
https://doi.org/10.1007/s11075-022-01359-y

ORIGINAL PAPER

Unconditionally optimal H1-error estimate of a fast
nonuniform L2-1 scheme for nonlinear subdiffusion
equations

Nan Liu1 Yanping Chen2 Jiwei Zhang3 Yanmin Zhao4

Received: 2 January 2022 / Accepted: 13 June 2022 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
This paper is concerned with the unconditionally optimal 1-error estimate of a fast
second-order scheme for solving nonlinear subdiffusion equations on the nonuniform
mesh. We use the Galerkin finite element method (FEM) to discretize the spacial
direction, the Newton linearization method to approximate the nonlinear term and
the sum-of-exponentials (SOE) approximation to speed up the evaluation of Caputo
derivative. Our analysis of the unconditionally optimal 1-error estimate involves the
temporal-spatial error splitting approach, an improved discrete fractional Grönwall
inequality and error convolution structure. In order to find a suitable test function
to estimate 1-error, we here consider two cases: linear and high-order FEM space,
using the time-discrete operator and Laplace operator in the test function respectively.
Numerical tests are provided demonstrate the effectiveness and the unconditionally
optimal 1-error convergence of our scheme.
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1 Introduction

The subdiffusion equations are widely used to describe various phenomena of
anomalous diffusion in control systems, physics, biology [1–3], and attract lots of
researchers in theoretical and numerical analysis. This paper focuses on the uncon-
ditionally optimal 1-error estimate of a fully discrete scheme for the following
nonlinear subdiffusion problem on a bounded convex domain 1 2 3 :

C x x x 0 (1.1)

x 0 0 x x (1.2)

x 0 x 0 (1.3)

where the Caputo derivative C (0 1) acting on is defined as

C x
0

x 1 d with 1 . (1.4)

There are three features for problem (1.1)–(1.3):

the solution has the initial time singularity;
the Caputo derivative is nonlocal;
the problem is nonlinear.

The first feature of problem (1.1)–(1.3) is ubiquitous in nature that the solution
is weakly singular near the initial time 0. Generally, the regularity of the solution
has the following property [4–10]:

2 for 1 2. (1.5)

We point out that here generally means a constant, which is independent of mesh
sizes and , but it may depend on the given data (such as , 0, , , T). Thus, the
initial regularity will become an important consideration for any numerical method
to solve the subdiffusion problems. To achieve the optimal convergence rate, the
nonuniform/adaptive time step is required, which also brings more complicated and
difficult theoretical analysis of numerical schemes comparing with the uniformmesh.
A typical nonuniform mesh is the following general graded mesh

1 1 1 1 and 1 1 2
(1.6)

where represents the total number of time steps, 1 is a parameter and
max1 is the maximum step size. The general graded mesh has been suc-

cessfully applied to various time fractional PDEs, see [8–18]. For instance, Liao et al.
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[8] obtain the optimal min 2 convergence rate of L1 scheme on the nonuni-
form mesh. In which, a theoretical framework is proposed by presenting a discrete
complementary convolution (DCC) kernel, a discrete fractional Grönwall inequality
and an error convolution structure (ECS). Based on this framework, the optimal con-
vergence order of several widely used numerical schemes on the nonuniform mesh
is obtained successively, such as the optimal min 2 convergence rate of L2-
1 scheme in 2-norm [9] and the optimal min 2 convergence rate of the
two-level fast L1 scheme in 2-norm [13].

The second nonlocal feature will lead to the huge computational storage and cost
for the long-time or small-mesh simulations, which is especially prohibitive to com-
pute the high-dimensional problem. To circumvent this difficulty of computational
complexity, there are generally two alternatives: one is to introduce the fast algo-
rithms to significantly reduce the computational storage and cost; another is to use
the high-order schemes to obtain the same accuracy with less time steps. For the fast
algorithms, one can refer to [19–26]. For instance, Jiang et al. [20] present the sum-
of-exponentials (SOE) approximation to speed up the efficient evaluation of Caputo
derivative, which significantly reduces the computational storage and cost. Late, Yan
et al. [21] apply the idea of SOE approximate to the second-order L2-1 scheme. Baf-
fet et al. [22] combine the kernel compression scheme with a time stepping method.
Zhu et al. [23] present a fast L2 scheme with (3- )-order with the application of
SOE approximation. Guo et al. [24] apply the fractional linear multistep method to
deal with the tempered fractional integral and derivative operators. For the high-order
schemes, one can refer to [27–30] for the widely used L2 scheme [28] and L2-1
scheme [29]. In this paper, we will use the L2-1 scheme with the corresponding fast
algorithm presented in [20, 21] to speed up the computation of the Caputo derivative
on general graded mesh (1.6).

