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Abstract
In this paper, we propose a generalized discrete Lotka-Volterra equation and explore 
its connections with symmetric orthogonal polynomials, Hankel determinants and 
convergence acceleration algorithms. Firstly, we extend the fully discrete Lotka-Vol-
terra equation to a generalized one with a sequence of given constants {u(n)

0
} and 

derive its solution in terms of Hankel determinants. Then, it is shown that the dis-
crete equation of motion is transformed into a discrete Riccati system for a discrete 
Stieltjes function, hence leading to a complete linearization. Besides, we obtain its 
Lax pair in terms of symmetric orthogonal polynomials by generalizing the Christ-
offel transformation for the symmetric orthogonal polynomials. Moreover, a gen-
eralization of the famous Wynn’s ε-algorithm is also derived via a Miura transfor-
mation to the generalized discrete Lotka-Volterra equation. Finally, the numerical 
effects of this generalized ε-algorithm are discussed by applying to some linearly, 
logarithmically convergent sequences and some divergent series.

Keywords  Fully discrete Lotka-Volterra lattice · Orthogonal polynomials · 
Convergence acceleration algorithm · Hankel determinant

Mathematics Subject Classification (2010)  37K10 · 33C45 · 65B05

1  Introduction

As a class of intriguing systems in the nonlinear world, discrete integrable equations 
have always been highly concerned by scientists due to their rich mathematical struc-
tures and many applications in natural sciences. It is known that discrete integrable 
systems have some fundamental connections with orthogonal polynomials (OPs) via 
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the discrete Lax pair formalism [16, 18, 41, 44, 45]. (Here, we remark that a Lax 
Pair consists of a pair of linear systems, the compatibility condition of which can 
lead to a given (partial) differential (or difference) equation (or system) [27]. If a Lax 
pair exists, it implies that a corresponding equation (or system) is integrable.) Since 
the theory of formal OPs plays a central role in modern numerical analysis [8–11], 
especially in the theory of eigenvalue problems, convergence acceleration algorithms, 
Padé approximations, continued fractions etc., discrete integrable systems are closely 
related to numerical algorithms [12, 13, 17, 26, 33, 34, 37, 39, 46, 48]. For example, 
the discrete Toda equation (or called the quotient-difference (QD) algorithm) is noth-
ing but the compatibility condition of spectral transformations of the ordinary OPs 
[41, 44]. The compatibility of spectral transformations for the symmetric OPs yields 
the discrete-time Lotka-Volterra (LV) chain, which can be used to compute singu-
lar values for bidiagonal matrices [33, 45]. The fully discrete potential KdV equation 
can be regarded as the Wynn’s ε-algorithm—one of the most important convergence 
acceleration algorithms [40].

Furthermore, it is worth pointing out that discrete integrable systems may lead 
to many unexpected applications in numerical analysis. In particular, some new 
algorithms for computing eigenvalues and new convergence acceleration algo-
rithms have been proposed via discrete integrable systems. For example, in [25], a 
new algorithm has been designed based on the discrete hungry Lotka-Volterra sys-
tem for computing complex eigenvalues of a certain band matrix. Besides, Wynn’s 
ε-algorithms has been generalized with the help of the hungry LV equation [13, 46]. 
Sometimes, an integrable system may bring advantages in some numerical calcula-
tions because it possesses a sufficient number of conserved quantities, especially in 
the case that the problem has something that must be conserved during the calcula-
tion, such as energy or the eigenvalues of a matrix [3, 22, 23, 47].

This paper is devoted to exploring the so-called generalized discrete Lotka-Volt-
erra (dLV) equation (see (2.1) for more details)

 which is an extension of the ordinary dLV equation

proposed in [30, 31]. Here, h is a step-size parameter. In fact, the dLV equation is a 
time discretization of the semi-discrete Lotka-Volterra (LV) equation [4, 20, 35, 38, 
42]

 in Euler-type scheme, and u(n)
k

 represents the approximation solution of uk(t) at t 
= hn in the LV equation. Here, we remark that the semi-discrete LV lattice is one 
of the most famous integrable lattice systems, also known under several different 
names such as discrete KdV equation, Langmuir lattice, Kac-van Moerbeke lattice, 
and so on. It has rich applications in biological systems [32], the propagation of 
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electron density waves [52] and electric network [28, 29], etc. The semi-discrete LV 
equation together with the boundary condition

 is referred as the restricted LV equation, while the boundary condition

 is called the unrestricted case, as is used in [42, 49]. Note that the unrestricted case 
can be considered as a bilaterally infinite lattice [42, 49], but the semi-infinite part 
is sufficient for us. Compared with the restricted case, the unrestricted case is more 
general and of course more complicated to deal with.

As for the dLV equation, the boundary condition

 is usually considered in the literature. It has been shown to be intimately connected 
with convergence acceleration algorithms etc. And in the finite truncation case

 it has important applications to compute singular values for some types of matrices 
[33, 48]. From the view of algebraic structure, the underlying reason is that the inte-
grability of the restricted dLV equation is intimately related to some orthogonality. 
In fact, the restricted dLV equation can be regarded as the compatibility condition 
of some recurrence relations or spectral transformations pertaining to symmetric 
OPs, which naturally leads to solutions in terms of Hankel determinants with the 
moments satisfying linear relations as the entries. The solution indeed means that 
the restricted dLV can be linearized [45].

However, as far as we know, the unrestricted dLV equation (i.e. that under the 
boundary condition u(n)

0
≠ 0 ) has not yet been investigated. This problem is a sig-

nificant and fundamental problem. On one hand, in contrast to a large number of 
literatures on restricted discrete integrable systems, there are still few researches 
on unrestricted discrete integrable systems. To our knowledge, only one such work 
was done by Kajiwara etal.[36], where Hankel type determinant formulae for the 
solution of the unrestricted discrete Toda equation are given. On the other hand, it 
is not clear whether there are any new phenomena when studying the connection 
with symmetric OPs, convergent acceleration algorithms, eigenvalue problems etc. 
And, as is known that the unrestricted semi-discrete LV lattice can be linearized to 
a Riccati equation via a Stieltjes function, it is natural to ask what happens to the 
unrestricted dLV equation. To this end, we derive the generalized dLV (2.1) with a 
sequence of given constants {u(n)

0
} . Although, it is not referred as the “unrestricted” 

dLV equation when u(n)
0

≠ 0 in this paper since the equations themselves are not 
identical, the generalized dLV (2.1) is of sufficient interest.

The first aim of the present work is to explore the solution to the generalized dLV 
equation and to investigate its connection with the Riccati system. The generalized 
dLV (2.1) together with its Hankel determinant solution is firstly proposed by using 

u0(t) = 0

u0(t) ≠ 0

u
(n)

0
= 0

u
(n)

0
= 0, u

(n)

2m
= 0,
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bilinear and determinantal techniques. Besides, it turns out that the generalized dLV 
equation is equivalent to a discrete Riccati system by introducing a discrete Stieltjes 
function. Since the latter is known to be linearizable, we thus achieve a linearization 
of this nonlinear difference equation. These results are presented in Section 2.

The second goal of this paper is to interpret the generalized dLV equation pro-
posed in this paper from the standpoint of OPs, which is placed in Section 3. It is 
known that the restricted dLV equation has intimate connections with symmetric 
OPs [45]. In fact, the restricted dLV equation can be derived from the compatibility 
condition of the three-term recurrence relation and the Christoffel transformation1 
for the symmetric OPs (see Section 3.1 for more details). As for the generalized dLV 
equation, we propose a generalized Christoffel transformation for symmetric OPs in 
Section 3.2 and demonstrate that the generalized Christoffel transformation and the 
three-term recurrence relation for the symmetric OPs form a Lax pair of the general-
ized dLV equation.

The third purpose of this paper is to investigate an application of the general-
ized dLV (2.1) to convergence accelerate algorithms. Wynn’s ε-algorithm is one 
of the most famous convergence acceleration algorithms and it is connected with 
the restricted dLV equation through a Miura transformation 2. More details for 
these known results are given in Section  4.1; motivated by which, a generalized 
ε-algorithm connected with the generalized dLV equation is proposed in Section 4.2. 
Applications of this generalized ε-algorithm to some linearly, logarithmically con-
vergent sequences as well as a certain divergent series are presented in Section 4.3.

At the end of the introduction, we remark that all the results of the generalized 
dLV equation obtained in this paper can be reduced to the restricted case and will 
cover those for the semi-discrete LV equation in the continuous time limit. For con-
venience of presentation, we only sketch the proofs of the main results in the main 
body and put the details of the proofs in the Appendix A.

2 � Generalized dLV equation

In this section, we shall present the main object of this paper, i.e. the generalized 
dLV equation and discuss some of its properties.

2.1 � Generalized dLV and its solution

Based on the work in [21], we extend the restricted dLV equation to a generalized 
case, which reads

1  The so-called Christoffel transformation is a nice formula that generates a new class of (bi)OPs with a 
modified measure d𝜌̂ from a given class of (bi)OPs together with the measure dρ.
2  Miura transform is originally known as the transformation between the KdV equation and modified 
KdV equation, which are two famous integrable systems. Nowadays, the term Miura transform has been 
widely used to indicate a transformation that links certain two integrable systems.
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where integers n ≥ 0, k ≥ 1 and u(n)
0

 are arbitrary constants. Its Hankel type solution 
is also obtained and presented in the following theorem. Here, we note that, for con-
venience, the proofs for the theorems are confined in the main body of the paper and 
many lengthy details for the proofs are put in the Appendix A.

Theorem 2.1.1  The generalized dLV (2.1) admits a solution in the form of

where the Hankel determinants3 H(n)

k,j
 are defined as

with the convention

and the elements {c(n)
j
} satisfying

with arbitrary constants c(n)
0

≠ 0.

Proof  The case for k = 1 in (2.1) is trivial. We proceed the proof for k ≥ 2, which can 
be achieved based on Corollary A.3.2. If we use the notation � (n)

k
 appearing in Corol-

lary A.3.2, it is equivalent to prove

solves the generalized dLV (2.1).
Substituting (2.6) into (2.1), we are left to prove
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By employing Corollary A.3.2, we easily arrive at

which is obviously valid because of the definition of β(n) in (3.12). Thus, the proof is 
completed. 

Remark 2.1.2  The (2.1) can be rewritten as

It is not hard to see that all u(n)
k

 will be determined iteratively via the initial values 
u
(n)

0
 and u(n)

1
 with integers n ≥ 0. Since

 all u(n)
k

 are actually determined by u(n)
0

 and c(n)
0

.

Remark 2.1.3  If u(n)
0

= 0 , (2.1) reduces to the restricted dLV (1.1). Correspondingly, 
its solution (2.2) with (2.5) reduces to the solution of the restricted dLV (1.1).

The generalized dLV equation can be regarded as a discrete analogue of the 
unrestricted semi-discrete LV equation discussed in [21, 42]. We will show in Sec-
tion 2.2 that, as the discrete step size h → 0 , the generalized dLV equation tends to 
the unrestricted semi-discrete LV equation. Moreover, in Section 2.3, we linearize 
the generalized dLV equation to a Riccati system in terms of a Stieltjes function.

2.2 � Continuous time limit

In this subsection, we deduce the unrestricted semi-discrete LV equation discussed 
in [21, 42] by investigating the continuum limits of the results in Theorem 2.1.1 as 
h → 0 , so that the generalized dLV (2.1) can be regarded as a discrete analogue of 
the unrestricted semi-discrete LV equation.

