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Abstract
In this paper, we present two linearized BDF2 Galerkin FEMs for the nonlinear and
coupled Schrödinger-Helmholtz equations. Different from the standard linearized
second-order Crank-Nicolson methodology, we employ backward differential con-
cept to obtain second-order temporal accuracy at the time step (instead of the time
instant 1 2) and apply semi-implicit or explicit treatment of nonlinear terms to for-
mulate the decoupled schemes. We prove optimal error estimates for -order FEM
without any grid-ratio condition through a so-called temporal-spatial error splitting
technique, and some sharp estimations to cope with the nonlinear terms. Finally, we
provide two numerical experiments to illustrate the theoretical analysis and the effi-
ciency of the proposed methods. Here, is the spatial subdivision parameter, and
is the time step.
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1 Introduction

Consider the following initial-boundary value problem of Schrödinger-Helmholtz
equations
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in which and is a convex bounded domain in 2 3
with the boundary . i 1, are real nonnegative constants with 0.

and 0 are given functions. The complex-valued function
stands for the single particle wave function, the real-valued function denotes
the potential. The system (1.1) models many different physical phenomena in optics,
quantum mechanics, and plasma physics, and so forth. When 0, the system (1.1)
reduces to the Schrödinger-Poisson model [1–5]. And when 0, the system (1.1)
degenerate to a generalized nonlinear Schrödinger equation [6, 7]. Besides, we refer
[8, 9] for other Schrödinger type equations such as the Schrödinger-Poisson-Slater
model. We can see that the model (1.1) conserves the total mass

2d 0 0 (1.2)

and the total energy

2
1

1
d 0 0 (1.3)

when 1 1 1.
A series of mathematical studies have been devoted for diverse Schrödinger type

equations. For example, the existence and uniqueness of solution to the Schrödinger-
Poisson type equations in 2 3 were investigated in [10, 11]. And in
[12], a type of Schrödinger-Helmholtz system as a regularization of the general-
ized nonlinear Schrödinger equation was introduced, local and global existence of
a unique solution of the system was studied. Along the numerical front, various
numerical methods for Schrödinger type equations also have been proposed including
finite difference methods [13–18], spectral or pseudo-spectral methods [19–22], and
FEMs [23–29]. Especially, the linearized backward Euler Galerkin FEMs and Crank-
Nicolson Galerkin FEMs were studied for Schrödinger-Helmholtz system in [30] and
[31], respectively. Both of them derived optimal 2 error estimates for -order FEMs
without any grid-ratio restriction condition. Due to some pollution arising from the
approximation used for the nonlinear terms and 2, only the error
estimate at the time instant 1 2 instead of the time division node for the poten-
tial was derived in [31], because Schrödinger part and the Helmholtz part
are solved at different time step levels so as to decouple the strongly nonlinear and
coupled of Schrödinger-Helmholtz equations.

Generally speaking, we can derive error estimates at the time instant of (lin-
earized) Crank-Nicolson scheme for many different nonlinear PDEs (see [32–34]).
But for some strong nonlinearity and coupled problems, it is not an easy thing to
establish the linearized decoupled high accurate (in time) numerical schemes and
obtain the error estimates at the time division node . To decouple the schemes, a
nature strategy is to solve the coupled problems at different time step levels, see,
e.g., [35] for the time-dependent nonlinear thermistor equations, and [36] for Cahn-
Hilliard equation, where they achieved the error estimates at the time instant 1 2
for the electric potential in [35] and the chemical potential in [36], respectively.
This phenomenon also produced in [37] for flux , where a Crank-Nicolson mixed
FEM was used for the nonlinear Sobolev equation. Whether we have the accuracy
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2 at the time division node for numerical solutions involved in a strongly
nonlinear and coupled system such as Schrödinger-Helmholtz (1.1).

In this paper, we shall give an affirmative answer to this question for Schrödinger-
Helmholtz (1.1). Based on the second-order BDF temporal approximation frame-
work, we present two BDF2 schemes to solve (1.1) instead of the Crank-Nicolson
formula, because the BDF type scheme has the following striking advantages: (i) It is
multi-step methods and unconditionally stable [38, 39]; (ii) It can achieve high-order
accuracy without increasing the computation significantly [40]; (iii) This kind of
scheme treats and approximates every term at time step (instead of the time instant

1 2). To overcome the strong nonlinearity and coupling in , we adopt
semi-implicit or explicit treatment of to develop the decoupled schemes.
Different from [30, 31], we solve Schrödinger equation for numerical solution
firstly, and then to solve Helmholtz equation for numerical solution at the same
time level for our first scheme (see (2.3)–(2.6)). We achieve optimal error esti-
mates without any grid-ratio restriction condition by use of the approach of [41, 42]
to split the error into two parts, i.e., the temporal error and the spatial error. Besides,
some fine tricks are also applied to deal with the nonlinear terms. The novelty with
respect to previous works is that our scheme decoupled the strong nonlinearity of
(1.1), and we obtain second-order temporal accuracy at the time step (instead of
the time instant 1 2) without time step constraint.

