
https://doi.org/10.1007/s11075-022-01337-4

ORIGINAL PAPER

An adaptively preconditionedmulti-step matrix
splitting iteration for computing PageRank

ChunWen1 ·Qian-Ying Hu2 ·Zhao-Li Shen3

Received: 24 October 2021 / Accepted: 18 May 2022 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2022

Abstract
The multi-step matrix splitting iteration (MPIO) for computing PageRank is an effi-
cient iterative method by combining the multi-step power method with the inner-outer
iterative method. In this paper, with the aim of accelerating the computation of
PageRank problems, a newmethod is proposed by preconditioning the MPIOmethod
with an adaptive generalized Arnoldi (GArnoldi) method. The new method is called
as an adaptive GArnoldi-MPIO method, whose construction and convergence analy-
sis are discussed in detail. Numerical experiments on several PageRank problems are
reported to illustrate the effectiveness of our proposed method.

Keywords PageRank · Multi-step matrix splitting iteration ·
Generalized Arnoldi method · Power method · The inner-outer iteration

Mathematics Subject Classification (2010) 65F15 · 65F10

1 Introduction

In our world, web search engines have become one of the most commonly used tools
for information retrieval. When we use a web search engine to search something, we
not only hope to obtain the search results as soon as possible, but also hope to get

� Chun Wen
wchun17@163.com

1 School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu, Sichuan, 610054, People’s Republic of China

2 School of Mathematical Sciences, Guizhou Normal University,
Guiyang, 550025, People’s Republic of China

3 College of Science, Sichuan Agricultural University, Ya’an,
Sichuan, 625000, People’s Republic of China

Published online: 30 June 2022

Numerical Algorithms (2023) 92:1213–1231

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01337-4&domain=pdf
http://orcid.org/0000-0003-0561-5787
mailto: wchun17@163.com

the most relevant web pages. Hence, it is necessary to measure the importance of
web pages and order them. Based on the hyperlink structure of web pages, Google’s
PageRank is regarded as an efficient method to determine the importance of web
pages [1]. From the view of numerical solutions, it requires to solve the following
linear system

Ax = x, A = αP + (1 − α)veT, (1)

where A ∈ R
n×n is called a Google matrix, x ∈ R

n is a PageRank vector, α ∈ (0, 1)
is a damping factor, P ∈ R

n×n is a column-stochastic matrix, e = [1, 1, · · · , 1]T ∈
R

n and v = e/n.
It is well-known that the power method is a classical method for computing PageR-

ank. When the damping factor is small such as α = 0.85, the power method has a
fast convergence. On the contrary, if the damping factor is large such as α ≥ 0.99,
then the power method suffers from slow convergence. In fact, the closer the damp-
ing factor α is to 1, the closer the Google matrix A is to the original web link graph.
In other words, the PageRank vector derived from large α perhaps gives a “truer”
PageRanking than small α [2–4]. Hence, it is meaningful to improve the power
method for large values of α. Gu et al. [5] proposed a two-step matrix splitting itera-
tive method (denoted as “PIO”) for computing PageRank, where the power method is
combined with the inner-outer iteration [6]. With this idea in mind, Wen et al. [7] pre-
sented a multi-step matrix splitting iterative method (called as “MPIO”) by applying
multi-step power method to combine with the inner-outer iteration. In addition, many
strategies based on Arnoldi process are considered to speed up the power method.
For instance, Wu and Wei [4] developed a Power-Arnoldi algorithm by periodically
combining the power method with the thick restarted Arnoldi algorithm [8]. Hu et al.
[9] proposed a variant of the Power-Arnoldi algorithm by using the power method
with the extrapolation process based on trace (PET) [10]. Gu et al. [11] presented
a GMRES-Power algorithm based on a periodic combination of the power method
with the GMRES method [12, 13]. More numerical methods based on the Arnoldi
process or the power method, please refer to [14–24].

Considering a weighted inner product into the Arnoldi process, Yin et al. [25]
proposed an adaptive generalized Arnoldi (GArnoldi) method for computing PageR-
ank. And then Wen et al. [26] developed an adaptive Power-GArnoldi algorithm by
treating the adaptive GArnoldi method as an accelerated technique for the power
method. Motivated by these works, we try to construct a new method by precon-
ditioning the MPIO method with the adaptive GArnoldi method in this paper. One
reason is that the MPIO method usually converges faster than the power method for
computing PageRank [7]. Another reason is that the adaptive GArnoldi method with
a weighted inner product can improve the robustness of the standard Arnoldi method
with the Euclidean norm [25]. The new method is called as an adaptive GArnoldi-
MPIO method, whose implementation and convergence would be analyzed in detail.
It is worth noting that our new method is different from the Arnoldi-MSPI method in
[19], since the latter used the thick restarted Arnoldi algorithm [8] to preprocess the
multi-step splitting iteration.

1214 Numerical Algorithms (2023) 92:1213–1231

The remainder of this paper is organized as follows. In Section 2, we briefly review
the MPIO method and the adaptive GArnoldi method for computing PageRank. In
Section 3, we give the construction of the adaptive GArnoldi-MPIO method and dis-
cuss its convergence. In Section 4, numerical experiments are used to illustrate the
effectiveness of our proposed method. Finally, conclusions are presented in Section 5.

2 TheMPIO iteration and the adaptive GArnoldi method
for computing PageRank

In this section, we briefly review the MPIO iteration [7] and the adaptive GArnoldi
method [25] for computing PageRank.

