
https://doi.org/10.1007/s11075-022-01340-9

ORIGINAL PAPER

Subspace method for the estimation of large-scale
structured real stability radius

Nicat Aliyev1

Received: 3 May 2021 / Accepted: 22 May 2022 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
We consider the autonomous dynamical system x′ = Ax, with A ∈ R

n×n. This lin-
ear dynamical system is asymptotically stable if all of the eigenvalues of A lie in
the open left-half of the complex plane. In this case, the matrix A is said to be Hur-
witz stable or shortly a stable matrix. In practice, the stability of a system can be
violated because of perturbations such as modeling errors. In such cases, one deals
with the robust stability of the system rather than its stability. The system above is
said to be robustly stable if the system, as well as all of its perturbations from a cer-
tain perturbation class, are stable. To measure the robustness of the system subject to
perturbations, a quantity of interest is the stability radius or in other words the dis-
tance to instability. In this paper, we focus on the estimation of the structured real
stability radius for large-scale systems. We propose a subspace framework to esti-
mate the structured real stability radius and prove that our new method converges at
a quadratic rate in theory. Our method benefits from a one-sided interpolatory model
order reduction technique, in the sense that the left and the right subspaces are the
same. The quadratic convergence of the method is due to the certain Hermite inter-
polation properties between the full and reduced problems. The proposed framework
estimates the structured real stability radius for large-scale systems efficiently. The
efficiency of the method is demonstrated on several numerical experiments.

Keywords Real stability radius · Structured · Large-scale · Projection ·
Singular values · Hermite interpolation · Model order reduction · Greedy search

� Nicat Aliyev
aliyev@karlin.mff.cuni.cz

1 Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles
University, Sokolovska 83, 18675, Prague, Czech Republic

Published online: 28 June 2022

Numerical Algorithms (2023) 92:1289–1310

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01340-9&domain=pdf
http://orcid.org/0000-0002-2777-3033
mailto: aliyev@karlin.mff.cuni.cz

1 Introduction

Consider the autonomous dynamical system

x′ = Ax, (1.1)

where, x′ denotes the time derivative of x, A ∈ F
n×n and F = R or F = C. One

important property of this linear dynamical system is the notion of stability. For-
mally, the system (1.1) is asymptotically stable if and only if all of the eigenvalues
of A lie in the open left-half of the complex plane, i.e., �(A) ⊂ C

−, where �(A)

denotes the spectrum of A, C− := {z ∈ C : Re(z) < 0} and Re(·) stands for the
real part of its argument [8]. In this case, the matrix A is said to be Hurwitz stable
or shortly a stable matrix. In practice, certain perturbations may cause the stable sys-
tem to become unstable. In other words, some or all of the eigenvalues of A may be
moved into the right-half plane by applying perturbations. In such cases, the robust
stability of the system becomes much more important. The system (1.1) is said to
berobustly stable if the system, as well as all of its perturbations from a certain class
of perturbation, are stable. To detect such cases and to measure the robustness of
the system subject to perturbations, a quantity of interest is the stability radius or in
other words the distance to instability. The unstructured and structured stability radii
have been introduced in [13–15, 26]. The structured stability radius of a matrix triple
(A, B, C) ∈ F

n×n × F
n×m × F

p×n is defined by

rF(A; B, C) := inf
{‖Δ‖2 : Δ ∈ F

m×p and A + BΔC is unstable
}

(1.2)

where Δ is a perturbation (disturbance) matrix, and B ∈ F
n×m and C ∈ F

p×n are
restriction matrices that determine the structure of the perturbation. For example, the
matrices B and C may reflect the possibility that only certain elements of A are
subject to perturbations [13]. When B = I and C = I, we abbreviate rF (A; I, I) by
rF(A) and call it the unstructured stability radius of A.

In many applications (see, e.g., [25]), it is required to consider only a certain class
of perturbations. For example, when A is a real matrix, then allowing only real per-
turbations is more plausible. In this paper, we turn our attention to the real structured
perturbations only. For real (A, B, C), rR(A; B, C) and rR(A) are called the real
structured and unstructured stability radii, respectively.

Let us denote the singular values of M ∈ F
p×m, ordered non-increasingly, by

σi(M), i = 1, 2, . . . ,min {p, m} , and denote the real and imaginary parts of M by
Re(M) and Im(M), respectively.

A formula for rR(A; B, C) given by Qiu et al. [22] in the form of an optimization
problem in two variables is as follows:

rR(A;B,C)−1 = sup
ω∈R

inf
γ∈(0,1] σ2

([
Re(C(iωI − A)−1B) −γ Im(C(iωI − A)−1B)
1
γ
Im(C(iωI − A)−1B) Re(C(iωI − A)−1B)

])

. (1.3)

Setting

H(s) := C(sI − A)−1B (1.4)

1290 Numerical Algorithms (2023) 92:1289–1310

and

μ(M) := inf
γ∈(0,1] σ2

([
Re(M) −γ Im(M)
1
γ
Im(M) Re(M)

])
, (1.5)

the problem in (1.3) takes the form of

rR(A; B, C) =
{
sup
ω∈R

μ (H(iω))

}−1

. (1.6)

Computationally more plausible characterization for the unstructured real stability
radius rR(A) given by Qiu et al. is as follows:

rR(A) := min
ω∈R max

γ∈(0,1]
σ2n−1

([
A −ωγ I
ω
γ
I A

])
. (1.7)

It was proved in [22] that the function to be minimized in (1.5) is unimodal on
(0, 1]. Therefore, any local minimizer is actually a global minimizer, and the com-
putation of μ(M) for a given M is the easier part of the problem. In fact, any search
algorithm can be used to solve the inner minimization problem (1.5) with the guar-
antee of global convergence. But the outer maximization problem in (1.6) is still
challenging, especially when n is large.

1.1 Literature review

Several algorithms have been proposed so far to estimate the structured and unstruc-
tured real stability radii given by the characterizations above. Sreedhar et al. proposed
a globally convergent method in [24]. Their method is based on the well-known
correspondence between the singular values of the transfer function and the imagi-
nary eigenvalues of certain Hamiltonian matrices introduced in [4, 5, 7]. Although
numerical experiments on their work suggest that the rate of the convergence of
their algorithm is quadratic, rigorous proof does not appear in the paper. Repeated
solution of Hamiltonian eigenvalue problems of size four times the order of the sys-
tem, makes this method inconvenient for large-scale problems. Freitag and Spence
[9] focus on the unstructured case and they propose an implicit determinant method
based on Newton’s method. Their method also benefits from the link between the
singular values of the transfer function and the imaginary eigenvalues of the Hamil-
tonian matrices. To find the critical point corresponding to the desired singular value,
they impose the implicit determinant method. The implicit determinant method is
devised for finding zeros of the determinant of a parameter-dependent matrix. They
show that to find the zeros of the determinant is equivalent to solving a linear system.
Therefore, instead of solving singular value problems and Hamiltonian eigenvalue
problems, they solve linear systems at each Newton step. This makes their method
more efficient and convenient for large-scale systems. Another method to handle the
large-scale problems is proposed by Guglielmi and Manetta [12].