As is known, the solution of the semi-discrete LV equation [4, 20, 35, 38, 42]
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(2.7)u̇k(t) = uk(t)(uk+1(t) − uk−1(t)),
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satisfies

where

and {cj} is a set of functions of t. Note that Hm
k

 are the Hankel determinants of a 
sequence of {cn}.

In the restricted case, namely, u0 = 0, the Hankel determinant solutions (2.8) are 
completely determined by an arbitrary differentiable moment function c0 of t with

While for the unrestricted case with u0(t)≠ 0, in order to make the Hankel 
determinant expressions (2.8) still be the solution of (2.7), it requires to add an 
quadratic term in the evolution equation for the moments {cj} [21, 42]

with arbitrary function c0(t)≠ 0.
Now, we will point out that, as the step size h → 0 , the generalized dLV (2.1) 

and its solution (2.2) with determinant elements {c(n)
j
} satisfying the recursion 

relation (2.5) converge to the unrestricted semi-infinite (2.7), and the corre-
sponding solution (2.8) with recursion relation (2.9), respectively.

First, let us rewrite the generalized dLV (2.1) as

with a sequence of given constants {u(n)
0
} . It is easy to see that, as the step size 

h → 0 , it tends to the unrestricted semi-infinite (2.7) with arbitrary function u0(t). At 
the same time, the recursion relation (2.5) approaches to

which is equivalent to (2.9) with arbitrary function c0(t)≠ 0. Consequently, the solu-
tion (2.2) of the generalized dLV equation naturally tends to (2.8) as h → 0.

In particular, if letting u(n)
0

= 0 and u0(t) = 0, the above process also gives the con-
nection between the restricted semi-discrete LV equation and the restricted dLV (1.1).
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2.3 � Riccati system in terms of a Stieltjes function

Some nonlinear difference equation can be linearized via a suitable change of 
variables. An important example is the discrete Riccati equation, which is a non-
linear difference equation, possessing a quadratic nonlinearity. The discrete Ric-
cati equation is a difference analogue of the famous Riccati differential equa-
tion which can—as is well known—be linearized [27, Chapter one, pp 16]. It is 
shown in [21] that, the unrestricted semi-discrete LV equation could be trans-
formed to a Riccati equation in terms of a Stieltjes function. Inspired by this 
work, we now pose a discrete Riccati equation pertaining to the generalized dLV 
equation.

Define a set of Stieltjes functions {F(n)} as,

which acts as a generating function of sequence {c(n)
j
} . (Here, we remark that such 

Stieltjes functions arise in the case of zero odd moments, which naturally appear in 
the context of symmetric OPs.) Then, it is not hard to see that the recursion relation 
(2.5) of {c(n)

j
} is equivalent to the following discrete Riccati equation in terms of F(n),

 Obviously, as h → 0 , this discrete Riccati equation will tend to

 and F(n) in (2.10) will approach to

 This is the Riccati equation given in [21], and this result coincides with the case of 
the unrestricted semi-discrete LV equation.

3 � Connection with OPs

In this section, we discuss connections between the generalized dLV equation 
and symmetric OPs. Let us first outline some useful knowledge on symmetric 
OPs and their relationship with the restricted dLV equation in Section 3.1.
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3.1 � On symmetric OPs and restricted dLV

It is known that a set of monic symmetric OPs {Pk(x)}
∞
k=0

 defined on a symmetric 
subset of ℝ satisfy the three-term recursion relation as follows,

with the initial conditions P− 1(x) = 0, P0(x) = 1. From this recursion relation, one can 
easily find that these polynomials possess the parity property Pk(−x) = (− 1)kPk(x).
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Actually, one can construct {P(n+1)

k
(x)}∞

k=0
 from {P(n)

k
(x)}∞

k=0
 via the Christoffel trans-

formation. Sometimes they are called adjacent families with each other. The cor-
responding Christoffel transformations between the adjacent families of {P(n)

k
(x)}∞

k=0
 

reads,

where

In the sequel, we also need to use the notion of the associated polynomials. 
According to the work [42] of Peherstorfer etal., the so-called j-associated polyno-
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k
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k−1,1

H
(n)

k,1
H

(n+1)

k−1,1

, w
(n)

2k−1
=

H
(n+1)

k,0
H

(n)

k−1,0

H
(n)

k,0
H

(n+1)

k−1,0

.

(3.8)xQ
(j,n)

k
(x) = Q

(j,n)

k+1
(x) + v

(n)

k+j
Q

(j,n)

k−1
(x), k = 0, 1, 2,… ,

Q
(j,n)

−1
(x) = 0, Q

(j,n)

0
(x) = c

(n)

0
,

(3.9)c
(n)

0
Q

(j,n)

k
(x) = xQ

(j+1,n)

k−1
(x) − v

(n)

j+1
Q

(j+2,n)

k−2
(x), j, n = 0, 1, 2,… ,

Q
(n)

k−1
(x) = L

(n)
(P(n)

k
(�) − P

(n)

k
(x)

� − x

)
,

L
(n)(�2k+1) = 0, L

(n)(�2k) = c
(n)

k
, k = 0, 1, 2,… .
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where H(n)

k,j
 is defined by (3.2).

3.2 � Link between the generalized dLV and symmetric OPs

In this subsection, we will discuss the connection between the generalized dLV 
equation and symmetric OPs. As mentioned in introduction, it is already known that 
the restricted dLV equation ( u(n)

0
= 0 ) can be derived as a compatibility condition 

of Lax pair in terms of symmetric OPs. For the generalized dLV (2.1) proposed in 
this paper, correspondingly, we can also construct a Lax pair from the perspective of 
symmetric OPs.

To this end, we need to use the 1-associated polynomials of {Q(n)

k
(x)}∞

k=0
 in 

(3.10a) for the symmetric OPs {P(n)

k
(x)}∞

k=0
 . In fact, in the case of the generalized 

recursion relation (2.5) satisfied by {c(n)
j
} , we can obtain the generalized Christoffel 

transformation for {P(n)

k
(x)}∞

k=0
 , which will reduce to the Christoffel transformation 

(3.6) when u(n)
0

= 0.

Theorem 3.2.1  Assume {c(n)
j
} satisfy the recursion relation (2.5), then {P(n)

k
(x)}∞

k=0
 

satisfy the following formulae for k = 0,1,2,…,

where w(n)

k
 is defined by (3.7) and

Proof  The result follows from the identity (A.9g), and replacing E(n+1)

k+1,j,j
, Ẽ

(n+1)

k,j+1,j
 , 

G
(n+1)

2k,j
(x), G̃(n+1)

2k+2,j
(x), via (A.6b), (A.6l), (A.6j) and (A.6m). 

We end this section by a Lax pair of the generalized dLV (2.1).

(3.10a)Q
(n)

2k−1
(x) =

1

H
(n)

k,0

������������

c
(n)

0
c
(n)

1
⋯ c

(n)

k

c
(n)

1
c
(n)

2
⋯ c

(n)

k+1

⋮ ⋮ ⋱ ⋮

c
(n)

k−1
c
(n)

k
⋯ c

(n)

2k−1

0 c
(n)

0
x …

∑k−1

i=0
c
(n)

i
x2k−1−2i

������������

,

(3.10b)Q
(n)

2k
(x) =

1

H
(n)

k,1

������������

c
(n)

1
c
(n)

2
⋯ c

(n)

k+1

c
(n)

2
c
(n)

3
⋯ c

(n)

k+2

⋮ ⋮ ⋱ ⋮

c
(n)

k
c
(n)

k+1
⋯ c

(n)

2k

c
(n)

0
c
(n)

1
+ c

(n)

0
x2 …

∑k

i=0
c
(n)

i
x2k−2i

������������

,

(3.11)P
(n+1)

k
(x) =

hP
(n)

k+2
(x) + �(n)w

(n)

k+1
P
(n)

k
(x) + hx�(n)Q

(n+1)

k−1
(x)

hx2 + 1
,

(3.12)�(n) =
u
(n)

0

c
(n)

0

, �(n) = 1 + hu
(n)

0
.
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Theorem 3.2.2  The generalized dLV (2.1) may be obtained by the compatibility 
condition of the three-term recurrence relation (3.4a) and the generalized Christoffel 
transformation (3.11).

Proof  First, for k = 1,2,…, using (3.4a), we obtain that

Then replacing P(n+1)

k+1
, P

(n+1)

k
, P

(n+1)

k−1
 , by using the generalized Christoffel transfor-

mation (3.11) into the above relation, we obtain that

where the relation (3.8) and the linear independence property of {P(n)

k
(x)}∞

k=0
 are used.

Under the change of variables

the generalized dLV equation (2.1) is immediately deduced. Hence, we complete the proof. 

Remark 3.2.3  We remark that the variable transformations

are motivated by those for the restricted dLV equation. Actually, this can be con-
structed via their connections with the Hankel determinants H(n)

k,j
 . Substituting the 

expressions, we have

Then, (3.13a) immediately follows from the bilinear relation (A.10) with respect 
to k = 2j − 2 and k = 2j − 1, respectively. Similarly, the validity of the transformation 
(3.13b) can be verified.

3.3 � A view of the limit h → 0

In this subsection, we interpret the Lax pair of the generalized dLV equation given in 
Theorem 3.2.2, from the point of view of approximation as the discrete step size h → 0.

P
(n+1)

k+1
(x) + v

(n+1)

k
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k−1
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(x).
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=
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=
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H
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H
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As is known, after introducing a certain one-parametric deformation of measure 
that introduces the additional variable t, the symmetric OPs Pk consequently become 
a function of two variables x and t [42]. Such symmetric OPs Pk(x,t) still satisfy the 
three-term recurrence relation

where the coefficient uk(t) solves the semi-discrete LV (2.7). It was pointed out by 
Peherstorfer etal. [42] that such a three-term recurrence relation of Pk(x,t), together 
with the following continuous time evolution differential equation,

give a a Lax par of the unrestricted semi-discrete LV (2.7), where the dot represents 
the differential with respect to t, and Q(2)

k−2
(x, t) is the so-called 2-associated polyno-

mials of Pk(x,t) satisfying

 It is noted that there are no simply explicit formulae for Q(2)

k
(x, t) , which are differ-

ent from the 1-associated polynomials Q(2)

k
(x) in (3.10a) that are shorten for Q(1,n)

k
(x) 

at n = 2.
Now, we will show that, the Lax pair given in Theorem 3.2.2 can be regarded as a 

discrete analogue of the above semi-discrete case. To this end, we first rewrite the gen-
eralized Christoffel transformation (3.11) on {P(n)

k
(x)} as follows

where (3.12) and (3.13b) are used.
With the help of the recurrence relation (3.4a) satisfied by the adjacent OPs 

{P
(n)

k
(x)} , we easily see

Besides, from the recurrence relation (3.9), we obviously have

by using the conventions Q(0,n+1)

k
(x) = P

(n+1)

k
(x) and Q(1,n+1)

k
(x) = Q

(n+1)

k
(x).

Then, the relation (3.15) will become

xPk(x, t) = Pk+1(x, t) + uk(t)Pk−1(x, t), k = 0, 1, 2,… ,

P−1(x, t) = 0, P0(x, t) = 1,

(3.14)Ṗk(x, t) = −ukuk−1Pk−2(x, t) +
u0u1

c0
Q

(2)

k−2
(x, t),

xQ
(2)

k
(x, t) = Q

(2)

k+1
(x, t) + uk+2(t)Q

(2)

k−1
(x, t).

(3.15)
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.