The outline of the article is arranged in the following way. In Section 2, two lin-
earized BDF schemes are developed, and the mass and energy conservative laws are
proved. In Section 3, a corresponding time-discrete system is proposed and the tem-
poral error with order 2 is deduced. In Section 4, optimal spatial error estimates
with order 2 are derived for low-order elements ( 1), and uniform bounded-
ness of numerical solutions in -norm are established, which lead to unconditional
optimal 2 error estimates of the -order 1 Galerkin FEMs in Section 5. Two
numerical examples are given to confirm our theoretical analysis in Section 6 and a
conclusion is presented in Section 7, respectively.

2 Linearized BDF Galerkin FEMs

In this section, we will construct two linearized BDF2 Galerkin FEMs for (1.1). For
this purpose, we use the classical Sobolev spaces and their associated norms
and semi-norms. We denote 2 with the corresponding norm

2 , seminorm 2 and 0 0 2 defined by

2 2
0

2 2
0

2
0

2d .

In addition, for any two complex functions 2 , the inner product is
defined by

d
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in which denotes the conjugate of . Besides, for a Banach space with the norm
the function space 0 consists of all strongly measurable functions

0 with

0 0 d
1

1
sup 0 .

Following the classical finite element theory [43], we define to be a
quasi-uniform partition of into triangles or rectangles (in 2) or hexahedrons (in
3) with mesh size max diam and 0 1. We introduce the finite

element space functions defined as (see, e.g., [44])

0 or and 0 on

where denotes the polynomial space of degree 1 and denotes
the polynomial space of degree in each variable.

To proceed, we define the Ritz projection operator 1
0 0 by [43,

44]:

0 0

which satisfies

0 0
1

1
1 . (2.1)

Here and later, with or without superscripts and subscripts, denotes a generic pos-
itive constant, not necessarily the same at different occurrences, which is always
dependent on the solution and the given data but independent of and .

For a given positive integer , let 0 be a uniform parti-
tion of 0 with the time step , nodes for 0 1 2 ,
and intermediate nodes 1 2 2 . Let

1

2
1 1 1 1

and

1 3

2
2 1 1

2
2 2 1 2 2 .

For the time derivative , the inner product can be written by

1

4
1 . (2.2)

Here and later 2
0 2 1 2

0 2 1 2 2
0.

With these notations, we define the linearized BDF2 Galerkin FEM to (1.1) as: to
find 0 0 for all 2 such that
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where 0 0 i 0. To ensure the second-order accuracy for the temporal
direction, we adopt a predictor corrector method to compute 1 1 :

in which 1 0 1 0 is computed by

with the initial value 0
0 and 0 satisfies

0 2 0
0 0

2 (2.6)

for all 0 0.

Theorem 1 The discrete scheme (2.4)–(2.5) is mass conservative in the recursive
sense

1 2
0

1 0 2
0

0 2
0

1 1 (2.7)

where

2
0 2 1 2

0 (2.8)

with

1 0 1 2 1 2 2
0 2. (2.9)

Proof Taking 1 0 and 1 0 0 in (2.4a) and (2.5a), respectively,
and choosing the imaginary parts of the resulting equations, we derive

1 2
0

1 0 2
0

0 2
0. (2.10)

Then, taking in (2.3a) and extracting the imaginary part, we get

1

4
2
0

1 2
0 2 1 2

0 2 1 2 2
0 2 1 2 2

0 0

(2.11)

which leads to

2
0 2 1 2

0 2 1 2 2
0

1 2
0 2 1 2 2

0.
(2.12)

Therefore, the proof is completed.
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Theorem 2 The discrete scheme (2.4)–(2.5) is energy conservative in the recursive
sense

1 0 2
0

0 0 1 0d 0 2
0

0 0 0d (2.13)

1 2
0

1 0 0

2
0 1d 0 2

0

1 0 0

2
0 0d (2.14)