Their method consists of the inner and outer iterations and does not rely on
the characterization (1.3). The inner iteration approximates the ε− pseudospectral
abscissa from the above for a fixed ε, whereas the outer iteration varies ε employ-
ing the Newton iterations. Their method converges locally and provides only upper
bounds for the stability radius. More recent works for the structured real stability

1291Numerical Algorithms (2023) 92:1289–1310

radius of sparse systems are [10, 18]. But the distance measure involved in these
works is the Frobenius norm. Katewa and Pasqualetti [18] formulate the stabil-
ity radius problem as an equality-constrained optimization problem and using the
Lagrangian method, they characterize the optimality conditions by revealing the rela-
tion between an optimal perturbation and the eigenvectors of an optimally perturbed
system. Consequently, they develop a gradient descent algorithm that converges
locally. The method in [10] is based on the relationship between the spectral value set
abscissa and the real stability radius. The other related works are [11, 20, 23]. Lu and
Vandereycken introduce a criss-cross type algorithm to compute the real pseudospec-
tral abscissa in [20]. Their method is also based on the well-known relation between
the imaginary eigenvalues of a Hamiltonian matrix and the singular values of the
transfer function. They also propose a subspace framework to solve the large-scale
problems. However, their subspace approach is different from the subspace approach
of the current work. In [11], the authors consider differential equations of rank-1
and rank-2 matrices. Discretization of the differential equations by means of explicit
Euler method yield fast and efficient algorithms to compute the real pseudospectral
abscissa and real stability radius. The method introduced by Rostami [23] has a sim-
ilar structure as [12]. The main difference is that to estimate to rR(A) an eigenvalue
problem is solved.

In this work, we are concerned with the computation of the structured real stabil-
ity radius for large systems. We assume that the number of columns of the restriction
matrix B and the number of rows of the restriction matrix C are relatively small, i.e.,
n � m, p, which is usually the case in practice. We propose a subspace framework
to estimate rR(A; B, C). For this, we adapt the techniques of our recent works [1,
2], which are devised to compute and to minimize the H∞ norm of large-scale sys-
tems, respectively. The proposed method converges fast with respect to the subspace
dimension. This fast convergence is verified by rigorous analysis and observed by
means of several numerical examples.

The rest of this work is organized as follows. The next section describes a sub-
space framework for the structured real stability radius. The method is based on an
interpolatory model order reduction technique. In Section 3 we give a rigorous rate
of convergence analysis of the subspace framework described in the next section.
Section 4 is devoted to the numerical experiments that illustrate the fast convergence
of the algorithm presented in this work.

2 Subspace framework for rR(A;B,C)

In this section we present a subspace framework for the estimation of the structured
real stability radius rR(A; B, C) for a large-scale stable matrix A ∈ R

n×n and the
given restriction matricesB ∈ R

n×m, C ∈ R
p×n. The matrix valued functionH(s) =

C(sI − A)−1B in (1.4) corresponds to the transfer function of the standard linear
time-invariant (LTI) system

x′ = Ax + Bu (2.1)

y = Cx

1292 Numerical Algorithms (2023) 92:1289–1310

with A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n, whoseH∞-norm is defined by

‖H‖H∞ := sup
s∈C+

‖H(s)‖2 = sup
s∈∂C+

‖H(s)‖2 = sup
ω∈R

σ1(H(iω))

when A is asymptotically stable.
Inspired by [16], in our recent works [1, 2], we proposed subspace frameworks

by employing two-sided projections which aim at approximating and minimizing the
H∞ norm of large-scale control systems. In the context of LTI systems, the idea of
[1, 2] is described as follows. We consider two subspaces V and W, called the left
and right subspaces, of equal dimension, as well as (biorthogonal) matrices V andW ,
whose columns form orthonormal bases for V andW . The state x of the system (2.1)
is restricted to V , i.e., the state x is approximated by V x̃, where x̃ is the reduced state.
Then, by means of the Petrov-Galerkin condition with respect to W, it is imposed
that the residual of the differential part of the restricted system is orthogonal to W .
This amounts to obtaining the reduced order system

x̃′ = Ãx̃ + B̃u, ỹ = C̃x̃,

with

Ã := W ∗AV, B̃ := W ∗B, C̃ = CV .

Then a reduced problem is solved, i.e., the H∞ norm of the reduced transfer
function

HW,V (s) := C̃(sI − Ã)−1B̃ (2.2)

is computed (or minimized) by employing the globally convergent methods such as
[4, 5], and the subspaces V and W are expanded into larger subspaces in a way
that certain Hermite interpolation properties are satisfied between the reduced and
full transfer functions. This in turn gives rise to a superlinear convergence. For more
details, we refer to [1, 2].

The main idea of this section is inspired by the works spelled out above. One sig-
nificant difference is that here the second largest singular value function is involved
in a maximin problem, whereas in [1] we consider the maximization of the largest
singular value function, and in [2] the largest singular value function is involved in a
minimax problem. Another and more challenging difference is that here the real and
imaginary parts of the transfer function H appear as block components of the block
matrix

T (ω, γ) :=
[
Re(H(iω)) −γ Im(H(iω))
1
γ
Im(H(iω)) Re(H(iω))

]
.

Here we resort to one-sided projection in the sense that the left and the right
subspaces are the same. Furthermore, we form the subspace in a way so that the algo-
rithm we discuss here converges quadratically. Since the large-scale nature of the
problem in the characterization (1.3) is hidden in the middle factor of C(sI −A)−1B,

when m, p are relatively small, we focus on the reduction of the middle factor
D(s) := (sI − A) of H(s) to a much smaller dimension using one-sided projection.
To this end, we determine a subspace V ⊂ C

n of small dimension and a matrix V

1293Numerical Algorithms (2023) 92:1289–1310

whose columns form an orthonormal basis for V . Then the projected reduced problem
is defined in terms of the matrices

AV := V ∗AV, BV := V ∗B, CV := CV .

More precisely, the reduced problem is defined by

rV (A; B, C) :=
{
sup
ω∈R

μ
(
HV (iω)

)}−1

, (2.3)

where,
HV (s) := CV (sI − AV)−1BV . (2.4)

In our subspace framework, the main objective is to get Hermite interpolation proper-
ties between the original problem defined in terms of H(s) and the reduced problem
defined in terms of HV (s), which in turn give rise to a quadratic convergence. For-
mally, for a given ω ∈ R, we aim to form the subspace V in a way so that, we
have

μ(H(iω)) = μ
(
HV (iω)

)
, (2.5)

μ′ (H(iω)) = μ′ (HV (iω)
)

and (2.6)

μ′′ (H(iω)) = μ′′ (HV (iω)
)

(2.7)

The following theorem, a particular instance of [3, Theorem 1], is helpful for this
purpose.

Theorem 2.1 Let H(s) and HV (s) be defined as in (1.4) and (2.4), respectively.
For given ŝ ∈ C, b̂ ∈ C

m and a positive integer N , if
[
(̂sI − A)−1

]	

Bb̂ ∈ V for 	 = 1, . . . , N, (2.8)

and V has orthonormal columns, that is, V ∗V = I , then, denoting the 	-th

derivatives of H(s) and HV (s) at the point ŝ with H()(̂s) and
[
HV]()

(̂s), we have

H()(̂s)̂b = [
HV]()

(̂s)̂b for 	 = 0, . . . , N − 1 (2.9)

provided that both ŝI − A and ŝI − AV are invertible.

Theorem 2.1 yields us a direction that indicates how to construct the subspace
V so that the Hermite interpolation properties (2.5)–(2.7) are satisfied between the
original and the reduced problems.