2.1 TheMPIO iteration

According to the idea of the PIO iteration [5], Wen et al. [7] proposed a MPIO iter-
ation by combining the multi-step power method with the inner-outer iteration. The
MPIO iteration can be depicted as follows.

The MPIO iteration. Given an initial guess x(0). For k = 0, 1, · · · , compute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

(
k+ 1

m1+1

)

= αPx(k) + (1 − α)v,

x

(
k+ 2

m1+1

)

= αPx

(
k+ 1

m1+1

)

+ (1 − α)v,

· · ·
x

(
k+ m1

m1+1

)

= αPx

(
k+ m1−1

m1+1

)

+ (1 − α)v,

(I − βP)x(k+1) = (α − β)Px

(
k+ m1

m1+1

)

+ (1 − α)v,

(2)

until the sequence {x(k)}∞k=0 converges, where α ∈ (0, 1), β ∈ (0, α) and m1 (m1 ≥
2) is a multiple iteration parameter. Note that, if m1 = 1, then the MPIO iteration is
reduced to the PIO iteration [5].

From the construction of the MPIO iteration, we can see that the first m1 steps
of (2) are easy to implement since only matrix-vector products are used, while for
the last step of (2), there is a computational problem when solving the linear system
with I − βP . In order to overcome this problem, Gleich et al. [6] employed an inner
Richardson iteration by setting

f = (α − β)Px

(
k+ m1

m1+1

)

+ (1 − α)v, (3)

1215Numerical Algorithms (2023) 92:1213–1231

such that the inner linear system is defined as (I − βP)y = f . Then x(k+1) can be
computed by the inner iteration

y(j+1) = βPy(j) + f, j = 0, 1, 2, · · · , l − 1, (4)

where y(0) = x

(
k+ m1

m1+1

)

and y(l) = x(k+1).
For the whole iterations, the stopping criteria of the outer iteration (the last step of

(2)) and the inner iteration (4) are set as

‖(1 − α)v − (I − αP)x(k+1)‖2 < tol, (5)

and

‖f − (I − βP)y(j+1)‖2 < η, (6)

respectively, where tol and η are the prescribed tolerances. The corresponding algo-
rithm of the MPIO iteration for computing PageRank is presented as follows [7,
19].

Note that, in Algorithm 1, we use the 2-norm of the residual as the stopping
criterion for being consistent with the choices of the following methods.

2.2 The adaptive GArnoldi method

The Arnoldi process with weighted inner products, instead of the Euclidean norm,
can be viewed as a generalization of the standard Arnoldi process. By changing the
weights with the current residual vector corresponding to the approximate PageR-
ank vector, Yin et al. [25] proposed an adaptive GArnoldi method for computing
PageRank, which can be described as follows.

1216 Numerical Algorithms (2023) 92:1213–1231

Some remarks about Algorithm 2 are given as follows.

• In the first line, the input parameter A is the Google matrix as shown in (1),
v = e/n is used as an initial vector, m is the steps of the GArnoldi process and
tol is a prescribed tolerance.

• In the step 3, there is a GArnoldi process, in which the matrix G ∈ R
n×n is

a symmetric positive define (SPD) matrix. In the line 3.5, there is a G-inner
product defined as (x, y)G = xTGy, ∀x ∈ R

n, y ∈ R
n. Correspondingly, in the

line 3.1 and 3.7, there is a G-norm defined as ‖x‖G = √
(x, x)G, ∀x ∈ R

n. Noth
that, when G = I , then the GArnoldi process reduces to the standard Arnoldi
process with the Euclidean norm. The aim of step 3 is to obtain the matrix Vm+1
and Hm+1,m, where Vm+1 = [v1, v2, · · · , vm+1] ∈ R

n×(m+1) is a G-orthogonal
matrix and Hm+1,m = (hij) ∈ R

(m+1)×m is an upper Hessenberg matrix. More
details about the GArnoldi process can be found in [25].

• In the step 5, σm denotes the minimal singular value of the matrix Hm+1,m −
[I ; 0]T, sm and um denotes the right and left singular vector associated with σm

respectively. The matrix Vm consists of the first m columns of the matrix Vm+1.
• Since all SPD matrices are diagonalized, for simplicity, it is reasonable to set

G as a diagonal matrix. As shown in the step 7, the matrix G is chosen as
G = diag{|r|/‖r‖1}, where r is the residual vector obtained from the step 5. It
is worth mentioning that the residual vector r changes after every cycle of Algo-
rithm 2, such that the matrix G, or the weights, is adaptively changed with the
changing of the current residual vector.

1217Numerical Algorithms (2023) 92:1213–1231

3 The adaptive GArnoldi-MPIOmethod for computing PageRank

In this section, for accelerating the computations of PageRank problems, a new
method is proposed by using the adaptive GArnoldi method as a preconditioner of
the MPIOmethod. The new method is called as an adaptive GArnoldi-MPIOmethod.
We first give its construction, and then discuss its convergence.

3.1 The adaptive GArnoldi-MPIOmethod

The construction of the adaptive GArnoldi-MPIO method is partially similar to the
construction of these methods in [4, 11, 19, 26]. However, there are several obvious
differences between our new method and the other methods. For example, comparing
the adaptive GArnoldi-MPIO method with the Power-Arnoldi method [4], there are
three main differences between them. The first one is that the aim of our new method
is to accelerate the MPIO method, not the power method. The second one is that the
former employs the adaptive GArnoldi method as a preconditioner, while the latter
uses the thick restarted Arnoldi method. The last one is that our proposed method first
runs the adaptive GArnoldi method for a few times such that an approximate vector
is obtained, while the Power-Arnoldi method first runs the power method. Now we
outline the steps of the adaptive GArnoldi-MPIO method for computing PageRank
as follows.