(3.16)x2P
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= P
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k+1
)P
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P
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(3.17)xQ
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by use of (3.16) and (3.17).
Although the upper index n of P(n)

k
(x) , as mentioned in the beginning of Section 3.1, 

stands for n repeated applications of the Christoffel transformation to the initial sym-
metric OPs Pk(x), quite interestingly, one can still interpret it in terms of the discretiza-
tion index of time t.

Now, consider P(n)

k
(x) as the approximation of Pk(x,t) at t = hn. As the discrete step 

size h → 0 , we have

 and also

 obtained from (3.12) and (3.13a). Thus, as h → 0 , the (3.18) approaches to the con-
tinuous time evolution (3.14) of the symmetric OPs Pk(x,t).

We summarize the above interpretation into the following theorem.

Theorem  3.3.1  As the discrete step size h → 0 , the Lax pair of the generalized 
dLV equation given in Theorem 3.2.2,

tends to the Lax pair of the unrestricted semi-discrete LV (2.7), appeared in [42],

where {Q(2)

k−2
(x, t)} are the 2-associated polynomials of the symmetric OPs {Pk(x,t)}.

Remark 3.3.2  Take the boundary condition u(n)
0

= 0 , then Theorem 3.3.1 gives a cor-
respondence between the Lax pairs of the dLV equation and the semi-discrete LV 
equation in the restricted case.
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xPk(x, t) = Pk+1(x, t) + uk(t)Pk−1(x, t), P−1(x, t) ≡ 0, P0(x, t) ≡ 1, k = 0, 1, 2,…
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Q
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4 � Connection with ε‑algorithm

In this section, we will investigate the application of the generalized dLV (2.1) to the 
field of numerical computation. Based on the generalized recursion relation (2.5) of 
{c

(n)

j
} , we derive a generalized ε-algorithm. It turns out that this generalized ε-algorithm 

is connected with the generalized dLV (2.1) via a Miura transformation. We then ana-
lyse the numerical effect of this generalized ε-algorithm through several examples.

To begin with, let us first sketch some relevant knowledge about Wynn’s 
ε-algorithm in Section 4.1.

4.1 � Review of Shanks transformation and Wynn’s ε‑algorithm

Sequences and series are two quite common notions which appear frequently in 
mathematics and engineering. Unfortunately, many sequences or series converge so 
slowly that they almost have no effective use in practice. Moreover, certain diver-
gent sequences and series can also be summed by applying a suitable summation 
approach. Sequence transformation, in such situation, is an effective way to acceler-
ate the rate of convergence or to achieve a summation of certain divergent sequences.

Formally, a sequence transformation T  is simply a map

which transforms the original unsatisfactory sequence {Sn} to a new sequence {Tn} 
with hopefully better numerical properties. It is normally required that the new 
sequence {Tn} first must be convergent, then it is supposed to have the same (gener-
alized) limit S as the {Sn}. A sequence transformation T  is called to accelerate the 
convergence of the sequence {Sn} or that the sequence {Tn} converges faster than 
{Sn}, if

 So far, there exist many sequence transformations in the literature and many of 
them can be expressed as ratios of determinants. The most well-known sequence 
transformation is the Aitken’s Δ2-transformation [2] and its high order extension, i.e. 
the Shanks transformation [14, 43],

where Δ is the usual forward difference operator

T ∶ {Sn} ↦ {Tn},

lim
n→∞

Tn − S

Sn − S
= 0.

ek(Sn) =

||||||||

Sn Sn+1 ⋯ Sn+k
ΔSn ΔSn+1 ⋯ ΔSn+k
⋮ ⋮ ⋱ ⋮

ΔkSn ΔkSn+1 ⋯ ΔkSn+k

||||||||
||||||||

1 1 ⋯ 1

ΔSn ΔSn+1 ⋯ ΔSn+k
⋮ ⋮ ⋱ ⋮

ΔkSn ΔkSn+1 ⋯ ΔkSn+k

||||||||

,
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and its higher powers are defined by

Here, we remark that Aitken’s Δ2-transformation [2] corresponds to the special 
case k = 2 of the Shanks transformation.

To avoid evaluating the determinants, it is very necessary to implement recur-
sive algorithms called convergence acceleration algorithms to compute the sequence 
transformation. In fact, the Shanks transformation can be computed recursively via 
the following nonlinear recursion algorithm

which is nothing but Wynn’s ε-algorithm [51]. The boundary value problem (4.1) 
admits the unique solution

where Hk(gn) is a k-order Hankel determinant defined as

 Obviously, the connection between the ε-algorithm and Shanks transformation is 
given by

which can be found in Wynn’s paper [51, Theorem on p. 91].
In addition, the E-transformation, Levin’s transformation, the ρ-algorithm, 

𝜃-algorithm and η-algorithm etc. are also well-known examples in the theory of 
sequence transformations and convergence acceleration algorithms. For an extensive 
investigation on sequence transformations and convergence acceleration algorithms, 
one might consult the book [14] and a recent review [15] and their reference in.

There exist interesting relations between convergence acceleration algorithms 
and integrable systems. The ε-algorithm is nothing but the fully discrete potential 
KdV equation, which is related to restricted dLV equation, while the ρ-algorithm 

(4.1a)Δf (n) = f (n + 1) − f (n),

(4.1b)Δif (n) = Δ(Δi−1f (n)), i ∈ ℕ,

(4.1c)Δ0f (n) = f (n).

(4.2a)�
(n)

k+1
− �

(n+1)

k−1
=

1

�
(n+1)

k
−�

(n)

k

,

(4.2b)�
(n)

−1
= 0, �

(n)

0
= Sn, n = 0, 1, 2,… ,

(4.3)�
(n)

2k
=

Hk+1(Sn)

Hk(Δ
2Sn)

, �
(n)

2k+1
=

Hk(Δ
3Sn)

Hk+1(ΔSn)
,

Hk(gn) =

||||||||

gn gn+1 ⋯ gn+k−1
gn+1 gn+2 ⋯ gn+k
⋮ ⋮ ⋱ ⋮

gn+k−1 gn+k ⋯ gn+2k−2

||||||||
.

(4.4)�
(n)

2k
= ek(Sn), �

(n)

2k+1
=

1

ek(ΔSn)
, k, n = 0, 1,… .
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corresponds to the cylindrical KdV equation [40]. Based on these facts, many new 
convergence acceleration algorithms have been proposed. For instance, a new con-
vergence accelerate algorithm was derived in [26] from the lattice Boussinesq equa-
tion. Brezinski et al. in [13] obtained a multi-step extension of the ε-algorithm to 
implement a multi-step extension of the Shanks sequence transformation. For more 
recent developments, see, e.g. [15, 17, 46].

Now, we present more details on the link between Wynn’s ε-algorithm and the 
restricted dLV equation. To this end, we first claim that the solution (4.3) of Wynn’s 
ε-algorithm is equivalent to the following form

where H(n)

k,j
 is a Hankel determinant defined by (3.2) with its elements {c(n)

j
} satisfy-

ing (3.3). Noting that we introduce additionally c(n)
−1

 in (4.5), we hence extend the 
recursion relation (3.3) for {c(n)

j
} valid to c(n)

0
 , namely,

In fact, the claim easily follows from the fact

 and

if we set c(n)
−1

= Sn.

Under the relations (3.3) and (4.6), one can prove

by using the Jacobi identity for the determinants (A.8). Actually, this confirms the 
soluton (4.5) of Wynn’s ε-algorithm (4.1). With the help of the bilinear relations 
(4.7a), and using the determinant expressions (2.2) for u(n)

j
 , and (4.5) for �(n)

k
 , it is not 

hard to see that there exists the following Miura transformation between the 
restricted dLV equation and Wynn’s ε-algorithm [13]

(4.5)�
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h
, n = 0, 1, 2,… .
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(n)
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= Hk(Δ

j+1Sn),

c
(n)

j
= Δj+1Sn, j = −1, 0, 1,… ,

(4.7a)H
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H
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− H
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H
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− H
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k+1,0
H
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k,0
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(4.7b)H
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k,2
H
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− H
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H

(n)
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− H
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H
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= 0,
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(n+1)

k,0
H

(n)

k,0
− H

(n)

k+1,−1
H

(n+1)

k−1,1
= 0,

351Numerical Algorithms (2023) 92:335–375



1 3

4.2 � Generalized ε‑algorithm

Based on the connection between the restricted dLV equation and Wynn’s 
ε-algorithm introduced in Section 4.1, the purpose of this subsection is to acquire 
a convergence accelerate algorithm connected with the generalized dLV (2.1).

First, for a given sequence {Sn}, we denote c(n)
−1

= Sn . Then, we define a gener-
alized Shanks transformation ẽk ∶ {Sn} ↦ {ẽk(Sn)} by,

where H(n)

k,j
 is a Hankel determinant defined by (2.3), and its determinant elements 

c
(n)

j
 satisfying the recursion relations (2.5) plus (4.6). For convenience, we unify 

(2.5) plus (4.6) particularly in Section 4.2-4.3 into the following form

with the convention 
∑q

i=p
{} = 0 for p > q. Noting the formulas (4.4) and (4.5) of 

Shanks transformation, it is easy to see that the generalized Shanks transformation 
ẽk will be reduced to the Shanks transformation if taking u(n)

0
= 0.

It is noted that, almost all the sequence transformations have the form f∕Df  
with D =

∑
i�∕�Sn+i (see, e.g. [14]). This fact also applies to the generalized 

Shanks transformation (4.8) described in the following theorem.

Theorem  4.2.1  Let f (Sn, Sn+1,… , Sn+2k) = H
(n)

k+1,−1
 and D =

∑
i�∕�Sn+i , then, 

D(H
(n)

k+1,−1
) = H

(n)

k,1
 , and the generalized Shanks transformation (4.8) has the form as

Proof  First of all, from the convention c(n)
−1

= Sn and the recursion relation (4.9) for 
c
(n)

j
 , it is easy to find that

 Recursively, one can obtain that the c(n)
j

 defined by (4.9) are functions in terms of 
ΔSn+i, i = 0,1,…j, namely,

u
(n)

k+1

u
(n+1)

k

=
�
(n+1)

k+1
− �

(n)

k+1

�
(n+2)

k−1
− �

(n+1)

k−1

.

(4.8)ẽk(Sn) =
H

(n)

k+1,−1

H
(n)

k,1

,

(4.9)c
(n)

j
=

c
(n+1)

j−1
− c

(n)

j−1

h
+

u
(n)

0

c
(n)

0

j−1∑
i=0

c
(n)

i
c
(n+1)

j−1−i
, j = 0, 1, 2, 3,…

ẽk(Sn) =
f (Sn, Sn+1,… , Sn+2k)

Df (Sn, Sn+1,… , Sn+2k)
.

c
(n)

0
=

ΔSn

h
, c

(n)

1
=

ΔSn+1 − ΔSn

h2
+ u

(n)

0

ΔSn+1

h
.
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where Δ is the forward difference operator defined by (4.1a).
Now, we apply the operator D to H(n)

k+1,−1
 . Since

and from the property of determinant derivative, it finally holds

 Therefore, by means of the definition (4.8) of the generalized Shanks transformation, 
we obtain ẽk(Sn) = f∕Df .

In order to avoid direct calculations of determinants, now we design an algo-
rithm to implement the generalized Shanks transformation.

