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Abstract
In this paper, we study the split feasibility problem with multiple output sets in
Hilbert spaces. For solving the aforementioned problem, we propose two new
self-adaptive relaxed CQ algorithms which involve computing of projections onto
half-spaces instead of computing onto the closed convex sets, and it does not require
calculating the operator norm. We establish a weak and a strong convergence the-
orems for the proposed algorithms. We apply the new results to solve some other
problems. Finally, we present some numerical examples to show the efficiency and
accuracy of our algorithm compared to some existing results. Our results extend and
improve some existing methods in the literature.
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1 Introduction

Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty, closed, and
convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a nonzero bounded
linear operator and let A∗ : H2 → H1 be its adjoint. The split feasibility
problem (SFP) is formulated to find a point x∗ ∈ H1 satisfying

x∗ ∈ C such that Ax∗ ∈ Q. (1)

The SFP was first introduced in 1994 by Censor and Elfving [1] in finite-dimensional
Hilbert spaces for modeling certain inverse problems and has received a great atten-
tion since then. This is because the SFP can be used to model several inverse problems
arising from, for example, phase retrievals and in medical image reconstruction [1, 2],
intensity-modulated radiation therapy (IMRT) [3–5], gene regulatory network infer-
ence [6], just to mention but few, for more details one can, see, e.g., [7–14] and the
references therein. In the span of the last twenty five years, focusing on real world
applications, several iterative methods for solving the SFP (1) have been introduced
and analyzed. Among them, Byrne [2, 9] introduced the first applicable and most
celebrated method called the well-known CQ-algorithm as follows: for x0 ∈ H1;

xn+1 := PC(xn − τnA
∗(I − PQ)Axn)), (2)

where PC and PQ are the metric projections onto C and Q, respectively, and the

stepsize τn ∈
(

0, 2
‖A‖2

)
where ‖A‖2 is the spectral radius of the matrix A∗A.

The CQ algorithm proposed by Byrne [2, 9], requires the computation of metric
projection onto the sets C and Q (in some cases, it is impossible or is too expensive to
exactly compute the metric projection). In addition, the determination of the stepsize
depends on the operator norm which computation (or at least estimate) is not easy
task. In practical applications, the sets C and Q are usually the level sets of convex
functions which are given by

C := {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (3)

where c : H1 → R and q : H2 → R are convex and subdifferentiable functions
on H1 and H2, respectively, and that subdifferentials ∂c(x) and ∂q(y) of c and q,
respectively, are bounded operators (i.e., bounded on bounded sets).

Later, in 2004, Yang [12] generalized the CQ method to the so-called relaxed
CQ algorithm, needing computation of the metric projection onto (relaxed sets)
half-spaces Cn and Qn, where

Cn := {x ∈ H1 : c(xn) ≤ 〈ξn, xn − x〉}, (4)
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where ξn ∈ ∂c(xn) and

Qn := {y ∈ H2 : q(Axn) ≤ 〈ηn, Axn − y〉}, (5)

where ηn ∈ ∂q(Axn). It is easy to see that C ⊆ Cn and Q ⊆ Qn for all n ≥ 1.
Moreover, it is known that projections onto half-spaces Cn and Qn have closed forms.
In what follows, define

fn(xn) := 1

2
‖(I − PQn)Axn‖2, (6)

where Qn is given as in (5). fn is a convex and differentiable function with its
gradient ∇fn defined by

∇fn(xn) := A∗(I − PQn)Axn. (7)

More precisely, Yang [12] introduced the following relaxed CQ algorithm for solving
the SFP (1) in a finite-dimensional Hilbert space: for x0 ∈ H1;

xn+1 := PCn(xn − τn∇fn(xn)), (8)

where τn ∈
(

0, 2
‖A‖2

)
. Since PCn and PQn are easily calculated, this method appears

to be very practical. However, to compute the norm of A turns out to be complicated
and costly. To overcome this difficulty, in 2012, López et al. [15] introduced a relaxed
CQ algorithm for solving the SFP (1) with a new adaptive way of determining the
stepsize sequence τn defined as follows:

τn := ρnfn(xn)

‖∇fn(xn)‖2
, (9)

where ρn ∈ (0, 4), ∀n ≥ 1 such that lim inf
n→∞ ρn(4 − ρn) > 0. It was proved that the

sequence {xn} generated by (8) with τn defined by (9) converges weakly to a solution
of the SFP (1). That is, their algorithm has only weak convergence in the framework
of infinite-dimensional Hilbert spaces. But, in the infinite-dimensional spaces norm
(strong) convergence is more desirable than the weak convergence for solving our
problems. In this regard, many authors proposed algorithms that generate a sequence
{xn}, converges strongly to a point in the solution set of the SFP (1), see, e.g., [15–19].
In particular, López et al. [15] proposed a Halpern’s iterative scheme for
solving the SFP (1) in the setting of infinite-dimensional Hilbert spaces as follows:
for u, x0 ∈ H1;

xn+1 := αnu + (1 − αn)PCn (xn − τn∇fn(xn)) , ∀n ≥ 1, (10)

where {αn} ⊂ (0, 1), and ∇fn(xn) and τn are given by (7) and (9), respectively. In
2013, He et al. [16] also introduced a new relaxed CQ algorithm for solving the SFP
(1) such that strong convergence is guaranteed in infinite-dimensional Hilbert space.
Their algorithm generates a sequence {xn} by the following manner: for u, x0 ∈ H1;

xn+1 := PCn

(
αnu + (1 − αn)

(
xn − τn∇gn(xn)

))
, (11)

where Cn and τn are given as in (4) and (9), respectively, and {αn} ⊂ (0, 1) such that

lim
n→∞ αn = 0 and

∞∑
n=1

αn = +∞. Under some standard conditions, it was shown that
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the sequence {xn} generated by (10) and (11) converges strongly to p∗ = P�(u) ∈
� = {p ∈ H1 : p ∈ C such that Ap ∈ Q} of the SFP (1). Both schemes (10)
and (11) do not require any prior knowledge of the operator norm and compute the
projections onto the half-spaces Cn and Qn (which have closed-form), and thus both
are easily implementable.

Some generalizations of the SFP have also been studied by many authors. We
mention, for instance, the multiple-sets SFP (MSSFP) [3, 20–34], the split common
fixed point problem (SFPP) [35, 36], the split variational inequality problem (SVIP)
[37], and the split common null point problem (SCNPP) [38–42].

Very recently, Reich et al. [43] considered and studied the following split
feasibility problem with multiple output sets in real Hilbert spaces.

Let H, Hi, i = 1, 2, . . . , N, be real Hilbert spaces and let Ai : H → Hi, i =
1, 2, . . . , N, be bounded linear operators. Let C and Qi, i = 1, 2, . . . , N, be
nonempty, closed, and convex subsets of H and Hi, i = 1, 2, . . . , N , respectively.
Given H, Hi , and Ai as above, the split feasibility problem with
multiple output sets (SFPMOS, for short) is to find an element p∗ such that

p∗ ∈ � := C ∩
(
∩N

i=1A
−1
i (Qi)

)
�= ∅. (12)

That is p∗ ∈ C and Aip
∗ ∈ Qi for each i = 1, 2, . . . , N .

In 2020, Reich et al. [43] introduced the following two methods for solving the
SFPMOS (12).

For any given points, x0, y0 ∈ H , {xn}, and {yn} are sequences generated by

xn+1 := PC

(
xn − λn

N∑
i=1

A∗
i (I − PQi

)Aixn

)
, (13)

yn+1 := αnf (yn) + (1 − αn)PC

(
yn − λn

N∑
i=1

A∗
i (I − PQi

)Aiyn

)
, (14)

where f : C → C is a strict contraction mapping of H into itself with the contraction
constant θ ∈ [0, 1), λn ⊂ (0, ∞) and {αn} ⊂ (0, 1). It was proved that if the
sequence {λn} satisfies the condition:

0 < a ≤ λn ≤ b <
2

N maxi=1,2,...,N {‖Ai‖2}
for all n ≥ 1, then the sequence {xn} generated by (13) converges weakly to a solution
point p∗ ∈ � of the SFPMOS (12). Furthermore, if the sequence {αn} satisfies the
conditions:

lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞,

then the sequence {yn} generated by (14) converges strongly to a solution point p∗ ∈
� of the SFPMOS (12), which is a unique solution of the variational inequality

〈(I − f )p∗, x − p∗〉 ≥ 0 ∀x ∈ �.
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An important observation here is that the iterative methods (Scheme (13) and
Scheme (14)) introduced by Reich et al. [43] requires to compute the metric pro-
jections on to the sets C and Qi . Moreover, it needs to compute the operator norm.
Due to this reason, the following question naturally arises. Question: Can we design
two new iterative algorithms (a weakly convergent and strongly convergent methods,
different from Scheme (13) and Scheme (14)) for solving the SFPMOS (12) which
mainly involves a self-adaptive step-size and requires to compute the projections onto
half-spaces so that the algorithm is easily implementable?.

