L2 discrete 
error norms, respectively.

• A comparative results is demonstrated in Tables 1 and 2. From the results of both 
the tables, it can be seen that our adaptive scheme on non-uniform mesh giving 
far better result than the scheme discussed in [49] on uniform mesh.

• The outcomes of Table 3 verify the stability and accuracy of the proposed adap-
tive scheme when � → 1 or � → 2 . We can see that the upgraded adaptive algo-
rithm 2 has (5 − α)-th order accuracy in temporal direction when � → 1 or � → 2.

• A similar process is also done in Tables 4 and 5 by using adaptive algorithm 1 
for analyze the behavior of numerical solution in spatial domain. The outcomes 
of both the tables shown that the adaptive numerical scheme has second-order 
accuracy in spatial direction with respect to L∞ and L2 discrete error norms, 
respectively.

Fig. 3  Graph of exact solution of Test Problem 5.1 for Nx = 100, Nt = 20, J1 = 5, J2 = 5, and α = 1.2 at 
different time level without any noisy data
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• The numerical results obtained in Tables 1–5 for different values of α verify 
our theoretical findings discussed in Section 4.

Test Problem 5.2 [49] We consider the problem (1.1)

with an exact analytic solution U(x, t) = t3x1+�(1 − x) . It can be checked that the cor-
responding initial and boundary conditions are ϕ(x) = ψ(x) = 0 and Φ1(t) = Φ2(t) 
= 0, respectively, and value of forcing term is:

This problem has been considered in [49] and solved numerically by finite dif-
ference method on uniform mesh. We analyze the behavior of numerical solution 

C
0
D

𝛼

t
U(x, t) = ΔxU + f (x, t), (x, t) = Ω ∈ [0, 1] × [0, 1], 1 < 𝛼 < 2,

f (x, t) = 2(1 + �)t3x� − �(1 + �)t3(1 − x)x�−1 −
6t3−�(x − 1)x1+�

Γ(2 − �) (6 − 5� + �
2)
.

Fig. 4  Graph of numerical solution of Test Problem 5.1 for Nx = 100, Nt = 20, J1 = 5, J2 = 5, and α = 1.2 
at different time level without any noisy data
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of same problem by a newly design adaptive numerical scheme based on finite 
difference method on a non-uniform mesh. The detail outcomes are pointed as:

• Behavior of exact and numerical solutions for discretization parameter Nx 
= 100, Nt = 20, J1 = 5, J2 = 5, and α = 1.4 are shown in Figs. 5 and 6, respec-
tively. It clearly shows that, the approximate solutions are in good agreement 
with the exact solutions at each time level.

• To verify the computational performance and convergence order in temporal 
direction of our adaptive algorithm, first we set up the value of Nx = 1000 in 
Tables 6 and 7 to ensure that the computational errors in spacial direction are 
small enough and do not affect the temporal computational errors. After that var-
ying the temporal discretization parameter Nt to observe the L∞ and L2 errors and 
convergence order in time domain for different values of α. Results of both the 
tables shown that the better result obtained from modified adaptive algorithm 2 
as compare to the adaptive algorithm 1. Furthermore, we can see that the devel-
oped difference scheme on non-uniform mesh has (5 − α)-th order accuracy in 
time direction.

• Moreover, Tables 6 and 7 demonstrate the comparison of our proposed numeri-
cal scheme and the method discussed in [49] with respect to L∞ and L2 discrete 
error norms, respectively. From the results of both the tables, one can conclude 
that the scheme presented in this paper is far superior than the scheme consid-
ered in [49].

• Numerical results of our adaptive algorithm 1 for spatial direction are discussed 
in Tables 8 and 9, respectively. Specifically, we take Nt = 1000 and varying the 
values of Nx then we get second-order spatial accuracy for different values of α.

• All the numerical results of Tables  6–9 are supported our theoretical results 
obtained in Section 4.