1218 Numerical Algorithms (2023) 92:1213–1231

According to Algorithm 3, the mechanism of the adaptive GArnoldi-MPIO
method can be simply summarized as follows: given an unit initial vector v, we first
run the adaptive GArnoldi method (Algorithm 2) for a few times (e.g., 2–3 times) to
get an approximate PageRank vector. If the approximate PageRank vector is unsatis-
factory, we use the resulting vector as the initial vector of the MPIO method to obtain
another approximate PageRank vector. If this approximate PageRank vector is still
below the prescribed tolerance, rerun the adaptive GArnoldi method. Repeating the
above procedure analogously until the described accuracy is achieved.

In Algorithm 3, one problem is that when and how to control the conversion
between the MPIO method and the adaptive GArnoldi method. To solve this prob-
lem, a simple and easily realized strategy as given in [19] is chosen. That is, the
parameters α1, α2, restart ,maxit are used to control the flip-flop between theMPIO
method and the adaptive GArnoldi method. Specifically, let τ curr and τpre be the
residual norm of the current and the previous MPIO method, respectively. Denote
ratio = τ curr/τpre. If ratio > α1, then let restart = restart + 1, terminate the
MPIO method and run the adaptive GArnoldi method. Let dcurr and dpre be the
residual norm of the current and the previous inner iteration of the MPIO method,
respectively. Denote ratio1 = dcurr/dpre. If ratio1 > α2, then keep on running the
inner iteration. In order to make sure the stability of our new method, it is important
to set the values of α1 and α2. Since the largest eigenvalue of the Google matrix A is
λ1 = 1, and its second largest eigenvalue satisfies |λ2| ≤ α [27], it is reasonable to
choose α1 = α − 0.1 or α1 = α − 0.2, and α2 = α − 0.1 or α2 = α − 0.2.

Now we consider the memory and the computational costs of the adaptive
GArnoldi-MPIO method. According to the steps 2 and 3 of Algorithm 3, we find the
main storage requirements are the G-orthogonal matrix Vm+1, the upper Hessenberg
matrix Hm+1,m, the approximate PageRank vector x, the residual vector r , as well as
the intermediate vectors z (line 3.7) and f (line 3.9). Thus the total memory cost of

1219Numerical Algorithms (2023) 92:1213–1231

Algorithm 3 is approximately (m + 5)n + m2

2 + 2m in each cycle. Since the matrix
G is chosen as a diagonal matrix, i.e., G = diag{|r|/‖r‖1}, the G-inner product and
G-norm in the GArnoldi process can be implemented by elementwise multiplication.
So the main computational cost of our proposed method consists of the matrix-vector
multiplications. For each cycle, it needs m matrix-vector multiplications in the GAr-
noldi process phase, and in the MPIO iteration phase, it requires m1 matrix-vector
multiplications for the power iteration (lines 3.5–3.8), while we do not know how
many matrix-vector multiplications will be implemented for the inner-outer iteration
(lines 3.11–3.17) because of the existence of the parameters η, ratio1 and α2. Thus
the main computational cost of Algorithm 3 is m matrix-vector multiplications or at
lease m + m1 matrix-vector multiplications in each cycle.

3.2 Convergence analysis of the adaptive GArnoldi-MPIOmethod

In this subsection, we discuss the convergence analysis of the adaptive GArnoldi-
MPIO method. Particularly, our analysis focuses on the procedure when turning from
the MPIO iteration to the adaptive GArnodli method.

Assume that eigenvalues of the Google matrix A are arranged in decreasing order
1 = |λ1| > |λ2| ≥ · · · ≥ |λn|. Let Lm−1 represent the set of polynomials of
degree not exceeding m − 1, σ(A) denote the set of eigenvalues of the matrix A,
(λi, ϕi), i = 1, 2, · · · , n and (̃λj , ỹj), j = 1, 2, · · · , m denote the eigenpairs of
A and Hm, respectively. The Arnoldi method usually uses λ̃j to approximate λj ,
ϕ̃j = Vmỹj to approximate ϕj . However, for each λ̃j , instead of using ϕ̃j to approx-
imate ϕj , Jia [3] tried to seek a unit norm vector ũj ∈ Km(A, v1) satisfying the
condition

‖(A − λ̃j I)̃uj‖2 = min
u∈Km(A,v1)

‖(A − λ̃j I)u‖2 (7)

and use it to approximate ϕj , where Km(A, v1) = span(v1, Av1, · · · , Am−1v1) is a
Krylov subspace, and ũj is called a refined approximate eigenvector corresponding
to λj . Convergence of the refined Arnoldi method is given below.

Theorem 1 [3]. Under the above notations, assume that v1 = ∑n
i=1 γiϕi with

respect to the eigenbasis {ϕi}i=1,2,··· ,n in which ‖ϕi‖2 = 1, i = 1, 2, · · · , n and
γi 	= 0, let S = [ϕ1, ϕ2, · · · , ϕn], and

ξj =
∑

i 	=j

|λi − λ̃j | · |γi |
|γj | .

Then

‖(A − λ̃j I)̃uj‖2 ≤ σmax(S)

σmin(S)

(

|λj − λ̃j | + ξj min
p∈Lm−1,p(λj)=1

max
i 	=j

|p(λi)|
)

,

where σmax(S) and σmin(S) are the largest and smallest singular value of the matrix
S, respectively.