If m ≥ p, for a given ω̃ ∈ R, setting

V := Col
([

(iω̃I − A)−1B (iω̃I − A)−2B (iω̃I − A)−3B
])

,

where Col(M) denotes the column space of the matrix M, we conclude from
Theorem 2.1 that

H(iω̃) = HV (iω̃), H ′(iω̃) =
[
HV

]′
(iω̃) and H ′′(iω̃) =

[
HV

]′′
(iω̃), (2.10)

1294 Numerical Algorithms (2023) 92:1289–1310

which in turn imply

T (ω̃, γ) = T V (ω̃, γ), (2.11)

∂T

∂ω
(ω̃, γ) = ∂T V

∂ω
(ω̃, γ) , (2.12)

∂2T

∂ω2 (ω̃, γ) = ∂2T V

∂ω2 (ω̃, γ) , (2.13)

for all γ ∈ (0, 1], where

T V (ω, γ) :=
[

Re(HV (iω) −γ Im(HV (iω))
1
γ
Im(HV (iω)) Re(HV (iω))

]

.

If m > p, to keep the dimension of the subspace smaller, one can form the subspace
as

V := Col
([(

C(iω̃I − A)−1)
)∗ (

C(iω̃I − A)−2)
)∗ (

C(iω̃I − A)−3)
)∗]) .

Then, substituting H with its conjugate transpose H ∗, the interpolations in (2.10)
will be satisfied.

The equalities (2.11)–(2.13) give rise to the Hermite interpolation properties
between the reduced and original problems. We will discuss this in detail in Theorem
2.4.

Remark 2.2 It is shown in [22] that for a given ω, the minimum of σ(ω, ·) is not
attained in (0, 1], that is,

μ (H(iω)) = inf
γ∈(0,1] σ2(ω, γ) = lim

γ→0
σ2(ω, γ),

if and only if rank(Im(H(iω))) = 1. This holds, for example, when m = 1 or p = 1.
In [22], it is also shown that in this case,

μ (H(iω)) = max
{
σ1

(
UT
2 Re(H(iω))

)
, σ1 (Re(H(iω))V2)

}
,

where
[
U1 U2

] [
σ1(Im(H(iω))) 0

0 0

] [
V1 V2

]T

is a real singular value decomposition of Im(H(iω)).
The subsequent arguments of this work, in particular, the Lipschitz continuity and

boundedness of the derivatives of the singular value functions, do not apply when
γ → 0. To cope with this difficulty, throughout the rest of this work, we identify
the domain (0, 1] of the inner minimization problem by Ω := [Γ, 1], for some small
number Γ (in practice we set Γ = 10−8).

The subspace framework for the computation of rR(A; B, C) is summarized in
Algorithm 1, where and throughout the rest of this work, we use the short-hand
notations

σi(ω, γ) := σi(T (ω, γ)) and σV
i (ω, γ) := σi

(
T V (ω, γ)

)

1295Numerical Algorithms (2023) 92:1289–1310

for i = 1, . . . ,min {m, p} . We also use the notations

μ(ω) := μ(H(iω)) and μV (ω) := μ
(
HV (iω)

)
.

Moreover,
orth(M) stands for a matrix whose columns form an orthonormal basis for the

column space of the matrix M . Finally, for a given ω, we define γ (ω), γ V (ω) ∈
(0, 1], (or more precisely in [Γ, 1]) such that

μ(ω) = σ2(ω, γ (ω)) and μV (ω) = σ2(ω, γ V (ω)). (2.14)

At each iteration of Algorithm 1, a reduced problem is solved in line 4 and a
global maximizer ω̂ is found. Then the subspace is expanded so that certain Hermite
interpolation properties are satisfied at optimal ω̂.

Remark 2.3 It is shown in [1] that for a given ω̃ ∈ R, the inclusions

Col
(
(iω̃I − A)−1B

)
⊆ V, Col

(
(C(iω̃I − A)−1)∗

)
⊆ W

yield the Hermite interpolation properties

σ1(H(iω̃)) = σ1(H
W,V (iω̃)) and σ ′

1(H(iω̃)) = σ ′
1(H

W,V (iω̃)),

which give rise to a superlinear convergence. For the current problem, one could use a
similar two-sided projections framework to get a superlinear convergence. However,
to get a quadratic convergence in a two-sided projections framework, one should form
the subspaces in a slightly different way. Indeed, one should interpolate the second
derivatives of the objective function, as well, and it requires to add more vectors to
the subspaces. More precisely, in the two-sided projections framework, assuming that
m = p, (for the general case, we refer to [1]) if one chose the subspaces as

V = Col
([

(iω̃I − A)−1B (iω̃I − A)−2B
])

,

W = Col
([

(C(iω̃I − A)−1)∗ (C(iω̃I − A)−2)∗
])

(2.15)

1296 Numerical Algorithms (2023) 92:1289–1310

at a given ω̃, and formed the reduced transfer function appropriately (as in (2.2)), the
conditions (2.10) and hence (2.11)–(2.13) would be satisfied at ω̃. As a result, one
would interpolate the second derivatives of μ(·) and get a quadratic convergence.

The main drawback of the two-sided projections framework is its more expen-
sive nature. Looking at (2.15), we can see that at each iteration of the algorithm
based on the two-sided projections, one needs to solve four large-scale linear systems
rather than three. In fact, to solve the large-scale linear systems, both frameworks
require one LU decomposition, but the two-sided framework requires one additional
back and forward substitutions. Moreover, at every subspace iteration, the two-sided
framework needs to orthogonalize two projection matrices, while for the one-sided
variant there is only one projection matrix to be orthogonalized. Finally, the one-
sided framework seems to be more reliable and numerically more stable in practice.
On the other hand, in one-sided framework, the subspace is expanded to a high
dimension more rapidly as it contains extra vectors. Especially, when min {m, p} is
relatively large, the subspace dimension enlarges faster, therefore one needs to solve
larger dimensional reduced problems. Hence, when min {m, p} is relatively large, the
two-sided variant might be more efficient. This observation is verified by numerical
experiments in Section 4.

Assuming that {ωk} converges to a maximizer ω∗ of μ(ω), in the next section we
show that under some mild assumptions the rate of convergence of Algorithm 1 is
quadratic. The next result concerns the Hermite interpolation properties between the
original and the reduced problems.

Lemma 2.4 The following assertions hold regarding Algorithm 1 for each j =
1, . . . , k:

(i) For all γ ∈ (0, 1] ,

σi(ωj , γ) = σ
Vk

i (ωj , γ), for i = 1, . . . ,min {m, p} .
(ii) It holds that

μ(ωj) = μVk (ωj).

Furthermore, we have γ (ωj) = γ Vk (ωj).
(iii) If σ2(ωj , γ (ωj)) is simple, then

μ′(ωj) =
[
μVk

]′
(ωj).

(iv) If σ2(ωj , γ (ωj)) is simple, then

μ′′(ωj) =
[
μVk

]′′
(ωj).

Proof

(i) From the lines 2, 5, 6 and Theorem 2.1 we have H(ωj) = HVk (ωj) and hence

T (ωj , γ) = T Vk (ωj , γ), (2.16)

1297Numerical Algorithms (2023) 92:1289–1310

for all γ ∈ (0, 1], from which the result follows immediately.
(ii) Observe that, for all γ ∈ (0, 1],

σ2(ωj , γ (ωj)) ≤ σ(ωj , γ) and σ
Vk

2 (ωj , γ
Vk (ωj)) ≤ σVk (ωj , γ).