Test Problem 5.3 [21, 50] Consider the time fractional wave equation

subject to the initial conditions

and boundary conditions

Momani et  al. [21] showed that its exact solution is 
E3∕2,1(−t

3∕2) sin(x) − tE3∕2,2(−t
3∕2) sin(x) , where Eβ1,β2

(z) is the two parameters Mit-
tag–Lefller function defined by:

C
0
D

3∕2
t u(x, t) = Δxu, (x, t) = Ω ∈ (0, 1] × (0, 1],

u(x, 0) = sin(x), ut(x, 0) = − sin(x),

u(0, t) = 0, u(1, t) = sin(1)(E3∕2,1(−t
3∕2) − tE3∕2,2(−t

3∕2)).
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Table 10 presents the L∞ and L2 errors obtained by our proposed adaptive algo-
rithms at time T = 1, � = 1.5, Nx = 1000, J1 = 5, J2 = 5, JNt−1

= 10, JNt
= 10 for 

the Test Problem 5.3. Also, Table 10 illustrates that theoretical results are closed to 
computational orders in the temporal direction.

Test Problem 5.4 The considered problem (1.1)

with an exact analytic solution U(x, t) = et sin(x) . The initial and boundary condi-
tions are �(x) = �(x) = sin(x) and Φ1(t) = 0, Φ2(t) = et sin(1) , respectively, and 
value of forcing term f(x,t) can be obtained from the exact solution for different 
choices of α. After implementation of proposed schemes, the numerical outcomes 
on non-uniform mesh are described in detail as below:

• Outcomes of L∞ and L2 errors and computational orders for different values of α, 
discretization parameter Nx = 1000, JNt

= JNt−1
= 10, and J1 = J2 = 5 are given 

in Table 11. It clearly shows that the proposed adaptive algorithm 2 achieves (5 
− α)-th order accuracy in temporal direction with respect to L∞ and L2 discrete 
error norms, respectively.

• To test the behavior of numerical solution and convergence rates in spatial direc-
tion, allowing Nx to change and fixing Nt = 1000. Tables 12–13 demonstrate that 
adaptive algorithm  1 achieve second-order accuracy in spatial direction with 
respect to L∞ and L2 discrete error norms, respectively.

• All the numerical results of Tables 11–13 are supported our theoretical results 
obtained in Section 4.

5.1  Numerical stability

In this part, we investigate the numerical stability of our proposed numerical 
scheme. For this aim, we have added some random noises to the linear source term 
and given initial data of the problem (1.1)–(1.3) according as [51].

In the above Test Problems 5.1 and 5.2, initial data and source term without any 
noisy inputs are represented as ϕ(x), ψ(x), and f(x,t) respectively; while noisy initial 
data and source terms are denoted by ϕ𝜖(x), ψ𝜖(x), and f𝜖(x,t), respectively. The noisy 
profiles ϕ𝜖(x), ψ𝜖(x), and f𝜖(x,t) are obtained by introducing a random noise 𝜖 to f(x,t), 
ϕ(x), and ψ(x), respectively. To control the upper limit of the input noises, we have 
used two parameters m and δi, where m ∈ ℝ

+ is adjusted according to the test prob-
lems and δi ∈ [− 1,1] such that ��(xkx ) = �(xkx ) + ��i, ��(xkx ) = �(xkx ) + ��i , and 
f �(xkx , T) = f (xkx , T) + ��i, where xkx = kxℏ, kx = 0,… ,N�

ℏ , N�
ℏ = L , and 

Eβ1,β2
(z) =

∞∑
n=0

zn

Γ(β1n + β2)
.

C
0
D

𝛼

t
U(x, t) = ΔxU(x, t) + f (x, t), (x, t) = Ω ∈ [0, 1] × [0, 1], 1 < 𝛼 < 2,
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Table 1  L∞− errors and temporal orders at T = 1, N
x
= 1000, J1 = 5, J2 = 5, J

N
t
−1 = 10, J

N
t

= 10 , and 
different values of α for Test Problem 5.1

α Nt Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L∞

 (Order)
L∞

  E(N
x
,N

t
)
L∞

  (Order)
L∞

 

1.1 1/5 5.9383e-03 – 3.6425e-03 – 1.2043e-02 –
1/10 4.5825e-04 3.6958 2.3098e-04 3.9791 3.2290e-03 1.8990
1/20 3.3635e-05 3.7681 1.4796e-05 3.9645 8.7585e-04 1.8823
1/40 2.7960e-06 3.5885 9.7023e-07 3.9307 2.3823e-04 1.8783
1/80 7.4026e-07 1.9172 6.4739e-08 3.9056 6.5075e-05 1.8722