1220 Numerical Algorithms (2023) 92:1213–1231

Before we give the convergence of the adaptive GArnoldi-MPIO method, a few
useful conclusions are shown as follows.

Lemma 1 [26]. Let G = diag{w1, w2, · · · , wn}, wi > 0 (1 ≤ i ≤ n), then for any
vector x ∈ R

n, we have

min
1≤i≤n

wi · ‖x‖22 ≤ ‖x‖2G ≤ max
1≤i≤n

wi · ‖x‖22, (8)

where ‖ · ‖2 denotes the 2-norm and ‖ · ‖G denotes the G-norm.

Theorem 2 [27]. Let P be an n×n column-stochastic matrix. Let α be a real number
such that 0 < α < 1. Let E be an n×n rank-one column-stochastic matrix E = veT,
where e is the n-vector whose elements are all ones and v is an n-vector whose
elements are all nonnegative and sum to 1. Let A = αP + (1 − α)E be an n × n

column-stochastic matrix, then its dominant eigenvalue λ1 = 1, |λ2| ≤ α.

Theorem 3 [28]. Assume that the spectrum of the column-stochastic matrix P

is {1, π2, · · · , πn}, then the spectrum of the matrix A = αP + (1 − α)veT is
{1, απ2, · · · , απn}, where α ∈ (0, 1) and v is a vector with nonnegative elements
such that eTv = 1.

Since our analysis focuses on the procedure when turning from the MPIO iteration
to the adaptive GArnodli method, it is necessary to derive the iterative formula of the
MPIO method in Algorithm 3.

Lemma 2 Let v1 be the initial vector for the MPIO method, which is obtained from
the previous adaptive GArnoldi method. Then, the MPIO method in Algorithm 3
produces the vector

vnew
1 = ωT kv1, (9)

where k ≥ maxit , ω is a normalizing factor, and the iterative matrix T is expressed
as

T = (I − βP)−1
[
αm1−1(α − β)P m1A + (α − β)PMm1−2(α, P)(A − αP) + (A − αP)

]
,

where

Mm1−2(α, P) = αm1−2P m1−2 + αm1−3P m1−3 + · · · + αP + I

1221Numerical Algorithms (2023) 92:1213–1231

sand m1 is a multiple iteration parameter for the power iteration in the MPIO method.

Proof Let v1 be the initial vector for the MPIO method, then it has x(k) = v1.
According to (2), we have

x(k+1) = αm1 (α − β)(I − βP)−1P m1+1x(k) + (I − βP)−1(1 − α)v

+(α − β)(I − βP)−1P [(αm1−1P m1−1 + αm1−2P m1−2 + · · · + αP + I)(1 − α)v]
= αm1−1(α − β)(I − βP)−1P m1 [αPx(k) + (1 − α)v] + (I − βP)−1(1 − α)v

+(α − β)(I − βP)−1P [(αm1−2P m1−2 + · · · + αP + I)(1 − α)v]
= αm1−1(α − β)(I − βP)−1P m1 [αP + (1 − α)E]x(k) + (I − βP)−1(1 − α)Ex(k)

+(α − β)(I − βP)−1PMm1−2(α, P)(1 − α)Ex(k)

= (I − βP)−1
[
αm1−1(α − β)P m1A + (α − β)PMm1−2(α, P)(A − αP) + (A − αP)

]
x(k),

where we used the relationships separately A = αP + (1 − α)veT, E = veT and
eTx(k) = 1. Thus, the conclusion in Lemma 2 is proved.

Remark 1 We need to indicate that our iterative matrix T in Lemma 2 is different
from that in Lemma 3 of [19], more details please refer to it.

In the next cycle of the adaptive GArnoldi-MPIOmethod, vnew
1 is used as an initial

vector for anm-step GArnoldi process (step 2 in Algorithm 3), so that the new Krylov
subspace

Km(A, vnew
1) = span(vnew

1 , Avnew
1 , · · · , Am−1vnew

1)

will be constructed. The following theorem shows the convergence of the adaptive
GArnoldi-MPIO method.

Theorem 4 Under the above notations, assume that v1 = ∑n
i=1 γiϕi with respect

to the eigenbasis {ϕi}i=1,2,··· ,n in which ‖ϕi‖2 = 1, i = 1, 2, · · · , n and γ1 	= 0, let
S = [ϕ1, ϕ2, · · · , ϕn], G = diag{w1, w2, · · · , wn}, wi > 0 (1 ≤ i ≤ n), and

ξ =
n∑

i=2

|λi − 1| · |γi |
|γ1| , ζ =

√
max1≤i≤n wi

min1≤i≤n wi

.

Then

‖(A − I)u‖G ≤
(

αm1(α − β)

1 − β

)k
ξ · ζ

σmin(S)
min

p∈Lm−1,p(λ1)=1
max

λ∈σ(A)/{λ1}
|p(λ)| ,

where u ∈ Km(A, vnew
1), and σmin(S) is the smallest singular value of the matrix S.