Theorem 4.2.2  Given an initial sequence {Sn}, and a sequence of parameters u(n)
0

 
for n = 0,1,2,…, the generalized ε-algorithm reads,

where

 and α(n) and β(n) are defined as

 It enjoys solution

with the Hankel determinant expressions (2.3) and the elements c(n)
j

 satisfying (4.9).

c
(n)

j
= �(ΔSn,ΔSn+1,… ,ΔSn+j), j = 0, 1.2,… ,

D(c
(n)

−1
) = 1, D(ΔSn+i) = 0, i = 0, 1,… ,

D(H
(n)

k+1,−1
) =

|||||||||||

1 0 0 0

c
(n)

0
c
(n)

1
⋯ c

(n)

k

c
(n)

1
c
(n)

2
⋯ c

(n)

k+1

⋮ ⋮ ⋱ ⋮

c
(n)

k−1
c
(n)

k
⋯ c

(n)

2k−1

|||||||||||

= H
(n)

k,1
.

(4.10a)𝜀̃
(n)

k+1
− 𝜀̃

(n+1)

k−1
=

h𝛽(n)

𝜀̃
(n+1)

k
−𝜀̃

(n)

k
−h𝜃k+1𝛼

(n)
− h𝜃k𝛼

(n), k = 0, 1, 2,… ,

(4.10b)𝜀̃
(n)

−1
= 0, 𝜀̃

(n)

0
= c

(n)

−1
= Sn,

�k =
1 + (−1)k

2
,

�(n) =
u
(n)

0

c
(n)

0

, �(n) = 1 + hu
(n)

0
.

(4.11)𝜀̃
(n)

2k
=

H
(n)

k+1,−1

H
(n)

k,1

, 𝜀̃
(n)

2k+1
=

H
(n)

k,2

H
(n)

k+1,0

,
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From (4.11), we can see that, the generalized Shanks transformation (4.8) of 
ẽk(Sn) can be computed via 𝜀̃(n)

2k
 , namely,

 But for 𝜀̃(n)
2k+1

 , similar to Wynn’s ε-algorithm, it only acts as an auxiliary quantity.
The generalized ε-algorithm is an extension of Wynn’s ε-algorithm, and it is con-

nected with the generalized dLV (2.1). We illustrate these in the following remarks.

Remark 4.2.3  If u(n)
0

= 0 , then α(n) = 0 and β(n) = 1, the generalized ε-algorithm 
(4.2.2) reduces to

which is Wynn’s ε-algorithm (4.1) if taking the step size h = 1. Correspondingly, the 
solution (4.11) with (4.9) of the generalized ε-algorithm reduces to that for Wynn’s 
ε-algorithm.

Remark 4.2.4  The generalized ε-algorithm (4.2.2) is connected with the generalized 
dLV equation via the following Miura transformation

where

and α(n),β(n),𝜃k are defined in Theorem 4.2.2.

By employing the determinant expressions (2.2) of u(n)
j

 and (4.11) of 𝜀̃(n)
k

 , this 
Miura transformation can be easily checked with the help of Corollary A.3.3.

4.3 � Numerical experiments

This section endeavors to investigate effect of acceleration convergence of the gener-
alized ε-algorithm (4.2.2). We will apply the generalized ε-algorithm (4.2.2) to some 
linearly, logarithmically convergent sequences and a divergent series, and compare 
its numerical effects with those of Wynn’s ε-algorithm (4.1).

Note that, the generalized ε-algorithm (4.2.2) relies on a sequence of parameters {u(n)
0
} , 

in addition to the initial sequence {Sn}. Namely, all the quantities 𝜀̃(n)
k

 are determined 
uniquely and recursively via the generalized ε-algorithm (4.2.2), if fixing {Sn} and {u(n)

0
}.

ẽk(Sn) = 𝜀̃
(n)

2k
.

𝜀̃
(n)

k+1
− 𝜀̃

(n+1)

k−1
=

h

𝜀̃
(n+1)

k
−𝜀̃

(n)

k

,

𝜀̃
(n)

−1
= 0, 𝜀̃

(n)

0
= c

(n)

−1
= Sn, k, n = 0, 1, 2,… ,

u
(n)

k+1

u
(n+1)

k

=

(
𝜃k+1𝜇

(n) + 𝜃k
)
𝜀̃
(n+1)

k+1
− 𝜀̃

(n)

k+1
− 𝜃kh𝛼

(n)

(
𝜃k+1𝜇

(n+1) + 𝜃k
)
𝜀̃
(n+2)

k−1
− 𝜀̃

(n+1)

k−1
− 𝜃kh𝛼

(n+1)
, k = 0, 1, 2… ,

�(n) =
�(n) + �(n)c

(n)

−1

1 + �(n)c
(n+1)

−1

,
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Now, we provide a way of choice of u(n)
0

 by taking advantage of Brezinski’s 
𝜃-algorithm. The 𝜃-algorithm [7, 14, 50],

proposed by Brezinski in 1971, is a very versatile algorithm. It is not only able to 
accelerate linearly convergent sequence and sum certain divergent series efficiently, 
but is also capable of accelerating the convergence of many logarithmically conver-
gent sequences and series. As in the case of Wynn’s ε-algorithm and the generalized 
ε-algorithm, only the elements �(n)

2k
 with even subscripts provide approximations to the 

limit of the sequence Sn, and �(n)
2k+1

 with odd subscripts only acts as an auxiliary quan-
tity. In particular, among these useful elements �(n)

2k
 , the simplest element is �(n)

2
 , which 

possesses the following form by implementing the above 𝜃- algorithm, recursively,

In order to seek for a choice of the parameter u(n)
0

 in the generalized ε-algorithm 
(4.2.2), we now impose the assumption 𝜀̃(n)

2
= 𝜗

(n)

2
 . Then, using the determinant 

expressions (4.11) of 𝜀̃(n)
k

 and the recursion relation (4.9) of the determinant elements 
c
(n)

j
 by noting c(n)

−1
= Sn , one can easily obtain the following result by direct calcula-

tion of determinant,

Under the choice of u(n)
0

 in (4.12), it is easy to find that, given N terms of initial 
data of the sequence {Sn}, it will produce u(n)

0
 with (N − 3) terms. Then, the number 

obtained by the generalized sequence transformation 𝜀̃(n)
2k

 with k = 1,2,…,⌈(N − 4)/2⌉ 
is (N − 2k − 2). Here, the notation ⌈.⌉ means the ceiling function.

It is well known that, Wynn’s ε-algorithm can efficiently accelerate linearly 
convergent sequences and is also able to sum even wildly divergent series. To 
investigate the acceleration effect of the generalized ε-algorithm (4.2.2), we will apply 
it to some linearly, logarithmically convergent sequences and a certain divergent 
series, and compare their numerical effects with those of Wynn’s ε-algorithm in the 
following.

Example 4.1  We consider the linearly convergent sequence

which converges to S = log 2.

�
(n)

2k+1
= �

(n+1)

2k−1
+

1

�
(n+1)

2k
−�

(n)

2k

,

�
(n)

2k+2
= �

(n+1)

2k
+

(
�
(n+2)

2k
−�

(n+1)

2k

)(
�
(n+2)

2k+1
−�

(n+1)

2k+1

)
�
(n+2)

2k+1
−2�

(n+1)

2k+1
+�

(n)

2k+1

,

�
(n)

−1
= 0, �

(n)

0
= Sn. k, n = 0, 1,… ,

�
(n)

2
= Sn+1 −

(
ΔSn

)(
ΔSn+1

)(
Δ2Sn+1

)
(
ΔSn+2

)(
Δ2Sn

)
−
(
ΔSn

)(
Δ2Sn+1

) .

(4.12)u
(n)

0
=

(ΔSn)(ΔSn+2) − (ΔSn+1)
2

(Sn+2 − Sn)ΔSn+1 − 2(ΔSn)(ΔSn+2)
.

Sn =

n∑
k=0

(−1)k

k + 1
, n = 0, 1, 2,… ,
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Numerical results of applying Wynn’s ε-algorithm (4.1) and the generalized 
ε-algorithm (4.2.2) to the sequence {Sn} of Example 4.1 are listed in Table 1, where it 
should be noted that, the generalized Shanks transformation 𝜀̃(n)

2k
 is compared with the 

Shanks transformation �(n)
2k+2

 with k = 1,3,5,8, based on the same number of used data 
of sequence {Sn}. This table shows that, the generalized ε-algorithm (4.2.2) efficiently 
accelerates this linearly convergent sequence as well. The numerical effect of �(n)

2k+2
 is a 

little bit better than the one of 𝜀̃(n)
2k

 . Under the same initial data of sequence {Sn}, applying 
the generalized ε-algorithm (4.2.2) and Wynn’s ε-algorithm finally reach to the same level 
of the error order of approximation, but the former is iterated twice lesser than the latter.

Example 4.2  We consider the linearly convergent sequence

 which converges to S = log 5.

The corresponding numerical results of Example 4.2 are placed in Table  2. We 
choose the same number of sequence {Sn} as the one in Example 4.1, and compare 
the generalized Shanks transformation 𝜀̃(n)

2k
 with the Shanks transformation �(n)

2k+2
 , k 

= 1,3,5,8. From this table we can see that, in general, for k = 3,5,8, the effects of 𝜀̃(n)
2k

 are 
slightly better than those of �(n)

2k+2
 . The final error order of approximation of applying 

Sn =

n∑
k=0

(0.8)k+1

k + 1
, n = 0, 1, 2,… ,

Table 1   Numerical results of Example 4.1

n |Sn − S|  |�(n)
2

− S|  |�(n)
4

− S|  |�(n)
8

− S| |�(n)
12

− S| |�(n)
18

− S|
0 3.07× 10− 1 6.85× 10− 3 1.86× 10− 4 1.52× 10− 7 1.28× 10− 10 3.33× 10− 15

1 1.93× 10− 1 2.67× 10− 3 5.77× 10− 5 3.81× 10− 8 2.91× 10− 11 5.55× 10− 16

2 1.40× 10− 1 1.30× 10− 3 2.22× 10− 5 1.14× 10− 8 7.62× 10− 12 
5 7.65× 10− 2 2.90× 10− 4 2.68× 10− 6 6.26× 10− 10 2.60× 10− 13 
7 5.86× 10− 2 1.44× 10− 4 9.48× 10− 7 1.36× 10− 10 4.04× 10− 14 
11 3.99× 10− 2 5.05× 10− 5 1.92× 10− 7 1.17× 10− 11 
15 3.03× 10− 2 2.32× 10− 5 5.71× 10− 8 
17 2.70× 10− 2 1.68× 10− 5

19 2.44× 10− 2 

n |Sn − S|  |𝜀̃(n)
2

− S|  |𝜀̃(n)
6

− S| |𝜀̃(n)
10

− S| |𝜀̃(n)
12

− S| |𝜀̃(n)
16

− S|
0 3.07× 10− 1 1.30 × 10− 3 2.15× 10− 7 1.35× 10− 10 1.67× 10− 11 3.22 × 10− 15

1 1.93 × 10− 1 4.39× 10− 4 8.12 × 10− 8 1.61 × 10− 11 2.76× 10− 13 8.88 × 10− 16

2 1.40× 10− 1 1.86× 10− 4 3.00× 10− 8 8.84× 10− 12 1.31× 10− 13 
5 7.65× 10− 2 2.96× 10− 5 2.33× 10− 9 5.61× 10− 13 9.99× 10− 15 
7 5.86 × 10− 2 1.23× 10− 5 5.89× 10− 10 1.06× 10− 13 
11 3.99× 10− 2 3.22× 10− 6 6.42× 10− 11 
15 3.03× 10− 2 1.18× 10− 6 
17 2.70× 10− 2 
19 2.44× 10− 2 
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the generalized ε-algorithm (4.2.2) is higher than applying Wynn’s ε-algorithm (4.1), 
beyond the advantage of twice iterations lesser than the latter.