We have a positive answer for the above question which is motivated by the iter-
ative schemes (13) and (14) proposed by Reich et al. [43] for solving the SFPMOS
(12), the Halpern’s-type iterative schemes (10) and (11) proposed by López et al.
[15] and He et al. [16], respectively, to solve the SFP (1). In this paper, we pro-
pose two new self-adaptive relaxed CQ algorithms for solving the SFPMOS (12) in
infinite-dimensional Hilbert spaces.

In the next section, we recall some necessary tools which are used in establish-
ing our main results. In Section 3, we propose self-adaptive relaxed CQ algorithms
for solving the SFPMOS (12), and we establish and analyze weak and strong con-
vergence theorems for the proposed algorithms. In the same section, we also present
some newly derived results for solving the SFP (1). In Section 4, we present the
application of our methods to solve the generalized split feasibility problem (another
generalization of the SFP). Finally, in the last section, we provide several numeri-
cal examples to illustrate the implementation of our algorithms compared to some
existing results.

2 Preliminaries

In this section, we recall some definitions and basic results which are needed in the
sequel. Let H be a real Hilbert space with the inner product 〈., .〉, and induced norm
‖.‖. Let I stands for the identity operator on H . Let the symbols “⇀” and “→”,
denote the weak and strong convergence, respectively. For any sequence {xn} ⊂ H ,
ωw(xn) = {x ∈ H : ∃{xnk

} ⊂ {xn} such that xnk
⇀ x} denotes the weak w-limit set

of {xn}.

Definition 1 ([44]) Let C be a nonempty closed convex subset of H . Let T : C → H

be a given operator. Then, T is called

(1) Lipschitz continuous with constant λ > 0 on C if

‖T x − Ty‖ ≤ λ‖x − y‖,∀x, y ∈ C; (15)

(2) nonexpansive on C if

‖T x − Ty‖ ≤ ‖x − y‖,∀x, y ∈ C; (16)

(3) firmly nonexpansive on C if

‖T x − Ty‖2 ≤ ‖x − y‖2 − ||(I − T )x − (I − T )y‖2, ∀x, y ∈ C, (17)
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which is equivalent to

‖T x − Ty‖2 ≤ 〈T x − Ty, x − y〉, ∀x, y ∈ C; (18)

(4) averaged if there exists a number λ ∈ (0, 1) and a nonexpansive operator
F : C → H such that

T = λF + (1 − λ)I, where I is the identity operator. (19)

In this case, we say that T is λ-averaged .

Definition 2 ([44]) Let C ⊂ H be a nonempty, closed and convex set. For every
element x ∈ H , there exists a unique nearest point in C, denoted by PC(x) such that

‖x − PC(x)‖ = min{‖x − y‖ : y ∈ C}. (20)

The operator PC (mapping PC : H → C) is called a metric projection of H

onto C and it has the following well-known properties.

Lemma 1 ([44, 45]) Let C ⊂ H be a nonempty, closed and convex set. Then, the
following assertions hold for any x, y ∈ H and z ∈ C :
(1) 〈x − PC(x), z − PC(x)〉 ≤ 0;
(2) ‖PC(x) − PC(y)‖ ≤ ‖x − y‖;
(3) ‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉;
(4) ‖PC(x) − z‖2 ≤ ‖x − z‖2 − ‖x − PC(x)‖2.

We see from Lemma 1 that the metric projection mapping is firmly nonexpan-
sive and nonexpansive. Moreover, it is not hard to show that I − PC is also firmly
nonexpansive and nonexpansive.

Lemma 2 For all x, y ∈ H and for all α ∈ R, we have

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;
(3) 〈x, y〉 = 1

2‖x‖2 + 1
2‖y‖2 − 1

2‖x − y‖2;
(4) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Fejér-monotone sequences are very useful in the analysis of optimization iterative
algorithms.

Definition 3 ([44]) Let C be a nonempty subset of H and let {xn} be a sequence in
H . Then, {xn} is Fejér monotone with respect to C if

‖xn+1 − z‖ ≤ ‖xn − z‖, ∀z ∈ C.

It is easy to see that a Fejér monotone sequence {xn} is bounded and the limit
lim

n→∞ ‖xn − z‖ exists.
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Lemma 3 (Demiclosedness principle of nonexpansive mappings [44]) Let C be a
closed convex subset of H , T : C → C be a nonexpansive mapping with nonempty
fixed point sets. If {xn} is a sequence in C converging weakly to x and {(I − T )xn}
converges strongly to y, then (I − T )x = y. In particular, if y = 0, then x = T x.

Lemma 4 ([44, 46, 47]) Let C be a nonempty, closed, and convex subset of a real
Hilbert space H and let {xn} be a sequence in H satisfying the properties:

(1) lim
n→∞ ‖xn − x∗‖ exists for every x∗ ∈ C;

(2) ωw(xn) ⊂ C.

Then, there exists a point x̂ ∈ C such that {xn} converges weakly to x̂.

Definition 4 Let f : H → R be a function and λ ∈ [0, 1]. Then,

(1) f is convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y),∀x, y ∈ H .

(2) A vector ξ ∈ H is a subgradient of f at a point x if

f (y) ≥ f (x) + 〈ξ, y − x〉, ∀y ∈ H .

(3) The set of all subgradients of a convex function f : H → R at x ∈ H , denoted
by ∂f (x), is called the subdifferential of f , and is defined by

∂f (x) = {ξ ∈ H : f (y) ≥ f (x) + 〈ξ, y − x〉, for each y ∈ H }.
(4) If ∂f (x) �= ∅, f is said to be subdifferentiable at x. If the function

f is continuously differentiable then ∂f (x) = {∇f (x)}. The convex function is
subdifferentiable everywhere [44].

(5) f is called weakly lower semicontinuous at x0 if for a sequence {xn}
weakly converging to x0 one has

f (x0) ≤ lim inf
n→∞ f (xn).

A function which is weakly lower semicontinuous at each point of H is called
weakly lower semicontinuous on H .

Lemma 5 ([48]) Let H1 and H2 be real Hilbert spaces and f : H1 → R is given by
f (x) = 1

2‖(I − PQ)Ax‖2 where Q is a nonempty, closed convex subset of H2 and
A : H1 → H2 be a bounded linear operator. Then, the following assertions hold:

(1) f is convex and differentiable;
(2) f is weakly lower semicontinuous on H1;
(3) ∇f (x) = A∗(I − PQ)Ax, for x ∈ H1;
(4) ∇f is ‖A‖2-Lipschitz, i.e., ‖∇f (x) − ∇f (y)‖ ≤ ‖A‖2‖x − y‖,∀x, y ∈ H1.

Lemma 6 ([49]) Let {n} be a sequence of real numbers that does not decrease at
infinity. Also consider the sequence of integers {ϕ(n)}n≥n0 defined by

ϕ(n) = max{m ∈ N : m ≤ n, m ≤ m+1}.
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Then, {ϕ(n)}n≥n0 is a nondecreasing sequence verifying lim
n→∞ ϕ(n) = ∞, and for all

n ≥ n0, the following two estimates hold:

ϕ(n) ≤ ϕ(n)+1 and n ≤ ϕ(n)+1.

Lemma 7 ([50]) Let {sn} be a sequence of nonnegative real numbers satisfying the
following relation:

sn+1 ≤ (1 − �n)sn + �nμn + θn, n ≥ 1,

where {�n}, {μn} and {θn} satisfying the conditions:
(1) {�n} ⊂ [0, 1],∑∞

n=1 �n = ∞;
(2) lim sup

n→∞
μn ≤ 0;

(3) θn ≥ 0,
∑∞

n=1 θn < ∞.

Then, lim
n→∞ sn = 0.

3 The iterative algorithms for solving SFPMOS

In this section, we propose new self-adaptive relaxed iterative methods for solving
the SFPMOS (12) in the infinite-dimensional Hilbert spaces, and we prove a weak
and strong convergence theorems of the proposed methods.