The third feature involves the nonlinearity of the problem itself. The typical meth-
ods to numerically deal with the nonlinearity involves pure explicit scheme, fully
implicit scheme, and implicit-explicit (or semi-implicit) scheme and so on. The pure
explicit scheme is the most easy implementation, but suffers from a CFL condi-
tion for the stability. The fully implicit scheme is generally unconditionally stable,
but needs extra computational cost for iteratively solving a nonlinear algebraic sys-
tem. A popular alternative is semi-implicit scheme which discretizes the linear term
by implicit scheme and the nonlinear term by a linearized or an explicit scheme.
The resulting semi-implicit scheme circumvents the iteration for the fully implicit
scheme, but also brings the difficulty of theoretical analysis of the unconditional
convergence. The so-called unconditional convergence here means the optimal con-
vergence does not suffer from any restrictions of ratios between temporal and spacial
mesh sizes. In this paper, we use the implicit scheme to discretize the linear disper-
sive term and use the Newton linearization method to approximate the nonlinear term
for the time direction, and employ the Galerkin FEM for the spacial direction.

The focus of this paper is on the unconditionally optimal 1-error estimate for
the proposed second order fast scheme to numerically solve problem (1.1) on the
nonuniform mesh. To do so, we first carefully use the SOE-based fast L2-1 approx-
imation of Caputo derivative [20, 21], which significantly reduce the computational
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complexity when the total number of the time step is large enough. After that, we use
the spatial-temporal splitting approach introduced in [31, 32] to prove our lineariza-
tion scheme is unconditionally convergent. The idea of the spatial-temporal splitting
approach is beginning with proving the boundedness of the solution to the temporal
semi-discrete scheme in the infinity norm, and then prove the optimal error estimate
of the fully discrete scheme, which successfully evade the ratio between time and
space mesh sizes. In the proof process, we consider is smooth enough in spatial
directions. Combined with the original (1.1), it further implies that is zero on

. Finally, we use the theoretical framework developed in [8–10] to present the
error estimate for subdiffusion equations, which involves the discrete time fractional
Grönwall inequality, DCC kernel and ECS. This framework can effectively deal with
the nonuniform temporal scheme when the initial regularity is considered. Specially
for 1-error estimate, we divide the FEM space into two cases of linear and high-
order. Namely, when 1 (here represents the degree of continuous piecewise
polynomials), the time-discrete operator is taken in the test function like [33, 34];
when 2, the Laplace operator is taken in the test function.

The paper is organized as follows. In Section 2, we introduce the fast L2-1
scheme and fully discrete scheme. In Section 3, we first give some necessary lem-
mas, then split the error into spatial and temporal components for detailed analysis
respectively, and present the unconditionally optimal 1-error estimate. In Section 4,
some numerical results are provided to verify our theoretical analysis.

2 Fast L2-1 and fully discrete schemes

We take the general nonuniform by 0 0 1 2 with
time steps 1. Set 1 1, 0 1 and the step
ratios 1. There is a constant 0 such that the step ratios for
1 1. Set , 1 1 and the difference
operator 1 for 1 . Taking 2 here and after, the L2-1
scheme is defined by

C
1

1 1

2 1 d
1

1 1 d

1

(2.7)

where 1 and 2 represent the linear interpolation with the nodes
1, and the quadratic interpolation at , 1, 1 for the variable , and the

discrete convolution kernel can be calculated by

0 1 1

1 1 2 1

1 1 1

(2.8)
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with

0
1

1

1 d
1

1

1 d

2

1 1

1
2

1 d .

It is known that the direct algorithm of the L2-1 scheme (2.7) has the computational
complexity with the storage and cost 2 , respectively. This computational
complexity will be huge and inadmissible for small time size or long time simula-
tions. It motivates us to consider a fast algorithm of L2-1 scheme based on the SOE
technique developed in [20, 21] to approximate the kernel . The resulting fast L2-
1 scheme only has the complexity of the storage log2 and cost log2 ,
which significantly reduces the computational complexity for large . The main
methodology of the fast algorithm in [20, 21] is presented as follows.

