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Abstract
A generalized quadrature method is studied for Volterra integral equations with
highly oscillatory kernels. According to the kernel, a two-point quadrature rule is
constructed by Lagrange’s identity at first. The error of the quadrature formula is
presented as well. Then, it is employed to discretize the highly oscillatory equation
without the need to compute moment. For the convergence, the asymptotic order as
well as the classical order of the quadrature method for equation is analyzed. It is
shown that the method has asymptotic order two and converges with order two as
step length decreases. Some numerical examples are conducted to test its efficiency.

Keywords Generalized quadrature method Highly oscillatory Integral equation
Convergence Asymptotic order

1 Introduction

Volterra integral equations (VIEs) are important in many fields and they have been
studied extensively. To get the approximate solution, a plenty of numerical methods
have been devised [1, 10, 15, 17]. However, they may be inefficient for equations
with special structures. Therefore, it is necessary to construct new methods. This
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paper concerns highly oscillatory VIEs

0
0 (1)

where is the oscillatory kernel function which usually takes Bessel function
or trigonometric function. Such equations can be seen in [2, 3, 19, 21]. For the prop-
erties of solutions, we refer to [2, 3, 24] where the boundedness of the solutions and
its derivatives have been discussed. Traditional methods will suffer from a disaster if
the kernel is highly oscillatory, i.e., the frequency 1. To overcome the difficulty,
some quadrature methods for discretizing the highly oscillatory integrals in the VIE
have been devised, such as Filon method [11, 25], exponential fitting (EF) method
[12] and Levin method [13]. Applying them to the oscillatory equations results in
some efficient numerical methods. It is worth noticing that there is a class of method
whose error behaves as for 1, where can be any positive number.
These methods are said to have asymptotic order . For highly oscillatory VIEs, such
methods are desired because they can provide more accurate results for large at
low cost.

In 2013, Xiang and Brunner [21] constructed Filon method, piecewise constant
and linear collocation method for (1) with weakly singular and highly oscillatory
Bessel kernels. They obtained that the direct Filon method has an asymptotic order
and it will be higher if 0 0. The asymptotic order of the piecewise ones
was derived as well. In addition, they proved that the piecewise ones also converge
with respect to step length, i.e., they have a classical order. Since the successful
application of Filon method, it has been employed to solve other kinds of oscilla-
tory equations [9]. What is more, the Filon method is combined with some normal
methods to deal with highly oscillatory problems [18, 23, 27]. While most of the
researches mainly pay their attention to the asymptotic order. Recently, Zhao et al.
[24] proposed a collocation method combined with the Filon method for (1) with
trigonometric kernels. The asymptotic order as well as the classical order has been
analyzed in detail. It should be noticed that these methods dependent heavily on
the computation of moment. As for the EF method, it has been adapted for VIEs
with oscillatory or periodic solutions. In [4–6], the numerical results were obtained
by discretizing the equation with EF quadrature formula. In 2020, Zhao and Huang
[26] took EF collocation methods to get the solution. These convergence results only
reflect the influence of the step length. For the application of Levin method, Li et al.
[14] employed it to solve the Fredholm oscillatory integral equation and tested its
performance numerically without convergence analysis.

This work will go a further step on the quadrature method for highly oscillatory
VIEs. Not only the asymptotic order, but also the classical order is concerned. In
detail, this paper studies a quadrature method for VIE

0
cos 0 (2)

where , and are given continuous functions on and
0 respectively and is unknown. Moreover, we assume 0
for . For 1, the VIE is highly oscillatory. To discretize the integrals in
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VIE (2) efficiently, we consider the generalized quadrature method proposed in [7].
Since the oscillatory function cos satisfies a differential equation, a two-point
quadrature formula could be constructed by Lagrange’s identity without the need to
compute moment. Then the generalized quadrature formula is applied to VIE (2) to
get the numerical solution. The quadrature method is proved to have asymptotic order
2 no matter 0 0 or not. What is more, it converges with classical order 2 as step
length decreases as well. To verify the sharpness of the analysis, some examples are
given in the numerical part.

The rest of the paper is arranged as follows. In Section 2, a two-point quadrature
rule is constructed. In Section 3, the quadrature method is employed to solve VIE
(2). The convergence analysis is conducted in this part as well. Section 4 gives some
numerical examples to see the performance. At last, some conclusions are obtained.

2 The generalized quadrature formula

For cos , we want to construct a two-point quadra-
ture formula in the following form

cos 1 2 (3)

where the weights 1 and 2 are to be determined.
Notice that cos satisfies the differential equation

L 0.

According to [7], its adjoint operator is defined by

M L .

Then, in the theory of linear differential equation, the Lagrange’s identity

L M

reduces to

M (4)

with

.

Since appears in the denominator, we need 0 for .
With the help of (4), the integral has a closed form for

M , i.e.,

M . (5)
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To obtain , let formula (3) hold exactly for M with
1 1 2 , i.e.,

M 1 M 1

M 2 M 2 .
(6)

That is to say that the following equations hold

M 1 cos 1 M 1 2 M 1

cos 1

M 2 cos 1 M 2 2 M 2

cos 2 .