The relaxed projection methods use metric projections onto half-spaces instead
of projections onto the original closed convex sets. In what follows, we consider a
general case of the SFPMOS (12), where the nonempty, closed and convex sets C and
Qi(i = 1, 2, . . . , N) are given by level sets of convex functions defined as follows:

C := {x ∈ H : c(x) ≤ 0} and Qi := {y ∈ Hi : qi(y) ≤ 0} (21)

where, c : H → R and qi : Hi → R, i = 1, 2, . . . , N are lower semicontinuous
convex functions. We assume that both c and each qi are subdifferentiable on H and
Hi , respectively, with subdifferential ∂c and ∂qi , respectively. Moreover, assume that
for any x ∈ H a subgradient ξ ∈ ∂c(x) can be calculated, and for any y ∈ Hi

and for each i ∈ {1, 2, . . . , N}, a subgradient ηi ∈ ∂qi(y) can be calculated. Again,
assume that both ∂c and ∂qi(i = 1, 2, . . . , N) are bounded operators (i.e., bounded
on bounded sets). The subdifferentials ∂c and ∂qi are defined by

∂c(x) := {ξ ∈ H : c(z) ≥ c(x) + 〈ξ, z − x〉, ∀z ∈ H }
for all x ∈ C and

∂qi(y) := {ηi ∈ Hi : qi(u) ≥ qi(y) + 〈ηi, u − y〉, ∀u ∈ Hi}
for all y ∈ Qi , i = 1, 2, . . . , N .

In this situation, the projections onto C and Qi are not easily implemented in
general. To avoid this difficulty, we introduce a relaxed projection gradient methods,
in which the projections onto the half-spaces are adopted in stead of the projections
onto C and Qi . In particular for n ∈ N, we define the relaxed sets (half-spaces) Cn
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and Qn
i (i = 1, 2, . . . , N) of C and Qi , respectively, at xn as follows:

Cn := {x ∈ H : c(xn) ≤ 〈ξn, xn − x〉}, (22)

where ξn ∈ ∂c(xn) is subgradient of c at xn and

Qn
i := {y ∈ Hi : qi(Aixn) ≤ 〈ηn

i , Aixn − y〉}, (23)

where ηn
i ∈ ∂qi(Aixn). By the definition of the subgradient, it is easy to see that

C ⊆ Cn and Qi ⊆ Qn
i (see [51]), and the metric projections onto Cn and Qn

i

can be directly calculated (since the projections onto Cn and Qn
i have closed-form

expressions), for example, for ξn ∈ ∂c(xn)

PCn(xn) =
{

xn − c(xn)

‖ξn‖2 ξn, if ξn �= 0,

xn, otherwise .

Now, we present the following easily implementable algorithms.

3.1 Weak convergence theorems

In this subsection, we propose a new self-adaptive relaxed iterative method for solv-
ing the SFPMOS (12) in the infinite-dimensional Hilbert spaces, and we prove a
weak convergence theorem of the proposed method.

Theorem 1 Assume that the SFPMOS (12) is consistent (i.e., � �= ∅). Suppose the
sequences {ρn

1 } and {ρn
2 } in Algorithm 1 are in (0, 1) such that 0 < a1 ≤ ρn

1 ≤ b1 < 1
and 0 < a2 ≤ ρn

2 ≤ b2 < 1, respectively. Then, the sequence {xn} generated by
Algorithm 1 converges weakly to a solution p∗ ∈ � of the SFPMOS (12).
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Proof For convenience, we set the following notations first (for i = 1, 2, . . . , N)

f n
Cn

:= (
I − PCn

)
xn, f n

Qn
i

:=
(
I − PQn

i

)
Aixn. (25)

Consequently, the step-size τn given by (24) can be written as

τn :=
ρn

2

∑N
i=1 ϑi‖f n

Qn
i
‖2

τ̄ 2
n

(26)

where

τ̄n := max

{
‖

N∑
i=1

ϑiA
∗
i f

n
Qn

i
‖, β

}
.

Then, the iterative sequence {xn} in Algorithm 1 can be rewritten as follows:

xn+1 = xn − ρn
1 f n

Cn
− τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
. (27)

Let p∗ ∈ � (� is the solution set of the SFPMOS (12)). By (27), we have

‖xn+1 − p∗‖2 = ‖xn − ρn
1 f n

Cn
− τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
− p∗‖2

= ‖xn − p∗‖2 − 2

〈
xn − p∗, ρn

1 f n
Cn

+ τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

〉

+ ‖ρn
1 f n

Cn
+ τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
‖2

= ‖xn − p∗‖2 − 2
〈
xn − p∗, ρn

1 f n
Cn

〉− 2

〈
xn − p∗, τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

〉

+ ‖ρn
1 f n

Cn
‖2 + ‖τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
‖2 + 2

〈
ρn

1 f n
Cn

, τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

〉

≤ ‖xn − p∗‖2 − 2
〈
xn − p∗, ρn

1 f n
Cn

〉− 2

〈
xn − p∗, τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

〉

+ ‖ρn
1 f n

Cn
‖2 + ‖τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
‖2 + 2‖ρn

1 f n
Cn

‖‖τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
‖

≤ ‖xn − p∗‖2 − 2
〈
xn − p∗, ρn

1 f n
Cn

〉− 2

〈
xn − p∗, τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

〉

+ 2‖ρn
1 f n

Cn
‖2 + 2τ 2

n‖
N∑

i=1

ϑiA
∗
i f

n
Qn

i
‖2. (28)
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Using Lemma 1 (1), we obtain the following two estimations.
〈
xn − p∗, ρn

1 f n
Cn

〉 = ρn
1

〈
xn − p∗, f n

Cn

〉

= ρn
1 (〈xn − PCn(xn), f

n
Cn

〉 + 〈PCn(xn) − p∗, f n
Cn

〉)
= ρn

1 (〈f n
Cn

, f n
Cn

〉 + 〈PCn(xn) − p∗, f n
Cn

〉)
≥ ρn

1 ‖f n
Cn

‖2. (29)

〈
xn−p∗, τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

〉
= τn

N∑
i=1

ϑi

〈
xn − p∗, A∗

i f
n
Qn

i

〉

= τn

N∑
i=1

ϑi

〈
Aixn − Aip

∗, f n
Qn

i

〉

= τn

N∑
i=1

ϑi

(〈
f n

Qn
i
, f n

Qn
i

〉
+
〈
PQn

i
(Aixn) − Aip

∗, f n
Qn

i

〉)

≥ τn

N∑
i=1

ϑi

∥∥∥f n
Qn

i

∥∥∥
2

. (30)

Substituting (29) and (30) into (28) and since ‖∑N
i=1 ϑiA

∗
i f

n
Qn

i
‖ ≤ τ̄n, we obtain

that

‖xn+1 − p∗‖2 ≤ ‖xn − p∗‖2 − 2ρn
1 ‖f n

Cn
‖2 − 2τn

N∑
i=1

ϑi

∥∥∥f n
Qn

i

∥∥∥
2

+2‖ρn
1 f n

Cn
‖2 + 2τ 2

n ‖
N∑

i=1

ϑiA
∗
i f

n
Qn

i
‖2

≤ ‖xn − p∗‖2 − 2ρn
1

(
1 − ρn

1

) ‖f n
Cn

‖2 − 2τn

N∑
i=1

ϑi

∥∥∥f n
Qn

i

∥∥∥
2 + 2τ 2

n τ̄ 2
n

= ‖xn − p∗‖2 − 2ρn
1

(
1 − ρn

1

) ‖f n
Cn

‖2

−2

⎛
⎜⎝

ρn
2

∑N
i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2

τ̄ 2
n

⎞
⎟⎠

N∑
i=1

ϑi

∥∥∥f n
Qn

i

∥∥∥
2 + 2

⎛
⎜⎝

ρn
2

∑N
i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2

τ̄ 2
n

⎞
⎟⎠

2

τ̄ 2
n

= ‖xn − p∗‖2 − 2ρn
1

(
1 − ρn

1

) ‖f n
Cn

‖2 − 2ρn
2

(
1 − ρn

2

)
(∑N

i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2
)2

τ̄ 2
n

. (31)

Since 0 < a1 ≤ ρn
1 ≤ b1 < 1 and 0 < a2 ≤ ρn

2 ≤ b2 < 1, we have from (31) that

‖xn+1 − p∗‖2 ≤ ‖xn − p∗‖2.