We first split C into a local part and a history part , say

C

1

1 d
1

0
1 d . (2.9)

The local part is directly approximated by

1

1 1 d
1

1 d 0 . (2.10)

To speed up the evaluation of , we use the following SOEs approximation for the
kernel .

Lemma 2.1 ([20, 21]) For the given parameters and , one can find a family
of points and weights 1 2 ) such that

1

(2.11)

where the total number of exponentials needed is of order

log log log 1 log 1 log 1 log log 1 log 1 .

(2.12)

Remark 1 In the practical simulations, we generally fix the tolerance error as the
machine precision. Once fixing , taking min1 and noting
in (2.12), we have log for 1 and log2 for 1 .

By using the SOEs approximation of in (2.11), the history part can be
written as

1

1
1

1

0
2 1 d

1

1

(2.13)
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with the history integral 0 0 and the following recurrence formula

1 2
1

1

1

2

2 1 d .

(2.14)
Combining (2.9), (2.10) and (2.13), we have the fast L2-1 scheme given as

F
0

1

1 (2.15)

where 1 can be calculated by the recurrence formula (2.14). For further
theoretical analysis, we can equivalently reformulate (2.15) into the following
convolution form

F

1

(2.16)

where

0
1

1 1

1

1 1 1 1 1
1 2 1

1

2 2
1

2
1 1

(2.17)

where

1

1 1

1 d

1 2

1 1 1

1
2

1 d .

The discrete convolution kernel has the following properties [35]:

M1. 1 0, for 1 1,

M2. 1
1

1 d , 2, for 1 ,

M3. 0
26
11 1

1 d 2
2 ,

where 1 min 2 1 1
1
26 1 . We point out that we only con-

sider is a given constant throughout the paper, and does not consider the case of
0.

For the discretization in space, the continuous Galerkin FEM is used. For brevity,
we denote as 0 and as 2 , where represent
the norms for the Sobolev space [36]. Let 0

1 be the space of
piecewise polynomials of degree corresponding to a conforming (quasi-uniform)
triangulation of with maximum element size . We can get the following fully
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discrete scheme based on the Newton linearization method for 1 2 ,
namely

F 1 1 1 .
(2.18)

We first report the unconditionally optimal error estimate of scheme (2.18) as
follows.

Theorem 2.1 Assume the problem (1.1)–(1.3) has a unique solution which satis-
fies (1.5) and is smooth enough in spatial directions. Then the fully discrete scheme
defined in (2.18) has a unique solution . If 4 , there exist , , , such
that when , , and 2 1 , satisfying

1
min 2 (2.19)

where is a positive constant independent of , and .

The proof of Theorem 2.1 is presented in the next section.

3 Unconditionally optimal H1-error estimate

We here consider the truncation errors caused by the Taylor expansion at and the
Newton linearization method, and introduce a discrete fractional Grönwall inequality.
After that, we use the temporal-spatial error splitting approach developed in [31] to
obtain the unconditionally optimal 1-error estimate.

3.1 Preliminaries

It is known that the continued kernel holds the semigroup property
, namely

d 0 (3.20)

thus we have 1 1 1. For the discrete kernel in (2.17), it gen-
erally does not hold the same semigroup property (3.20) as the continued kernel. To
preserve the same property, a complementary discrete kernel proposed in [9] is
introduced such that

1 1 . (3.21)

1661Numerical Algorithms (2023) 92:1655–1677



For the given value , we can calculate from (3.21) by using the following
recursive formula:

1

0

1

1 1 1 1.
(3.22)

Next, we present several useful Lemmas.

Lemma 3.1 ([10]) Let has properties M1 and M2. For any sequence 1,
it holds

1

2
1

2
0

F 1 . (3.23)

Lemma 3.2 ([34] An improved discrete fractional Grönwall inequality) Assume
holds the properties of M1 and M2, and 1, 1 and 1

0 are

three nonnegative sequences. If the nonnegative sequence 0 satisfies

1

2

1

2 2 1 (3.24)

and the maximum step size 1 2 2 , then there exists a constant
1

0 such that

2 2max 1 0 max
1

1

1 max
1

2

2 2max 1 0 1 max
1

1 max
1

2 . (3.25)

Lemma 3.3 ([35]) Assume that 3 0 and satisfies (1.5). Denote

C F (3.26)

as the local consistency error of fast L2-1 scheme. Then the global consistency error
can be bounded by

1

1 1

1
max
2

3
1

3
1

2
1 (3.27)

where max 1 .