1.5 1/5 9.7289e-02 – 3.6526e-03 – 4.4340e-02 –
1/10 1.1300e-02 3.1059 3.1030e-04 3.5572 1.6016e-02 1.4691
1/20 1.4442e-03 2.9680 2.7118e-05 3.5163 5.5990e-03 1.5163
1/40 1.8477e-04 2.9665 2.2812e-06 3.5714 1.9600e-03 1.5143
1/80 2.3748e-05 2.9598 2.0165e-07 3.4998 6.9029e-04 1.5056

1.9 1/5 1.3850e-01 – 1.4115e-02 – 1.3259e-01 –
1/10 1.4115e-02 3.2945 1.6400e-03 3.1055 7.0107e-02 0.9193
1/20 1.4104e-03 3.3231 1.8563e-04 3.1432 3.5332e-02 0.9886
1/40 1.7740e-04 2.9910 2.2331e-05 3.0553 1.7197e-02 1.0388
1/80 2.3096e-05 2.9413 2.5907e-06 3.1076 8.1965e-03 1.0691

Table 2  L2 − errors and temporal orders at T = 1, N
x
= 1000, J1 = 5, J2 = 5, J

N
t
−1 = 10, J

N
t

= 10 , and 
different values of α for Test Problem 5.1

α Nt Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]

 E(N
x
,N

t
)
L2

 (Order)
L2

  E(N
x
,N

t
)
L2

  (Order)
L2

  E(ℏ, 𝜏)
L2

  (Order)
L2

 

1.1 1/5 4.1990e-03 – 3.5573e-03 – 8.5162e-03 –
1/10 3.2403e-04 3.6958 2.2559e-04 3.9790 2.2833e-03 1.8991
1/20 2.3783e-05 3.7681 1.4451e-05 3.9645 6.1932e-04 1.8824
1/40 1.9771e-06 3.5885 9.4763e-07 3.9307 1.6846e-04 1.8783
1/80 5.2345e-07 1.9172 6.3227e-08 3.9057 4.6015e-05 1.8722

1.5 1/5 6.8794e-02 – 1.2306e-03 – 3.1353e-02 –
1/10 7.9905e-03 3.1059 1.0454e-04 3.5572 1.1325e-02 1.4691
1/20 1.0212e-03 2.9680 9.1363e-06 3.5163 3.9591e-03 1.5163
1/40 1.3065e-04 2.9665 7.6855e-07 3.5714 1.3859e-03 1.5143
1/80 1.6793e-05 2.9598 6.7841e-08 3.5019 4.8811e-04 1.5055

1.9 1/5 9.7933e-02 – 9.9809e-03 – 9.3759e-02 –
1/10 9.9809e-03 3.2945 1.1596e-03 3.1055 4.9573e-02 0.9194
1/20 9.9729e-04 3.3231 1.3125e-04 3.1432 2.4983e-02 0.9886
1/40 1.2544e-04 2.9910 1.5789e-05 3.0553 1.2160e-02 1.0388
1/80 1.6332e-05 2.9413 1.8317e-06 3.1077 5.7958e-03 1.0691
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max
0≤kx≤N�

|||�
�(xkx ) − �(xkx )

||| ≤ � , max
0≤kx≤N�

|||�
�(xkx ) − �(xkx )

||| ≤ � , and 

max
0≤kx≤N�

|||f
�(xkx , T) − f (xkx , T)

||| ≤ �.

In order to demonstrate the efficiency and numerical stability of the schemes, 
we have imposed two different kind of random noises, namely, 𝜖i as 𝜖1 = 0 and 
�2 = m% of �N� , where �N′ are average deviation given in (5.2) for j = 2 case.

The point-wise absolute errors are evaluated by

Remark 5.1 In all figures given below ui
j
, Ui

j
 and Ei

j
, i = 1,… , 3; j = 1,… , 9, repre-

sent the exact solutions, approximate solutions, and absolute errors at various time 
level T, respectively.

(5.3)||U − ̄U|| = |||U(x
kx , tkt ) − ̄U

kx
kt

|||, kx ∈ ℤ[0,Nx]
, kt ∈ ℤ[0,Nt]

.