Combining these with part (i) we get

μ(ωj) = σ2(ωj , γ (ωj)) = σ
Vk

2 (ωj , γ (ωj))

≥ μVk (ωj) = σ
Vk

2 (ωj , γ
Vk (ωj))

= σ2(ωj , γ
Vk (ωj)) ≥ σ2(ωj , γ (ωj))

= μ(ωj)

Hence, the inequalities above can be replaced by equalities. So, we have
μ(ωj) = μVk (ωj). Furthermore, since the function to be minimized in (1.5) is
unimodal, we have γ (ωj) = γ Vk (ωj) for each j ∈ {1, · · · , k}.

(iii) Suppose that σ2(ωj , γ (ωj)) is simple, for a fixed j ∈ {1, · · · , k}. Then,
μ(ω) and μVk (ω) are differentiable at ω = ωj . Since T (ωj , γ (ωj)) =
T Vk (ωj , γ (ωj)) due to (2.16), the left and the right singular vectors corre-

sponding to σ2(ωj , γ (ωj)) = σ
Vk

2 (ωj , γ (ωj)) are the same. Let us denote
them by u2 and v2, respectively, and assume, without loss of generality, that
they are unit vectors. From the lines 2, 5, 6 together with Theorem 2.1 we have

∂T

∂ω

(
ωj , γ

) = ∂T Vk

∂ω

(
ωj , γ

)
, (2.17)

Now, exploiting the analytical formulas for the derivatives of singular value
functions [6, 19] and employing (2.12) we obtain

μ′(ωj) = ∂σ2

∂ω

(
ωj , γ (ωj)

) = Re

(
uT
2

∂T

∂ω

(
ωj , γ (ωj)

)
v2

)

= Re

(

uT
2

∂T Vk

∂ω

(
ωj , γ (ωj)

)
v2

)

= ∂σVk

∂ω

(
ωj , γ (ωj)

)

= ∂σVk

∂ω

(
ωj , γ

Vk (ωj)
)

=
[
μVk

]′
(ω).

(iv) It follows from the similar arguments as in part (iii), only here we use the
analytical formulas for the second derivatives of singular value functions and
exploit

∂2T

∂ω2

(
ωj , γ

) = ∂2T Vk

∂ω2

(
ωj , γ

)
, ∀γ ∈ (0, 1].

Remark 2.5 Although (2.3) is a maximin problem when we expand the subspace we
only utilize the optimizer of the outer iteration, namely optimal ω, since H depends
only on ω. Therefore, the problem turns into the maximization of μ(ω) and the Her-
mite interpolation properties between the original problem and the reduced one at

1298 Numerical Algorithms (2023) 92:1289–1310

only optimal ω for the reduced problem suffices to get a quadratic convergence as we
shall see in the next section.

3 Rate of convergence analysis

This section is devoted to the rate of convergence analysis of the subspace framework
discussed in the previous section. The main theorem states that the rate of conver-
gence of Algorithm 1 is quadratic, assuming that it converges at least locally. In
particular, we consider the three consecutive iterates ωk−1, ωk, ωk+1 of Algorithm 1
that are sufficiently close to a local or global maximizer ω∗ of μ(·).

Before proceeding, we discuss some particular cases regarding the location of
optimizers of the inner and outer optimization problems which were analyzed in
detail in [22].

Case 1: rank(Im(H(iω∗))) ≤ 1 and ω∗ = 0. It turns out that, ω∗ = 0 if and only
if Im(H(iω∗)) = 0. Therefore, in this case the inner minimization over γ

disappears. More generally, if rank(Im(M)) ≤ 1, then the minimization
over γ can be eliminated andμ(·) can be calculated by means of an explicit
formula [22]. In particular, when ω∗ = 0, we have

rR(A; B, C) = σ2

([
Re(H(iω∗)) 0

0 Re(H(iω∗))

])

= σ1

([
Re(H(iω∗)) 0

0 Re(H(iω∗))

])

= σ1(CA−1B).

Case 2: γ∗ = 1 andω∗ �= 0,where and throughout γ∗ denotes the global minimizer
of σ2(ω∗, ·) over (0, 1], that is, μ(ω∗) = σ2(ω∗, γ∗). In this case,

μ (H(iω∗))) = σ2(T (ω∗, 1)) = σ1(T (ω∗, 1)) = σ1(H(iω∗)).

Hence, the computation of rR(A; B, C) becomes equivalent to the computation of
H∞ norm, which is already addressed in [1].

We remark that in practice, our method efficiently works for the non-smooth cases
above (see Section 4). However, the rate of convergence analysis discussed in this
section does not cover these cases. To this end, throughout this section, we assume
that cases 1 and 2 mentioned above are excluded. That is, we assume that, ω∗ �= 0,
γ∗ �= 1. More generally, in the rate of convergence analysis, we address the smooth
setting only. In other words, we assume in the rest of this section that the following
smoothness assumption holds.

Assumption 3.1 (Smoothness) The singular value σ2(ω∗, γ∗) of T (ω∗, γ∗) is simple.

The rate of convergence analysis for the non-smooth optimization of the largest
eigenvalue function of a Hermitian matrix that depends on one parameter is addressed

1299Numerical Algorithms (2023) 92:1289–1310

in [17]. As a future work, the idea of [17] can be adapted to the non-smooth cases of
the problem of this work.

Results of this section are uniform over all subspaces Vk and orthonormal bases
Vk as long as they satisfy the following non-degeneracy assumption.

Assumption 3.2 (Non-degeneracy) For a given β > 0, we have

σmin

(
DVk (iω∗)

)
≥ β (3.1)

where DVk (s) := (sI − AVk) and σmin(·) denotes the smallest singular value of its
matrix argument.

Assumption 3.2 combined with the Lipschitz continuity of σmin(·) implies the
boundedness of the smallest singular value in (3.1) away from zero in a neighborhood
of ω∗. Formally, there exists a neighborhood N (ω∗) of ω∗ such that

σmin

(
DVk (iω)

)
≥ β/2, ∀ω ∈ N (ω∗), (3.2)

see the beginning of Lemma A.1 in [2].
The next result concerns the uniform Lipschitz continuity of the singular value

functions ω �→ σVk (ω, ·). For the proofs of the assertions (i) and (ii) we refer to [2,
Lemma A.1]. The proof of the assertion (iii) follows from part (ii); see [21, Lemma
8, (ii)]. Here we make use of the following notations

I(ω∗, δ) := (ω∗ − δ, ω∗ + δ), I(γ∗, δ) := (γ∗ − δ, γ∗ + δ)

and

I(ω∗, δ) := [ω∗ − δ, ω∗ + δ] I(γ∗, δ) := [γ∗ − δ, γ∗ + δ]
for given ω ∈ R, γ ∈ � and δ > 0.

By a constant, here and in the rest of this section, we mean a scalar that may
depend only on the parameters of the original problem which are independent of the
subspace Vk and orthonormal basis Vk for the subspace.

Lemma 3.3 (Uniform Lipschitz Continuity) Suppose that Assumption 3.2 holds.
There exist constants δω, ζ that satisfy the following:

(i) For all γ ∈ Ω,
∥∥∥T Vk (ω̃, γ) − T Vk (ω̂, γ)

∥∥∥
2

≤ ζ |ω̃ − ω̂| ∀ω̃, ω̂ ∈ I(ω∗, δω).