Thus, we have

M 1 M 1
M 2 M 2

1

2

1

2
.

If
M 1 M 1
M 2 M 2

0, the weights 1 and 2 will be given by

1
1

2
2 (7)

where

1
1 M 1

2 M 2

and

2
M 1 1

M 2 2
.

The readers are referred to [8, 22] for the theoretical aspects of the generalized
quadrature method.

We are now in a position to estimate the weights. For the elements
in , the mean value theorem gives

with if 2 . Since M 1 , M 2

2 and

cos 1 sin
cos 2 sin cos
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according to (7), we have

1

2 cos 2

2
2

1 cos 1
2

2 2
2

2
2 2 cos 2 1 cos 1

2 2
2

2

1 cos 1
2

2 cos 2

2
2

2 2
2

2
1 cos 1 2 2 cos 2

2 2
2

.

Then, considering 2 , we have

1 . (8)

For the error of the quadrature formula (3) with (7), we have the following
analysis. Denote 1 M 1 2 M 2 where 1 and 2 are such that

. (9)

Therefore, we have

1 2 1 2 . (10)

Taking the expression of into (10) and rearranging it leads to

1 1 M 1 2 M 1

2 1 M 2 2 M 2

1 M 1 2 M 2 .

Paying attention to equality (6), there is

1 M 1 2 M 2

1 M 1 2 M 2

.

Then, the quadrature error has the form

.

Let . Then, we have 0 according to condition
(9). By Lemma 2.1 in [20], there is

1

2
with 1 . As a result, the error could be estimated as

2
3

2
3. (11)

Estimate (11) gives the influence of interval length on the error and it may provide
a better prediction for small integral interval length. However, it does not reflect the

1507Numerical Algorithms (2023) 92:1503–1516



superiority of the quadrature formula (3). Next, we aim to analyze the influence of
the frequency in detail.

For sin , integration by parts yields

sin
1 cos

cos
1

1 1 1 1

3
1
. (12)

Therefore, we have

cos
1

sin

1
sin

1
sin sin

where 0 has been employed. Taking advantage of (12), there is

cos 3
2

. (13)

Noticing that has zero points and , there is 2 making

2
0 by Rolle’s mean value theorem. Then Lemma 2.1 in [20] tells

3
2

for 3 if 3 . Taking leads estimate (13) to

cos 3 2 4 2
. (14)

This is in accordance with the result in [22]. We summarize the estimate (11) and
(14) in Theorem 2.1.

Theorem 2.1 Assume that 2 , 0 and ( 0 1 2) is
uniformly bounded for . The error by the generalized quadrature method
approximating is given by

min 2
3

4 2
(15)

with 2 2 and 4
1 1 1 .
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As indicated by Theorem 2.1, generalized quadrature could provide a satisfactory
result when is large. And the accuracy will increase as increases.

3 Themethod and its convergence

3.1 The quadrature method for the equation

Firstly, we discretize the interval with uniform mesh which is simple but not
necessary

0 ... 0 .

Then, VIE (2) at can be written as

1

0

1

cos . (16)

Replacing the integrals on the right by the quadrature formula (3) and disregarding
the quadrature errors obtains

1

0
1 2 1 1

0
1 0 0

1

1
1

1
2

1
2 (17)

where is the approximation for and are the weights defined in (7) with
and replaced by and 1 respectively, i.e.,

1
1

2
2

with

1 sin 1
cos 1

1
sin

cos

1
2

1

1
2

2
1

1
1

1
2 1 1 sin 1

sin 1

2 2
sin 1 sin .

When 1, the symbol 1
1 in (17) means that this term does not exist.
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According to (8) and 2 , the weights meet 5 . Since

is continuous, there exists an 0 small enough such that

1
2 5 1

for with max . Therefore, for 0 and , we have

1

1 1
2

0
1 0 0

1

1
1

1
2 . (18)

While for 0, we have 0 0 by letting 0 in (2).

3.2 The convergence

Theorem 3.1 Assume 2 , 3 , 0 and 2 .
is the numerical solution defined by (18). Let . Then, we can

conclude that

min 2 1
2

if ( 0 1 2) is uniformly bounded for .

Remark 1 It can be seen that the quadrature method has asymptotic order 2 for 1
which means that the numerical solution will become more accurate as the increase
of . In addition, the method also converges with order 2 as the decrease of step
length in the final.

Proof Subtracting (17) from (16) leads to

1

0

1

cos
1

0
1 2 1 1

1

0
1 2 1 1

0
1 0 0

1

1
1

1
2

1
2 (19)
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with

1

0

1

cos

1

0
1 2 1 1

1

0

1 1 .

Obviously, 0 0 0 0. Therefore, (19) gives

1

1

2 5 5

recalling the estimate of and max . Then we have, for suitable ,

2 5

1 5

1

1

1

1 5
.