1 1 (2.15)

where

2
0 2 1 2

0 (2.16)

with

1 0 1 2 1 2 2
0

4 Re 2. (2.17)

Proof Taking 1 and
1 0 0

in (2.4a) and (2.5a), respectively, and
choosing the real parts of the resulting equations, we can obtain (2.14) and (2.13),
respectively. Finally, taking in (2.3a) and extracting the real part, we have

1

4
2
0

1 2
0 2 1 2

0 2 1

2 2
0 2 1 2 2

0

Re 0 (2.18)

Thus, we can see that

2
0 2 1 2

0 2 1 2 2
0 4 Re

1 2
0 2 1 2 2

0 (2.19)

which leads to the desired results (2.13)–(2.15).

The scheme (2.3)–(2.6) can be seen as a semi-decoupled scheme because one only
needs to solve a linear system for firstly, and then for at each time step. This is

different from that in [31] where one needs to solve 1 2 firstly, and then to solve
for . However, by use of an explicit treatment of the nonlinear term of (2.3b), it
allow us to define the following fully decoupled linearized BDF2 scheme: to seek

0 0 for all 2 such that
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with 1 1 and 1 0 1 0 is computed by (2.4) and (2.5), respectively, the initial
value 0

0 and 0 satisfies (2.6). We point out that we can solve the two
(2.20a)–(2.20b) for and 2 in parallel at each time step.

Similar to Theorem 1 and Theorem 2, we also have the following conservative
laws for scheme (2.20).

Theorem 3 The discrete scheme (2.20) conserve the following conservative laws in
the recursive sense

1 (2.21)
1 1 (2.22)

where
2
0 2 1 2

0 (2.23)
2
0 2 1 2

0 (2.24)

with

1 0 1 2 1 2 2
0 (2.25)

1 0 1 2 1 2 2
0 4 Re 2. (2.26)

In this paper, we only give out the error estimates for the linearized scheme (2.3)–
(2.6). The analysis of the second linearized scheme (2.20) can be derived analogously,
which will be confirmed numerically in Section 6. Like [31], we assume that

is locally Lipschitz continuous, i.e., for any 1 2 ,

1 2 1 2 (2.27)

where is the Lipschitz constant dependent on . Besides, we assume that the
solution to the problem (1.1) exists and satisfies

0 1 2 0 1 2 0 2 2 0 2

0 1 2 0 2 0 1 (2.28)

where is a positive constant depends only on .
In our analysis, we need the following lemma which can be found in [45] for the

details.

Lemma 1 Assume and is 2 for any nonnegative integer .
Suppose is the unique solution of the boundary value problem

2 in

0 .

Then 2 satisfies

2 (2.29)

where depending on and . Especially, (2.29) holds for convex domains
when 0.
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3 Error estimates for temporal discretization

In this section, we first introduce a time-discrete system, then estimate the error func-
tions and , as well as the boundedness of the time-discrete solutions
in some norms.

When 2, we introduce the following auxiliary equations:

Similar to (2.4)–(2.5), we compute 1 1 and 1 0 1 0 by

and

respectively, where 0
0 in and 0

0 satisfies

0
2

0 0 0
2. (3.4)

In what follows, we analyze the error functions and , respectively.
To this end, under the regularity assumption (2.28), we define

0 1 max0 0 0

and let

1 0 1 1 0 1 0 1 1 0 0 .

From (2.3)–(2.5) and (3.1)–(3.3), we have the error equations for 2:

and
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where

1 i

and

1 i 1 1 2 1 1 2
2

1 1 1 1 2 1 2 1 2

3
1 1 2 2 1 1 2

4
1 2 1 2 2 1 1 2

5
0 0 1 1 2 1 2 1 2.

By Taylor expansion formula, we have

0 5 0 1 0
2 1 ... 4. (3.8)

Theorem 4 Suppose that the system (1.1) has unique solution satisfying
(2.28). Then there exists 0 0 such that when 0, the time-discrete system
(3.1)–(3.3) is uniquely solvable for 1 ... , satisfying

1 0
0

1 2 1 0
0

1 0
0

1 0
2 0 0 2 0

2 (3.9)

and

max 1 0
0

1 0
0 0 0 0 (3.10)

2 2 2 2 . (3.11)

Proof Since the system (3.1)–(3.3) are linear elliptic equations, the classical theory
of elliptic PDEs ensure that the solution of system (3.1)–(3.3) is unique solvable.
In what follows, we prove (3.9)–(3.10) by mathematical induction. For the initial
time step, multiplying (3.7a) by 1 0 , and integrating it over , then taking the
imaginary parts, we find

