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Abstract

This paper is concerned with a linearized second-order finite difference scheme
for solving the nonlinear time-fractional Schrédinger equation in d (d = 1,2, 3)
dimensions. Under a weak assumption on the nonlinearity, the optimal error esti-
mate of the numerical solution is established without any restriction on the grid
ratio. Besides the standard energy method, the key tools for analysis include the
mathematical induction method, several inverse Sobolev inequalities, and a discrete
fractional Gronwall-type inequality. The convergence rate of the proposed scheme is
of O(t% + h?) with time step T and mesh size 4. Numerical results are carried out to
confirm the theoretical analysis.
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1 Introduction

In this paper, we consider the d-dimensional (d = 1, 2, 3) nonlinear time-fractional
Schrodinger (NTFS) equation

iSDYu+Au+ f(uPu=0, xeQ, 0<t<T, (1.1
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with initial condition
u(x,0) =uo(x), xeQ, (1.2)
and boundary condition
ux,t) =0, xe€dR, 0<r<T, (1.3)

where i = +/—1 is the imaginary unit, ¢ is time variable, x is coordinate in RY,
Q c R? is a bounded computational domain, ¥ = u(X, t) is the unknown complex-
valued wave function, f € Cl(RT) is a given real-valued function, ug is a given
complex-valued function, and gD;" with o € (0, 1) represents the Caputo fractional
derivative defined by

Comat _ 1 /’au(x, $) 1
oDiu(x,t) = =) Jo ds. (1.4)

ds (t—s)*

Here I'(-) denotes the standard gamma function I'(z) = fooo t*~le~'dr. the NTFS
equation is a widely used model for plenty of nature phenomena in physics [19,
38, 44, 46]. In recent years, extensive numerical studies have been carried out in
the literature for solving time-fractional PDEs. As « tends to 1, the NTFS equation
reduces to the famous nonlinear Schrédinger (NLS) equation. For numerical methods
on solving NLS equation, we refer to [3, 5-7, 12, 16, 17, 26, 27, 31, 39, 40, 42, 43,
45, 47, 50, 52] and references therein.

In recent years, extensive numerical studies have been carried out in the litera-
ture for solving fractional partial differential equations. Those numerical methods
can be roughly divided into two types, indirect ones and direct ones. The indirect
methods [10, 11, 36, 37, 54] consider reformulating the time-fractional differential
equations into integro-differential equations, while the direct methods [1, 4, 8, 9,
13, 15, 18, 20-25, 30, 32, 34, 35, 48, 49, 51] directly consider approximating the
fractional derivative via some numerical schemes. From the practical implementa-
tion perspective, the direct methods are much easier to implement than the indirect
methods. Most of the direct methods use finite difference method or finite element
method in spatial direction which are of little difference from the numerical schemes
of integro-differential equations.

In [33,41], an L1 approximation to the Caputo fractional derivative was presented,
where the truncation error of the time-fractional derivative is merely of ltZmal
In order to improve the accuracy, an L1-2 formula [14] and an L2-1, formula [2]
were proposed to approximate the Caputo fractional derivative with truncation error
of 0(r3_°‘). In fact, for the integer NLS equation, the L1-2 formula reduces to
the famous second-order backward differentiation formula, and the L2-1, formula
reduces to the famous Crank-Nicolson differentiation formula.

Though extensive numerical studies for time-fractional partial differential equa-
tions have been carried out in literature, few numerical methods are proposed
for the multi-dimensional nonlinear time-fractional Schrodinger equation. In [25],
Li, Wang and Zhang proposed a linearized L1-Galerkin finite element method to
solve the nonlinear time-fractional Schrodinger equation in multi-dimensions. By
a temporal-spatial error-splitting method and a fractional Gronwall-type inequality,
they obtained the optimal error estimate of the numerical scheme without any grid
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ratio condition, and the convergence order is proved to be of O(z2~% + h¥) with
time step T and mesh size 4. In [48], to improve the temporal accuracy, Wang et al.
adopted the L2-1, method to approximate the Caputo time-fractional derivative and
utilized the Galerkin finite element method in space to derive two numerical meth-
ods with second-order accuracy in time direction, then they established the optimal
error estimates by using similar method in [25]. However, as far as we know, there is
few analysis on finite difference scheme of the NTFS equation. Hence, we derive an
accurate finite difference scheme for NTFS equation and establish the optimal error
estimate in this work. In summary, the main contributions of this paper are threefold:

(1) A linearized L2-1, finite difference scheme for the NTFS (1.1) with second-
order accuracy in time is proposed;

(2) The optimal error estimate of the proposed scheme is established without
any restriction on the grid ratio. Meanwhile, a new analysis for an iterative
procedure to obtain the numerical solution at the first time level is given.