Therefore, the sequence {xn} is Fejér-monotone with respect to �. As a consequence,
lim

n→∞ ‖xn − p∗‖ exists. That is, {xn} is bounded, and hence the sequence {Aixn}Ni=1

is also bounded.
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Noticing that ρn
1 ∈ [a1, b1] ⊂ (0, 1), we can obtain from (31) that

2a1(1 − b1)‖f n
Cn

‖2 ≤ 2ρn
1

(
1 − ρn

1

) ‖f n
Cn

‖2

≤ ‖xn − p∗‖2 − ‖xn+1 − p∗‖2. (32)

Since {xn} is bounded and f n
Cn

is 1-Lipschitz continuous, there exists a real number

R > 0 such that ‖f n
Cn

‖2 ≤ R. Thus, we can obtain from (32) that

lim
n→∞ ‖f n

Cn
‖2 = 0. (33)

Hence, we obtain from (33)

lim
n→∞ ‖f n

Cn
‖ = 0. (34)

Noticing that ρn
2 ∈ [a2, b2] ⊂ (0, 1), we can obtain from (31) that

2a2(1 − b2)

(∑N
i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2
)2

τ̄ 2
n

≤ 2ρn
2

(
1 − ρn

2

)
(∑N

i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2
)2

τ̄ 2
n

≤ ‖xn − p∗‖2 − ‖xn+1 − p∗‖2. (35)

Letting n → ∞ on both sides of (35), we have

lim
n→∞

(∑N
i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2
)2

τ̄ 2
n

= 0. (36)

Since the iterative sequence {xn} is bounded and by the Lipschitz continuity of

f n
Qn

i
, the sequence

{∥∥∥∑N
i=1 ϑiA

∗
i f

n
Qn

i

∥∥∥
}∞

n=1
is bounded and so the sequence {τ̄n} is

bounded too. Therefore, we can get from (36) that

lim
n→∞ ‖f n

Qn
i
‖ = 0 for i = 1, 2, . . . , N . (37)

Next, we will prove that ωw(xn) ⊂ �. For each i = 1, 2, . . . , N , since ∂qi is
bounded on bounded sets, there exists a constant γ > 0 such that ‖ηn

i ‖ ≤ γ , where
ηn

i ∈ ∂qi(Aixn). Then, for i = 1, 2, . . . , N , notice that PQn
i
(Aixn) ∈ Qn

i , we have

qi(Aixn) ≤ 〈ηn
i , Aixn − PQn

i
(Aixn)〉

≤ ‖ηn
i ‖‖Aixn − PQn

i
(Aixn)‖

≤ γ ‖
(
I − PQn

i

)
Aixn‖. (38)

By (37), we have for any i = 1, 2, . . . , N, that

lim sup
n→∞

qi(Aixn) ≤ 0. (39)

Let p̂ ∈ ωw(xn), there exists a subsequence {xnm} ⊂ {xn} such that xnm ⇀ p̂ as
m → ∞. By the weak lower semicontinuity of the function qi and (39), we get

qi(Aip̂) ≤ lim inf
m→∞ qi(Aixnm) ≤ 0, (40)
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which means that Aip̂ ∈ Qi for i = 1, 2, . . . , N .
Since ∂c is bounded, there exists a constant δ > 0 such that ‖ξn‖ ≤ δ, where

ξn ∈ ∂c(xn). Then, notice that PCn(xn) ∈ Cn, we have

c(xn) ≤ 〈ξn, xn − PCn(xn)〉
≤ ‖ξn‖‖xn − PCn(xn)‖
≤ δ‖ (I − PCn

)
xn‖. (41)

By (34), we have that

lim sup
n→∞

c(xn) ≤ 0. (42)

By the weak lower semicontinuity of the convex function c and (42), we obtain

c(p̂) ≤ lim inf
m→∞ c(xnm) ≤ 0. (43)

Consequently, p̂ ∈ C. Therefore, p̂ ∈ �.
Notice that for any p∗ ∈ �, lim

n→∞ ‖xn − p∗‖ exists and ωw(xn) ⊂ �. Therefore,

applying Lemma 4, we conclude that the iterative sequence {xn} converges weakly
to a solution of the SFPMOS (12). This completes the proof.

For N = 1, we note the following iterative method for solving the SFP (1).

As an immediate consequence of Theorem 1, we obtain the following corollary.

Corollary 1 Assume that the SFP (1) is consistent. Suppose the sequences {ρn
1 } and

{ρn
2 } in Algorithm 2 are in (0, 1) such that 0 < a1 ≤ ρn

1 ≤ b1 < 1 and 0 <

a2 ≤ ρn
2 ≤ b2 < 1, respectively. Then, the sequence {xn} generated by Algorithm 2

converges weakly to a solution p∗ ∈ � = {p ∈ H1 : p ∈ C such that Ap ∈ Q}.
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3.2 Strong convergence theorem

In this subsection, we propose a new iterative method for solving the SFPMOS (12) in
the infinite-dimensional Hilbert spaces, and we prove a strong convergence theorem
of the proposed method.

Theorem 2 Assume that the SFPMOS (12) is consistent (i.e., � �= ∅). Suppose the
sequences {ρn

1 }, {ρn
2 }, and {αn} in Algorithm 3 are in (0, 1) such that 0 < a1 ≤ ρn

1 ≤
b1 < 1 and 0 < a2 ≤ ρn

2 ≤ b2 < 1, and lim
n→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then,

the sequence {xn} generated by Algorithm 3 converges strongly to the point p∗ ∈ �,
where p∗ = P�u.

Proof For simplicity, the same as we did in the proof of Theorem 1, we introduce
some notations first.

f n
Cn

:= (
I − PCn

)
xn, f n

Qn
i

:=
(
I − PQn

i

)
Aixn for i = 1, 2, . . . , N,

yn = xn − ρn
1 f n

Cn
− τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i
,

where τn is the stepsize given in the Algorithm 3 and can be defined as

τn :=
ρn

2

∑N
i=1 ϑi‖f n

Qn
i
‖2

τ̄ 2
n

(46)
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where

τ̄n := max

{∥∥∥∥∥
N∑

i=1

ϑiA
∗
i f

n
Qn

i

∥∥∥∥∥ , β

}
.

Then, the iterative sequence {xn} in Algorithm 3 can be rewritten as follows:

xn+1 = αnu + (1 − αn)yn. (47)

Let p∗ ∈ �. Using Lemma 2 (1) and by (47), we have that

‖xn+1 − p∗‖2 = ‖αnu + (1 − αn)yn − p∗‖2

= ‖αnu + (1 − αn)yn − p∗ + αnp
∗ − αnp

∗‖2

= ‖αn(u − p∗) + (1 − αn)(yn − p∗)‖2

≤ (1 − αn)
2‖yn − p∗‖2 + 2〈αn(u − p∗), xn+1 − p∗〉

≤ (1 − αn)‖yn − p∗‖2 + 2αn〈u − p∗, xn+1 − p∗〉. (48)

From (31), we have

‖yn − p∗‖2 ≤ ‖xn − p∗‖2 − 2ρn
1

(
1 − ρn

1

) ‖f n
Cn

‖2 − 2ρn
2

(
1 − ρn

2

)
(∑N

i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2
)2

τ̄ 2
n

. (49)

From (48) and (49), we obtain

‖xn+1 − p∗‖2 ≤ (1 − αn)‖xn − p∗‖2 + 2αn〈u − p∗, xn+1 − p∗〉 −

(1 − αn)

⎡
⎢⎣2ρn

1

(
1 − ρn

1

) ‖f n
Cn

‖2 + 2ρn
2

(
1 − ρn

2

)
(∑N

i=1 ϑi‖f n
Qn

i
‖2
)2

τ̄ 2
n

⎤
⎥⎦ . (50)

Now, we prove the sequence {xn} is bounded. Indeed, using the assumptions imposed
on {ρn

1 }, {ρn
2 } and {αn}, we have from (50) that

‖xn+1 − p∗‖2 ≤ (1 − αn)‖xn − p∗‖2‖ + 2αn〈u − p∗, xn+1 − p∗〉
≤ (1 − αn)‖xn − p∗‖2‖ + 4αn‖u − p∗‖2 + 1

4
αn‖xn+1 − p∗‖2.

Consequently,

‖xn+1 − p∗‖2 ≤ 1 − αn

1 − 1
4αn

‖xn − p∗‖2 +
3
4αn

1 − 1
4αn

16

3
‖u − p∗‖2

≤ max

{
‖xn − p∗‖, 16

3
‖u − p∗‖

}

...