Example 4.3  We consider the partial sums

of the factorially divergent asymptotic series with z = 3.

This corresponds to an exponential integral

satisfying

which admits the asymptotic expansion

(4.13)Sn =

n∑
k=0

(−1)kk!z−k, n = 0, 1, 2,… ,

E1(z) = ∫
∞

z

e−t

t
dt

ezE1(z) = ∫
∞

0

e−t

z + t
dt =

1

z∫
∞

0

e−t

1 + t∕z
dt,

Table 2   Numerical results of Example 4.2

n |Sn − S|  |�(n)
2

− S|  |�(n)
4

− S|  |�(n)
8

− S| |�(n)
12

− S| |�(n)
18

− S|
0 8.09× 10− 1 1.24× 10− 1 1.86× 10− 2 4.05× 10− 4 8.70× 10− 6 2.60× 10− 8

1 4.89× 10− 1 6.28× 10− 2 8.69× 10− 3 1.75× 10− 4 3.64× 10− 6 1.30× 10− 8

2 3.19× 10− 1 3.43× 10− 2 4.34× 10− 3 8.02× 10− 5 1.59× 10− 6 
5 1.07× 10− 1 7.28× 10− 3 7.10× 10− 4 9.79× 10− 6 1.65× 10− 7 
7 5.62× 10− 2 2.95× 10− 3 2.46× 10− 4 2.78× 10− 6 4.16× 10− 8 
11 1.70× 10− 2 5.82× 10− 4 3.65× 10− 5 2.84× 10− 7 
15 5.55× 10− 3 1.34× 10− 4 6.56× 10− 6 
17 3.23× 10− 3 6.66× 10− 5

19 1.89× 10− 3 

n |Sn − S|  |𝜀̃(n)
2

− S|  |𝜀̃(n)
6

− S| |𝜀̃(n)
10

− S| |𝜀̃(n)
12

− S|  |𝜀̃(n)
16

− S|
0 8.09× 10− 1 7.95× 10− 2 2.54× 10− 4 1.41× 10− 6 1.48× 10− 6 6.55 × 10− 9

1 4.89× 10− 1 3.57× 10− 2 1.71× 10− 4 1.25 × 10− 6 3.11× 10− 8 6.50× 10− 9

2 3.19× 10− 1 1.77× 10− 2 2.27× 10− 4 5.94× 10− 7 3.46× 10− 8 
5 1.07× 10− 1 3.00× 10− 3 3.65× 10− 7 3.67× 10− 8 6.17× 10− 9 
7 5.62× 10− 2 1.08× 10− 3 1.00× 10− 6 1.50× 10− 8 
11 1.70× 10− 2 1.77× 10− 4 1.99× 10− 7 
15 5.55× 10− 3 3.49× 10− 5 
17 3.23× 10− 3 
19 1.89× 10− 3 
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If we replace z by 1/z, we obtain the so-called series

which is the most simple prototype of a factorially divergent power series, and 
involves a factorially divergent generalized hypergeometric series 2F0 as z → 0 . It 
can be seen as the asymptotic expansion of the Euler integral

 We note that the Euler series has many physical applications, such as quantum 
physics [24], optics [5] etc.

It has been shown that sequence transformations are principal tools that can 
accomplish an efficient summation of the factorially divergent expansions of the 
type of the Euler series [6, 19]. For example, it was shown rigorously and explicitly 
in [6] that Wynn’s epsilon algorithm or equivalently Padé approximants as well as 
some Levin-type transformations are able to sum the Euler series E(z) provided that 
z ∉ (−∞, 0] . Since reliable programs for the exponential integral E1(z) with z ∈ ℝ+ 
are available, (4.14) is well suited to test the ability of a sequence transformation 
of summing even wildly divergent series. In the following, we will take the partial 
sums (4.13) of the factorially divergent asymptotic series (4.14) as an example.

Now, we take advantage of the known result [6, 19] of 
2F0(1, 1; − 1∕z)|z=3 = zez�1(z)|z=3 ≈ 0.78625122076594 , to investigate the ability 
of a sequence transformation of summing the divergent series 2F0(1,1;− 1/z) for z 
= 3. It has been shown that, the subsequence �(n−2⌊n∕2⌋)

2⌊n∕2⌋  of the Padé table of 

2F0(1,1;− 1/z) converges to the Euler integral for z = 3, (see [50, Eq. (4.3-6)-(4.3-
7),Table 13-1] and [19]). Here, the notation ⌊.⌋ means the floor function.

Let S = 0.78625122076594, and choose 22 terms of data of the sequence {Sn} 
given in Example 4.3. We compare summation results of using Wynn’s ε-algorithm 
and the generalized ε-algorithm (4.2.2) respectively to {Sn} in Table 3. Similar to 
the above two examples, we compare 𝜀̃(m−2⌊m∕2⌋)

2⌊m∕2⌋  with �(m+2−2⌊(m+2)∕2⌋)
2⌊(m+2)∕2⌋  for m 

= 14,15,…,21. The results show that, compared to Wynn’s ε-algorithm, the general-
ized ε-algorithm (4.2.2) behaves slightly more powerful, and the error order of 
approximation corresponding to the latter is improved at least an order of 
magnitude.

In summary, from the above three examples, we conclude that, as an extension 
of Wynn’s ε-algorithm, the generalized ε-algorithm (4.2.2) under the choice of 
parameter u(n)

0
 (4.12) enjoys similar numerical effects to the former when it comes 

to linearly convergent sequences or certain divergent series. For a given number of 
sequence {Sn}, the generalized ε-algorithm generally saves twice iterations to reach 
the same or even slightly higher error order of magnitude.

(4.14)zezE1(z) ∼

∞∑
k=0

(−1)kk!

zk
=2 F0(1, 1; − 1∕z), z → ∞.

∞∑
k=0

(−1)kk!zk =2 F0(1, 1; − z), z → 0

E(z) = ∫
∞

0

e−t

1 + zt
dt.
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We end of this section by an example that shows an obviously better performance 
of the generalized ε-algorithm than Wynn’s ε-algorithm. Here, a different choice of 
u
(n)

0
 is considered.

Example 4.4  We consider the sequence

which converges to S = 1.

This is a logarithmically convergent sequence because

 Numerical results of applying Wynn’s ε-algorithm (4.1) and the generalized 
ε-algorithm (4.2.2) with u(n)

0
=

3

4n
 to the sequence {Sn} of Example 4.4 are listed 

in Table 4, from which we see that our proposed algorithm (4.2.2) accelerates the 
convergence, while Wynn’s ε-algorithm does not. It is noted that, for given sequence 
{Sn} with number N, the number obtained by the generalized sequence transforma-
tion 𝜀̃(n)

2k
 with k = 1,2,…,⌈(N − 2)/2⌉ is (N − 2k).

5 � Conclusion and final remarks

This paper extends the restricted fully discrete LV equation to a generalized case with 
a sequence of given constants {u(n)

0
} . This generalized dLV equation possesses a Han-

kel-type solution and can be connected with a discrete Riccati system. As the discrete 
step size h goes to zero, the generalized dLV equation with its solution, and the cor-
responding discrete Riccati system, both tend to the counterparts of the unrestricted 
semi-discrete LV equation given by [42]. In addition, we present a Lax pair of the 

S
n
= S + 100

n−2∏
i=0

(
1 −

8

9

i∏
j=1

4j

4j + 3

)(
1 +

1

2n

)
, n = 1, 2,… ,

lim
n→∞

Sn+1 − S

Sn − S
= 1.

Table 3   Numerical results of 
Example 4.3

n |Sn − S|  ��(n−2⌊n∕2⌋)
2⌊n∕2⌋ − S�  �𝜀̃(n−2⌊n∕2⌋)

2⌊n∕2⌋ − S� 
14 1.50× 104 9.33× 10− 7 6.58× 10− 9 
15 7.61× 104 7.01× 10− 7 6.67× 10− 9 
16 4.10× 105 2.88× 10− 7 1.56× 10− 9 
17 2.34× 106 2.19× 10− 7 1.65× 10− 9

18 1.42× 107 9.45× 10− 8 4.00× 10− 10 
19 9.05× 107 7.29× 10− 8 4.42× 10− 10 
20 6.07 × 108 3.27× 10− 8 
21 4.28× 109 2.55× 10− 8 
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generalized dLV equation in terms of symmetric OPs. We also show that the resulting 
equation is linked to a generalization of the famous Wynn’s ε-algorithm. Finally, we 
apply this generalized ε-algorithm to two linearly convergent sequences, one loga-
rithmically convergent sequence as well as one divergent sequence, and compare the 
numerical effects between the generalized ε-algorithm and Wynn’s ε-algorithm.

As is described in the paper, the generalized ε-algorithm relies on the choice 
of u(n)

0
 . It deserves to be investigated further to distinguish its roles in accelerat-

ing different types of sequences. Recall that the first three examples in Section 4.3 
are based the choice of u(n)

0
 in (4.12), while the last example involves a choice that 

u
(n)

0
=

3

4n
 , which exhibits an extremely good performance. In fact, we can obtain the 

so-called kernel of 𝜀̃(n)
2

 . More precisely, as for the sequence given by

 where S,ϱ,κ are arbitrary constants with ϱ≠ 0,κ≠ 0, applying the generalized 
ε-algorithm to {Sn} will exactly give 𝜀̃(n)

2
= S. The last example is constructed based 

on a perturbation of such a sequence.
Furthermore, we note that the generalized dLV equation obtained in this paper is 

a discrete analogue of the isospectral unrestricted semi-discrete LV equation, while 
Hankel-type solutions for the first two equations of the Volterra lattice hierarchy and 
the first two equations of its non-isospectral extension are addressed in [21]. A non-
isospectral integrable equation means, the spectrum in its Lax pair is dependent on 

S
n
= S + �

n−2�
i=0

�
1 +

�∏
i

j=1
(1 + u

(j)

0
)

�
, n = 1, 2,… ,

Table 4   Numerical results of Example 4.4

n |Sn − S|  |�(n)
2

− S|  |�(n)
8

− S|  |�(n)
14

− S| |�(n)
22

− S| |�(n)
28

− S|
2 1.39× 10 2.48 1.64× 10− 1 2.71× 10− 2 4.48× 10− 3 2.42× 10− 3

5 2.50 7.32× 10− 1 6.95× 10− 2 1.37× 10− 2 3.35× 10− 3 
8 1.16 3.43× 10− 1 3.73× 10− 2 7.95× 10− 3 2.63× 10− 3 
12 5.92× 10− 1 1.70× 10− 1 1.94× 10− 2 4.37× 10− 3 
16 3.59× 10− 1 1.01× 10− 1 1.15× 10− 2 2.42× 10− 3 
22 2.00× 10− 1 5.47× 10− 2 6.00× 10− 3 
28 1.26× 10− 1 3.34× 10− 2 
30 1.10× 10− 1 

n |Sn − S|  |𝜀̃(n)
2

− S|  |𝜀̃(n)
8

− S| |𝜀̃(n)
14

− S| |𝜀̃(n)
22

− S|  |𝜀̃(n)
28

− S|
2 1.39× 10 2.05× 10− 2 1.27× 10− 3 1.64× 10− 9 1.63× 10− 11 5.55× 10− 16

5 2.50 1.16× 10− 1 4.59× 10− 7 3.79× 10− 11 9.79× 10− 13 
8 1.16 2.17× 10− 2 1.24× 10− 8 4.60× 10− 12 3.31× 10− 14 
12 5.92× 10− 1 1.56× 10− 3 3.81× 10− 11 2.11× 10− 12 
16 3.59× 10− 1 9.90× 10− 5 1.35× 10− 13 1.61× 10− 13 
22 2.00× 10− 1 1.49× 10− 6 2.07× 10− 13 
28 1.26× 10− 1 2.18× 10− 8 
30 1.10× 10− 1 
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time t instead of a constant. It is interesting to see whether a certain non-isospectral 
generalized dLV equation together with its solution exist and how to design it as an 
convergence acceleration algorithm, which we leave for future work.