(ii) For all γ ∈ Ω, and i = 1, 2, 3,
∣∣∣σVk

i (ω̃, γ) − σ
Vk

i (ω̂, γ)

∣∣∣ ≤ ζ |ω̃ − ω̂| ∀ω̃, ω̂ ∈ I(ω∗, δω).

(iii) ∣∣∣μVk (ω̃) − μVk (ω̂)

∣∣∣ ≤ ζ |ω̃ − ω̂| ∀ω̃, ω̂ ∈ I(ω∗, δω).

1300 Numerical Algorithms (2023) 92:1289–1310

Since our main result relies on the smooth setting, in the next result, we state and
prove that there exists an interval in which μ(·) and μVk (·) are both smooth under
some mild assumptions.

Lemma 3.4 Suppose that Assumptions 3.1 and 3.2 hold.

(i) There exist constants δ̃ω > 0, δ̃γ > 0 such that both σ2(ω, γ) and σ
Vk

2 (ω, γ)

are simple, hence real analytic, for all ω ∈ I(ω∗, δ̃ω) and γ ∈ I(γ∗, δ̃γ).
(ii) There exists a constant δω > 0 such that both μ(ω) and μVk (ω) are real

analytic for all ω ∈ I(ω∗, δω).

Proof

(i) Since A is asymptotically stable, H is analytic on the imaginary
axis and so (ω, γ) �→ T (ω, γ) is continuous on R × Ω . Conse-
quently, σ1(·, ·), σ2(·, ·), σ3(·, ·) are continuous functions. The continuity of
σ1(·, ·), σ2(·, ·), σ3(·, ·) and the assumption that σ2(ω∗, γ∗) is simple imply
that σ2(ω, γ) remains simple in a neighborhood N (ω∗, γ∗) of (ω∗, γ∗). More
precisely,

σ1(ω, γ) − σ2(ω, γ) ≥ ε̃ and σ2(ω, γ) − σ3(ω, γ) ≥ ε̃ (3.3)

for all (ω, γ) ∈ N (ω∗, γ∗), for some ε̃ > 0. This shows that σ2(ω, γ) is simple
in N (ω∗, γ∗).

Now, by exploiting the interpolation properties

σi(ωk, γ) = σVk (ωk, γ), i = 1, 2, 3, γ ∈ Ω,

as well as the uniform Lipschitz continuity of σ
Vk

i (·, ·), for i = 1, 2, 3, and
assuming without loss of generality that ωk is close enough to ω∗ we deduce
that there exists a region I(ω∗, δ̃ω)×I(γ∗, δ̃γ) ⊆ N (ω∗, γ∗) in which σ

Vk

2 (·, ·)
is simple. That is,

σ
Vk

1 (ω, γ) − σ
Vk

2 (ω, γ) ≥ ε, σ
Vk

2 (ω, γ) − σ
Vk

3 (ω, γ) ≥ ε (3.4)

for all (ω, γ) ∈ I(ω∗, δ̃ω) × I(γ∗, δ̃γ) and for some constants ε ∈ (0, ε̃), δ̃ω >

0, δ̃γ > 0. Therefore, σ2(·, ·) and σ
Vk

2 (·, ·) are simple singular value functions
of T (ω, γ) and T Vk (ω, γ) in I(ω∗, δ̃ω)×I(γ∗, δ̃γ). It follows that both σ2(·, ·)
and σ

Vk

2 (·, ·) are real analytic in I(ω∗, δ̃ω) × I(γ∗, δ̃γ).
(ii) From the implicit function theorem, there exist constants δω > 0, δγ > 0 such

that for all ω ∈ I(ω∗, δω,) we have γ (ω) ∈ I(γ∗, δγ). Now, assume without
loss of generality that δω ∈ (0, δ̃ω) and δγ ∈ (0, δ̃γ), where δ̃ω, δ̃γ are as in
(3.4). Then for ω ∈ I(ω∗, δω) ⊂ I(ω∗, δ̃ω) we have γ (ω) ∈ I(γ∗, δγ) ⊂
I(γ∗, δ̃γ). Hence, (3.4) implies

σ1 (ω, γ (ω)) − σ2 (ω, γ (ω)) ≥ ε and σ2 (ω, γ (ω)) − σ3 (ω, γ (ω)) ≥ ε (3.5)

for all ω ∈ I (ω∗, δω) . Thus, σ2 (ω, γ (ω)) is simple and so μ(ω) is real
analytic in I (ω∗, δω) . Considering ωk close enough to ω∗ and following the

1301Numerical Algorithms (2023) 92:1289–1310

similar arguments as above we conclude that μVk (ω) is also real analytic in
I (ω∗, δω) .

The next result concerns the uniform boundedness of the third derivatives of μ(·)
and μVk (·) in a neighborhood of ω∗. This uniform boundedness of the third deriva-
tives gives rise to the uniform Lipschitz continuity of the second derivatives of these
functions, which becomes important in our main result. For a proof, we refer to
Lemma A.2 (ii) and Proposition 3.5 in [2]

Lemma 3.5 Suppose that Assumptions 3.1 and 3.2 hold.

(i) Both μ(·) and μVk (·) are at least three times continuously differentiable in
I(ω∗, δω), where δω is as in Lemma 3.4.

(ii) For each δ̂ω ∈ (0, δω) there exists a constant ξ > 0 such that for all ω ∈
I(ω∗, δ̂ω) we have

∣∣μ′′′(ω)
∣∣ ≤ ξ and

∣∣∣∣
[
μVk

]′′′
(ω)

∣∣∣∣ ≤ ξ .

Now, we are ready to present our main result. Here, we remind thatωk−1, ωk, ωk+1
are assumed to be sufficiently close to a local maximizer ω∗ of μ(·).

Theorem 3.6 (Local Quadratic Convergence) Suppose that Assumptions 3.1 and 3.2
hold and μ′′(ω∗) �= 0. Then, for Algorithm 1, there exists a constant c > 0 such that

|ωk+1 − ω∗|
|ωk − ω∗|2 ≤ c.

Proof Assume without loss of generality that ωk, ωk−1 lie in I(ω∗, δω) and are close
enough to ω∗ so that I(ωk, hk) ⊂ I(ω∗, δω), where hk := |ωk − ωk−1| and δω is as
in Lemma 3.4 and Lemma 3.5.