≤ max

{
‖x0 − p∗‖, 16

3
‖u − p∗‖

}
. (51)

This shows that the sequence {xn} is bounded, and {yn} and {Aixn}Ni=1 as well.
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Next, with no loss of generality, we may assume that there exist σ1, σ2 > 0 such
that 2ρn

1

(
1 − ρn

1

)
(1 − αn) ≥ σ1 and 2ρn

2

(
1 − ρn

2

)
(1 − αn) ≥ σ2 for all n.

Setting sn = ‖xn − p∗‖2, we get from (50) that

sn+1 − (1 − αn)sn + σ1‖f n
Cn

‖2 +
σ2

(∑N
i=1 ϑi‖f n

Qn
i
‖2
)2

τ̄ 2
n

≤ 2αn〈u − p∗, xn+1 − p∗〉
≤ 2αn‖u − p∗‖‖xn+1 − p∗‖. (52)

Now, we prove sn → 0 by distinguishing two cases.
Case 1: Assume that {sn} is eventually decreasing. That is, there exists k ≥ 0 such
that sn+1 < sn holds for all n ≥ k. In this case, {sn} must be convergent, and from
(52) it follows that

(
σ1‖f n

Cn
‖2 +

σ2

(∑N
i=1 ϑi‖f n

Qn
i
‖2
)2

τ̄ 2
n

)
≤ αnK + (sn − sn+1), (53)

where K > 0 is a constant such that 2‖u − p∗‖‖xn+1 − p∗‖ ≤ K for all n ∈ N.
Since σ1, σ2 > 0, and αn → 0 as n → ∞, we have from (53) that

lim
n→∞ ‖f n

Cn
‖2 = 0 ⇒ lim

n→∞ ‖f n
Cn

‖ = 0 ⇒ lim
n→∞ ‖ (I − PCn

)
xn‖ = 0, (54)

and

lim
n→∞

(∑N
i=1 ϑi

∥∥∥f n
Qn

i

∥∥∥
2
)2

τ̄ 2
n

= 0. (55)

Next, we show that
{
f n

Qn
i

}
→ 0. To do so, it suffices to verify that

{
‖∑N

i=1 ϑiA
∗
i f

n
Qn

i
‖2
}

is bounded. Since p∗ ∈ �, we note that A∗
i

(
I − PQn

i

)
Aip

∗ = 0. Hence, it follows

from Lemma 5 that

‖A∗
i

(
I − PQn

i

)
Aixn − A∗

i

(
I − PQn

i

)
Aip

∗‖ ≤
(

max
1≤i≤N

‖Ai‖2
)

‖xn − p∗‖ (56)

and since {xn} is bounded, for all i = 1, 2, . . . , N , we have the
sequence

{∥∥∥A∗
i

(
I − PQn

i

)
Aixn

∥∥∥
}∞

n=1
is bounded. This implies that the sequence{∥∥∥∑N

i=1 ϑiA
∗
i f

n
Qn

i

∥∥∥
}∞

n=1
is also bounded. Consequently, {τ̄n} is bounded too. There-

fore, we can get from (55) that

lim
n→∞ ‖f n

Qn
i
‖ = 0 ⇒ lim

n→∞ ‖
(
I − PQn

i

)
Aixn‖ = 0 (57)

for i=1, 2, . . . , N.
Next, we verify that ωw(xn) ⊂ �. For each i = 1, 2, . . . , N , since ∂qi is bounded

on bounded sets, there exists a constant δ > 0 such that ‖ηn
i ‖ ≤ δ for all n ≥ 0,
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where ηn
i ∈ ∂qi(Aixn). Then, from the fact that PQn

i
(Aixn) ∈ Qn

i and (23), it follows
(for i = 1, 2, . . . , N) that

qi(Aixn) ≤ 〈ηn
i , Aixn − PQn

i
(Aixn)〉

≤ ‖ηn
i ‖‖Aixn − PQn

i
(Aixn)‖

≤ δ‖
(
I − PQn

i

)
Aixn‖. (58)

Let p̂ ∈ ωw(xn), there exists a subsequence {xnm} of {xn} such that xnm ⇀ p̂ as
m → ∞. Then, the weak lower semicontinuity of qi and (58) imply that

qi(Aip̂) ≤ lim inf
m→∞ qi(Aixnm) ≤ 0. (59)

It turns out that Aip̂ ∈ Qi for i = 1, 2, . . . , N . Next, we turn to prove that p̂ ∈ C.
Since ∂c is bounded, there exists a constant γ > 0 such that ‖ξn‖ ≤ γ for all n ≥ 0,
where ξn ∈ ∂c(xn). Then, from that trivial fact that PCn(xn) ∈ Cn and (22), it follows
that

c(xn) ≤ 〈ξn, xn − PCn(xn)〉
≤ ‖ξn‖‖xn − PCn(xn)‖
≤ γ ‖ (I − PCn

)
xn‖. (60)

The weak lower semicontinuity of c then implies that

c(p̂) ≤ lim inf
m→∞ c(xnm) ≤ 0. (61)

Consequently, p̂ ∈ C. Therefore, p̂ ∈ �. Hence, ωw(xn) ⊂ �.
Moreover, we have the following estimation

‖xn − xn+1‖ =
∥∥∥∥∥xn −

[
αnu + (1 − αn)

(
xn − ρn

1 f n
Cn

− τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

)]∥∥∥∥∥

=
∥∥∥∥∥αn(xn − u) + (1 − αn)

(
ρn

1 f n
Cn

+ τn

N∑
i=1

ϑiA
∗
i f

n
Qn

i

)∥∥∥∥∥

≤ αn‖xn − u‖ + (1 − αn)

⎛
⎝ρn

1 ‖f n
Cn

‖ +
ρn

2

∑N
i=1 ϑi‖f n

Qn
i
‖2

τ̄n

⎞
⎠ ,

since {xn} is bounded and lim
n→∞ αn = 0, we have that lim

n→∞ αn‖xn − u‖ = 0. Noting

that {‖A∗
i (I − PQn

i
)Aixn‖}∞n=1 is bounded, (57) together with the conditions 0 <

a1 ≤ ρn
1 ≤ b1 < 1 and 0 < a2 ≤ ρn

2 ≤ b2 < 1, we have that

lim
n→∞(1 − αn)

⎛
⎝ρn

1 ‖f n
Cn

‖ +
ρn

2

∑N
i=1 ϑi‖f n

Qn
i
‖2

τ̄n

⎞
⎠ = 0,

which implies that

lim
n→∞ ‖xn − xn+1‖ = 0. (62)
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Furthermore, due to Lemma 1 (1), we get

lim sup
n→∞

〈u − p∗, xn − p∗〉 = max
z∈ωw(xn)

〈u − P�(u), z − P�(u)〉 ≤ 0. (63)

Taking into account of (52), we have

sn+1 ≤ (1 − αn)sn + 2αn〈u − p∗, xn+1 − p∗〉. (64)

Applying Lemma 7 to (64), we obtain sn = ‖xn − p∗‖2 → 0.
Case 2: Assume that {sn} is not eventually decreasing. That is, we can find an

integer n0 such that sn0 ≤ sn0+1. Now we define

Mn := {n0 ≤ m ≤ n : sm ≤ sm+1} , n > n0. (65)

It is easy to see that Mn is nonempty and satisfies Mn ⊆ Mn+1. Let

φ(n) := max Mn, n > n0. (66)

It is clear that φ(n) → ∞ as n → ∞ (otherwise, {sn} is eventually decreasing). It is
also clear that sφ(n) ≤ sφ(n)+1 for all n > n0. Moreover,

sn ≤ sφ(n)+1, n > n0. (67)

In fact, if φ(n) = n, then (67) is trivial: if φ(n) < n, from (66), there exists some
j ∈ N such that φ(n) + j = n, we deduce that

sn = sφ(n)+j < · · · < sφ(n)+2 < sφ(n)+1, (68)

and (67) holds again. Since sφ(n) < sφ(n)+1 for all n > n0, it follows from (53) that
⎛
⎜⎝σ1‖f φ(n)

Cφ(n)
‖2 +

σ2(
∑N

i=1 ϑi‖f φ(n)

Q
φ(n)
i

‖2)2

τ̄ 2
φ(n)

⎞
⎟⎠ ≤ αφ(n)K → 0, (69)

so that

lim
n→∞ ‖f φ(n)

Cφ(n)
‖ = 0 ⇒ lim

n→∞ ‖(I − PCφ(n)
)xφ(n)‖ = 0, (70)

and

lim
n→∞

(
∑N

i=1 ϑi‖f φ(n)

Q
φ(n)
i

‖2)2

τ̄ 2
φ(n)