Appendix A: Technical details for the main results

This appendix is devoted to providing some linear and bilinear relations which serve 
for the proofs of the theorems in Sections 2–4. In Appendix A.1, some notations and 
auxiliary determinants are introduced. Appendix A.2 contains some linear relations, 
while Appendix A.3 includes some bilinear relations. Based on these relations, one 
can prove the main results in Sections 2–4.

A.1. Notations   
 
For integers k ≥ 1, j,r ≥− 1, s,n ≥ 0, and l = 0, 1, we first define two sets of 
sequences, {a(n)

s
} and {d(n)

r
} satisfying

and

where α(n) and β(n) are defined by (3.12). Then, in order to express determinants in 
this appendix conveniently, we introduce the following vectors,

with the convention �(n+1)
k,0

= 0.

Use these vectors, we define some auxiliary determinants as follows,

a(n)
s

= c(n)
s

−
h�(n)

�(n)

s−1∑
i=0

a
(n)

i
c
(n)

s−i
,

d(n)
r

= c(n)
r

−
h�(n)

�(n)

r−1∑
i=−1

d
(n)

i
c
(n)

r−i
,

(A.1a)A
(n)

k,s
=

⎛⎜⎜⎜⎜⎝

a(n)
s

a
(n)

s+1

⋮

a
(n)

s+k−1

⎞⎟⎟⎟⎟⎠
, B

(n+1)

k,j
=

⎛
⎜⎜⎜⎜⎜⎜⎝

�(n)c
(n+1)

j

h
�(n)c

(n+1)

j+1

h
+ �(n)c

(n)

1
c
(n+1)

j

⋮

�(n)c
(n+1)

j+k−1

h
+ �(n)

∑k−1

i=1
c
(n)

i
c
(n+1)

j+k−1−i

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A.1b)C
(n)

k,j
=

⎛
⎜⎜⎜⎜⎝

c
(n)

j

c
(n)

j+1

⋮

c
(n)

j+k−1

⎞
⎟⎟⎟⎟⎠
, D

(n)

k,j
=

⎛
⎜⎜⎜⎜⎝

d
(n)

j

d
(n)

j+1

⋮

d
(n)

j+k−1

⎞
⎟⎟⎟⎟⎠
, �

(n+1)

k,s
=

⎛
⎜⎜⎜⎜⎝

∑s

i=1
c
(n)

i
c
(n+1)

s−i∑s+1

i=2
c
(n)

i
c
(n+1)

s+1−i

⋮∑s+k−1

i=k
c
(n)

i
c
(n+1)

s+k−1−i

⎞
⎟⎟⎟⎟⎠
.
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with the conventions

where

Using these notations, it is easy to see that the Hankel determinant H(n)

k,j
 can be 

expressed in terms of vector C(n)

k,j
 as follows

Now, let us present the relations among the vectors defined in (A.1). First, we 
rewrite (2.5) as follows

Then, we have the following lemma.

Lemma A.1.1  Assume {c(n)
j
} defined by the recursion relation (A.4) and (4.6), then

F
(n+1)

k,j,s
= |A(n)

k,s
,C

(n+1)

k,j
,… ,C

(n+1)

k,j+k−3
,C

(n+1)

k,j+k−2
|,

Γ
(n+1)

k,j,r
= |D(n)

k,r
,C

(n+1)

k,j
,… ,C

(n+1)

k,j+k−3
,C

(n+1)

k,j+k−2
|,

E
(n+1)

k,j,r
= |C(n)

k,r
,B

(n+1)

k,j
,… ,B

(n+1)

k,j+k−3
,B

(n+1)

k,j+k−2
|,

Ẽ
(n+1)

k,s,r
= |B(n+1)

k,r
,B

(n+1)

k,s
,… ,B

(n+1)

k,s+k−3
,B

(n+1)

k,s+k−2
|,

K
(n+1)

k,j,1
=

|||||
1 −𝛼(n)c

(n+1)

j
−𝛼(n)c

(n+1)

j+1
… −𝛼(n)c

(n+1)

j+k−2

C
(n)

k−1,1
B
(n+1)

k−1,j+1
B
(n+1)

k−1,j+2
… B

(n+1)

k−1,j+k−1

|||||
,

G
(n+1)

2k,l
(x) =

|||||
C
(n)

k,l
B
(n+1)

k,l
… B

(n+1)

k,l+k−2
B
(n+1)

k,l+k−1

1 yl,2 … yl,2k−2 yl,2k

|||||
,

G̃
(n+1)

2k,l
(x) =

|||||
B
(n+1)

k−1,l
B
(n+1)

k−1,l+1
… B

(n+1)

k−1,l+k−1

yl,2 yl,4 … yl,2k

|||||
,

(A.2a)F
(n+1)

0,j,s
= 0, F

(n+1)

1,j,s
= a(n)

s
, Γ

(n+1)

0,j,r
= 0, Γ

(n+1)

1,j,r
= d(n)

r
,

(A.2b)E
(n+1)

1,j,r
= c(n)

r
, Ẽ

(n+1)

0,s,r
= 1, Ẽ

(n+1)

1,s,r
= B

(n+1)

1,r
,

(A.2c)K
(n+1)

1,j,1
= 1, G

(n+1)

0,l
(x) = 1, G̃

(n+1)

2,l
(x) = yl,2,

(A.3)yl,2k = (x2 +
1

h
)x2k−2 − �(n)

k−1∑
i=1−l

c
(n+1)

k−1−i
x2i.

H
(n)

k,j
= |C(n)

k,j
,C

(n)

k,j+1
,… ,C

(n)

k,j+k−1
|.

(A.4)c
(n)

j
=

�(n)c
(n+1)

j−1

h
−

c
(n)

j−1

h
+ �(n)

j−1∑
i=1

cn
i
c
(n+1)

j−1−i
, j = 1, 2, 3,… .

(A.5a)C
(n)

k,0
=

hB
(n+1)

k,−1
−C

(n)

k,−1

h� (n)
,
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where γ(n) is defined by

Proof  The relation (A.5b) is obtained directly by applying (A.4) to C(n)

k,j
 . For (A.5a), 

noting the definition of recursion relation (4.6) for c(n)
0

 , and using (A.4) to C(n)

k,0
 , we 

first have

Then, it is easy to find that the summation of the first two terms in the above 
right hand of equation identifies with B(n+1)

k,−1
 , by noting its definition in (A.1a). Thus, 

(A.5a) gets proved. 

A.2. Linear relations   
 
In Lemma A.2.1, we list some important linear relations, which serve to deduce 
Corollary A.2.2. The proof of Lemma A.2.1 is implemented by performing some 
row and column transformations on determinants based on the determinant proper-
ties. Due to the lengthy details, we place its proof in Appendix A.4.

Lemma A.2.1  Assume {c(n)
j
} satisfy the recursion relations (2.5) and (4.6), then for 

integers k ≥ 1, j,r ≥− 1, and l = 0, 1, the following formulae hold

(A.5b)C
(n)

k,j
= B

(n+1)

k,j−1
+ �(n)�

(n+1)

k,j−1
−

1

h
C
(n)

k,j−1
, j = 1, 2,… ,

� (n) = 1 + �(n)c
(n+1)

−1
.

� (n)C
(n)

k,0
= �(n)c

(n+1)

−1
C
(n)

k,0
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c
(n+1)

−1

h
�(n)c

(n+1)

0

h
�(n)c

(n+1)

1

h
+ �(n)c

(n)

1
c
(n+1)

0

⋮

�(n)c
(n+1)

k−2

h
+ �(n)

∑k−2

i=1
c
(n)

i
c
(n+1)

k−2−i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−
1

h
C
(n)

k,−1
.

(A.6a)H
(n)

k+1,−1
=

1

� (n)
E
(n+1)

k+1,−1,−1
,

(A.6b)H
(n)

k,l
= E

(n+1)

k,l,l
,

(A.6c)H
(n)

k,2
= K

(n+1)

k+1,0,1
−

1

h
E
(n+1)

k,2,1
,

(A.6d)E
(n+1)

k,j,−1
=

(
�(n)

h

)k−1

Γ
(n+1)

k,j,−1
,
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Using Lemma A.2.1, it is not hard to derive the following corollary, whose detail 
is omitted.
Corollary A.2.2  Under the recursion relations (2.5) and (4.6) satisfied by {c(n)

j
} , 

there hold the following important identities for k = 1, 2,…,

(A.6e)E
(n+1)

k,j,0
=

(
�(n)

h

)k−1

F
(n+1)

k,j,0
,

(A.6f)E
(n+1)

k,j,0
=

(
�(n)

h

)k−1

Γ
(n+1)

k,j,0
+

h�(n)c
(n)

−1

�(n)
E
(n+1)

k,j,1
,

(A.6g)E
(n+1)

k,j,0
=

hẼ
(n+1)

k,j,−1
−E

(n+1)

k,j,−1

h𝛾 (n)
,

(A.6h)E
(n+1)

k,j,1
=

(�(n))k

hk−1
F
(n+1)

k,j,1
,

(A.6i)E
(n+1)

k,j,1
= Ẽ

(n+1)

k,j,0
−

1

h
E
(n+1)

k,j,0
,

(A.6j)Ẽ
(n+1)

k,r+1,r
=

(
𝛽(n)

h

)k

H
(n+1)

k,r
,

(A.6k)K
(n+1)

k,j,1
=

(�(n))k

hk−1
H

(n+1)

k−1,j+1
−

�(n)(�(n))k−1

hk−2
F
(n+1)

k,j,0
,

(A.6l)G
(n+1)

2k,l
(x) =

H
(n)

k,l
P
(n)

2k+l
(x)

xl
,

(A.6m)
G̃

(n+1)

2k,l
(x)

=
(𝛽(n))k−1H

(n+1)

k−1,l

(
(hx2+1)P

(n+1)

2k−2+l
(x)−hx𝛼(n)Q

(n+1)

2k−3+l
(x)

)

hkxl
.

(A.7a)H
(n)

k+1,−1
=

1

� (n)

(
�(n)

h

)k

Γ
(n+1)

k+1,−1,−1
,

(A.7b)H
(n)

k,0
=

(�(n))k−1(�(n)H
(n+1)

k,−1
−Γ

(n+1)

k,0,−1
)

hk� (n)
,

(A.7c)H
(n)

k,0
=

(
�(n)

h

)k−1

F
(n+1)

k,0,0
,

(A.7d)H
(n)

k,1
=

(�(n))k

hk−1
F
(n+1)

k,1,1
,
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Moreover, it is easy to check that relations (A.7e) and (A.7g) also hold for k = 0, 
by using the conventions (2.4) and (A.2a).

A.3. Bilinear relations   
 
Now, we apply the Jacobi identity to produce some bilinear relations, which play 
crucial roles in the main results. For any determinant D, the Jacobi determinant 
identity [1] reads

where

 denotes the determinant obtained from D by removing the rows at positions i1,i2,…
,ik, and the columns at positions j1,j2,…,jk, in the respective matrix.