Table 3  L∞ and  L2 − errors and temporal orders with T = 1, 
N
x
= 1000, J1 = 5, J2 = 5, J

N
t
−1 = 10, J

N
t

= 10 , and different α for Test Problem 5.1

α Nt Adaptive algorithm 1 Adaptive algorithm 2 Adaptive algorithm 1 Adaptive algorithm 2

 
E(N

x
,N

t
)
L∞

 
 
(Order)

L∞
 
E(N

x
,N

t
)
L∞

  
(Order)

L∞
 
 E(ℏ, 𝜏)

L2
  

(Order)
L2

 
 E(ℏ, 𝜏)

L2
 (Order)

L2
 

1.001 1/5 8.1821e-04 – 6.1839e-04 – 5.7566e-04 – 4.6485e-05 –
1/10 6.6074e-05 3.6303 3.8902e-05 3.9906 4.6458e-05 3.6312 2.8868e-06 4.0092
1/20 4.8257e-06 3.7753 2.2826e-06 4.0911 3.3894e-06 3.7768 1.7984e-07 4.0047
1/40 3.2270e-07 3.9025 1.4086e-07 4.0183 2.2641e-07 3.9040 1.1093e-08 4.0190
1/80 2.0319e-08 3.9893 8.7456e-09 4.0096 1.4136e-08 4.0015 6.8928e-10 4.0084

1.999 1/5 1.2742e-02 – 8.2752e-03 – 8.6959e-03 – 4.8041e-03 –
1/10 1.3105e-03 3.2814 9.6841e-04 3.0951 9.3892e-04 3.2113 5.8975e-04 3.0261
1/20 1.4686e-04 3.1577 1.1872e-04 3.0281 9.2604e-05 3.3419 7.2744e-05 3.0192
1/40 1.8998e-05 2.9505 1.4714e-05 3.0123 1.1404e-05 3.0216 9.0502e-06 3.0068
1/80 2.3545e-06 3.0123 1.8487e-06 2.9926 1.3933e-06 3.0329 1.1253e-06 3.0076

Table 4  L∞− errors and spatial orders with T = 1, Nt = 1000, and different values of α for Test Prob-
lem 5.1

ℏ α = 1.1 α = 1.5 α = 1.9

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L∞

 (Order)
L∞

  E(N
x
,N

t
)
L∞

  (Order)
L∞

 

1/5 2.3019e-02 – 5.0333e-03 – 3.6095e-03 –
1/10 6.0061e-03 1.9383 1.2574e-03 2.0010 9.0308e-04 1.9989
1/20 1.4987e-03 2.0027 3.1431e-04 2.0002 2.2582e-04 1.9997
1/40 3.7450e-04 2.0007 7.8582e-05 1.9999 5.6467e-05 1.9997
1/80 9.3614e-05 2.0002 1.9654e-05 1.9994 1.4126e-05 1.9991
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For Test Problem 5.1 Following facts about Figs. 7, 8, 9, 10, and 11 that characterize 
the numerical stability of the Test Problem 5.1 should be noticed:

• For labeling the graph in Fig.  7, we scale the graph as 
u1
j
= 10−2 × U(xkx , T) + 0.0(j − 1), j = 1,… , 9; u2

j−9
= 3 × 10−2 × U(xkx , T) + 0.0(j − 10),

Table 5  L2 − errors and spatial orders with T = 1, Nt = 1000, and different values of α for Test Prob-
lem 5.1

ℏ α = 1.1 α = 1.5 α = 1.9

 E(N
x
,N

t
)
L2

  (Order)
L2

  E(N
x
,N

t
)
L2

 (Order)
L2

  E(N
x
,N

t
)
L2

  (Order)
L2

 

1/5 1.7115e-02 – 3.5591e-03 – 2.5523e-03 –
1/10 4.2469e-03 2.0107 8.8913e-04 2.0010 6.3857e-04 1.9989
1/20 1.0597e-03 2.0027 2.2225e-04 2.0002 1.5968e-04 1.9997
1/40 2.6481e-04 2.0007 5.5566e-05 1.9999 3.9928e-05 1.9997
1/80 6.6195e-05 2.0002 1.3898e-05 1.9994 9.9886e-06 1.9991

Fig. 5  Graph of exact solution of Test Problem 5.2 for Nx = 100, Nt = 20, J1 = 5,J2 = 5, and α = 1.4 at dif-
ferent time level without any noisy data
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Fig. 6  Graph of numerical solution of Test Problem 5.2 for Nx = 100, Nt = 20,J1 = 5, J2 = 5, and α = 1.4 
at different time level without any noisy data