= 0. (71)

Noting that
{∥∥∥A∗

i (I − P
Q

φ(n)
i

)Aixφ(n)

∥∥∥
}∞

n=1
is bounded, for i = 1, 2, . . . , N , we also

have that

lim
n→∞

∥∥∥∥f φ(n)

Q
φ(n)
i

∥∥∥∥ = 0 ⇒ lim
n→∞

∥∥∥(I − P
Q

φ(n)
i

)Aixφ(n)

∥∥∥ = 0. (72)

By the same argument to the proof in Case 1, we have ωw(xφ(n)) ⊂ �.
Furthermore, by the same argument to the proof in Case 1, from (62), we have that

lim
n→∞ ‖xφ(n) − xφ(n)+1‖ = 0. (73)
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Thus, one can deduce that

lim sup
n→∞

〈u − p∗, xφ(n)+1 − p∗〉 = lim sup
n→∞

〈u − p∗, xφ(n) − p∗〉
= max

z∈ωw(xφ(n))
〈u − P�(u), z − P�(u)〉

≤ 0. (74)

Since sφ(n) ≤ sφ(n)+1, it follows from (52) that

sφ(n) ≤ 2〈u − p∗, xφ(n)+1 − p∗ >, n > n0. (75)

(74) and (75) together gives

lim sup
n→∞

sφ(n) ≤ 0. (76)

Hence, lim
n→∞ sφ(n) = 0, which together with (73)

√
sφ(n)+1 ≤ ‖xφ(n)+1 − p∗‖

= ‖(xφ(n) − p∗) + (xφ(n)+1 − xφ(n))‖
≤ ‖xφ(n) − p∗‖ + ‖xφ(n)+1 − xφ(n)‖
= √

sφ(n) + ‖xφ(n)+1 − xφ(n)‖ → 0, (77)

which, together with (67), in turn implies that sn → 0, that is, xn → p∗. Therefore,
the full iterative sequence {xn} converges strongly to the solution p∗ = P�(u) of
SFPMOS (12). This completes the proof.

Corollary 2 Assume that the SFPMOS (12) is consistent (i.e., � �= ∅). Let x0 ∈ H

be an arbitrary initial point, and set n = 0. Let {xn} be a sequence generated via the
manner

xn+1 = αnx0 + (1 − αn)

(
xn − ρn

1

(
I − PCn

)
xn − τn

N∑
i=1

ϑiA
∗
i

(
I − PQn

i

)
Aixn

)

s where the step-size τn is updated self-adaptively as

τn := ρn
2

∑N
i=1 ϑi‖(I − PQn

i
)Aixn‖2

τ̄ 2
n

(78)

where for a constant β > 0

τ̄n := max

{
‖

N∑
i=1

ϑiA
∗
i

(
I − PQn

i

)
Aixn‖, β

}
,

and Cn and Qn
i are the half-spaces given as in (22) and (23), respectively. Suppose

the parameters {ρn
1 }, {ρn

2 }, {αn} are in (0, 1) satisfying the conditions in Theorem 2,
and {ϑi}Ni=1 > 0. Then, the sequence {xn} converges strongly to the point p∗ ∈ �,
where p∗ = P�(x0).

Similarly as in Subsection 3.1, for N = 1, we again obtain the following strongly
convergent result regarding the SFP (1).
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As an immediate consequence of Theorem 2, we obtain the following corollary.

Corollary 3 Assume that the SFP (1) is consistent. Suppose the sequences {ρn
1 },

{ρn
2 } and {αn} in Algorithm 4 are in (0, 1) such that 0 < a1 ≤ ρn

1 ≤ b1 < 1 and
0 < a2 ≤ ρn

2 ≤ b2 < 1, and lim
n→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then, the sequence

{xn} generated by Algorithm 4 converges strongly to the point p∗ = P�(u) ∈ � =
{p ∈ H1 : p ∈ C such that Ap ∈ Q}.

4 Application to the generalized split feasibility problem

In this section, we present an application of Theorems 1 and 2 for solving generalized
split feasibility problem (another generalization of the SFP) in Hilbert spaces. We
recall the generalized split feasibility problem first.

In 2020, Reich and Tuyen [52] first introduced and studied the following general-
ized split feasibility problem (GSFP).

Let Hi, i = 1, 2, . . . , N, be real Hilbert spaces and Ci, i = 1, 2, . . . , N,

be closed and convex subsets of Hi , respectively. Let Bi : Hi → Hi+1, i =
1, 2, . . . , N − 1, be bounded linear operators such that

S := C1 ∩ B−1
1 (C2) ∩ · · · ∩ B−1

1

(
B−1

2 . . .
(
B−1

N−1(CN)
))

�= ∅. (80)

Given Hi , Ci and Ai as above, the generalized SFP (GSFP)([52]) is to

find an element p∗ ∈ S. (81)

That is p∗ ∈ C1, B1p
∗ ∈ C2, . . . , BN−1BN−2 . . . B1p

∗ ∈ CN . In [52], Reich and
Tuyen proved a strong convergence theorem for a modification of the CQ method
which solves the GSFP (81). For more details on the GSFP (81), one can read the
paper [52].
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Remark 1 ([43, Remark 1.1]) Letting H = H1, C = C1, Qi = Ci+1, 1 ≤ i ≤
N − 1, A1 = B1, A2 = B2B1, . . . , and AN−1 = BN−1BN−2BN−3 . . . B2B1, then
the SFPMOS (12) becomes the GSFP (81).

From Theorem 1 and Remark 1, we note the following theorem for solving the
GSFP (81).

Theorem 3 Let H = H1, C = C1, Qi = Ci+1, 1 ≤ i ≤ N − 1, A1 = B1, A2 =
B2B1, . . . , and AN−1 = BN−1BN−2BN−3 . . . B2B1. Assume that the GSFP (81) is
consistent (i.e., S �= ∅). Let x0 ∈ C1 be an arbitrary initial point and set n = 0. Let
{xn} be the sequence generated by

xn+1 = xn − ρn
1

(
I − PCn

1

)
xn − τn

N−1∑
i=1

ϑiA
∗
i

(
I − PCn

i+1

)
Aixn (82)

where Cn
1 and Cn

i+1 are half-spaces of C1 and Ci+1 (at the nth iterate ), respectively,

τn :=
ρn

2

∑N−1
i=1 ϑi

∥∥∥
(
I − PCn

i+1

)
Aixn

∥∥∥
2

τ̄ 2
n

where for a constant β > 0

τ̄n := max

{∥∥∥∥∥
N−1∑
i=1

ϑiA
∗
i

(
I − PCn

i+1

)
Aixn

∥∥∥∥∥ , β

}
,

and the sequences {ρn
1 }, {ρn

2 } ⊂ (0, 1) such that 0 < a1 ≤ ρn
1 ≤ b1 < 1 and

0 < a2 ≤ ρn
2 ≤ b2 < 1, and the parameter {ϑi}Ni=1 > 0. Then, the sequence {xn}

generated by the iterative scheme (82) converges weakly to a solution p∗ ∈ S.

Again, using Theorem 2 and Remark 1, we note the following result to solve the
GSFP (81).

Theorem 4 Let H = H1, C = C1, Qi = Ci+1, 1 ≤ i ≤ N − 1, A1 = B1, A2 =
B2B1, . . . , and AN−1 = BN−1BN−2BN−3 . . . B2B1. Assume that the GSFP (81) is
consistent (i.e., S �= ∅). Let u ∈ C1 be a fixed point and x0 ∈ C1 is an arbitrary
initial point, and set n = 0. Let {xn} be the sequence generated by

xn+1 = αnu + (1 − αn)

(
xn − ρn

1

(
I − PCn

1

)
xn − τn

N−1∑
i=1

ϑiA
∗
i

(
I − PCn

i+1

)
Aixn

)

(83)
where Cn

1 and Cn
i+1 are half-spaces of C1 and Ci+1, respectively,

τn :=
ρn

2

∑N−1
i=1 ϑi

∥∥∥
(
I − PCn

i+1

)
Aixn

∥∥∥
2

τ̄ 2
n
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where for a constant β > 0 and

τ̄n := max

{∥∥∥∥∥
N−1∑
i=1

ϑiA
∗
i

(
I − PCn

i+1

)
Aixn

∥∥∥∥∥ , β

}
,

the sequences {ρn
1 }, {ρn

2 }, {αn} ⊂ (0, 1) such that 0 < a1 ≤ ρn
1 ≤ b1 < 1, 0 < a2 ≤

ρn
2 ≤ b2 < 1, lim

n→∞ αn = 0 and
∑∞

n=0 αn = ∞, and the parameter {ϑi}Ni=1 > 0.