Lemma A.3.1  For k = 0, 1, 2,…, and j = 0, 1, the following bilinear relations hold,

(A.7e)H
(n)

k,1
=

(
�(n)

h

)k

H
(n+1)

k,0
−

(�(n))k−1

hk
F
(n+1)

k,1,0
,

(A.7f)H
(n)

k,1
=

(�(n))k(�(n)H
(n+1)

k,0
−Γ

(n+1)

k,1,0
)

hk(�(n)+�(n)c
(n)

−1
)

,

(A.7g)H
(n)

k,2
=

(�(n))k+1

hk
H

(n+1)

k,1
− h�(n)H

(n)

k+1,0
−
(

�(n)

h

)k

F
(n+1)

k,2,1
.

(A.8)D ⋅ D

[
i1 i2
j1 j2

]
= D

[
i1
j1

]
⋅ D

[
i2
j2

]
− D

[
i1
j2

]
⋅ D

[
i2
j1

]
,

D

[
i1 i2 ⋯ ik
j1 j2 ⋯ jk

]
, i1 < i2 < ⋯ < ik, j1 < j2 < ⋯ < jk,

(A.9a)F
(n+1)

k+2,0,0
H

(n+1)

k,1
− F

(n+1)

k+1,0,0
H

(n+1)

k+1,1
+ F

(n+1)

k+1,1,1
H

(n+1)

k+1,0
= 0,

(A.9b)F
(n+1)

k+1,1,0
H

(n+1)

k,0
− H

(n+1)

k+1,0
F
(n+1)

k,1,0
− F

(n+1)

k+1,0,0
H

(n+1)

k,1
= 0,

(A.9c)H
(n+1)

k,1
F
(n+1)

k,1,0
− F

(n+1)

k,2,1
H

(n+1)

k,0
− F

(n+1)

k+1,0,0
H

(n+1)

k−1,2
= 0,

(A.9d)F
(n+1)

k+1,1,0
H

(n+1)

k,1
− H

(n+1)

k+1,0
F
(n+1)

k,2,1
− F

(n+1)

k+1,0,0
H

(n+1)

k,2
= 0,

(A.9e)Γ
(n+1)

k+2,−1,−1
H

(n+1)

k,1
− H

(n+1)

k+1,0
Γ
(n+1)

k+1,0,−1
+ Γ

(n+1)

k+1,1,0
H

(n+1)

k+1,−1
= 0,
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Proof  For k = 0, all these equations are easily checked. For k ≥ 1, (A.9a) is obtained 
from the Jacobi identity (A.8) with D = F

(n+1)

k+2,0,0
 , and noticing

(A.9b) follows from the Jacobi identity with

and

(A.9c) is derived by employing the Jacobi identity with

and

(A.9f)Γ
(n+1)

k+1,0,−1
H

(n+1)

k,0
− H

(n+1)

k+1,−1
Γ
(n+1)

k,1,0
− Γ

(n+1)

k+1,−1,−1
H

(n+1)

k,1
= 0,

(A.9g)G
(n+1)

2k+2,j
(x)Ẽ

(n+1)

k,j+1j
− G̃

(n+1)

2k+2,j
(x)E

(n+1)

k+1,j,j
+ G

(n+1)

2k,j
(x)Ẽ

(n+1)

k+1,j+1,j
= 0.

D

[
1 k + 2

1 k + 2

]
= H

(n+1)

k,1
, D

[
1

1

]
= H

(n+1)

k+1,1
,

D

[
k + 2

k + 2

]
= F

(n+1)

k+1,0,0
, D

[
1

k + 2

]
= F

(n+1)

k+1,1,1
, D

[
k + 2

1

]
= H

(n+1)

k+1,0
.

D =

|||||||||||

a
(n)

0
c
(n+1)

0
⋯ c

(n+1)

k−1
c
(n+1)

k

a
(n)

1
c
(n+1)

1
⋯ c

(n+1)

k
c
(n+1)

k+1

⋮ ⋮ ⋱ ⋮ ⋮

a
(n)

k
c
(n+1)

k
⋯ c

(n+1)

2k−1
c
(n+1)

2k

0 0 ⋯ 0 1

|||||||||||

= F
(n+1)

k+1,0,0
,

D

[
k + 1 k + 2

1 2

]
= H

(n+1)

k,1
, D

[
k + 1

1

]
= H

(n+1)

k,0
,

D

[
k + 2

2

]
= F

(n+1)

k+1,1,0
, D

[
k + 1

2

]
= F

(n+1)

k,1,0
, D

[
k + 2

1

]
= H

(n+1)

k+1,0
.

D =

|||||||||||

1 1 1 0 ⋯ 0

0 a
(n)

0
c
(n+1)

0
c
(n+1)

1
⋯ c

(n+1)

k−1

0 a
(n)

1
c
(n+1)

1
c
(n+1)

2
⋯ c

(n+1)

k

⋮ ⋮ ⋮ ⋱ ⋮

0 a
(n)

k
c
(n+1)

k
c
(n+1)

k+1
⋯ c

(n+1)

2k−1

|||||||||||

= F
(n+1)

k+1,0,0
,
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where we subtract the first columns of the determinants from the second ones in the 

calculations of D
[
2

1

]
 and D

[
k + 2

1

]
 , and use the determinant property.

To prove (A.9d), we apply the Jacobi identity to

with

(A.9e) is obtained from the Jacobi identity with D = Γ
(n+1)

k+2,−1,−1
 , and

(A.9f) is proved by applying the Jacobi identity to

with

D

[
2 k + 2

1 2

]
= H

(n+1)

k−1,2
, D

[
k + 2

2

]
= H

(n+1)

k,0
, D

[
2

2

]
= H

(n+1)

k,1
,

D

[
2

1

]
=

|||||||||

1 1 0 ⋯ 0

a
(n)

1
c
(n+1)

1
c
(n+1)

2
⋯ c

(n+1)

k

⋮ ⋮ ⋱ ⋮

a
(n)

k
c
(n+1)

k
c
(n+1)

k+1
⋯ c

(n+1)

2k−1

|||||||||
= H

(n+1)

k,1
− F

(n+1)

k,2,1
,

D

[
k + 2

1

]
=

|||||||||

1 1 0 ⋯ 0

a
(n)

0
c
(n+1)

0
c
(n+1)

1
⋯ c

(n+1)

k−1

⋮ ⋮ ⋱ ⋮

a
(n)

k−1
c
(n+1)

k−1
c
(n+1)

k
⋯ c

(n+1)

2k−2

|||||||||
= H

(n+1)

k,0
− F

(n+1)

k,1,0
,

D =

|||||||||||

0 0 0 ⋯ 0 1

a
(n)

0
c
(n+1)

0
c
(n+1)

1
⋯ c

(n+1)

k−1
c
(n+1)

k

a
(n)

1
c
(n+1)

1
c
(n+1)

2
⋯ c

(n+1)

k
c
(n+1)

k+1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

a
(n)

k
c
(n+1)

k
c
(n+1)

k+1
⋯ c

(n+1)

2k−1
c
(n+1)

2k

|||||||||||

= (−1)k+3F
(n+1)

k+1,0,0
,

D

[
1 2

1 2

]
= H

(n+1)

k,2
, D

[
1

1

]
= H

(n+1)

k+1,0
, D

[
2

2

]
= (−1)k+2F

(n+1)

k,2,1
,

D

[
1

2

]
= F

(n+1)

k+1,1,0
, D

[
2

1

]
= (−1)k+2H

(n+1)

k,1
.

D

[
1 k + 2

1 2

]
= H

(n+1)

k,1
, D

[
1

1

]
= H

(n+1)

k+1,0
,

D

[
k + 2

2

]
= Γ

(n+1)

k+1,0,−1
, D

[
1

2

]
= Γ

(n+1)

k+1,1,0
, D

[
k + 2

1

]
= H

(n+1)

k+1,−1
.

D =

|||||||||||

0 1 0 ⋯ 0 0

d
(n)

−1
c
(n+1)

−1
c
(n+1)

0
⋯ c

(n+1)

k−2
c
(n+1)

k−1

d
(n)

0
c
(n+1)

0
c
(n+1)

1
⋯ c

(n+1)

k−1
c
(n+1)

k

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

d
(n)

k−1
c
(n+1)

k−1
c
(n+1)

k
⋯ c

(n+1)

2k−2
c
(n+1)

2k−1

|||||||||||

= −Γ
(n+1)

k+1,0,−1
,
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Corollary A.3.2  If we let

with the elements of H(n)

k,j
 satisfying (2.5) as well as arbitrary constants c(n)

0
≠ 0 , then 

�
(n)

k
 satisfy the bilinear relations

Proof  We prove (A.10) with respect to its odd and even parts, respectively.
For k = 2j + 1, j = 0, 1, 2,…, the relation (A.10) can be obtained from the iden-

tity (A.9a) and eliminating F(n+1)

k+2,0,0
, F

(n+1)

k+1,0,0
 and F(n+1)

k+1,1,1
 via the relations (A.7c) and 

(A.7d) respectively.
For k = 2j, j = 0, 1, 2,…, the (A.10) immediately follows from the identities 

(A.9b) and eliminating F(n+1)

k+1,0,0
 , and F(n+1)

k,1,0
, F

(n+1)

k+1,1,0
 via the relations (A.7c) and 

(A.7e) respectively. 

Corollary A.3.3  For k = 0, 1, 2,…, the Hankel determinants H(n)

k,j
 with the elements 

restricted by (2.5) and (4.6) satisfy the following bilinear relations

where

Proof  The proof can be achieved by employing the determinant relations given in 
Lemma A.3.1 and linear relations of determinants presented in Corollary A.2.2.

D

[
k + 1 k + 2

1 k + 2

]
= Ẽ

(n+1)

k,j+1,j
, D

[
k + 1

1

]
= G̃

(n+1)

2k+2,j
(x), D

[
k + 2

k + 2

]
= E

(n+1)

k+1,j,j
,

D

[
k + 1

k + 2

]
= G

(n+1)

2k,j
(x), D

[
k + 2

1

]
= Ẽ

(n+1)

k+1,j+1,j
.

�
(n)

2k
= H

(n)

k,0
, �

(n)

2k+1
= H

(n)

k,1
, k, n = 0, 1,… ,

(A.10)�(n)�
(n+1)

k+2
�
(n)

k+1
− �

(n)

k+2
�
(n+1)

k+1
− h�

(n)

k+3
�
(n+1)

k
= 0, k, n = 0, 1,… .

(A.11a)�(n)H
(n)

k+1,1
H

(n+1)

k+1,−1
− �(n)H

(n+1)

k+1,0
H

(n)

k+1,0
− H

(n)

k+2,−1
H

(n+1)

k,1
= 0,

(A.11b)�(n)H
(n+1)

k+1,−1
H

(n)

k,1
− H

(n)

k+1,−1
H

(n+1)

k,1
− hH

(n)

k+1,0
H

(n+1)

k,0
= 0,

(A.11c)
H

(n)

k,2
H

(n+1)

k,0
− �(n)H

(n+1)

k,1
H

(n)

k,1
− H

(n)

k+1,0
H

(n+1)

k−1,2

+h�(n)H
(n+1)

k,0
H

(n)

k+1,0
= 0,

(A.11d)
H

(n+1)

k+1,0
H

(n)

k,2
− H

(n)

k+1,0
H

(n+1)

k,2
− hH

(n)

k+1,1
H

(n+1)

k,1

+h�(n)H
(n+1)

k+1,0
H

(n)

k+1,0
= 0,

�(n) =
u
(n)

0

c
(n)

0

, �(n) = 1 + hu
(n)

0
, �(n) =

�(n) + �(n)c
(n)

−1

1 + �(n)c
(n+1)

−1

.
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In particular, (A.11a) and (A.11b) are direct consequences of applying the rela-
tions (A.9e) and (A.9f) and replacing Γ(n+1)

k+1,−1,−1
, Γ

(n+1)

k,0,−1
, Γ

(n+1)

k,1,0
, in terms of H(n)

k,j
 via 

(A.7a), (A.7b) and (A.7f).
Similarly, (A.11c) and (A.11d) can be obtained by the bilinear relations (A.9c), 

(A.9d) and replacing F(n+1)

k+1,0,0
, F

(n+1)

k,1,0
, F

(n+1)

k,2,1
 in (A.9c) and (A.9d) via (A.7c), (A.7e) 

and (A.7g). 