Assume further that μ′′(ωk) �= 0,
that is,

|μ′′(ωk)| ≥ l (3.6)

for some constant l > 0. Existence of such l > 0 follows from the assumption
μ′′(ω∗) �= 0 and the continuity of μ′′(·) in I(ω∗, δω). Due to analyticity of μ(·) in
I(ω∗, δω) (Lemma 3.4, part (ii))

we have

0 = μ′(ω∗) = μ′(ωk) +
∫ 1

0
μ′′ (ω∗ + t (ω∗ − ωk)) (ω∗ − ωk)dt . (3.7)

Dividing both sides of (3.7) by μ′′(ωk) we obtain

0 = μ′(ωk)

μ′′(ωk)
+ (ω∗ − ωk) + 1

μ′′(ωk)

∫ 1

0

(
μ′′ (ωk + t (ω∗ − ωk)) − μ′′(ωk)

)
(ω∗ − ωk) dt . (3.8)

1302 Numerical Algorithms (2023) 92:1289–1310

Application of Taylor’s theorem with integral remainder to [μVk]′(·) at ωk, and
optimality of ωk+1 with respect to μVk (·) give rise to

0 = [μVk]′(ωk+1) = [μVk]′(ωk) +
∫ 1

0
[μVk]′′ (ωk + t (ωk+1 − ωk)) (ωk+1 − ωk)dt . (3.9)

which implies

0 = [μVk]′(ωk)

[μVk]′′(ωk)
+ (ωk+1 − ωk)

+ 1

[μVk]′′(ωk)

∫ 1

0

([μVk]′′ (ωk + t (ωk+1 − ωk)) − [μVk]′′(ωk)
)
(ωk+1 − ωk) dt . (3.10)

Combining (3.8) and (3.10) and exploiting the Hermite interpolation properties

μ′(ωk) = [μVk]′(ωk) and μ′′(ωk) = [μVk]′′(ωk)

we deduce

0 = ω∗ − ωk+1 + 1

μ′′(ωk)

∫ 1

0

(
μ′′ (ωk + t (ω∗ − ωk)) − μ′′(ωk)

)
(ω∗ − ωk) dt

− 1

μ′′(ωk)

∫ 1

0

(
[μVk]′′ (ωk + t (ωk+1 − ωk)) − [μVk]′′(ωk)

)
(ωk+1 − ωk) dt (3.11)

implying

|ω∗ − ωk+1| ≤
∣∣∣∣

1

μ′′(ωk)

∣∣∣∣

∣∣∣∣∣

∫ 1

0

(
μ′′ (ωk + t (ω∗ − ωk)) − μ′′(ωk)

)
(ω∗ − ωk) dt

∣∣∣∣∣

+
∣∣∣∣

1

μ′′(ωk)

∣∣∣∣

∣∣∣∣∣

∫ 1

0

([μVk]′′ (ωk + t (ωk+1 − ωk)) − [μVk]′′(ωk)
)
(ωk+1 − ωk) dt

∣∣∣∣∣

In the last equation, we exploit the Lipschitz continuity of both μ′′(·) and[
μVk

]′′
(·) in I(ω∗, δω) (which follows from Lemma 3.5) and employ (3.6) to obtain

|ω∗ − ωk+1| ≤ ξ/ l
(
|ω∗ − ωk|2 + |ωk+1 − ωk|2

)
(3.12)

where ξ is the Lipschitz constant for μ′′ and [μV
k]′′.

The result follows by substituting the inequality

|ωk+1 − ωk|2 ≤ 2|ωk+1 − ω∗|2 + 2|ωk − ω∗|2
in (3.12).

4 Numerical experiments

In this section, we present numerical results obtained by our MATLAB implementa-
tion of Algorithm 1. First, we introduce some important implementation details and

1303Numerical Algorithms (2023) 92:1289–1310

the test setup. Then, we report the numerical results on several examples. We exhibit
the results in detail in Tables 1 and 3. All examples are taken from Model Order
Reduction Wiki (MOR Wiki) website1, EigTool2 and Compleib 3. In all examples
the system matrices (A, B, C) are real and A is asymptotically stable. Our numeri-
cal experiments have been performed using MATLAB (R2018b) on an iMac with an
Intel Core i5 1.4 GHz processor and 4 GB of memory

4.1 Implementation details and test setup

At each iteration of Algorithm 1, a reduced problem is solved, namely, rV (A; B, C)

is calculated. Therefore, at each iteration, we solve a small-scale minimax problem.
Since the cost function of the inner minimization problem is unimodal [22], we uti-
lize “golden section search algorithm” to solve the inner minimization problem. In
fact, we use MATLAB function fminbnd to solve the inner minimization problem.
The outer maximization problem is solved by means of a MATLAB implementation
of the algorithm in [24], which is an extension of Boyd and Balakrishan algorithm
[4]. The approach of [24] is a level-set method and based on the relation between the
imaginary eigenvalues of a Hamiltonian matrix and singular values of the transfer
function. Therefore, at each iteration, the method requires the solution of a Hamilto-
nian eigenvalue problem of size four times the order of the given system. But since
the reduced problems are of small order, the method works efficiently.

Algorithm 1 terminates in practice when the relative distance between
rVk (A; B, C) and rVk−1(A; B, C) is less than a prescribed tolerance for some k > 1,
or if the number of iterations exceeds a specified integer. Formally, the algorithm
terminates, if

k > kmax or
∣∣∣rVk (A; B,C) − rVk−1(A; B,C)

∣∣∣ < ε · 1
2

∣∣∣rVk (A; B, C) + rVk−1(A; B, C)

∣∣∣ .

In our numerical experiments, we set ε = 10−5 and kmax = 25.
Algorithm 1 converges locally. In our previous works [1, 2], we initialize the algo-

rithm with more than one interpolation point to reduce the possibility of stagnating
at a local optimizer. Here, we apply the same strategy.

We choose k0 ≥ 2 number of initial interpolation points that are equidistantly
distributed in the interval [0, ωmax], where ωmax is a problem-dependent parameter.
In our experiments, k0 = 10 is usually sufficient to capture the global maximum.
However, there are more complicated examples which need a larger number of initial
interpolation points. For instance, for the Demmel examples, the algorithm should
be started with at least 40 initial interpolation points in the interval [0,1000] to find
the global maximum in a few iterations. It is possible that the algorithm converges to

1available at https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main Page
2available at https://www.cs.ox.ac.uk/pseudospectra/eigtool/
3available at http://www.complib.de

1304 Numerical Algorithms (2023) 92:1289–1310

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Main_Page
https://www.cs.ox.ac.uk/pseudospectra/eigtool/
http://www.complib.de

the correct global maximizer with fewer initial points but then it might happen that
more iterations are needed, since less global information is known.

4.2 Test results

In Tables 1 and 3 we report the outcome of our numerical experiments. The number
of additional iterations after the construction of the initial reduced function needed to
return the rR(A; B, C) is denoted by niter in both tables. Furthermore, the dimension
of A, the number of the columns of B and the number of the rows of C are denoted
by n, m, p, respectively.

In Table 1, we exhibit the results of the experiments on several test examples. We
compare the results of our subspace method (based on one-sided framework) with the
ones generated by [24]. For all examples, with or without subspace acceleration, we
retrieve the same rR(A; B, C) values up to the prescribed tolerance. The proposed
subspace framework outperforms the approach in [24] for all large-scale examples
listed in Table 1. The ratios between the runtime required by the method in [24] and
that required by Algorithm 1 are listed in the last column of the table. We observe
quadratic convergence in all examples. More precisely, for all examples listed in
Table 1, at most four additional iterations after the initial interpolation are required to
estimate rR(A; B, C) up to a given tolerance. The errors in the iterates as a function
of the number of iterations for the RCL circuit example is reported in Table 2.

Recall that, the rate of convergence analysis discussed in Section 3 relies on the
smooth setting, and when ω∗ = 0, the singular value function σ2(·, ·) is not simple
and hence not smooth. However, from the middle part of Table 1 we see that the
quadratic convergence is still observed for this particular non-smooth case.