1 1 0 2
0 Im 1 5

1 0
1 0 5 0

1 0
0

which together with (3.8) shows that
1 0

0 1
2. (3.12)

Similarly, multiplying (3.7a) by 1 0 , integrating it over and summing the real
and imaginary parts together, we can see that

1 1 0 2
0

1

2
1 0 2

0 Im 0 0
1 0

2
1 0 Im 1 5

1 0

Re 0 0
1 0

2
1 0 Re 1 5

1 0

0
1 0 2

0 1
2
0 5

2
0

1

4
1 0 2

0

1 0 2
0

2 1

4
1 0 2

0
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which together with (3.12), one has

1 0
0

1 2 1 0
0 2

3 2. (3.13)

Combining (3.12) and (3.13), we derive

1 0
2 3 (3.14)

which implies that

1 0
0

1 0
0

1
0 3

1
0 0 (3.15)

when 1 1 3. By use of Lemma 1 and (3.12), we can see that

1 0
2

1 1 2
1 0 0

2

1 0 0

2
2

3 4
0

1
1 0 0

2
1 2

0
1 0 0

2
1 2

1 0 0

2
2

0
3 4 0

0
1 0

0
2

4
2. (3.16)

Therefore
1 0

0 4
2 1

0 0 (3.17)

when 2 1 4
1 2.

Next, multiplying (3.6a) by 1 , and integrating it over , then taking the
imaginary parts, we obtain

1 1 2
0 Im

1 1 1
1 0 0

2

1 0 0

2
1 1 Im 1 2

1

Im
1

1 0 0

2
1 1 1 Im

1 0 0

2
1

1 0 0

2
1 1

Im
1 0 0

2

1 0 0

2
1 1 1 Im 1 2

1

0
1 0 2

0
1 0 2

0
4 1 2

0

which together with (3.12) and (3.16), we conclude

1
0 5

2 (3.18)

when 3 1 2 .
Moreover, multiplying (3.6a) by 1 , integrating it over and taking the real

and imaginary parts, respectively. Then summing them together to get

1 1 2
0

1

2
1 2

0 Im
1 1 1 1 0 0

2
1 0 0

2
1 1 Im 1 2

1

Re
1 1 1 1 0 0

2
1 0 0

2
1 1 Re 1 2

1

0
1 0 2

0
1 0 2

0
1 2

0
4 1

4
1 2

0 (3.19)
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which together with (3.12), (3.16) and (3.18), we find that
1

0
1 2 1

0 6
2. (3.20)

This yields
1

2 7
3 2 (3.21)

and
1

0 7
3 2 1

0 0 (3.22)

when 4 1 7
2 3. By use of Lemma 1 again, and (3.18), we obtain

1
2

1 1 2 1 1 2
3 4

0

1 1 1 2

0

1 1 2 1 2

0
3 4 0

0
1

0
2

8
2. (3.23)

Therefore
1

0 8
2 1

0 0 (3.24)

when 5 1 8
1 2.

By mathematical induction, we assume that (3.9)–(3.10) holds for 1.
Then there exists positive 6 0

2 3, such that when 6, we have

0 0 0
3 2

0 0 0. (3.25)

Now we prove (3.9)–(3.10) holds for . Multiplying (3.5a) by , and taking
the imaginary part, it follows that

1

4
1

0 0 1 0 0

0 0 0 1 0 0

4 1 2
0

2 2
0

2
0

1 2
0

2 2
0

2
0

and summing up from 2 to , we get

2
0

4 1 2
0

2 2
0 1

1 2
0

2
0 . (3.26)

By use of the Gronwall’s inequality, we have

0 10
2 (3.27)

when 7. The above estimate further shows that

0 (3.28)

which together with (3.27), and from (3.5a), we obtain

0 0 0 1 0 0 . (3.29)

By using Gagliardo-Nirenberg inequality [31], we can see that

0
3 4
2

1 4
0 0 0

5 4 1 (3.30)
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when 8 1 0
4 5. Therefore,

0 0 0 0. (3.31)

By use of Lemma 1 and (3.27), we obtain from (3.5b) that

2
2 2

0

2

0

2 2

0

0 0 11
2 (3.32)

which further shows that

0 2 0 11
2

0 (3.33)

when 9 11
1 2. Thus (3.9)–(3.10) holds for . The induction is

closed. Furthermore, we obtain

2 2 2 2 0
4

2 2 2 2 0
4

2 2 2
4

2 2 2
4

for all 1 2 ... . Taking 0 min9 1 and 0 max111 , the proof of
Theorem 4 is completed.