Then, the sequence {xn} generated by the iterative scheme (83) converges strongly to
the solution p∗ ∈ S, where p∗ = PS(u).

5 Numerical results

In this section, we present some numerical examples to illustrate the implementa-
tion and efficiency of our proposed methods compared to some existing results by
solving some problems. The numerical results are completed on a standard FUJIT-
SUNOTEBOOK laptop with 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
2.80 GHz with memory 16GB. The code is implemented in MATLAB R2022a. In
our numerical experiments, Iter. (n) stands for the number of iterations and CPU(s)
for the Elapsed time-run in seconds.

Example 1 ([43]) Consider H = R
10, H1 = R

20, H2 = R
30 and H3 = R

40. Find a
point p∗ ∈ R

10 such that

p∗ ∈ � := C ∩ A−1
1 (Q1) ∩ A−1

2 (Q2) ∩ A−1
3 (Q3) �= ∅, (84)

where the sets C and Qi , and the linear bounded operators Ai are defined by

C = {
x ∈ R

10 : ‖x − c‖2 ≤ r2
}
,

Q1 = {
A1x ∈ R

20 : ‖A1x − c1‖2 ≤ r2
1

}
,

Q2 = {
A2x ∈ R

30 : ‖A2x − c2‖2 ≤ r2
2

}
,

Q3 = {
A3x ∈ R

40 : ‖A3x − c3‖2 ≤ r2
3

}
.

(85)

where c ∈ R
10, c1 ∈ R

20, c2 ∈ R
30, c3 ∈ R

40, r, r1, r2, r3 ∈ R, and A1 : R10 →
R

20, A2 : R10 → R
30, A3 : R10 → R

40. In this case, for any x ∈ R
10 we have

c(x) = ‖x − c‖2 − r2 and qi(Aix) = ‖Aix − ci‖2 − r2
i for i = 1, 2, 3. According to

(22) and (23), the half-spaces Cn and Qn
i (i = 1, 2, 3), respectively of the sets C and

Qi are determined at a point xn and Aixn, respectively as follows:

Cn = {x ∈ R
10 : ‖xn − c‖2 − r2 ≤ 2〈xn − c, xn − x〉},

Qn
1 = {y ∈ R

20 : ‖A1xn − c1‖2 − r2
1 ≤ 2〈A1xn − c1, A1xn − y〉},

Qn
2 = {y ∈ R

30 : ‖A2xn − c2‖2 − r2
2 ≤ 2〈A2xn − c2, A2xn − y〉},

Qn
3 = {y ∈ R

40 : ‖A3xn − c3‖2 − r2
3 ≤ 2〈A3xn − c3, A3xn − y〉}.

(86)

Then, the metric projections onto the half-spaces Cn and Qn
i (i = 1, 2, 3), can be eas-

ily calculated. The elements of the representing matrices Ai are randomly generated
in the closed interval [−5, 5], the coordinates of the centers c, c1, c2, c3 are randomly

1356 Numerical Algorithms (2023) 92:1335–1366



generated in the closed interval [−1, 1], and the radii r, r1, r2, r3 are randomly gen-
erated in the closed intervals [10, 20], [20, 40], [30, 60] and [40, 80], respectively.
For simplicity, denote e1 = (1, 1, . . . , 1)T ∈ R

10.
In this example, we examine the convergence of the sequence {xn} which is

defined by Algorithms 1 and 3 by solving problem (84) compared to the recently
introduced iterative methods for solving the SFPMOS (12) given by Scheme (13),
Scheme (14), and with the following viscosity approximation an optimization
approach method proposed by Reich et al. [53] for solving the SFPMOS (12). For
any given point x0 ∈ H , {xn} is a sequence generated by the iterative method

xn+1 := αnf (xn) + (1 − αn)PC

⎛
⎝xn − λn

∑
i∈I (xn)

γi,nA
∗
i

(
I − PQi

)
Aixn

⎞
⎠ , (87)

where f : C → C is a strict contraction mapping of H into itself with the contraction
constant θ ∈ [0, 1), {αn} ⊂ (0, 1), I (xn) = {

i : ∥∥Aixn − PQi
Aixn

∥∥
= maxi=1,2,...,N

∥∥Aixn − PQi
Aixn

∥∥}, γi,n ≥ 0 for all i ∈ I (xn) with∑
i∈I (xn) γi,n = 1, and for {ρn} ⊂ [ā, ā] ⊂ (0, 2) {λn} ⊂ [0, ∞) such that

λn =
{

ρn
(maxi=1,2,...,N ‖Aixn−PQi

Aixn‖)2

‖∑i∈I (xn) γi,nA∗
i (I−PQi

)Aixn‖2 , if ‖∑i∈I (xn) γi,nA
∗
i (I − PQi

)Aixn‖ > 0,

0, otherwise .
(88)

For comparison purpose, we consider the values of the parameters appeared in the
methods as follows. For Algorithms 1 and 3, we take β = 0.05, ρn

1 = 1
104n+1

= ρn
2

and ϑi = i
12 , i = 1, 2, 3. For Algorithm 3, Scheme (14), and Scheme (87) αn = 1

n+1 .
For Scheme (13) and Scheme (14), we take λn = 0.00005. For Scheme (14) and
Scheme (87), we take f (x) = 0.975x. Moreover, for Scheme (87), we take γ1,n = 1

6 ,
γ2,n = 1

3 , γ3,n = 1
2 and ρn = 1

104n+1
. Using En = ‖xn+1 − xn‖2 < 10−8 as stopping

criteria, for different choices of the fixed point u and the initial point x0, the results
of numerical experiments are reported in Table 1 and Fig. 1.

It can be observed from Table 1 and Fig. 1 that for each choices of (u, x0), our
proposed methods Algorithms 1 and 3 have better performance interms of the iter-
ation numbers (Iter. (n)) and comparatively the CPU-run time in seconds (CPU(s))
than of the compared methods. More precisely, Algorithms 1 and 3 have less number
of iterations and take small CPU-time to run than of the iterative methods given by
Scheme (13), Scheme (14), and Scheme (87).

Example 2 Let H1 = H2 = L2([0, 2π ]) with the inner product 〈.〉 defined by

〈x, y〉 =
∫ 2π

0
x(t)y(t)dt, ∀x, y ∈ L2([0, 2π ])

and with the norm ‖.‖ defined by

‖x||2 :=
√∫ 2π

0
|x(t)|2dt, ∀x, y ∈ L2([0, 2π ]).
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Table 1 Comparison of Algorithms 1 and 3 with Scheme (13), Scheme (14), and Scheme (87) for different
choices of u and x0

(u, x0) Algorithm 1 Algorithm 3 Scheme (13) Scheme (14) Scheme (87)

Iter. (n) 21 397 580 709 611

(10e1, 15e1) CPU(s) 0.000814 0.007049 0.009757 0.012382 0.007107

En 9.7443e-09 9.9995e-09 9.9612e-09 9.9995e-09 9.9689e-09

Iter. (n) 24 548 654 662 571

(10e1,
1
2 e1) CPU(s) 0.000873 0.007506 0.009706 0.011476 0.008185

En 9.5908e-09 9.9589e-09 9.9869e-09 9.9834e-09 9.9686e-09

Iter. (n) 49 297 393 543 470

(3e1,
1
5 e1) CPU(s) 0.010865 0.019628 0.028973 0.036331 0.019807

En 9.7579e-09 9.9626e-09 9.7810e-09 9.9688e-09 9.9801e-09

Iter. (n) 45 318 441 685 590

(3e1,− 1
5 e1) CPU(s) 0.001141 0.006589 0.008854 0.011453 0.007842

En 9.9649e-09 9.9562e-09 9.9854e-09 9.9735e-09 9.9709e-09

Iter. (n) 53 180 349 611 528

(e1,− 1
50 e1) CPU(s) 0.001559 0.004430 0.008021 0.011801 0.005567

En 9.8328e-09 9.8907e-09 9.8595e-09 9.9901e-09 9.9765e-09

Iter. (n) 43 178 272 470 409

(e1,− 1
1000 e1) CPU(s) 0.002600 0.003973 0.006847 0.009095 0.006656

En 9.7746e-09 9.8789e-09 9.8990e-09 9.9887e-09 9.9616e-09

Furthermore, we consider the following half-spaces

C :=
{
x ∈ L2([0, 2π ]) :

∫ 2π

0
x(t)dt ≤ 1

}
and Q :=

{
y ∈ L2([0, 2π ]) :

∫ 2π

0
|y(t) − sin(t)|2dt ≤ 16

}
.