(3) A novel and concise analysis method is introduced to establish the optimal error
estimate by combining the standard energy method, the mathematical induction
method, inverse Sobolev inequalities, and a fractional Gronwall-type inequality.
In fact, by using this new analysis method, one can avoid estimating the semi-
H! norm or the semi-H? norm of the “error” function, which not only makes
the new analysis method rather concise than the existing ones in the literature
but also merely requires f € C!(RY) instead of f € C3(R") required in
existing works.

The rest of this paper is organized as follows. In Section 2, a linearized fully
discrete numerical scheme is proposed and the main convergence result is stated.
In Section 3, a time-fractional Gronwall-type inequality for L2-1, approximation is
introduced and the L? error estimate of the numerical solution is established without
any restriction on the grid ratio. In Section 4, several numerical examples are pro-
vided to verify our theoretical results. Finally, conclusions and future perspectives
are drawn in Section 5.

2 An accurate finite difference scheme and main result

For simplicity, we here only consider the NTFS equation in two dimensions with
computation domain Q = (a, b) X (c, d). The extension to three-dimensional cases
is straightforward with minor modification. The initial-boundary value problem of
the two-dimensional NTFS equation reads

igD;’u+Au+f(|u|2)u=O, (x,y)e, 0<t<T, (2.1)
u(x,y, 1) =0, x,y)€dQ, 0<t<T, (22)
u(x,y,0) =up(x,y), (x,y) e Q. (2.3)

For a positive integer N, choose time step T = T/N and denote time steps ¢, =
nt, n=0,1,2,---, N,where 0 < T < Tpax With Tpax the maximal existing time
of the solution. Choose mesh sizes h1 = (b — a)/J, hy = (d — c¢)/K with two
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positive integers J and K;let & = max{h1, ho} and h = min{hi, ho} satisfy h < Cofl
with C¢ a positive constant; and denote grid points (x;, yx) = (a + jh1, ¢ +khy) for
j=0,12---,J,k=0,1,2,--- | K

Introduce three index sets

T2 =G, 1j=01,2,---,J, k=0,1,2,--- , K},
Tn=1{G. 01 j=12,J—1, k=12 ,K—1},
Tp = TO\Th =G, k) | (G, k) € T, (. k) ¢ Ta)

and three corresponding grid sets
Q= {0 y01G ) e T Q= {Gj. y0lG. k) € Tal, 0 = {(xj. (. k) € Th).

From the notations of above index sets and corresponding grid sets, we can easily
see that

(k) € = Gjoy) €Qn, (k) € Th=(xjo k) € iy (k) € T (xj, 1) € 0.

For simplicity, we define a space of grid functions defined on €2, as
Xpi={up ={ujr}|lujr € Cfor (j, k) € ’7;10 and ujx = 0 when (j, k) € T'}.

We denote by U ' and u” Tk as the numerical appr0x1mat10n and the exact value of u
at the point (x;, yk, t,), respectively. For a grid function 0" € X}, we introduce the
L2-1, formula given in [2] to approximate the Caputo derivative, i.e.,

1 n
Dl = ;[ng"‘q =>Cg —Co et —CF 0] Zc o't — ),
s=1

where u = 1°I' —«a),0 =1 — «/2, and

ag + b9, if =0,
Cf = ay +bf,, —by, if I=12--,n—1,
ag —bg, if 1=n,

with

al =o' W =(l+a) " —(+o-D"Y I>1,

A S I -a i
by = _a[(l-l-(f) (l+o—-1) :| 2|:(l—|—g) +d+0-1 ]’ [>1.

Remark 2.1 Because L2 — 1, formula uses a linear interpolation at the last temporal
layer which is different with the quadratic interpolation at other temporal layers, C/
depends on n, which means that C7 is different in every layers.
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For a function v € C3([0, T1), the local truncation error between DSv(t,) and
CD v(ty+o) satisfies [2]

D2u(ty) — § DXv(thy0)| = O (379, (2.4)
where t,,1, = (n + o)7.