Table 6  L∞− errors and temporal orders at T = 1, N
x
= 1000, J1 = 5, J2 = 5, J

N
t
−1 = 10, J

N
t

= 10 , and 
different values of α for Test Problem 5.2

α Nt Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L∞

 (Order)
L∞

  E(N
x
,N

t
)
L∞

  (Order)
L∞

 

1.1 1/5 8.0222e-04 – 8.0226e-04 – 1.4799e-03 –
1/10 6.1838e-05 3.6974 5.3121e-05 3.9167 3.9689e-04 1.8987
1/20 4.4310e-06 3.8028 3.5490e-06 3.9038 1.0758e-04 1.8833
1/40 2.6032e-07 4.0893 2.2940e-07 3.9515 2.9182e-05 1.8823
1/80 6.1075e-08 2.0916 1.4923e-08 3.9423 7.8901e-06 1.8870

1.5 1/5 1.0954e-02 – 9.8042e-04 – 4.3235e-03 –
1/10 1.3612e-03 3.0085 8.2972e-05 3.5627 1.5597e-03 1.4709
1/20 1.7658e-04 2.9465 7.0815e-06 3.5505 5.4584e-04 1.5147
1/40 2.2538e-05 2.9698 6.2207e-07 3.5089 1.9114e-04 1.5138
1/80 2.7899e-06 3.0141 5.4642e-08 3.5090 6.7250e-05 1.5070

1.9 1/5 1.1891e-02 – 1.2472e-03 – 1.0400e-02 –
1/10 1.2472e-02 3.2531 1.4428e-04 3.1117 5.4445e-03 0.9337
1/20 1.5200e-04 3.0366 1.6519e-05 3.1267 2.7264e-03 0.9978
1/40 1.9625e-05 2.9533 1.9142e-06 3.1093 1.3223e-03 1.0439
1/80 2.4287e-06 3.0144 2.2256e-07 3.1045 6.2913e-04 1.0716
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Table 7  L2 − errors and temporal orders with T = 1, N
x
= 1000, J1 = 5, J2 = 5, J

N
t
−1 = 10, J

N
t

= 10 , 
and different α for Test Problem 5.2

α Nt Adaptive algorithm 1 Adaptive algorithm 2 Uniform mesh [49]

 E(N
x
,N

t
)
L2

 (Order)
L2

  E(N
x
,N

t
)
L2

  (Order)
L2

  E(ℏ, 𝜏)
L2

  (Order)
L2

 

1.1 1/5 5.6465e-04 – 5.6468e-04 – 1.0381e-03 –
1/10 4.3438e-05 3.7003 3.7382e-05 3.9170 2.7833e-04 1.8991
1/20 3.1005e-06 3.8084 2.4974e-06 3.9038 7.5432e-05 1.8835
1/40 1.7483e-07 4.1484 1.6142e-07 3.9515 2.0454e-05 1.8828
1/80 3.4718e-08 2.3322 1.0500e-08 3.9424 5.5238e-06 1.8887

1.5 1/5 7.1471e-03 – 6.9422e-04 – 3.0298e-03 –
1/10 8.6044e-04 3.0542 5.8747e-05 3.5628 1.0939e-03 1.4697
1/20 1.1086e-04 2.9563 5.0139e-06 3.5505 3.8251e-04 1.5159
1/40 1.4119e-05 2.9730 4.4044e-07 3.5089 1.3386e-04 1.5148
1/80 1.7305e-06 3.0284 3.8688e-08 3.5090 4.7079e-05 1.5076

1.9 1/5 8.0031e-03 – 8.3034e-04 – 7.2953e-03 –
1/10 8.3034e-04 3.2688 9.6060e-05 3.1117 3.8455e-03 0.9238
1/20 9.1742e-05 3.1780 1.0998e-05 3.1267 1.9347e-03 0.9911
1/40 1.1717e-05 2.9690 1.2744e-06 3.1094 9.4082e-04 1.0401
1/80 1.4419e-06 3.0226 1.4817e-07 3.1045 4.4818e-04 1.0698

Table 8  L∞− errors and spatial orders with T = 1, Nt = 1000, and different α for Test Problem 5.2

ℏ α = 1.1 α = 1.5 α = 1.9

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L∞

 (Order)
L∞

  E(N
x
,N

t
)
L∞

  (Order)
L∞

 