A.4. Proof of Lemma A.2.1  For k = 1, all these relations (A.6a)–(A.6m) can be easily 
confirmed. We are going to prove that these relations also hold for k ≥ 2.

First of all, with the help of determinant properties, (A.6g) and (A.6i) can be eas-
ily checked by substituting (A.5a) and (A.5b) into the first column of E(n+1)

k,j,0
 and 

E
(n+1)

k,j,1
 , respectively, where the convention �(n+1)

k,0
= 0 is used in the proof of (A.6i).

For the remaining relations, we will prove them by performing row or column 
transformation to a certain determinant and using the recursion relations (A.4) and 
(4.6) for {c(n)

j
}.

(1) Column transformation.
The proofs of (A.6a)–(A.6c) and (A.6l) are conducted by performing a series of 

column transformations on determinants.
We first consider (A.6b). To begin with, we deal with the last column of H(n)

k,l
 by 

substituting the relation (A.5b) into it, which yields

 Now, we perform some column transformations in order to eliminate the appeared 
vector �(n)�

(n+1)

k,l+k−2
 and C(n)

k,l+k−2
∕h . Concretely, we add the (k − 1)-th column of H(n)

k,l
 

multiplied by 1/h to the k-th column, then C(n)

k,l+k−2
∕h is eliminated. Next, noticing l 

= 0, 1, adding the i-th column multiplied by −�(n)c
(n+1)

k−1−i
 to the k-th column for i = (2 

− l), (3 − l),…, (k − 1), it is not hard to check that �(n)�
(n+1)

k,l+k−2
 also disappears.

Then, we dispose the (k − 1)-th, (k − 2)-th, …, 2nd columns of H(n)

k,l
 , succes-

sively. For each of these columns, after replacing the column vector C(n)

k,j
 by (A.5b), 

we conduct similar column operations in order to eliminate the appeared vector 
�(n)�

(n+1)

k,j−1
 and C(n)

k,j−1
∕h in the corresponding column. Finally, it leads to

 which gives (A.6b).
Now, we turn to prove (A.6a). Based on the above calculations, we see that

 Then using (A.5a) and adding the first column multiplied by 1/(hγ(n)) to the second 
one, (A.6a) is immediately derived by eliminating C(n)

k+1,−1
∕(h� (n)).

To prove (A.6c), we first rewrite the determinant as

H
(n)

k,l
= |C(n)

k,l
,C

(n)

k,l+1
,… ,C

(n)

k,l+k−2
, (B

(n+1)

k,l+k−2
+ �(n)�

(n+1)

k,l+k−2
−

1

h
C
(n)

k,l+k−2
)|.

H
(n)

k,l
= |C(n)

k,l
,B

(n+1)

k,l
,… ,B

(n+1)

k,l+k−3
,B

(n+1)

k,l+k−2
|,

H
(n)

k+1,−1
= |C(n)

k+1,−1
,C

(n)

k+1,0
,B

(n+1)

k+1,0
,… ,B

(n+1)

k+1,k−3
,B

(n+1)

k+1,k−2
|.
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By following the similar column operations to the proof of (A.6b), we obtain

which obviously leads to (A.6c).
Now, we proceed to prove (A.6l). Noticing first the determinant expression (3.1) 

of P(n)

k
(x) , it is easy to see that

 Thus, to prove (A.6l), we only need to prove H(n)

2k,l
(x) = G

(n+1)

2k,l
(x) . This can be 

proved by performing some column transformations to H(n)

2k,l
(x) in a similar way to 

prove (A.6b). We omit the details.
(2) Row transformation.
The strategy to prove (A.6d)-(A.6f), (A.6h), (A.6j)-(A.6m) is based on a series of 

row transformations performed on determinants. The crucial observation is that, the 
column vectors with B(n+1)

k,j
 can be converted to �(n)C(n+1)

k,j
∕h after performing appro-

priate row transformations so that the summation term of B(n+1)

k,j
 is eliminated.

Moreover, it should be noted that, since the determinants Ẽ(n+1)

k,r+1,r
, E

(n+1)

k,j,r
, K

(n+1)

k,j,1
 , 

and G̃(n+1)

2k,l
(x) have the majority columns in common in terms of B(n+1)

k,j
 , we will con-

duct the same row operations to transform them. In order to illustrate these consist-
ent row transformations performed on determinants uniformly and clearly, we now 
take the following determinant as an example.

Noting that the types of the columns of the determinants in question mainly 
involve vectors C(n)

k,s
, B

(n+1)

k,j
 with s = − 1, 0, 1 and j ≥− 1, we set

 The row transformations will be conducted on M(n)

k+2,j,−1
 from the second row until to 

the last row, successively. More precisely, for fixed p = 2, 3,…,k + 2, we add the i-th 
row multiplied by −h�(n)c

(n)

p−i
∕�(n) with i = 1, 2, 3,…,p − 1 to the p-th row of M(n)

k+2,j,−1
 , 

which leads to

H
(n)

k,2
=
|||||

1 0 0 … 0

C
(n)

k,1
C
(n+1)

k,2
C
(n+1)

k,3
… C

(n+1)

k,k+1

|||||
.

H
(n)

k,2
=

|||||
1

1

h
− �(n)c

(n+1)

0
−�(n)c

(n+1)

1
… −�(n)c

(n+1)

k−1

C
(n)

k,1
B
(n+1)

k,1
B
(n+1)

k,2
… B

(n+1)

k,k

|||||
=

|||||
1 −�(n)c

(n+1)

0
−�(n)c

(n+1)

1
… −�(n)c

(n+1)

k−1

C
(n)

k,1
B
(n+1)

k,1
B
(n+1)

k,2
… B

(n+1)

k,k

|||||
+
|||||

1
1

h
−�(n)c

(n+1)

1
… −�(n)c

(n+1)

k−1

C
(n)

k,1
0 B

(n+1)

k,2
… B

(n+1)

k,k

|||||
,

H
(n)

2k,l
(x) =

H
(n)

k,l
P
(n)

2k+l
(x)

xl
, l = 0, 1.

M
(n)

k+2,j,−1
= |C(n)

k+2,−1
,C

(n)

k+2,0
,B

(n+1)

k+2,j
,… ,B

(n+1)

k+2,j+k−2
,B

(n+1)

k+2,j+k−1
|, j = −1, 0, 1,… .
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Obviously, for p = k + 2, we have

Then, (A.6d), (A.6e) and (A.6j) follow immediately since the involved columns of 
the determinants E(n+1)

k,j,−1
, E

(n+1)

k,j,0
 and Ẽ(n+1)

k,r+1,r
 , are only part of the determinant M(n)

k+2,j,−1
.

In order to prove the relations (A.6f), (A.6h) and (A.6k), we first conduct equiva-
lent deformations on the determinants E(n+1)

k,j,0
 , E(n+1)

k,j,1
 and K(n+1)

k,0,1
 , before performing 

row transformations.
Note that

and

from which, we immediately have

Now, we operate the same row transformations as those on M(n)

k+2,j,−1
 upon the 

above determinants. For the first two, we have

M
(n)

k+2,j,−1
=

������������������

d
(n)

−1
a
(n)

0

�(n)c
(n+1)

j

h
⋯

�(n)c
(n+1)

j+k−1

h

⋮ ⋮ ⋮ ⋱ ⋮

d
(n)

p−2
a
(n)

p−1

�(n)c
(n+1)

j+p−1

h
⋯

�(n)c
(n+1)

j+p+k−2

h

c
(n)

p−1
c(n)
p

�(n)c
(n+1)

j+p

h
+ �(n)

∑p

i=1
c
(n)

i
c
(n+1)

j+p−i
⋯

�(n)c
(n+1)

j+p+k−1

h
+ �(n)

∑p

i=1
c
(n)

i
c
(n+1)

j+p+k−1−i

⋮ ⋮ ⋮ ⋱ ⋮

c
(n)

k
c
(n)

k+1

�(n)c
(n+1)

j+k+1

h
+ �(n)

∑k+1

i=1
c
(n)

i
c
(n+1)

j+k+1−i
⋯

�(n)c
(n+1)

j+2k

h
+ �(n)

∑k+1

i=1
c
(n)

i
c
(n+1)

j+2k−i

������������������

.

(A.5)M
(n)

k+2,j,−1
=
(
�(n)

h

)k|D(n)

k+2,−1
,A

(n)

k+2,0
,C

(n+1)
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,… ,C

(n+1)

k+2,j+k−1
|.

1 −
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0
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=

1

�(n)
,
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k,0
= (C

(n)
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h�(n)d
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C
(n)

k,1
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C
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,

C
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0
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)C
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,

E
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C
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(n)
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�(n)
C
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,B
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0
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)
C
(n)
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,B

(n+1)

k,j
,… ,B

(n+1)

k,j+k−3
,B

(n+1)

k,j+k−2
|,

K
(n+1)

k,j,1
= �(n)

||||||

1

�(n)
−�(n)c

(n+1)

j
−�(n)c

(n+1)

j+1
… −�(n)c

(n+1)

j+k−2(
1 −

hu
(n)

0

�(n)

)
C
(n)

k−1,1
B
(n+1)

k−1,j+1
B
(n+1)

k−1,j+2
… B

(n+1)

k−1,j+k−1

||||||
.

E
(n+1)

k,j,0
= |D(n)

k,0
,
�(n)

h
C
(n+1)

k,j
,…

�(n)

h
C
(n+1)

k,j+k−2
| + h�(n)d

(n)

−1

�(n)
E
(n+1)

k,j,1

=
(

�(n)

h

)k−1

Γ
(n+1)

k,j,0
+

h�(n)d
(n)

−1

�(n)
E
(n+1)

k,j,1
,

E
(n+1)

k,j,1
= �(n)|A(n)

k,1
,
�(n)

h
C
(n+1)

k,j
,… ,

�(n)

h
C
(n+1)

k,j+k−2
| = (�(n))k

hk−1
F
(n+1)

k,j,1
,
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which are nothing but (A.6f) and (A.6h). While for the third one, it is not hard to 
obtain the following result by conducting the row transformations from the third row 
to the last one,

which identifies with (A.6k) by observing the fact

 Thus, (A.6f), (A.6h) and (A.6k) all get verified.
Now, we remain to prove (A.6m). For determinant G̃(n+1)

2k,l
(x), l = 0, 1 , from the 

second row to the last second row, after conducting several row transformations the 
same as those on M(n)

k+2,j,−1
 , and noticing the expressions (A.3), (3.1) and (3.10b) of 

yl,2k, P
(n)

k
 and Q(n)

k
 , respectively, we obtain that

which is exactly (A.6m).
Therefore, we complete the proof of Lemma A.2.1.
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