As usual, for any grid function " € Xp, we introduce the following finite
difference quotient operators/notations,

+ n n n + n n n
Sy wjp = 1 (w_f+1.k — @), by wj k= 2 (“’j,k+1 — @),
2 " n 7 n 2 " n n n
Siw = 2 (“’j—l,k =20 1 + @y 1) Sy = 2 (wj,k—l =20 + @y
h h3
2 2 An+o n—1
Apw Jk_((i +6.)a);fk, % :(1+U)a);f’k—awj,k ,
n+o n+1
0" =0-0)", +0odT .
-k -k Jik

For any grid functions w, v € X}, we define discrete inner products and discrete
norms over Xy, as

J—-1K-1 J-1K-1
(w,v) i=hihy Y Y wibix  (§Tw, 8 v)o = hihy Y Y 5 w8 vz
j=1 k=1 Jj=0 k=1
J-1K-1 |
5w, 8fv)o = hiha Y Y 8Twiudi e lwl = {w,w)?,
j=1 k=0
1
2 1
|y = [(&Tw, 87 w)o + <6y+w,8y+w>o] o wly = (Apw, Aqw)?,
— 2 24 — 2 24 - ,
[wlh = lwl”+wlD2,  Nwl2:=dlwli+wl2)?2,  [wle := max_[|wjkl,
(. k)ETh

where v is the complex conjugate of v, |w|; and |w|,; are semi-norms of the grid
function w € X, and ||lw||, |w|l1, |w|2 are norms of the grid function w € Xj.

Throughout the paper, we denote C as a generic positive constant which depends
on the regularity of the exact solutions and the given data but is independent of the
time step 7 and the grid size h.

2.1 Finite difference scheme

Now, we give the following finite difference scheme to solve the problem (2.1)—(2.3)
as

iDSUT, + AU + fAUTET UL =0, (k) € Th,
n=1,2,---,N—1, (2.5)

Uly=0, (jk)elp n=12--- N, (2.6)

U =uo(xj.t),  (j.k) €T, 2.7)
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Due to the local extrapolation used in approximating the nonlinear term, the above
scheme is not self-starting. In order to start it, we introduce the following iterative
algorithm to obtain U!' = U« e Xj,:

1-«
0 _ .
sz};,f —UY)+ MW+ AW W =0, (k) € Ta,
S=1,2,-~-,ma, (28)
U1k=0 U}:i:=0, (j9k)erhr S=1,2,"',ma, (29)
Ui =U (b eTy, (2.10)

where my = [é + %] and W' = (1 = o)U° + U fors =0, 1,2, -+, my.

Remark 2.2 For the integer NLS equation (¢ = 1), the above iterative algorithm
reduces to a two-level linearized implicit scheme in which the approximations of the
linear terms and the nonlinear terms are implicit and explicit, respectively.

2.2 Main result
In this paper, we assume that the exact solution satisfies

el c2 e, 7y w2oe (@) + 1l e, 71 waoe @)y + Nl cdqe, 11 02(0)) = €5 (2.11)

with positive number ¢ arbitrarily small.

Remark 2.3 In order to deal with the singularity of the time-fractional derivative (1.4)
at time t = 0, we give a particular two-level scheme (i.e., the scheme (2.8)—(2.10))
to solve the numerical solution at the first level. And we can see from the analysis
of the local truncation error and convergence rate of the two-level scheme, we just
need to require that the exact solution u at the initial time interval [0, t] satisfies
Jo llus (-, cdot, 07)[|d6 < C.

We now state our main theoretical result in the following theorem.
Theorem 2.1 Suppose that the system (2.1)—(2.3) has a unique solution u =

u(x,y, t) satisfying (2.11), then the scheme (2.5)—(2.10) has a unique solution U" €
Xpforn=0,1,2,---, N satisfying

[u® —U"| < C(z>+h?), |U"ew<C, n=12,---,N, (212

where u" € Xy, with u;?’k = u(xj, Yk, ta)

3 Error analysis

In this section, we aim to prove the optimal error estimate given in Theorem 2.1. At
first, let us introduce several lemmas which will be frequently used in our analysis.
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Lemma 3.1 [28, 29, 48] Suppose that the nonnegative sequences {@", g"|n =
0,1,2,---}satisfy and

o 0
D;w

o n
D w

o' + o’ + g0, 3.0
Mo 4 e + 0 + ", (3.2)

IA

A

where &1 > 0,A2 > 0,A3 > 0 are given constants independent of t. Then there
exists a positive constant T* suchthat, whenQ <t < T*, there is
o" < (6% + % max g' | E,(2At%), n>1 3.3)
= (1 + «)o<i<n o = '
Here, E,(2) = thiom%kka) is the Mittag-Leffler function, and . = 6A1+ % +
Cg)\,:‘,

73"

The time-fractional Gronwall inequality given in Lemma 3.1 plays a crucial role
in our analysis work, and we give another different and direct proof of the inequality
in the Appendix section.