Lemma 3.4 Assume that 2 0 and satisfies (1.5), and the nonlinear
function 4 . Denote the local truncation error by

1 1 1 . (3.28)
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Then the global consistency error can bounded by

1 1 1

3
1 max

2

2 2 1
1 .

(3.29)

The proof is presented in the Appendix for brevity.

Lemma 3.5 ([37]) Assume 2 0 and satisfies (1.5). Denote by

.

Then it holds

1

2
1 max

2

2
1

2 . (3.30)

3.2 Analysis of the semi-discrete scheme

We now consider the following semi-discrete problem at time , namely
F 1 1 1 1 (3.31)

with the initial and boundary conditions
0

0 (3.32)

0 1 . (3.33)

Set , 0 1 . Subtracting (3.31) from (1.1) produces
F

1 (3.34)

where

1
1 1 1 1 1 1 .

(3.35)
Next, we consider the boundedness of and the error estimate of .

Theorem 3.1 The semi-discrete problem (3.31)–(3.33) has a unique solution .
Moreover, if 4 , there exist 0 and 0 such that when and

, it holds

2 1
min 2

2 (3.36)

1 (3.37)
F

2 3 (3.38)

where 2, 1 max1 1, 1 2 and 3 are constants
independent of and .

Proof At each time level, (3.31) is a linear elliptic problem. So it is easy to obtain
the existence and uniqueness of the solution . We now use the induction to prove
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(3.36) and (3.37). For 0, it is obvious that (3.36) and (3.37) hold. Then, we
assume that (3.36) holds for 0 1, and have

2

1
min 2

2 1 (3.39)

whenever 2 1 2 2 and 2 1
1

min 2 . Noting
and are bounded for all 0 1, we further have

1 2
1 1 1 1 1 1

2

1 1
2 1 1 1

2

1 1
2 1 1 1 1

2

1 1 1 1
2

4
1

2 4 2 (3.40)

where 4 is a constant dependent on 1.
Taking the inner production with both sides of (3.34) for , we have

F
1

2
0 1

1

5

2
1 2

0
5

2
2
0 0 0 (3.41)

where 5 is a constant dependent on 1. By Lemma 3.1 (3.41) can be
rewritten as

1

2
1

2
0

5

2
1 2

0
5

2
2
0 0 0.

(3.42)
Recalling Lemma 3.2 and taking 1 8 5 2 , it holds

0 4 8 5 max 1 max
1

1

0 . (3.43)

Similarly, taking the inner production with both sides of (3.34) yields

F

1

2
0 1

1

6

2
1 2

0
6

2
2
0 0 0 (3.44)
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where 6 is a constant dependent on 1.
Recalling Lemma 3.2 again and taking 1 8 6 2 , it holds

0 4 8 6 max 1 max
1

1

0 .

(3.45)
Next, multiplying (3.34) by 2 and integrating the result over , we get

F 2 2
1

2 2

2
0 1

1

7

2
1 2

0
7

2
2
0 0 0 (3.46)

where 7 is a constant dependent on 1.
Recalling Lemma 3.2 again and taking 1 8 7 2 , it holds

0 4 8 7 max 1 max
1

1

0 .

(3.47)
Based on Lemmas 3.3, 3.4 and 3.5, one has

1

2

1

2

1

2

1

2

2
1 max

2

2
1

2 1 1

1
max
2

3
1

3
1 1

3
1 max

2

2 2 1
1

1 max
2

2
1

2 1

1
max
2

3
1

3
1 max

2

2 2 1
1

min 2 (3.48)

where max 1 . Then putting (3.48) into (3.43), (3.45) and (3.47), we can
obtain

2 1
min 2

1
min 2

2 (3.49)

where 2 1 and

1 4 2 8 5 max 1 2 8 6 max 1 2 8 7 max 1 .

Then, whenever 2 and , we have

1
min 2

2 1. (3.50)
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Thus, the estimates (3.36) and (3.37) hold for by taking min
and 2. The mathematical induction is finished.

Based on the above results, we now consider the proof of (3.38). By the definition,
we have

F
2 0

1

1
1 1

0
2

0 2

1

1
1 2 1

0
2

0

1

1
1 1 1

min 2
2

2 0 1
min 2

2
48

11 2
1

min 2
2

48

11 2
1 2 (3.51)

where we apply the properties M3 in the penultimate inequality and take 3
min 2 and 2 in the last inequality. Therefore,

F
2

F
2

F
2 3. (3.52)

The proof is completed after taking min 1 2 3 .