The Gronwall inequality [1] implies that

1

1 5
exp

2 5

1 5
. (20)

For the estimate of , we give the following procedure. Since
2 and 2 , we conclude that 2 by Theorem 2.1.3 in

[1]. Then, Theorem 2.1 tells

1 1 6 min 3
2

if ( 0 1 2) is uniformly bounded for . Therefore, has the estimate

1

0

1 1

6 min 2 1
2

.

Applying it to the estimate (20) implies

min 2 1
2

which completes the proof.

1511Numerical Algorithms (2023) 92:1503–1516



Table 1 max1 of the quadrature method for Example

N 25 26 27 28 29 210

100 2.77E-06 8.17E-07 2.21E-07 5.62E-08 1.41E-08 3.53E-09

200 3.24E-05 5.73E-07 1.05E-07 2.80E-08 7.17E-09 1.80E-09

400 3.31E-06 2.31E-06 6.14E-08 1.29E-08 3.54E-09 8.95E-10

4 Numerical examples

The generalized quadrature method (GQ) is applied to some examples in this part to
confirm its efficiency. We want to verify that the asymptotic order is 2 for 1 and
the method converges with order 2 as 0. The errors with different and are
presented in tables. To see the classical order directly, we plot the pictures according
to the first rows of the tables with 100. In addition, the absolute errors scaled
by 2, i.e., absolute errors multiplied by 2, are presented to show the asymptotic
order with 2. If the scaled errors are bounded, the asymptotic order 2 could be
verified by the definition.

Example 1 Consider the highly oscillatory VIE

0
cos 0 1

with such that the exact solution is cos .

In Example 1, the oscillator takes a simple form and . The
solution cos satisfies Theorem 2.1. The numerical errors of the generalized
quadrature method are presented in Table 1 and Fig. 1.

In Table 1, the errors decrease as tends to 0 which means that the method is
convergent. The classical order 2 could be seen from the left picture of Fig. 1. One
may observe that the absolute errors in the table change slightly at first with 400.
This is not surprising because the term 2 dominates in the stage. The boundedness
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10-4
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slope =-2
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1
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2

Fig. 1 The classical order with 100 and asymptotic order with 2 for Example 1
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Table 2 Comparison of GQ and TQ with 20 for Example

Method 25 26 27 28 29 210

2.59E-03 6.60E-04 1.65E-04 4.14E-05 1.04E-05 2.59E-06

1.87E-05 4.65E-06 1.16E-06 2.90E-07 7.25E-08 1.81E-08

Table 3 max1 of the quadrature method for Example 2

N 25 26 27 28 29 210

100 6.64E-07 1.64E-07 4.09E-08 1.03E-08 2.57E-09 6.42E-10

200 4.58E-07 8.51E-08 2.09E-08 5.36E-09 1.34E-09 3.34E-10

400 1.35E-06 5.70E-08 1.06E-08 2.62E-09 6.66E-10 1.66E-10
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1

Fig. 2 The classical order with 100 and asymptotic order with 2 for Example 2

Table 4 max1 of the quadrature method for Example 3

N 25 26 27 28 29 210

100 1.28E-05 9.27E-06 2.47E-06 6.27E-07 1.57E-07 3.93E-08

200 1.25E-05 5.33E-06 2.33E-06 6.19E-07 1.57E-07 3.94E-08

400 3.11E-06 3.11E-06 2.11E-06 5.86E-07 1.56E-07 3.95E-08
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Fig. 3 The classical order with 100 and asymptotic order with 2 for Example 3

of the scaled errors in the right picture of Fig. 1 indicates that the asymptotic order is
2.

To show the superiority, we compare the generalized quadrature(GQ) method
developed here with the trapezoid quadrature (TQ) method in [16]. The results are
listed in Table 2. We can see that both of the methods converge with respect to step
length. But the GQ method provides more accurate numerical results.

Example 2 Consider the highly oscillatory VIE

0
sin cos 0 1

with such that the exact solution is .

Here, the oscillator and 0. The numerical results are
reported in Table 3 and Fig. 2.

According to the data in Table 3, we can infer the convergence of the method
and its order could be seen by Fig. 2. The asymptotic order could be obtained from
Fig. 2 as well. The same as Example 1, the numerical results are in accordance with
Theorem 3.1.

Example 3 Consider VIE

0
cos 0 1

with such that cos
2 which is oscillatory.

This example is conducted to show our method for VIE with oscillatory solution.
It is clear that ( 0 1 2) is uniformly bounded. The corresponding errors in
Table 4 and Fig. 3 are in good agreement with the analysis. These results imply that
the method is also feasible for some VIEs with highly oscillatory solutions.
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5 Conclusion

This paper proposed and analyzed a quadrature method for VIEs with oscillatory
kernel. Our method does not need to compute the moment. The convergence rate with
respect to frequency shows that the asymptotic order is two. As the decrease of step
length, we also proved that the two-point quadrature method converges with classical
order two. The numerical test in the last part verified its efficiency.
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