1/5 2.6753e-03 – 3.6674e-03 – 3.8179e-03 –
1/10 6.7891e-04 1.9784 9.9007e-04 1.8892 9.7940e-04 1.9628
1/20 1.5978e-04 2.0871 2.5961e-04 1.9312 2.4812e-04 1.9808
1/40 3.7527e-05 2.0901 6.6892e-05 1.9564 6.2182e-05 1.9965
1/80 9.3221e-06 2.0092 1.7061e-04 1.9711 1.5560e-05 1.9987

Table 9  L2 − errors and spatial orders with T = 1, Nt = 1000, and different α for Test Problem 5.2

ℏ α = 1.1 α = 1.5 α = 1.9

 �
(
N
x
,N

t

)
L2

  (Order)
L2

  �
(
N
x
,N

t

)
L2

  (Order)
L2

  �(h, �)  
(Order)

L2
 

1/5 1.9881e-03 – 2.7266e-03 – 2.9352e-03 –
1/10 5.0354e-04 1.9812 7.3840e-04 1.8846 7.5342e-04 1.9620
1/20 1.1851e-04 2.0871 1.9337e-04 1.9331 1.8989e-04 1.9883
1/40 2.7834e-05 2.0901 4.9806e-05 1.9569 4.7615e-05 1.9957
1/80 6.9143e-06 2.0092 1.2704e-05 1.9710 1.1918e-05 1.9983
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j = 10,… , 18; u3
j−18

= 50 × 10−2 × U(xkx , T) + 0.0(j − 19), j = 19,… , 27, and 
kx = 0,… ,Nx. In similar way, we label the graph in Fig.  8 as 
U1

j
= 10−2 × ̄U(xkx , T) + 0.0(j − 1), j = 1,… , 9; U2

j−9
= 3 × 10−2 × ̄U(xkx , T) + 0.0(j − 10),

j = 10,… , 18; U3

j−18
= 50 × 10−2 × ̄U(xkx , T) + 0.0(j − 19), j = 19,… , 27, and 

kx = 0,… ,Nx. To label the graph in Fig.  9, we multiply E2
j
= 4 × ||U − ̄U|| and 

E3
j
= 102 × ||U − ̄U||, j = 1,… , 9.

• Figures 7 and 8 show a good similarity between exact and approximate solutions 
of Test Problem 5.1 for different values of α at different time level T when we 
fixed the discretization parameter Nx = Nt = 100, J1 = J2 = 5, JNt−1

= JNt
= 10, 

and add a noise 𝜖1 in given initial data and linear source term.
• Figure  7 shows the absolute errors between exact and approximate solu-

tion obtained by the proposed adaptive numerical algorithm for the noise 𝜖1 
in initial data and linear source term when we fix the discretization parameter 
Nx = Nt = 100, J1 = J2 = 5, JNt−1

= JNt
= 10.

• For N� = 100, � = 1.2, Nx = 100, Nt = 20, J1 = J2 = 5, and m = 20, the abso-
lute errors between exact and approximate solutions at different time levels are 
shown in Fig. 10 when we force noise 𝜖2 in linear source term.

• Figure 11 reflects the absolute errors between exact and approximate solutions 
when we add noise 𝜖2 in both initial data and linear source term for the param-
eters N� = 100, � = 1.2, Nx = 100, Nt = 20, J1 = J2 = 5, and m = 20.

• From the error Figs. 7, 8, 9, 10, and 11 it is evident that the effect of noises 𝜖1 
and 𝜖2 in given initial data and source term are almost negligible and hence it can 
be concluded that the proposed method is numerically stable.

Table 10  L∞ and L2 − errors and temporal orders at T = 1, 
N
x
= 1000, J1 = 5, J2 = 5, J

N
t
−1 = 10, J

N
t

= 10 , and α = 1.5 for Test Problem 5.3

Nt Adaptive algorithm 1 Adaptive algorithm 2 Adaptive algorithm 1 Adaptive algorithm 2