The last four examples in Table 1 are of small scale. The ratios of the runtimes
required by the method in [24] over the runtimes required by Algorithm 1 for those
small-scale problems suggest that our subspace method is not efficient on the small-
scale examples. This is because, for small-scale examples, Algorithm 1 carries out a
few calls (at least two) of the method of [24]. Therefore, it needs more time to solve
the original small-scale problem than a single run of [24].

In Table 3, we compare the results of the subspace method based on one-sided
framework with that of a two-sided variant. Both frameworks return the same correct
value of r(A; B, C). The ratios of the runtimes required by the one-sided framework
over the runtimes required by two-the sided framework are listed in the last column of
the table. The results suggest that when min {m, p} is relatively large (say larger than
10), the two-sided framework is more efficient, otherwise the one-sided framework
works better in terms of the complexity.

4.3 Downside of themethod

The main limitation of the algorithm discussed in this work is that it converges only
locally. If the algorithm starts far away from the global maximizer of μ(·) or if it

1305Numerical Algorithms (2023) 92:1289–1310

Ta
bl
e
1

N
um

er
ic
al
re
su
lts

of
th
e
ex
pe
ri
m
en
to

n
se
ve
ra
lt
es
te
xa
m
pl
es
;t
he

re
su
lts

of
A
lg
or
ith

m
1
ar
e
co
m
pa
re
d
w
ith

th
e
re
su
lts

of
th
e
m
et
ho
d
in

[2
4]

r R
(A

;B
,
C

)
O
pt
.f
re
q.

ω
∗

T
im

e
in

s

E
x.

n
m

p
n
ite

r
A
lg
.1

[2
4]

A
lg
.1

[2
4]

A
lg
.1

[2
4]

R
at
io

G
6
0
0

12
01

1
3

4
6.
87
84
8e
+
00

6.
87
84
8e
+
00

3.
04
95
8e
-0
1

3.
30
49
58
e-
01

8.
91

92
.1
2

10
.3
3

R
C
L

c
i
r
c
u
i
t

18
41

16
16

3
8.
26
90
8e
-0
2

8.
26
90
8e
-0
2

1.
34
52
9e
-0
1

1.
34
52
9e
-0
1

17
3.
73

44
9.
70

2.
59

S
y
n
t
4
K

40
00

1
1

1
1.
06
95
6e
-0
1

1.
06
95
6e
-0
1

1.
22
11
7e
-0
3

1.
22
11
7e
-0
3

8.
94

10
73
.4
8

12
0.
07

S
y
n
t
h

50
0

1
1

1
8.
25
05
9e
-0
1

8.
25
05
9e
-0
1

7.
56
72
1e
-0
7

7.
56
72
2e
-0
7

0.
11

2.
75

25
.0
0

D
e
m
m
e
l
1
k

10
00

2
3

3
2.
42
80
9e
-0
4

2.
42
80
9e
-0
4

4.
73
59
4e
+
01

4.
73
59
4e
+
01

5.
86

13
9.
56

23
.8
1

D
e
m
m
e
l
1
0
2
4

10
24

1
1

2
5.
04
68
4e
-0
4

5.
04
68
4e
-0
4

5.
72
22
7e
+
01

5.
72
22
7e
+
01

9.
56

10
6.
87

11
.1
8

S
k
e
w
l
a
p

13
31

4
5

1
6.
89
85
0e
+
00

6.
89
85
0e
+
00

0.
00
00
0

0.
00
00
0

1.
06

24
.8
0

23
.4
0

H
F
2
D
4

20
25

2
4

1
2.
78
24
5e
-0
2

2.
78
24
5e
-0
2

0.
00
00
0

0.
00
00
0

1.
75

86
.4
4

49
.3
9

C
o
n
v
e
c
.

36
00

1
1

1
3.
45
18
2e
-0
1

3.
45
18
2e
-0
1

0.
00
00
0

0.
00
00
0

6.
84

42
5.
23

62
.5
1

H
F
2
D
3

44
89

2
4

1
6.
87
98
7e
-0
1

6.
87
98
7e
-0
1

0.
00
00
0

0.
00
00
0

15
.5
9

81
3.
35

52
.1
7

s
u
p
d
e
m

68
89

4
5

1
6.
15
60
9e
-0
6

6.
15
60
9e
-0
6

0.
00
00
0

0.
00
00
0

37
.1
5

24
03
.0
2

64
.6
8

T
h
e
r
m
a
l

74
88

1
4

1
9.
74
50
9e
-0
1

9.
74
50
9e
-0
1

0.
00
00
0

0.
00
00
0

46
.3
5

36
96
.8
1

79
.7
6

C
B
M

34
8

1
1

2
2.
19
09
2e
-0
3

2.
19
09
2e
-0
3

0.
00
00
0

0.
00
00
0

0.
15

2.
22

4.
63

C
m
3

12
0

2
1

3
1.
70
45
7e
-0
5

1.
70
45
7e
-0
5

4.
80
20
9e
-1

4.
80
20
9e
-1

1.
19

0.
37

0.
31

S
y
n
t
h
1
0
0

10
0

1
1

1
3.
42
40
7e
+
00

3.
42
40
8e
+
00

6.
14
68
6e
-0
1

6.
14
68
6e
-0
1

0.
17

0.
12

0.
71

C
D
P

12
0

2
2

1
2.
14
81
9e
-0
5

2.
14
81
9e
-0
5

1.
59
81
2e
+
01

1.
59
58
9e
+
01

0.
81

0.
09

0.
11

H
F
1

13
0

1
2

1
7.
07
10
6e
-0
1

7.
07
10
6e
-0
1

0.
00
00
0

0.
00
00
0

0.
34

0.
22

0.
65

1306 Numerical Algorithms (2023) 92:1289–1310

Table 2 The errors of the iterates of Algorithm 1, the errors |μk − μ∗| and |rk − r∗| are listed, for the
example RCL circuit

k |ωk+1 − ωk | |μk − μ∗| |rk − r∗|

0 4.700e−03 1.035e+00 6.523e−03

1 8.203e−04 1.177−02 8.059e−05

2 2.273e-05 1.254e−05 8.577e−08

3 0 0 0

Here the short-hands μk := μVk (ωk+1), μ∗ := μ(ω∗), rk = rVk (A;B,C) and r∗ = r(A;B,C) are used.
As the “exact” solution we have taken the one we obtain by Algorithm 1 after four iterations

starts with not a sufficient number of initial interpolation points, then it is possible
to miss a global maximizer of μ(·). This fact is illustrated in Fig. 1. Algorithm 1 is
run on the Demmel1K example with only two random initial points. As a result, the
algorithm converges to a local maximum which is attained at zero. To get a better
illustration, we plot the figure in a symmetric interval and the global maximum is not
depicted in the figure as it is too much bigger than the local maximum attained at
zero. However, it is still easily seen that zero is not a global maximizer as the function
has higher values at different points. One possible solution to this problem is to start
the algorithm with more initial interpolation points. For this particular example, if
the algorithm starts with 40 initial points, then it retrieves the global maximum.