Remark 3.1 Under some particular condition, the time-fractional Gronwall inequal-
ity given in Lemma 3.1 can be viewed as a spatial case of the one given in [29] where
the nonuniform time step is allowed, and they proved it by using the discrete convo-
lution method. This also means that our proposed scheme can be generalized to the
nonuniform time stepping case, and the convergence results can be proved similarly
by using our analysis method together with the time-fractional Gronwall inequality
given in [29].

Lemma 3.2 [53] For any grid function v € Xy, there is
1 1
[vlloo = CllvliZ vl + [v]2)2. (3.4)
Lemma 3.3 For any grid function v € Xy, there is

Ivlleo < Coh™Hlvll, (3.5)

where Cy is the constant used to limit the mesh ratio in both directions of space.

Proof From the definition of the maximum norm and the discrete L2 norm, we have
vl < hy'rs vl < A2 vl < (Co)*h =2l
where 1 < Coh was used. This immediately gives (3.5). O
Lemma 3.4 (Lemma 3 in [48]) For any grid function " € Xy, there are
Im{A" %, 0"ty =0, n=0,1,2,---,N —1, (3.6)
1
Re<Dga)l’l’wn+0’) > EDg”wn”’ n:(),l, 2a 1N_11 (37)

where Im(v) and Re(v) denote the imaginary part and the real part of v, respectively.
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Lemma 3.5 For any grid function o™ € Xy, there is

ID%w"|| < CT™ n=1,2,---,N—1. (3.8)

Proof Combining C§ > CY > --- > C%,_; > 0 with
C§ = a§ +57

_ - 1 2—a _ 22—« _l -« -«
=0 +2—a[(1+0) o ] 2[(1+cr) +o ]

1 - —a 1 —o -
:m[(wa)2 —o? ]—5[(14-0)] — ']

IA

1 1
[ +0)* % o] =f (0 +2)'dz <2
2—«a 0

gives
0<C/ <2, 1=01,2---,N—1

Then, by using Cauchy-Schwarz inequality, we have

J-1K-1 | ¢ 2
ID" 1> = hihy Yy Z Cgaii = Z(C ~ Gt )9k _ng?’k]
j=1 k=1 B
J-1K—1p 2 2
< hthZZ |C8w"+l| +)Z(C -G s+1)w§,k) +|Cr7w(/?,k|i|
j=1k=1L
J-1K—1 ’ — 2 2 2
- f,“hzzz R +Z|C,H Cro | 2o ol +1c7| \w?.kl]
j=1k=1 "t s=1
J-1K-1r n
< —h]hzzz C§ | n+l| +Z(C szs+1)2|“’j‘,k|z+cs w-(/{k|2]
j=1k=1"L s=1
J-1K-1 n
= S Y- 3[Rl P+ 67— €D Y o+ € ol
j=1 k=1t s=1
6Co n+1J—1K—1 12 "+l
S RO IO M- M R
s=0 j=1 k=1 s=0

It follows that

n+1

I D¢ | < ¥12 2l 12 <Ccr

This completes the proof of Lemma 3.5. O
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3.1 Local truncation error

We define the local truncation errors P"t° e Xj,, P%* € X}, of the scheme (2.5)-
(2.10) as follows,

P = i DA+ A+ FURT DA (k) € Ta

Jik >
n=12--,N—-1, (3.9)
PY =i D““”‘ + ATy + fQuS PGy, (k) € Th
s=0,1,2,--,mg, (3.10)

Noticing the initial-boundary value problem (2.1)—(2.3), one can see that

P;'Ia = [Dg ']'k 0D u(xj,yk,tn+,,)] + Ahu"+” Au(xj, Yk, toto) + f (lu"“’l )”’“7
=1 (1) v s ) P) iy i tave)s G0 € Tiy m=1,2,+- N =1, (3.11)

P_l‘f’; =i (Dg“f-k" — OCDf‘u(xj, Vi t(,)> + Ahu(;k — Au(xj, yk te) + f (Iu‘;’klz) “71(
—fuxj, ye to)Duxj, yes to), (o k) € Tpy s =0,1,2, -+ ,mg — 1. (3.12)

Under assumption (2.11), one can use the standard Taylor’s expansion to obtain
that

DXt = G DYU(X). Yis tyo) + O, Antd] = Au(xj, ye. ta) + O(h?),
Wit = u(xj, Yo toro) + O, @577 = ulxj, yis taro) + 0(2?),
AR = fUux), Yoo taro) PIuCxj, Yo tato) + O (),
FQuT Py = fuj, yes to)Du(xj, yi) + O(x?).