In addition, we consider a linear continuous operator A : L2([0, 2π ]) →
L2([0, 2π ]), where (Ax)(t) = x(t). Then, (A∗x)(t) = x(t) and ‖A‖ = 1. That is, A

is an identity operator. The metric projection onto C and Q have an explicit formula
[54]. We can also write the projections onto C and the projections onto Q as follows:

PC(x(t)) =
{

x(t) + 1−∫ 2π
0 x(t)dt

4π2 , if
∫ 2π

0 x(t)dt > 1,

x(t), if
∫ 2π

0 x(t)dt ≤ 1.

PQ(y(t)) =
⎧⎨
⎩

sin(t) + 4(y(t)−sin(t))√∫ 2π
0 |y(t)−sin(t)|2dt

, if
∫ 2π

0 |y(t) − sin(t)|2dt > 16,

y(t), if
∫ 2π

0 |y(t) − sin(t)|2dt ≤ 16.

Now, we solve the following problem

find p∗ ∈ C such that Ap∗ ∈ Q. (89)

In this example, we examine the numerical behaviour of our proposed method:
Algorithm 4 and compare it with the strongly convergent iterative algorithms given
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Fig. 1 Comparison of Algorithm 1 and Algorithm 3 with Scheme (13), Scheme (14), and Scheme (87) for
different choices of u and x0

by Scheme (10) and Scheme (11) by solving problem (89). For comparison purpose,
we take the following data: For Algorithm 4, we take, β = 0.05, ρn

1 = ρn
2 = n

n+1

and αn = 1
n+1 . For Schemes (10) and (11), we take ρn = n

n+1 and αn = 1
n+1 .
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Now, using En = ‖xn+1 − xn‖ < 10−4 as stopping criteria for all methods, for
different choices of the fixed point u and the initial point x0, the outcomes of the
numerical experiments of the compared methods are reported in Table 2 and Fig. 2.

It can be observed from Table 2 and Fig. 2 that for each choices of u and x0,
Algorithm 4 is faster in terms of less number of iterations (Iter. (n)) and CPU-run
time in seconds (CPU(s)) than the compared algorithms.

Example 3 The problem of computing sparse solutions (i.e., solutions where only
a very small number of entries are nonzero) to linear inverse problems arises in a
large number of application areas, for instance, in image restoration [55], channel
equalization [56], echo cancellation [57], and stock market analysis [58]. The linear
inverse problem consists of computing sparse solutions of a vector that has been
digitized and has been degraded by an additive noise. Without loss of generality, for
a vector x ∈ H1 and an observed vector y ∈ H2, a model including an additive noise
can be written as

y = Ax + η,

Table 2 Comparison of Algorithm 4 with Scheme (10) and Scheme (11) for different choices of u and x0

Algorithm 4 Scheme (10) Scheme (11)

Iter. (n) 77 89 83

u = 2t

2 , x0 = et CPU(s) 197.820341 258.683440 271.607658

En 0.000097596 0.0000965296 0.000096184

Iter. (n) 77 89 83

u = 2t

2 , x0 = t2 CPU(s) 171.863335 195.831745 252.749699

En 0.000097596 0.0000965297 0.000096184

Iter. (n) 77 89 83

u = 2t

2 , x0 = t3sin(3t)
3 CPU(s) 154.680836 182.982568 290.567723

En 0.000097596 0.0000965297 0.000096184

Iter. (n) 23 31 31

u = −t , x0 = 2t

2 CPU(s) 67.111117 97.401316 98.183831

En 0.000097482 0.000096914 0.000096914

Iter. (n) 17 23 23

u = 1 − t , x0 = 1
et CPU(s) 33.258399 45.372658 45.323811

En 0.000094479 0.000086201 0.0000862013

Iter. (n) 65 90 90

u = −t2, x0 = −t CPU(s) 128.514409 184.037896 297.695904

En 0.000095464 0.000096829 0.000096829
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Fig. 2 Comparison of Algorithm 4 with Scheme (10) and Scheme (11) for different choices of u, x0

where A is a bounded linear operator between the two Hilbert spaces H1 and H2 and
η ∈ H2 denotes the additive noise.

Suppose that H1 = H2 = L2([0, 1]) with norm ‖x‖ :=
(∫ 1

0 |x(t)|2dt
) 1

2
and

inner product 〈x, y〉 := ∫ 1
0 x(t)y(t)dt , x, y ∈ L2([0, 1]). Define the Volterra integral
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operator A : L2([0, 1]) → L2([0, 1]) by

Ax(t) :=
∫ t

0
x(s)ds, ∀x ∈ L2([0, 1]), t ∈ [0, 1].

Then, A is bounded linear monotone and ‖A‖ = 2
π

(see [59, Problem 188, p100;
Solution 188, p300]). Using Algorithm 4, we develop an iterative algorithm to
recover the solution of the linear equation Ax = y −η. Furthermore, we compare the
performance of our proposed Algorithm 4 and Scheme (10).

We are interested in solutions x∗ ∈ {x ∈ C : Ax ∈ Q}, where C is the cone of
functions x(t) that are negative for t ∈ [0, 0.25] and positive for t ∈ [0.25, 1] and
Q = [a(t), b(t)] := {y(t) : a(t) ≤ y(t) ≤ b(t), 0 ≤ t ≤ 1} is a box delimited by the
functions a(t) and b(t). The metric projection PQ can be computed by formula:

PQ(y) := max{a, min{y, b}}.
For some problems, the solution is almost sparse. To ensure the existence of the

solution of the consider problem, K-sparse vector x∗(t) is generated randomly in
C. Taking y(t) = Ax∗(t) and a(t) = y(t) − 0.01, b(t) = y(t) + 0.01, we have
Q = [a(t), b(t)]. We take K = 30, K = 55 and K = 70 (see Fig. 3). The problem
of interest is to find x ∈ C such that Ax ∈ Q.

We compare the behavior of Algorithm 4 and Scheme (10) for the same initial
point x0 = e4t2

and same fixed point u = t2. Set ρn
1 = 2n

3n+1 = ρn
2 and αn = 1

n
in

Algorithm 4 and ρn = 2n
3n+1 and αn = 1

n
in Scheme (10). In the implementation, we
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Fig. 3 x∗ ∈ C (left) and Ax∗ ∈ Q (right) for K = 30, 55, 70
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Table 3 Numerical results with different K-sparse

Algorithm 4 Scheme (10)

Iter. (n) CPU(s) Iter. (n) CPU(s)

K = 30 259 4.0322 324 9.0005

K = 55 311 5.0901 327 10.2111

K = 70 159 2.5093 165 5.1393

take En < ε = 10−4 as the stopping criterion, where

En = ‖x − PCx‖2 + ‖Ax − PQAx‖2.

In Table 3, we present our numerical results with different K-sparse (K = 30,
55, 70). Table 3 shows the number of iterations and the time of execution in seconds
(CPU(s)) of Algorithm 4 and Scheme (10). In Fig. 4, we report the behavior of Algo-
rithm 4 and Scheme (10) for K = 30, 55, 70. Furthermore, Fig. 4 presents error value
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Fig. 4 Number of iterations and error estimate for Algorithm 4 and Scheme (10)
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versus the iteration numbers. It can be seen that Algorithm 4 is significantly faster
than Scheme (10). This shows the effectiveness of our proposed algorithms.
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22. López, G., Martin, V., Xu, H.K., et al.: Iterative algorithms for the multiple-sets split feasibility prob-
lem. Biomed. Math.: Promising Directions in Imag, Therapy Planning Inverse Problems 243–279
(2009)

23. Dang, Y., Yao, J., Gao, Y.: Relaxed two points projection method for solving the multiple-sets split
equality problem. Numer. Algorithms 78(1), 263–275 (2018)

24. Iyiola, O.S., Shehu, Y.: A cyclic iterative method for solving multiple sets split feasibility problems in
banach spaces. Quaest. Math. 39(7), 959–975 (2016)

25. Shehu, Y.: Strong convergence theorem for multiple sets split feasibility problems in banach spaces.
Numer. Funct. Anal. Optim. 37(8), 1021–1036 (2016)

26. Suantai, S., Pholasa, N., Cholamjiak, P.: Relaxed CQ algorithms involving the inertial technique for
multiple-sets split feasibility problems. Revista de la Real Academia de Ciencias Exactas, Fı́sicas y
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