Table 3 Comparison of the numerical results obtained by one-sided framework(OSF) and two-sided
framework(TSF)

rR(A;B,C) niter Time in s

Ex. n m p OSF TSF OSF TSF OSF TSF ratio

RCL circuit 1841 16 16 8.26908e-02 8.26908e-02 3 3 48.45 38.63 1.25

Synth10 2000 10 10 1.06420e-02 1.06420e-02 1 1 6.53 3.73 1.75

Synth15 2000 15 15 7.09467e-03 7.09467e-03 1 1 14.50 6.61 2.19

Synth20 2000 20 20 5.32101e-03 5.32101e-03 1 1 29.10 11.38 2.56

Synth25 2000 25 25 4.25680e-03 4.25680e-03 1 1 54.35 18.44 2.95

Synth1 2000 1 1 1.06420e-01 1.06420e-01 1 1 1.62 1.76 0.92

Synth3 2000 3 3 3.54733e-02 3.54733e-02 1 1 2.03 2.14 0.95

sup dem 6889 4 5 6.15609e-06 6.15609e-06 1 1 37.15 44.32 0.83

Thermal 7488 1 4 9.74509e-01 9.74509e-01 1 1 46.35 56.79 0.82

HF2D3 4489 2 4 6.87987e-01 6.87987e-01 1 1 15.59 35.37 0.44

1307Numerical Algorithms (2023) 92:1289–1310

Fig. 1 Intermediate reduced functions obtained by Algorithm 1 for the Demmel 1k example. The blue
line indicates the original function, while the red dashed lines represent the reduced functions. The loca-
tions of the maximizers and maximum of the reduced functions are indicated by the red crosses and circles,
respectively

5 Conclusion

We have proposed a subspace framework to approximate the structured real stability
radius for large-scale systems. The method for the computation of the structured real
stability radius was based on an interpolatory model order reduction technique. In
particular, we reduced the large-scale problems to small ones, and by repeatedly solv-
ing small-scale problems, we obtain an estimate of the large-scale stability radius.
Our subspace method yields a Hermite interpolation property between the full and
reduced problems which ensures quadratic convergence. The rigorous analysis of this
fast convergence was established as well as the efficiency of the proposed methods
was demonstrated on several numerical experiments. The subspace idea addressed in
this work can be applicable for the computation of the structured real stability radius
of a large-scale time-delay system. Moreover, a different variant of the subspace
method (see, for example, [16, 21]) can be applied to approximate the unstructured
real stability radius for large-scale systems. We aim to focus on these problems in
future works.

Acknowledgements The author is grateful to two anonymous reviewers and Emre Mengi for their
invaluable feedback.

1308 Numerical Algorithms (2023) 92:1289–1310

Funding This work was supported by OP RDE, project no. CZ.02.2.69/0.0/0.0/18 053/0016976. Inter-
national mobility of research, technical and administrative staff at Charles University.

Software The MATLAB implementation of our algorithm together with test data is publicly available
under the https://doi.org/10.5281/zenodo.5837634.

Declarations

Conflict of interest The author declares no competing interests.

References

1. Aliyev, N., Benner, P., Mengi, E., Schwerdtner, P., Voigt, M.: Large-scale computation of L∞-norms
by a greedy subspace method. SIAM J. Matrix Anal. Appl. 38(4), 1496–1516 (2017)

2. Aliyev, N., Benner, P., Mengi, E., Voigt, M.: A subspace framework for H∞-norm minimization.
SIAM J. Matrix Anal. Appl. 41(2), 928–956 (2020)

3. Beattie, C., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction.
Syst. Control Lett. 58(3), 225–232 (2009)

4. Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a
quadratically convergent algorithm for computing its L∞-norm. Syst. Control Lett. 15(1), 1–7 (1990)

5. Bruinsma, N.A., Steinbuch, M.: A fast algorithm to compute the H∞-norm of a transfer function
matrix. Syst. Control Lett. 14(4), 287–293 (1990)

6. Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N.K.: Numerical computation of an analytic
singular value decomposition of a matrix valued function. Numer. Math. 60(1), 1–39 (1991)

7. Byers, R.: A bisection method for measuring the distance of a stable matrix to the unstable matrices.
SIAM J. Sci. Stat. Comp. 9(5), 875–881 (1988)

8. Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory: a Convex Approach. Springer
(2000)

9. Freitag, M.A., Spence, A.: A new approach for calculating the real stability radius BIT Numer. Math.
54, 381–400 (2014)

10. Guglielmi, N., Gürbüzbalaban, M., Mitchell, T., Overton, M.L.: Approximating the real structuredl
stability radius with frobenius bounded norm perturbations. SIAM J. Matrix Anal. Appl. 38(4), 1323–
1353 (2017)

11. Guglielmi, N., Lubich, C.: Low-rank dynamics for computing extremal points of real pseudospectra.
SIAM J. Matrix Anal. Appl. 34(1), 40–66 (2013)

12. Gugliemi, N., Manetta, M.: Approximating real stability radii. IMA J. Numer. Anal. 35(3), 1–24
(2014)

13. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7(1), 1–10 (1986)
14. Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic riccati

equation. Syst. Control Lett. 8(2), 105–113 (1986)
15. Hinrichsen, D., Pritchard, A.J.: Real and complex stability radii: a survey. In: Control of Uncer-

tain Systems: Proceedings of an International Workshop. pp. 119–162, Bremen, West Germany, June
(1989)

16. Kangal, F., Meerbergen, K., Mengi, E., Michiels, W.: A subspace method for large scale eigenvalue
optimization. SIAM J. Matrix Anal. Appl. 39(1), 48–82 (2017)

17. Kangal, F., Mengi, E.: Non-smooth algorithms for minimizing the largest eigenvalue with applications
to inner numerical radius. IMA J. Numer. Anal. 40(4), 2342–2376 (2019)

18. Katewa, V., Pasqualletti, F.: On the real stability radius of sparse systems. Automatica 113, 377–387
(2020)

19. Lancaster, P.: On eigenvalues of matrices dependent on a parameter. Numer. Math. 6, 377–387 (1964)
20. Lu, D., Vandereycken, B.: Criss-cross type algorithms for computing the real pseudospectral abscissa.

SIAM J. Matrix Anal. Appl. 38(3), 891–923 (2017)
21. Mengi, E.: Large-scale and global maximization of the distance to instability. SIAM J. Matrix Anal.

Appl. 39(4), 1776–1809 (2018)

1309Numerical Algorithms (2023) 92:1289–1310

https://doi.org/10.5281/zenodo.5837634

22. Qiu, L., Berhnhardsson, B., Rantzer, A., Davison, E.J., Young, P.M., Doyle, J.C.: A formula for
computation of real stability radius. Automatica. 31(6), 879–890 (1995)

23. Rostami, M.W.: New algorithms for computing the real structured pseudospectral abscissa and the
real stability radius of large and sparse matrices. SIAM J. Sci. Comput. 37(5), 447–471 (2015)

24. Sreedhar, V., Dooren, P.V., Tits, A.L.: A fast algorithm to compute the real structured stability radius.
Internat. Ser. Numer. Math. 121, 219–230 (1996)

25. Trefethen, L.N., Embree, M.: Spectra and pseudospectra: the behavior of nonnormal matrices and
operators. Princetion University Press, Princeton, NJ USA (2005)

26. Van Loan, C.F.: How near is a stable matrix to an unstable matrix? Contemporary Math. 47, 465–477
(1985)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1310 Numerical Algorithms (2023) 92:1289–1310

	Subspace method for the estimation of large-scale structured real stability radius
	Abstract
	Introduction
	Literature review

	Subspace framework for rR(A; B, C)
	Rate of convergence analysis
	Numerical experiments
	Implementation details and test setup
	Test results
	Downside of the method

	Conclusion
	References