3.3 Analysis of the fully discrete scheme

We now consider the boundedness of the fully discrete solution . To analyze
the fully discrete scheme (2.18), we introduce the Ritz projection operator

1
0

1
0 by

0 .

For 1
0 , it holds

0 0 1 1. (3.53)

Let

0 1 . (3.54)

The weak form of the semi-discrete (3.31) is

F 1 1 1 . (3.55)

Subtracting (2.18) from (3.55), we get

F
2

F (3.56)
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where

2
1 1 1 1 1 1 .

(3.57)
Then, based on the boundedness of in Theorem 3.1, we present the following
result.

Theorem 3.2 Suppose the semi-discrete scheme (3.55) has a unique solution and
the fully discrete scheme defined in (2.18) has a unique solution , 1 ... . If

4 , there exist 0 and 0 such that when and ,
it holds

0
7
4 (3.58)

2 (3.59)

where 2 max
1

1.

Proof Noting the coefficient matrix of the linear system arising from (2.18) is diag-
onally dominant, the solution of (2.18) exists and is unique. Here, we also apply
the mathematical induction to prove (3.58). It is easy to show (3.58) hold for 0.
Next, we assume (3.58) holds for 1 1, and have

2 0

2
7
4 1 2 (3.60)

whenever 1

4
7 2 .

Similar to the estimate (3.40) of 1 , we use the boundedness of and
for all 0 1 to obtain

2 0
1 1 1 1 1 1

0

1 1
0 1 1 1

0

1 1
0 1 1 1 1

0

1 1 1 1
0

8
1 1

0 8 0

8
1

0 8 0 2 8
2 (3.61)

where 8 is a constant dependent on 2 and (3.53) is used in the last inequality.
Setting and in (3.56), we obtain

F
2

F

2
0

9

2
2
0

9

2
1 2

0 2 8
2 F

0 0

9

2
2
0

9

2
1 2

0 2 8
2 F

2
2

0 (3.62)

1667Numerical Algorithms (2023) 92:1655–1677



where 9 is a constant dependent on 2. Applying Lemma 3.2, we have

0 2 8 9 max 1 0
0 4 1 2 8

2 max
1

F
2

2

2 8 9 max 1 4 1 2 8 max
1

F
2

2

7
4 (3.63)

when 1 8 9 2 and

2 2 8 9 max 1 4 1 2 8 max
1

F
2

4
.

Then, when 1, we can verify that

2 0 2. (3.64)

Thus, the estimates (3.58) and (3.59) hold for by taking min 1 2 and
. The proof is completed.

3.4 The proof of Theorem 2.1

Noting the boundedness of in Theorem 3.1, we can use the method in [33,
34] to get the estimate of 1 for the linear element (i.e., 1). The method
in [33, 34] will become too complicated to be used for high-order elements (i.e.,

2). Hence, the following proof will be split into two cases: one is for 1 and
another one is for 2.

Proof We first prove the case of 1 by taking F in (3.56 ) to get

F F F
2

F F F

F 10

2
2
0

10

2
1 2

0
10

2
4

1

2
F 2

0
1

2
F 2

0
1

2
F 2

0 (3.65)

where 10 is a constant dependent on 2. Rearranging (3.65) produces

F 10

2
2
0

10

2
1 2

0
10

2
4 1

2
F 2

0

10

2
2
0

10

2
1 2

0
10

2
4 1

2
F

2
2 2

10

2
2
0

10

2
1 2

0
10

2
4 1

2
F

2
2 2.

From Lemma 3.2, it holds

0 2 8 10 max 1

0
0 2 1 2 max

1

F
2 10

2 (3.66)
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when 1 8 10 2 . Therefore, we have

1 1 1 1

1 1 1
min 2 . (3.67)

Then, we prove the case of 2 by considering the exact solution satisfies

F 1 1 1 . (3.68)

Set

0 1 . (3.69)

Subtracting (2.18) from (3.68), we get

F
3

F

(3.70)

where

3
1 1 1 1 1 . (3.71)