4 Error estimates for spatial discretization

In this section, we obtain a -independent error estimate for and .
To do so, we split the errors as follows

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 2 ... .

Theorem 5 Let and be the solutions of (3.1)–(3.3) and (2.3)–
(2.6) respectively for 1 2 ... . Then there exists 0 0 0 0, such that
when 0 0,

0 0 0
2. (4.1)

Proof Since 0 2 and 0 2, and by use of
(3.11), we can see that 0 and 0 are uniformly bounded, thus we

1690 Numerical Algorithms (2023) 92:1679–1705



denote by 0 1 max 0 0 0 . First, we estimate the
initial error. Since 0

0, by using (2.1) and (3.11), we have

0 0
0 0 0 0 1

2
0 2. (4.2)

From (2.6) and (3.4), we obtain

0 0 2 0 0 0. (4.3)

When 0, (4.3) leads to

0 0
0

0 0
0 2

2 0
2. (4.4)

When 0, (4.3) yields to

0 0
0

0 0
0

0
2. (4.5)

By use of the Aubin-Nitsche techniques, we can derive

0 0
0

2 0
2 (4.6)

which shows that

0 0
0

0 0
0

0 0
0 3

2 0
2. (4.7)

Combining (4.2), (4.4) and (4.7), and employing the inverse inequality, we have

0
0

0 0
0

0
0

2
3

2 0
0 0 (4.8)

0
0

0 0
0

0
0

2
1

2 0
0 0 (4.9)

when 1 min 1

1
2 4

1

3
2 4 .

For the first time step, from (2.5) and (3.3), we derive

Choosing 1 0 in (4.10a), and taking the imaginary and real parts, then
adding them together, one has

1 1 0 2
0

1

2
1 0 2

0 Re
1 0

1 0 Im
0 0

1 0 Im
1 0

1 0 Re
0 0

1 0

Im 0 0
1 0 0

2
0 0

1 0 0

2
1 0

Re 0 0
1 0 0

2
0 0

1 0 0

2
1 0 . (4.11)
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Since
1 0 0

2
1 0 1

2
1 0

2 , we have

1 0
1 0

0 0
1 0 1 0 0 1 0 0 1 0

4 1 0 0 2
2

1 0 2
0 (4.12)

and

0 0
1 0 0

2
0 0

1 0 0

2
1 0

0

0 0 2
0

0 0 2
0

1 0 1 0 2
0

1 0 2
0. (4.13)

Thus, (4.11) leads to

1 1 0 2
0

1

2
1 0 2

0

4
1 0 0

2
2 0

0 0 2
0

0 0 2
0

1 0 1 0 2
0

1 0 2
0

4 1 0 2
0 (4.14)

which implies that
1 0

0
1 0

0 4
2 (4.15)

and
1 0

0
2

4
2 1 0

0 0 (4.16)

when 1 1 2 2
1

4
2 4 .

Moreover, taking 1 0 in (4,10b), we derive

2
1 0 2

0

2

2
1 0 2

0 2
1 0 1 0

2
0 0 1 0

1 0 0

2

1 0 0

2
2

1 0 0

2

1 0 0

2
2 1 0

4 1 0 2
2

0 0 2
0

0

0 0 2
0

0 0 2
0

1 0 1 0 2
0 4

1 0 2
0 (4.17)

which together with (4.15)–(4.16), and by use of the Aubin-Nitsche techniques again,
we have

1 0 2
0 5

2 (4.18)
this further implies that

1 0
0

2
5

2 1 0
0 0 (4.19)

when 3
1

5
2 4 .

On the other hand, from (2.4) and (3.2), we obtain
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Likewise, we can see that
1

0
1

0 6
2 (4.21)

which implies that
1

0
1

0
2

6
2 1

0
1

0 0 (4.22)

when 2 1 2 4
1

6
2 4 .

We prove (4.1) by mathematical induction. By mathematical induction, we assume
that the result (4.1) holds for 1 2 , then there exists 5

1

0
2 4 ,

when 5 such that

0 0
2

0
2

0 0 0. (4.23)

Now we prove (4.1) holds for . By (2.3) and (3.1), one can derive the following
error equations

Setting in (4.24a) and taking the imaginary part, we have

1

4
1 Re Im

2
2 0

0
0 0 0

0
0 0

0
0 0

4 2
2

1 2
2

2 2
2

2
2

1 2
2

2 2
2

2
0.