 E(N
x
,N

t
)
L∞

  (Order)
L∞

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L2

  (Order)
L2

  E(N
x
,N

t
)
L2

 (Order)
L2

1/5 2.8663e-03 – 2.3265e-03 – 2.8095e-03 – 2.8000e-03 –
1/10 2.5855e-04 3.4707 1.9349e-04 3.5878 2.5340e-04 3.4708 2.3284e-04 3.5880
1/20 2.8194e-05 3.1970 1.6676e-05 3.5364 2.7624e-05 3.1974 2.1726e-05 3.5439
1/40 3.5514e-06 2.9889 1.4988e-06 3.4759 3.2383e-06 3.0926 1.9083e-06 3.5091
1/80 3.4716e-07 3.3547 1.3092e-07 3.5170 3.0858e-07 3.3915 1.6530e-07 3.5291
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For Test Problem 5.2 Following facts about Figs. 12, 13, 14, 15, and 16 that charac-
terize the numerical stability of the Test Problem 5.2 should be noticed:

• For labeling the graph in Fig. 12, we scale the graph as 
u2
j
= 3 × U(xkx , T); u3

j
= 50 × U(xkx , T), j = 1,… , 9, and kx = 0,… ,Nx. In similar way, 

we label the graph in Fig. 13 as U2
j
= 3 × ̄U(xkx , T); U3

j
= 50 × ̄U(xkx , T), j = 1,… , 9, 

and kx = 0,… ,Nx. To label the graph in Fig.  14, we multiply E2
j
= 5 × ||U − ̄U|| and 

E3
j
= 102 × ||U − ̄U||, j = 1,… , 9.

• Figures 12, 13 show a good similarity between exact and approximate solutions of 
Test Problem 5.2 for different values of α at different time level T when we fixed 
the discretization parameter Nx = Nt = 100, J1 = J2 = 5, JNt−1

= JNt
= 10, and 

add a noise 𝜖1 in given initial data and linear source term.
• Figure  14 shows the absolute errors between exact and approximate solu-

tion obtained by the proposed adaptive numerical algorithm for the noise 𝜖1 
in initial data and linear source term when we fix the discretization parameter 
Nx = Nt = 100, J1 = J2 = 5, JNt−1

= JNt
= 10.

• For N� = 100, � = 1.4, Nx = 100, Nt = 20, J1 = J2 = 5, and m = 40, the abso-
lute errors between exact and approximate solutions at different time levels 
are shown in Fig. 15 when we force noise 𝜖2 in linear source term.

Table 12  L∞− errors and spatial orders with T = 1, Nt = 1000, and different α for Test Problem 5.4

ℏ α = 1.1 α = 1.5 α = 1.9

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L∞

 (Order)
L∞

  E(N
x
,N

t
)
L∞

  (Order)
L∞

 

1/5 4.3737e-02 – 3.6492e-02 – 4.0483e-02 –
1/10 1.1411e-02 1.9383 9.5710e-03 1.9308 1.0584e-02 1.9353
1/20 2.8477e-03 2.0026 2.3966e-03 1.9977 2.6438e-03 2.0012
1/40 7.1174e-04 2.0004 6.0468e-04 1.9868 6.6207e-04 1.9975
1/80 1.7805e-04 1.9990 1.5679e-04 1.9473 1.6684e-04 1.9885

Table 13  L2 − errors and spatial orders with T = 1, Nt = 1000, and different α for Test Problem 5.4

ℏ α = 1.1 α = 1.5 α = 1.9

 E(N
x
,N

t
)
L∞

  (Order)
L∞

  E(N
x
,N

t
)
L∞

 (Order)
L∞

  E(N
x
,N

t
)
L∞

  (Order)
L∞

 

1/5 3.2518e-02 – 2.7132e-02 – 3.0099e-02 –
1/10 8.0692e-03 2.0107 6.7677e-03 2.0032 7.4846e-03 2.0077
1/20 2.0136e-03 2.0026 1.6947e-03 1.9977 1.8695e-04 2.0012
1/40 5.0327e-04 2.0004 4.2757e-04 1.9868 4.6816e-04 1.9975
1/80 1.2590e-04 1.9990 1.1087e-04 1.9473 1.1797e-04 1.9885
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• Figure 16 reflects the absolute errors between exact and approximate solu-
tions when we add noise 𝜖2 in both initial data and linear source term for 
the parameters N� = 100, � = 1.4, Nx = 100, Nt = 20, J1 = J2 = 5, and m 
= 40.
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Fig. 10  Graph of absolute errors of Test Problem 5.1 for Nx = 100, Nt = 20, J1 = J2 = 5, and α = 1.2 at 
different time levels with noisy data in linear source term
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Fig. 11  Graph of absolute errors of Test Problem 5.1 for Nx = 100, Nt = 20, J1 = J2 = 5, and α = 1.2 at 
different time levels with noisy inputs in initial data and linear source term
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• From the error Figs. 12, 13, 14, 15, and 16, it is evident that the effect of noises 𝜖1 
and 𝜖2 in given initial data and source term are almost negligible and hence it can 
be concluded that the proposed adaptive numerical scheme is numerically stable.
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6  Concluding remarks and future work