Proof According to Theorem 3, let π1 = 1, π2, · · · , πn be eigenvalues of the matrix
P , then λ1 = 1, λ2 = απ2, · · · , λn = απn are eigenvalues of the matrix A =
αP + (1− α)veT, and μ1 = 1

1−β
, μ2 = 1

1−βπ2
, · · · , μn = 1

1−βπn
are eigenvalues of

1222 Numerical Algorithms (2023) 92:1213–1231

the matrix (I − βP)−1. Such that we have

T ϕi = (I − βP)−1
[
αm1−1(α − β)P m1A + (α − β)PMm1−2(α, P)(A − αP) + (A − αP)

]
ϕi

= αm1−1(α − β)π
m1
i λi + (α − β)πiMm1−2(α, πi)(λi − απi) + (λi − απi)

1 − βπi

ϕi,

where Mm1−2(α, πi) = αm1−2π
m1−2
i + · · · + απi + 1, i = 1, 2, · · · , n.

Assume that

φi = αm1−1(α − β)π
m1
i λi + (α − β)πiMm1−2(α, πi)(λi − απi) + (λi − απi)

1 − βπi

, i = 1, 2, · · · , n,

(10)

then, it has

φ1 = 1, T ϕ1 = ϕ1, T
kϕ1 = ϕ1, T ϕi = ϕi, T

kϕi = φk
i ϕi, i = 2, · · · , n. (11)

From the result in Theorem 2, we have |λi | ≤ α, i = 2, · · · , n. For i = 2, · · · , n,

substituting the relationship πi = λi

α
into (10), we get

|φi | =
∣
∣
∣
∣
∣

αm1−1(α − β)π
m1
i λi

1 − βπi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(α − β) 1
α
λ

m1+1
i

1 − β
α
λi

∣
∣
∣
∣
∣
≤ (α − β) 1

α
|λi |m1+1

1 − β
α
|λi |

≤ αm1 (α − β)

1 − β
. (12)

Since for any u ∈ Km(A, vnew
1), there exists q(x) ∈ Lm−1 such that

‖(A − I)u‖G = min
q∈Lm−1

‖(A − I)q(A)vnew
1 ‖G

‖q(A)vnew
1 ‖G

= min
q∈Lm−1

‖(A − I)q(A)ωT kv1‖G

‖q(A)ωT kv1‖G

= min
q∈Lm−1

‖(A − I)q(A)T kγ1ϕ1 + ∑n
i=2(A − I)q(A)T kγiϕi‖G

‖∑n
i=1 q(A)T kγiϕi‖G

= min
q∈Lm−1

‖∑n
i=2(λi − 1)q(λi)φ

k
i γiϕi‖G

‖∑n
i=1 q(λi)φ

k
i γiϕi‖G

, (13)

where we used the conditions of the theorem, the relationships in (9) and (11). Using
(8) and (12), for the numerator of (13), it has

∥
∥
∥
∥
∥

n∑

i=2

(λi − 1)q(λi)φ
k
i γiϕi

∥
∥
∥
∥
∥

G

≤ √
max
1≤i≤n

wi ·
∥
∥
∥
∥
∥

n∑

i=2

(λi − 1)q(λi)φ
k
i γiϕi

∥
∥
∥
∥
∥
2

≤ √
max
1≤i≤n

wi ·
n∑

i=2

|λi − 1| · |φi |k · |γi | · |q(λi)|

≤ √
max
1≤i≤n

wi ·
n∑

i=2

(
αm1 (α − β)

1 − β

)k

· |λi − 1| · |γi | · |q(λi)|. (14)

1223Numerical Algorithms (2023) 92:1213–1231

For the denominator of (13), it obtains
∥
∥
∥
∥
∥

n∑

i=1

q(λi)φ
k
i γiϕi

∥
∥
∥
∥
∥

2

G

≥ min
1≤i≤n

wi ·
∥
∥
∥
∥
∥

n∑

i=1

q(λi)φ
k
i γiϕi

∥
∥
∥
∥
∥

2

2

≥ min
1≤i≤n

wi · σ 2
min(S) ·

n∑

i=1

|φk
i |2 · |γi |2 · |q(λi)|2. (15)

Combining (14) and (15) into (13), we get

‖(A − I)u‖G ≤ min
q∈Lm−1

√
max1≤i≤n wi · ∑n

i=2

(
αm1 (α−β)

1−β

)k · |λi − 1| · |wi | · |q(λi)|
√

min1≤i≤n wi · σ 2
min(S) · ∑n

i=1 |φk
i |2 · |γi |2 · |q(λi)|2

≤ 1

σmin(S)
·
√
max1≤i≤n wi

min1≤i≤n wi

· min
q∈Lm−1

∑n
i=2

(
αm1 (α−β)

1−β

)k · |λi − 1| · |γi | · |q(λi)|
|γ1| · |q(λ1)|

= 1

σmin(S)
·
√
max1≤i≤n wi

min1≤i≤n wi

·
(

αm1 (α − β)

1 − β

)k

· min
q∈Lm−1

n∑

i=2

|λi − 1| · |γi |
|γ1| · |q(λi)|

|q(λ1)| .

Let p(λ) = q(λ)/q(1), where p(1) = 1, then we have

‖(A − I)u‖G ≤
(

αm1(α − β)

1 − β

)k
ξ · ζ

σmin(S)
min

p∈Lm−1,p(λ1)=1
max

λ∈σ(A)/{λ1}
|p(λ)| .

Therefore, we complete the proof of Theorem 4.

Remark 2 Comparing our result in Theorem 4 with the result in Theorem 3 of [26], it
is easy to find that the adaptive GArnoldi-MPIOmethod can increase the convergence

speed of the adaptive Power-GArnoldi method by a factor of (αm1−1)k ·
(

α−β
1−β

)k

when turning from the MPIO method to the adaptive GArnoldi method. Therefore,
from the view of theory, our proposed method will have a faster convergence than the
adaptive Power-GArnoldi method.