Replacing by and summing up the equation from 2 to , we obtain

2
0

4
1

1 2
0

2
0 . (4.25)

On the other hand, setting in (4.24b), if 0, we derive

0
2

0. (4.26)

This shows that
0

2
0. (4.27)

If 0, we also obtain from (4.24b) that

0
2

0. (4.28)

Substituting (4.28) into (4.25), then by use of the Gronwall’s inequality, there exists
positive constants 3 7, such that when 3

0 7
2 (4.29)

Then, from (4.28) and (4.29), we also have

0
2. (4.30)

Further
0

2
7

2
0 0 (4.31)
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when 6
1

7
2 4 . Thus, (4.1) holds for if we take 0

7
1 0 min3 1 and 0 min6 1 . The proof is completed.

Remark 1 Clearly, one can see that the error estimate in Theorem 5 is optimal in
2-norm for linear Galerkin FEM, and we can derive optimal 1 error estimate

0 0 0 . (4.32)

Furthermore, from the proof of Theorem 5, we can see that the following superclose-
ness result can be derived when 0

0 0
2. (4.33)

5 Optimal error estimates for the fully discrete scheme

In this section, we will derive 2 optimal error estimates for the -order ( 1)
Galerkin FEM by using the results in the above sections.

From (2.1), (3.9), and (4.1), we have optimal error estimates for the linear Galerkin
FEM ( 1) as follows.

0 0 0 0 0
2 2

2
2 2 2 . (5.1)

Similarly, we derive

0
2 2 (5.2)

and

0
2

0
2 . (5.3)

For 1, the above estimates are not optimal for the -order Galerkin FEM. How-
ever, we can derive the uniform bounds of the numerical solutions in -norm from
Theorem 2 as:

0
2

0 0 0 (5.4)

0
2

0 0 0 (5.5)

for 0 1 when 0 0. By the above uniform bounds, we can
obtain optimal 2 error estimates given in the following Theorem.

Theorem 6 Let and be the solutions of (1.1) and (2.3)–(2.6)
respectively for 1 2 ... . Then there holds

0 0
1 2 . (5.6)

Proof Let . At the time step 1 2, we can

easily get 1
0

1 2 and 1
0

1 2 . Thus, we only analyze
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the errors and for 1 in the following. From (1.1) and (2.3),
we obtain

Setting in (5.7a) and taking the imaginary part to obtain

1

4
1 Re Im .

(5.8)

Replacing by and summing up the equation from 2 to , and noting that

2
2
0 2

2
2
0 2

2
2
0

4 2
2 0 2

2 1 2
2 0 1 (5.9)

2
2
0

2
2

2
0 2

2
2
0

4 2
2 0 2

2
2 0 2

2 1 2
2 0 1

2
2 0 1

1

1
2
0 1

2
0. (5.10)

From (5.8)–(5.10), we have

2
0

1 2
0

2 1 4 1

1
2
0 1

2
0. (5.11)

On the other hand, for any 1, setting in (5.7b), we derive

2
0

2 2
0

2 2

2
2 0

0

2 1
2 0 0. (5.12)

By the same technique used in the proof of estimates (4.3)–(4.7), we can derive

0
1

0 . (5.13)

Thus, with (5.11) and (5.13), there exists a positive such that when , we
have

0 0
1. (5.14)

Therefore, by (2.1) and the triangle inequality, we derive (5.6), which completes the
proof.
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6 Numerical results

In this section, we present two numerical examples to confirm the efficiency and
accuracy of the proposed numerical schemes. In our test, we choose linear and
quadratic basis functions on triangular and rectangular finite elements to derive
numerical solutions.

Example 6.1 We consider the following Schrödinger-Helmholtz equation [30, 31].

i 1 0
2 2

2 0

0 0 0

0 0

(6.1)

where 0 1 2 1 in (6.1) and the final time is chosen as 2 in the
computations. 1 2 and 0 are chosen correspondingly to the exact solutions

i 1 sin sin sin sin sin sin 1 1 .

Now, we solve the problem (6.1) by the linearized BDF2 schemes (2.3)–(2.6) and
(2.20), respectively, with linear triangular element on triangular 1 and quadratic
element on rectangular 2 approximation. We choose 5 for 1 element and

3 2 for 2 element, respectively, and divide the domain into 1 nodes in
each direction for 1 element with different 5 10 20 40, and different mesh-
grids 5 5 10 10 20 20 and 40 40 for 2 element, respectively. The
numerical results are listed in Tables 1, 2, 3 and 4 at time 0.5 1.0 and 2.0. It can
be observed that the errors in 2 norm are proportional to 2 for 1 element and 3

for 2 element, which are consistent with the theoretical analysis. Additionally, we
also observe that the semi-implicit or explicit treatment of the nonlinear terms in the
(1.1) has little impact on the convergence of the whole scheme.