Most of the existing numerical schemes for the time-fractional Caputo derivative 
C
0
D

�

t
 with order α ∈ (1,2) have convergence rate (3 − α) and based on uniform mesh. 

There are very less study on numerical methods which have convergence rate more 
than (3 − α), and especially for the case of non-uniform mesh as compare to the 
uniform mesh till now. So develop some high convergence rate schemes based on 
the non-uniform mesh are really a challenging and interesting task. This investiga-
tion proposes a new convergent approximation for the Caputo fractional derivative 
with convergence rate (5 − α) on a non-uniform mesh. Using this approximation of 
Caputo derivative in the time direction and second-order central difference discre-
tization in the spatial direction, we proposed a high-order adaptive numerical algo-
rithm to solve the TFDWEs numerically. Setup of the designed algorithm is such 
that the algorithm changes its behavior automatically according to the value of α. A 
detailed analysis of the local truncation error of the scheme is given in Theorem 3.1, 
and stability and convergence analysis of the numerical methods are given in The-
orem  4.2 and 4.3, respectively. Optimal error bounds of the numerical methods 
show that the proposed scheme has (5 − α)-th order accuracy in the time direction 
and second-order accuracy in the spatial direction. To improve the temporal error 
accuracy of the numerical solutions, we assemble a moving mesh technique with 

Fig. 15  Graph of absolute errors of Test Problem 5.2 for Nx = 100, Nt = 20, J1 = J2 = 5, and α = 1.4 at 
different time levels with noisy data in linear source term
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our proposed scheme. Moreover, the numerical stability of the proposed scheme is 
verified by imposing some random noises in the initial data and non-homogeneous 
source term (see: Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16). From error tables, we 
can see that our proposed numerical scheme based on non-uniform mesh gives bet-
ter convergence rate as compare to the numerical scheme based on uniform mesh 
given in [49] (see: Tables 1–3, 6–7, 10–11). Finally, our derived numerical method 
has the advantage over previous works that the rate of convergence is far better as 
compared to the numerical methods based on uniform mesh.

6.1  Future work

Now, we proposed some future works for the readers which is based on the scheme 
presented in this manuscript:

• Extend the developed adaptive algorithm for more complex boundary conditions [52]:

(6.1)C
0
D

�

t
u(x, t) − Δxu(x, t) = h(t)f (x), x ∈ Ω, t ∈ (0, T)

Fig. 16  Graph of absolute errors of Test Problem 5.2 for Nx = 100, Nt = 20, J1 = J2 = 5, and α = 1.4 at 
different time levels with noisy inputs in initial data and linear source term both
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with initial and boundary conditions:

where 𝛼 ∈ (1, 2), Ω ⊂ ℝ
d is bounded with the Lipschitz boundary Γ, T > 0, 

ΓD ∩ ΓN = �, Γ̄D ∪ Γ̄N = Γ, |ΓD| > 0 , ν is a outer normal vector on Γ, and ΓN is 
the dynamical boundary conditions.

• Extension of the proposed method for non-linear problem in higher dimension. 
Consider the problem [53]:

with initial and boundary conditions:

where, Ω = (0,Lx) × (0,Ly), ∂Ω, and ̄Ω are the boundary and closure of Ω, respec-
tively. f(x,y,t,u) is a nonlinear function of unknown u, and satisfies the Lipschitz 
condition with respect to u. ϕ(x,y) and Φ(x,y) are known sufficiently smooth func-
tions. Furthermore, K and S are two integers, 1 < 𝛼K ≤ 𝛼K−1 ≤ ⋯ ≤ 𝛼2 ≤ 𝛼1 < 2 
and 1 < βS ≤ βS−1 ≤ ⋯ ≤ β2 ≤ β1 < 2.

• Analysis of the derived scheme proposed for sufficiently smooth solution. Exten-
sion of the current work for non-smooth solution will be a work for readers.
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