4 Numerical experiments

In this section, we give some numerical examples to test the effectiveness of the
adaptive GArnoldi-MPIO method (denoted as “GA-MPIO”), and compare it with the
MPIO method [7], the Power-Arnoldi method (denoted as “PA”) [4], the adaptive
Power-GArnoldi method (denoted as “PGA”) [26] and the Arnoldi-MSPI method
(denoted as “AMS”) [19] in terms of the iteration counts (IT), the number of matrix-
vector products (Mv) and the computing time (CPU) in seconds. All the numerical
results are obtained by usingMATLABR2016a on theWindows 10 (64 bit) operating
system with 2.40 GHz Intel(R) Core(TM) i7-5500U CPU and RAM 8.00 GB.

In Table 1, we list the characteristics of our test matrices, where n denotes the
matrix size, nnz is the number of nonzero elements, and den is the density which is

1224 Numerical Algorithms (2023) 92:1213–1231

Table 1 The characteristic of test matrices

Name n nnz den

wb-cs-stanford 9,914 36,854 0.375 × 10−1

web-Stanford 281,903 2,312,497 0.291 × 10−2

Stanford-Berkeley 683,446 7,583,376 0.162 × 10−2

defined by den = nnz
n×n

× 100. All the test matrices are available from https://sparse.
tamu.edu/.

For the sake of justification, in all the methods we use the same initial vector
x(0) = e/n with e = [1, 1, · · · , 1]T. Meanwhile, similar to [9, 11, 18, 19], we set
the damping factor as α = 0.99, 0.993, 0.995 and 0.997, respectively. The 2-norm
of residual vector is chosen as our stopping criterion in all experiments, and the
prescribed tolerance is set as tol = 10−8.

Additionally, in the MPIO, AMS and GA-MPIO methods, we set the default mul-
tiple iteration parameter as m1 = 3 and the inner tolerance η = 10−2, β = 0.5
because they can yield nearly optimal results for the inner-outer method [6]. How-
ever, it is hard to determine the optimal choices of the parameters m and maxit ,
because their optimal choices are different for different damping factors α and differ-
ent PageRank problems. Hence, based on the discussions and advisable values from
the related papers [9, 11, 15, 18, 19, 25, 26], we uniformly set m = 8 and maxit = 8
in our experiments for a fair comparison. The parameters chosen to flip-flop are set
as α1 = α−0.1 and α2 = α−0.1 in the AMS and GA-MPIO methods. And the same
choice is used for the PA and PGA methods. In the PA and AMS methods, we run
the thick restarted Arnoldi procedure two times per cycle with the number of approx-
imate eigenpairs g = 6. Similarly, in the PGA and GA-MPIO methods, we run the
adaptive GArnoldi procedure two times per cycle. Moreover, in order to describe the
efficiency of our proposed method, we define

Spt = CPUMPIO − CPUGA-MPIO

CPUMPIO
× 100%.

to show the speedup of the GA-MPIO method with respect to the MPIO method.
Numerical results of the five methods for all the test matrices are provided in

Tables 2, 3, and 4. From Tables 2, 3, and 4, we can see that

• For all the test matrices, the GA-MPIO method outperforms the MPIO method
in terms of the iteration counts, the number of matrix-vector products and the
computing time. Especially, the speedup of the GA-MPIO method with respect
to the MPIO method is up to 86.35%. Hence, it shows that considering the adap-
tive GArnoldi method as a preconditioned technique for the MPIO method is
meaningful.

• The GA-MPIO method works better than the PA and PGA methods in terms of
the iteration counts and the computing time for all the test matrices, even though
it needs a little more matrix-vector products in some cases. One possible rea-
son is that the MPIO method needs more matrix-vector products than the power

1225Numerical Algorithms (2023) 92:1213–1231

https://sparse.tamu.edu/
https://sparse.tamu.edu/

Table 2 Numerical results of the five methods for the wb-cs-stanford matrix

α MPIO PA PGA AMS GA-MPIO

α = 0.99

IT 250 100 71 29 23

Mv 1001 161 151 197 177

CPU (Spt) 0.1571 0.0846 0.0695 0.0747 0.0465 (70.40%)

α = 0.993

IT 357 133 81 37 25

Mv 1429 215 177 239 197

CPU (Spt) 0.1925 0.0978 0.0741 0.0868 0.0486 (74.75%)

α = 0.995

IT 500 140 102 46 34

Mv 2001 222 214 289 249

CPU (Spt) 0.2762 0.1098 0.0763 0.1065 0.0589 (78.67%)

α = 0.997

IT 835 174 118 51 37

Mv 3341 275 262 324 270

CPU (Spt) 0.4461 0.1346 0.0972 0.1167 0.0609 (86.35%)

Table 3 Numerical results of the five methods for the web-Stanford matrix

α MPIO PA PGA AMS GA-MPIO

α = 0.99

IT 285 134 105 57 39

Mv 1141 247 281 319 258

CPU (Spt) 11.3068 5.1062 5.3975 4.6193 3.7956 (66.43%)

α = 0.993

IT 408 200 139 69 49

Mv 1633 338 379 387 317

CPU (Spt) 16.5180 6.4072 7.1201 5.6974 4.0768 (75.32%)