To show the unconditional convergence of the linearized BDF2 scheme (2.2)–
(2.6) and (2.20) , respectively, we solve the problem (6.1) for each 1

5
1
10

1
20

Table 1 2 errors and convergence rates of the first scheme (2.3)–(2.6) with 1 element (Example 6.1)

5 10 20 40 Average order

0

0.5 2.7025E-2 7.0807E-3 1.7584E-3 4.3760E-4 1.9828

1.0 4.4423E-2 1.1850E-2 3.0098E-3 7.6140E-4 1.9555

2.0 1.2392E-1 3.3841E-2 8.5075E-3 2.1054E-3 1.9597

0

0.5 1.6064E-2 4.2365E-3 1.0785E-3 2.7354E-4 1.9586

1.0 2.7078E-2 7.2060E-3 1.8582E-3 4.8325E-4 1.9360

2.0 8.1912E-2 2.3024E-2 6.3843E-3 1.8606E-3 1.8200
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Table 2 2 errors and convergence rates of the first scheme (2.3)–(2.6) with 2 element (Example 6.1)

5 5 10 10 20 20 40 40 Average order

0

0.5 1.5614E-3 1.0533E-4 1.3135E-5 1.6411E-6 3.2980

1.0 1.3485E-3 1.7253E-4 2.1629E-5 2.7056E-6 2.9871

2.0 3.6544E-3 4.6841E-4 5.8831E-5 7.3741E-6 2.9843

0

0.5 6.3762E-4 3.0897E-5 4.0601E-6 5.9652E-7 3.3540

1.0 4.0502E-4 5.2415E-5 7.3872E-6 1.2577E-6 2.7770

2.0 1.1958E-3 1.8103E-4 2. 3023E-5 2.7846E-6 2.9154

Table 3 2 errors and convergence rates of the second scheme (2.20) with 1 element (Example 6.1)

5 10 20 40 Average order

0

0.5 2.7025E-2 7.0804E-3 1.7582E-3 4.3752E-4 1.9829

1.0 4.4421E-2 1.1848E-2 3.0087E-3 7.6085E-4 1.9558

2.0 1.2381E-1 3.3751E-2 8.4604E-3 2.0816E-3 1.9648

0

0.5 1.6030E-2 4.2129E-3 1.0663E-3 2.6742E-4 1.9685

1.0 2.6893E-2 7.0808E-3 1.7923E-3 4.4958E-4 1.9675

2.0 7.9177E-2 2.1191E-2 5.3613E-3 1.3337E-3 1.9639

Table 4 2 errors and convergence rates of the second scheme (2.20) with 2 element (Example 6.1)

5 5 10 10 20 20 40 40 Average order

0

0.5 1.5612E-3 1.0532E-4 1.3135E-5 1.6411E-6 3.2979

1.0 1.3485E-3 1.7253E-4 2.1628E-5 2.7053E-6 2.9871

2.0 36494E-3 4.6854E-4 5.8931E-5 7.3621E-6 2.9844

0

0.5 6.1710E-4 3.0346E-5 3.7927E-6 4.7408E-7 3.4487

1.0 4.0050E-4 5.0033E-5 6.2532E-6 7.8163E-6 3.0004

2.0 1.2358E-3 1.8173E-4 2.3133E-5 2.7796E-6 2.9321
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Fig. 1 2-norm errors of 1 element computed by scheme (2.3)–(2.6) (Example 6.1)

with different mesh-grids at time 1.0. The numerical results are presented in
Figs. 1, 2, 3 and 4 for 1 and 1 elements. We can see that the numerical errors tend
to be a constant as for each fixed , which show that grid-ratio condition is
unnecessary.
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Fig. 2 2-norm errors of 1 element computed by scheme (2.20) (Example 6.1)
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Fig. 3 2-norm errors of 2 element computed by scheme (2.3)–(2.6) (Example 6.1)

Example 6.2 Here, we consider a high-order Schrödinger-Poisson-Slater system:

i 4
1 0

2
2 0

0 0 0

0 0

(5.2)