It is obvious that and are bounded for 1 . So we obtain

3 0
1 1 1 1 1 1

0

1 1
0 1 1 1

0

1 1
0 1 1 1 1

0

1 1 1 1
0

11
1 1

0 11 0

11
1

0 11 0 11
1

0 11 0

11
1

0 11 0 2 11 (3.72)

where 11 is a constant dependent on , , and 2. Next, taking in
(3.68) , we get

F
3

F

2
0 3

F

12

2
2
0

12

2
1 2

0 2 11

0
F

0 0

12

2
2
0

12

2
1 2

0 2 11

0
F

1 0 (3.73)
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where 12 is a constant dependent on , , and 2. By Lemma 3.2 and (3.48), it
holds

0 2 8 12
0 2

0 4 1 2 11 max
1

F
1

max
1

1

0

2 8 12 4 1 2 11 max
1

F
1

min 2 (3.74)

when 1 8 12 2 . Therefore, we have

1 1 1 1 1
min 2

(3.75)
whenever 2, min , min 1 2 and
min 1 2 3 . Thus the proof of Theorem 2.1 is completed.

4 Numerical examples

We now provide two examples to demonstrate the unconditionally optimal con-
vergence orders with min 2 in time and in space as presented in
Theorem 2.1. Here we consider the graded meshes 1 ,
and divide the space into parts with quasi-uniform quadrilateral partition

1 with maximum mesh size max1 diam . The error is
calculated by 1-norm in space and the maximum norm in time.

Example 4.1 We first consider the following nonlinear subdiffusion equation
C sin 0 1 2 0 1 .

As a benchmark solution to investigate the convergence orders in time and space
by using the linear and quadratic elements, the exact solution is constructed by

2 1 1 .
Tables 1 and 2 show the temporal errors and convergence orders by taking

8 16 32 64 and with linear element for 0.5 and 0.8, respec-
tively. Table 3 presents the numerical results of the linear and quadratic elements for

0.5, 2, 104, 12 24 48 96, which illustrates the -degree finite
element method has -order accuracy.

The CPU time of the direct algorithm (2.7) and the fast algorithm (2.16) is given in
Table 4, which is calculated by using the linear finite element with 15, 0.5,

2 and changing from 1000 to 16000. One can see that the fast L2-1 scheme
can speed up the simulations significantly as is larger.

If a numerical method is unconditionally convergent, given a , the error should
be tended to a constant as is taken larger and larger. The phenomenon is displayed
in Fig. 1 by respectively taking the linear and quadratic elements with 0.5, 2
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Table 1 Errors and convergence orders of temporal directions for Example 4.1

2 4

Error Order Error Order

0.5 8 3.72e-02 – 6.50e-03 –

16 1.87e-02 1.00 1.74e-03 1.90

32 9.32e-03 1.00 4.51e-04 1.95

64 4.66e-03 1.00 1.15e-04 1.98

1 2

Table 2 Errors and convergence orders of temporal directions for Example 4.1

1.25 2.5

Error Order Error Order

0.8 8 3.74e-02 – 5.50e-03 –

16 1.86e-02 1.00 1.39e-03 1.99

32 9.32e-03 1.00 3.48e-04 1.99

64 4.66e-03 1.00 8.7037e-05 2.00

1 2

Table 3 Errors and convergence orders of spatial directions when 0.5, 2 and 104 for
Example 4.1

Linear element Quadratic element

Error Order Error Order

12 2.49e-02 – 1.87e-04 –

24 1.24e-02 1.00 3.52e-05 2.41

48 6.21e-03 1.00 6.44e-06 2.45

96 3.11e-03 1.00 1.42e-06 2.18

Table 4 Computational time with 15, 0.5, 2 for Example 4.1

1000 2000 4000 8000 16000

fast algorithm 18.7s 59.8s 138s 289s 623s

direct algorithm 98.1s 472s 2104s 7546s 24920s
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Fig. 1 1-errors of linear and quadratic finite elements with 0.5 and 2 for Example 4.1

for different and . Figure 1 shows that our error estimates are unconditionally
convergent.

Example 4.2 Consider the following two-dimensional nonlinear subdiffusion equa-
tion

C 1 2 0 1 2 0 1

with 1 sin sin to investigate the convergence order in
time and space by using the linear and quadratic elements.