α = 0.995

IT 572 239 151 81 56

Mv 2289 432 407 445 364

CPU (Spt) 23.1163 8.4735 7.8941 6.4341 4.6790 (79.76%)

α = 0.997

IT 954 317 174 105 81

Mv 3817 584 462 593 512

CPU (Spt) 38.6842 11.4853 8.8188 8.4995 6.7237 (82.62%)

1226 Numerical Algorithms (2023) 92:1213–1231

Table 4 Numerical results of the five methods for the Stanford-Berkeley matrix

α MPIO PA PGA AMS GA-MPIO

α = 0.99

IT 304 259 206 74 67

Mv 1217 516 542 412 435

CPU (Spt) 21.8189 21.5090 21.4558 11.6537 10.7943 (50.53%)

α = 0.993

IT 437 352 283 116 85

Mv 1749 702 747 639 549

CPU (Spt) 29.8509 29.8306 29.6589 17.7532 14.1027 (52.76%)

α = 0.995

IT 612 475 355 164 124

Mv 2449 950 963 897 766

CPU (Spt) 40.3098 39.1994 38.2646 26.1607 19.8909 (50.65%)

α = 0.997

IT 1022 729 452 244 193

Mv 4089 1470 1252 1323 1192

CPU (Spt) 65.7275 61.5272 49.0371 36.5741 31.2351 (52.48%)

Fig. 1 Convergence behavior of the five methods for the wb-cs-stanford matrix

1227Numerical Algorithms (2023) 92:1213–1231

Fig. 2 Convergence behavior of the five methods for the web-Stanford matrix

method in each iteration. Another possible reason is that, in the Arnoldi process,
1 matrix-vector product is accomplished with much more vector-operations than
in the power method. As we know, for the power iteration, 1 matrix-vector prod-
uct is mainly accomplished with 1 vector-scaling operation and 1 vector-addition
operation, while in the Arnoldi process, 1 matrix-vector product is accomplished
mainly with m+1

2 vector inner-product operations, m+1
2 + m+1

m
vector-scaling

operations, m+1
2 vector-addition operations and m+1

m
norm computations. From

the results in Tables 2, 3, and 4, it observes that the GA-MPIO method gets the
smallest iteration counts, thus a smallest number of the Arnoldi process is imple-
mented compared with the PA and PGA methods. That is why the GA-MPIO
method costs remarkably smaller computing time, although it gets similar num-
ber of matrix-vector products with the PA and GPA methods in some cases. For
example, when α = 0.997, for the PA and PGA methods, we find that their com-
puting time are reduced by 54.75% and 37.34% in Table 1, 41.46% and 23.76%
in Table 3, 49.23% and 36.30% in Table 4, respectively. Therefore, these numeri-
cal performances suggest that our proposed method has a faster convergence than
the PA and PGA methods, which verifies our theoretical analysis in Remark 2.

• The last two columns list the numerical results of the AMS and GA-MPIO meth-
ods. As mentioned in Section 1, the main difference between the AMS and

1228 Numerical Algorithms (2023) 92:1213–1231

Fig. 3 Convergence behavior of the five methods for the Stanford-Berkeley matrix

GA-MPIO methods lies in that the former used the thick restarted Arnoldi algo-
rithm to preprocess the multi-step splitting iteration, while the latter used the
adaptive GArnoldi method. According to the results in Tables 2, 3, and 4, we can
see that all the numerical performance of the GA-MPIO method is superior to
the AMS method for all the test matrices, except the Stanford-Berkeley matrix
with α = 0.99 where the number of matrix-vector products of the GA-MPIO
method is inferior to the AMS method. The main reason is that the convergence
performance of the Arnoldi method is improved by the adaptively accelerat-
ing technique. For instance, when α = 0.997, the computing time of the AMS
method is reduced by 47.81% in Table 2. Hence, we can say that our proposed
method outperforms the AMS method when α is high, which also indicates that
introducing a weighted inner product into the Arnoldi process for computing
PageRank problems is significant.

Figures 1, 2 and 3 plot the convergence behavior of the MPIO method, the
PA method, the PGA method, the AMS method and the GA-MPIO method for
α = 0.99, 0.993, 0.995 and 0.997, respectively. They show that our proposed method
converges faster than its counterparts again.

1229Numerical Algorithms (2023) 92:1213–1231

5 Conclusions

In this paper, we present a new method by considering the adaptive GArnoldi method
as a preconditioned technique to accelerate the MPIO method. The new method is
called as the adaptive GArnoldi-MPIO method, whose construction and convergence
analysis can be found in Section 3. Numerical experiments in Section 4 show that our
proposed method is efficient and has a faster convergence than its counterparts.

In the future, we would like to discuss the choice of experimental parameters, e.g.,
how to determine the optimal m and maxit so that the new method can work more
efficiently. In addition, the optimal choice of the weighted matrix G is also required
to be further analyzed.

Acknowledgements The authors would like to thank the anonymous referees for their valuable comments
and suggestions on the original manuscript, which greatly improved the quality of this article.

Funding This research is supported by the National Natural Science Foundation of China (12101433),
and the Two-Way Support Programs of Sichuan Agricultural University (1921993077).

Data availability The datasets generated or analyzed during the current study are available from the
corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Page, L., Brin, S., Motwami, R., Winograd, T.: The PageRank citation ranking: Bringing order to the
web, Technical report, Computer Science Department, Stanford University, Stanford CA (1999)

2. Langville, A., Meyer, C.: Deeper inside PageRank. Internet Math. 1, 335–380 (2005)
3. Jia, Z.X.: Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenprob-

lems. Linear Algebra Appl. 259, 1–23 (1997)
4. Wu, G., Wei, Y.: A Power-Arnoldi algorithm for computing pagerank. Numer. Linear Algebra Appl.