Fig. 4 2-norm errors of 2 element computed by scheme (2.20) (Example 6.1)
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Table 5 2 errors and convergence rates of the first scheme (2.3)–(2.6) with 1 element (Example 6.2)

5 10 20 40 Average order

0

0.5 1.4699E-2 3.9717E-3 1.0197E-3 2.6313E-4 1.9346

1.0 3.3115E-2 8.6709E-3 2.2206E-3 5.5894E-4 1.9628

0

0.5 9.5764E-3 2.5072E-3 6.3929E-4 16324E-4 1.9581

1.0 2.1599E-2 5.7514E-3 1.5089E-3 4.0493E-4 1.9123

Table 6 2 errors and convergence rates of the first scheme (2.3)–(2.6) with 2 element (Example 6.2)

5 5 10 10 20 20 40 40 Average order

0

0.5 6.5287E-5 7.7743E-6 9.6503E-7 1.2048E-7 3.0273

1.0 1.4095E-4 1.7650E-5 2.2034E-6 2.7532E-7 3.0000

0

0.5 1.2012E-5 1.5196E-6 1.9052E-7 2.3832E-8 2.9925

1.0 2.6145E-5 3.3013E-6 4.1376E-7 5.1756E-8 2.9935

Table 7 2 errors and convergence rates of the second scheme (2.20) with 1 element (Example 6.2)

5 10 20 40 Average order

0

0.5 1.4694E-2 3.9631E-3 1.0101E-3 2.5317E-4 1.9530

1.0 3.3109E-2 8.6668E-3 2.2184E-3 5.5781E-4 1.9638

0

0.5 9.5429E-3 2.4866E-3 6.2822E-4 1.5748E-4 1.9737

1.0 2.1300E-2 5.5668E-3 1.4089E-3 3.5334E-4 1.9712
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Table 8 2 errors and convergence rates of the second scheme (2.20) with 2 element (Example 6.2)

5 5 10 10 20 20 40 40 Average order

0

0.5 6.5276E-5 7.7741E-6 9.6502E-7 1.2048E-7 3.0272

1.0 1.4095E-4 1.7649E-5 2.2034E-6 2.7532E-7 2.9999

0

0.5 1.2504E-5 1.5344E-6 1.9099E-7 2.3847E-8 3.0114

1.0 2.6689E-5 3.3146E-6 4.1414E-7 5.1767E-8 3.0033

in which 0 1 2 1. 1 2 and 0 are chosen correspondingly to the
exact solutions

2 i 5 1 3 2 1 1

5 1 3 2 sin sin 2 sin 2 1 1 .

We solve this problem by the two linearized BDF2 schemes given in Section 2,
with above 1 and 2 elements. To show the convergence in 2 norm, we adopt
the same mesh generation as Example 6.1. The numerical results are presented in
Tables 5, 6, 7 and 8 at time 0.5 and 1.0. We can see that the errors in 2 norm
are in line with the theoretical analysis. On the other hand, to verify unconditional
stability of schemes, we also list numerical results at time 1.0. in Figs. 5, 6, 7
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Fig. 5 2-norm errors of 1 element computed by scheme (2.3)–(2.6) (Example 6.2)
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Fig. 6 2-norm errors of 1 element computed by scheme (2.20) (Example 6.2)

and 8 for each 1
5

1
10

1
20 with different mesh-grids. We can see that for a fixed ,

the errors in 2 norm converge to a small constant when the mesh refine gradually,
which show that the two proposed schemes are unconditionally stable and the grid-
ratio condition is unnecessary.

Fig. 7 2-norm errors of 2 element computed by scheme (2.3)–(2.6) (Example 6.2)
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Fig. 8 2-norm errors of 2 element computed by scheme (2.20) (Example 6.2)

7 Conclusion

In this paper, we have presented two linearized BDF2 schemes with Galerkin finite
elements approximation for the nonlinear Schrödinger-Helmholtz equations. Dif-
ferent from the existing second accurate (in time) numerical schemes for coupled
equations, we derive optimal error estimates at the time step (instead of the time
instant 1 2) for the proposed schemes without grid-ratio condition. At last, two
numerical examples are provided to confirm the theoretical analysis. On the other
hand, there are some interesting works on the variable-step BDF2 method for self-
adaptive time stepping integrations for long-time simulations of phase field models,
such as [46–48]. The analytic method in this paper can be extended to analyze
other nonlinear physical models, such as the time-dependent nonlinear thermistor
equations [35], Cahn-Hilliard equation [36], Keller-Segel system [49], and so forth.
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