Tables 5 and 6 show the errors and convergence orders of temporal directions by
taking 8 16 32 64 and with linear element for 0.5 and
0.8, respectively. Table 7 presents the numerical results of the linear and quadratic
elements for 0.5, 2, 104, 8 16 32 64, which illustrates the
-degree finite element method has -order accuracy again.
In Table 8, the computational time of the direct algorithm (2.7) is compared with

the fast algorithm (2.16) with 10, 0.3 and 2 for from 1000 to 16000.
One can see that the smaller the time step, the more effective the fast algorithm.

In Fig. 2, the errors of the linear (on the left) and quadratic (on the right) elements
are shown with a fixed and increasing for 0.3, 2. The figure shows

Table 5 Errors and convergence orders of temporal directions for Example 4.2

2 4

Error Order Error Order

0.5 8 5.03e-01 – 6.64e-02 –

16 2.52e-01 1.00 1.67e-02 1.99

32 1.26e-01 1.00 4.18e-03 2.00

64 6.30e-01 1.00 1.05e-03 2.00

1 2
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Table 6 Errors and convergence orders of temporal directions for Example 4.2

1.25 2.5

Error Order Error Order

0.8 8 5.03e-01 – 6.38e-02 –

16 2.52e-01 1.00 1.60e-02 2.00

32 1.26e-01 1.00 3.99e-03 2.00

64 6.30e-01 1.00 9.98e-04 2.00

1 2

Table 7 Errors and convergence orders of spatial directions when 0.5, 2 and 104 for
Example 4.2

Linear element Quadratic element

Error Order Error Order

8 5.03e-01 – 2.66e-02 –

16 2.52e-01 1.00 6.56e-03 2.02

32 1.26e-01 1.00 1.62e-03 2.02

64 6.30e-02 1.00 4.02e-04 2.01

Table 8 Computational time with 10, 0.3 and 2 for Example 4.2

1000 2000 4000 8000 16000

Fast algorithm 10.7s 35.6s 85.8s 201s 562s

Direct algorithm 77.1s 399s 1980s 7063s 24115s

0.02

0.03

0.04

0.05

0.06
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100 200 300 400 5 10 15 20
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N=25
N=30

Fig. 2 1-errors of linear and quadratic finite elements with 0.3 and 2 for Example 4.2
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that the errors tend to different constants which illustrates our theoretical analysis is
unconditionally convergent.

5 Conclusion

The unconditionally optimal 1-error estimate of the SOE-based fast L2-1 scheme
is presented to numerically solve the nonlinear subdiffusion problem (1.1)–(1.3) on
the nonuniform mesh. The SOE approximation for Caputo derivative can efficiently
reduce the computational storage and cost when time steps are large. To deal with
the initial singularity of the solution, a nonuniform mesh is used to have the globally
optimal convergence, which also bring the complication of theoretical analysis. Thus,
we used a modified discrete fractional Grönwall inequality to present the stability
analysis, and introduced the ECS to express the truncation error of SOE-based fast
L2-1 scheme. Combining with DCC kernels and ECS, the global error analysis is
significantly simplified. For the nonlinear term, we consider a linearized scheme by
approximating it with a Newton linearization method and approximate the dissipative
term with implicit scheme. Then, we use the spatial-temporal splitting approach to
prove that the proposed scheme is unconditionally convergent. Numerical tests are
given to verify the effectiveness and optimal convergence of our scheme.

Appendix. The proof of Lemma 3.4

Proof By the Taylor expansion, we obtain

1
d

1

0

1 1 1 1 1 d

1 2 1 2
1

0
1 1 1 d

1 2 1 2
1

0
1 1 1 1 1 d

2 1 2 1 1
1

0
1 1 1 d

2 1 2 1 1
1

0
1 1 1

1 1 d

1 2 1 2
1

0
1 4 1 1 1 1

2
d

1 2 1 2
1

0
1 1 1 1 1 d

2 1 2 1
2 1

0
1 1 1 d
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2 1 2 1 1
1

0
1 1 1 d

2 1 2 1 1
1

0
1 1 1

1 1 d .

By the condition (1.5) of , we have

1

2

1

1 1
2 2

1

2
1
2 1

2 2 2 1
1 2

1

2

1 1

2
1

2
1
2 1

2 2 2 1
1 2

1 1 1

2

1

2

1

2

1 1 1 1

2
1

2
1
2 1

2 2 2 1
1 2 .

It can be further obtained that

1 1 1

1
1 max

2
2

1
1 max

2
2

1
1 max

2
2

3
1 max

2

2 2 2 2
1

where in different places represents different constant. The proof is completed.
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