14, 521–546 (2007)
5. Gu, C.Q., Xie, F., Zhang, K.: A two-step matrix splitting iteration for computing pagerank. J. Comput.

Appl. Math. 278, 19–28 (2015)
6. Gleich, D., Gray, A., Greif, C., Lau, T.: An inner-outer iteration for computing PageRank. SIAM J.

Sci. Comput. 32, 349–371 (2010)
7. Wen, C., Huang, T.Z., Shen, Z.L.: A note on the two-step matrix splitting iteration for computing

pagerank. J. Comput. Appl. Math. 315, 87–97 (2017)
8. Morgan, R., Zeng, M.: A harmonic restarted Arnoldi algorithm for calculating eigenvalues and

determining multiplicity. Linear Algebra Appl. 415, 96–113 (2006)
9. Hu, Q.Y., Wen, C., Huang, T.Z., Shen, Z.L., Gu, X.M.: A variant of the Power-Arnoldi algorithm for

computing PageRank. J. Comput. Appl. Math. 381, 113034 (2021)
10. Tan, X.Y.: A new extrapolation method for pagerank computations. J. Comput. Appl. Math. 313,

383–392 (2017)
11. Gu, C.Q., Jiang, X.L., Shao, C.C., Chen, Z.B.: A GMRES-power algorithm for computing PageRank

problems. J. Comput. Appl. Math. 343, 113–123 (2018)
12. Saad, Y., Schultz, M.H.: GMRES: A Generalized minimal residual algorithm for solving nonsymmet-

ric linear systems. SIAM J. Sci. Stat. Comput. 7, 857–869 (1986)

1230 Numerical Algorithms (2023) 92:1213–1231

13. Pu, B.Y., Huang, T.Z., Wen, C.: A preconditioned and extrapolation-accelerated GMRES method for
PageRank. Appl. Math. Lett. 37, 95–100 (2014)

14. Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT. 46, 759–771 (2006)
15. Wu, G., Wei, Y.: An Arnoldi-Extrapolation algorithm for computing PageRank. J. Comput. Appl.

Math. 234, 3196–3212 (2010)
16. Miao, Q.C., Tan, X.Y.: Accelerating the Arnoldi method via Chebyshev polynomials for computing

PageRank. J. Comput. Appl. Math. 377, 112891 (2020)
17. Gu, C.Q., Wang, L.: On the multi-splitting iteration method for computing pagerank. J. Appl. Math.

Comput. 42, 479–490 (2013)
18. Gu, C.Q., Wang, W.W.: An Arnoldi-Inout algorithm for computing PageRank problems. J. Comput.

Appl. Math. 309, 219–229 (2017)
19. Gu, C.Q., Jiang, X.L., Nie, Y., Chen, Z.B.: A preprocessed multi-step splitting iteration for computing

PageRank. Appl. Math. Comput 338, 87–100 (2018)
20. Tian, Z.L., Liu, Y., Zhang, Y., Liu, Z.Y., Tian, M.Y.: The general inner-outer iteration method based

on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019)
21. Shen, Z.L., Huang, T.Z., Carpentieri, B., Wen, C., Gu, X.M., Tan, X.Y.: Off-diagonal low-rank

preconditioner for difficult PageRank problems. J. Comput. Appl. Math. 346, 456–470 (2019)
22. Shen, Z.L., Huang, T.Z., Carpentieri, B., Gu, X.M., Wen, C.: An efficient elimination strategy for

solving Pagerank problems. Appl. Math. Comput. 298, 111–122 (2017)
23. Zhang, H.F., Huang, T.Z., Wen, C., Shen, Z.L.: FOM accelerated by an extrapolation method for

solving Pagerank problems. J. Comput. Appl. Math. 296, 397–409 (2016)
24. Gu, X.M., Lei, S.L., Zhang, K., Shen, Z.L., Wen, C., Carpentieri, B.: A Hessenberg-type algorithm

for computing PageRank Problems. Numer. Algorithms 89, 1845–1863 (2021)
25. Yin, J.F., Yin, G.J., Ng, M.: On adaptively accelerated Arnoldi method for computing PageRank.

Numer. Linear Algebra Appl. 19, 73–85 (2012)
26. Wen, C., Hu, Q.Y., Yin, G.J., Gu, X.M., Shen, Z.L.: An adaptive Power-GArnoldi algorithm for

computing PageRank. J. Comput. Appl. Math. 386, 113209 (2021)
27. Haveliwala, T., Kamvar, S.: The second eigenvalue of the google matrix. In: Proceedings of the

Twelfth International World Wide Web of Conference (2003)
28. Langville, A., Meyer, C.: Google’s PageRank and beyond: The Science of the Search Engine

Rankings. Princeton University Press (2006)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1231Numerical Algorithms (2023) 92:1213–1231

	An adaptively preconditioned multi-step matrix splitting iteration for computing PageRank
	Abstract
	Introduction
	The MPIO iteration and the adaptive GArnoldi method for computing PageRank
	The MPIO iteration
	The adaptive GArnoldi method

	The adaptive GArnoldi-MPIO method for computing PageRank
	The adaptive GArnoldi-MPIO method
	Convergence analysis of the adaptive GArnoldi-MPIO method

	Numerical experiments
	Conclusions
	References