Substituting the above equations into (3.11)—(3.12) gives

Lemma 3.6 Under assumption (2.11), we have the following estimates of the local
truncation errors:

||Pn+0'|| §C(h2+‘52), }’l=0,1,2,"' 7N—1’ (313)
PPl < CH* 477, s=0,1,2,-- ,mq. .19

3.2 Proof of the main result

This subsection aims to give the proof of Theorem 2.1. For simplicity of notations,

we define the “error” functions ¢! € Xj, ¢" € X, forn=0,1,---, N as
s _ 1 1,s n _ ..n n . _
ey =uj—Up, ey=ul U, G, k) eT?, s=0,1,2,-- ,my.

(3.15)
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Then we obtain the following “error” equations by subtracting (2.5)—(2.10) from
(3.10)-(3.9),

iDge  + Apei i + RITT = PO, (k) €T,

J Jiko
n=0,1,2,--- , N —1, (3.16)
-O-lia 1,s 1,s 1,5s—1 ag,s .
lTej:k—}—aAhej:k—i—Rj:k :Pj”k, (G, k)eTy, s=1,2,---,mg,

(3.17)

where
RIL = FU@S T — FAUTTPUNT. n=1,2,--- N=1,(.18)
Rz = FQu PG = FAWT W s =120 ima. (3.19)

Lemma 3.7 Under assumption (2.11), we have the following estimates of the

“error” functions e"*,

Cr(s—%)a(h2+.[)’ s=1,2, -+ ,myg, (3.20)
C‘L’(S_%)a(hz‘i‘f), s=1,2,---, mg. (321)

L,
lle™*|

IA

A

1.
le™"]2

Proof Here we use mathematical induction method to prove this lemma in three
steps.
Step 1. when s = 0, we obtain from (3.15) and (2.10) that

1
e =uj, —ul, = r/O ur (xj, yi, 07)d, (3.22)
which together with (2.11) gives
le"?] < Cx. (3.23)
Step 2. when s = 1, we have
RYY = fQuSPud, — (1 Huf,
=[£G P = £ P0G, + £ QuG P @G —u )
= LS = £ P + of (P — uf )
— f(&)o [14‘]’76}:2 +((1 - o)u(}’k + ou;:i—l)e}:g] uf i
+of (1Y 1))el, (3.24)

where £ is some number between |u? k|2 and |u‘; k|2. This together with f € C LRY)
gives

IIRYO)] < C|le"0)). (3.25)
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For s = 1 in (3.17), computing the inner product of (3.17) with el'! and taking the
imaginary part, we arrive at

1,1
lle "l

IA

— (IR +1P70) = CT@ =)o (h? 4 7)

IA

co(5-3)a (h2 + r) , (3.26)

where (3.14) and (3.23) were used. In order to estimate |e!1 |5, we rewrite (3.17) with
s = 1 into

—a

11 0% 1 Z1p1.0 , _—1pc0
Ahej,kz— ey —0 Rjyk—i-o Pj’k, (3.27)

then taking the discrete L? norm of both sides of (3.27), we have

—

ety < ="+ o IRM + o7 PO
<Co 'MW +0)+Co 't +Co W+ 1%
< Co ' + 1)
< CtU—Dap2 Loy, (3.28)

where (3.14), (3.23) and (3.25) were used. Therefore, (3.20) and (3.21) hold for s =
1.

Step 3. With mathematical induction method, we suppose that (3.20) holds for
s<m—1with2 <m < mg,ie.,

CT= D2 4 1),
CT(&*%)a(hZ_;r_.[)’s — 1’2’... ,m— 1, (329)

1,
lle*

1,s
P

IA

A

this together with Lemma 3.2 gives

Clle™ I3 (eIl +1e"*12)7 = CTOV*(h? + 1)
Cth’+1), s=1,2,---,m—1. (3.30)

1,
lle*lloo

INIA

Hence, for sufficiently small r and &, we have
U lloo < ' oo + Nl lloe < €, s = 1,2, ;m =1, (33D)
Noting f € C!(R*) and using differential mean value theorem, we obtain
Ry~ = f(luSPus = FUA=0)ul 40U (A = 0l +0Uj
= [, 1)) — fAQA =)l +oU 7 s,
+of (11—l + oUW, — Ui h

/ = _1lm—1 0 I,m—1y I,m—1
:f(s)a[u;kej,k + (1= o)l +oU el ]u;{k

+of (=0l +oU 7 ey (3.32)
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where £ is some number between |(1—o)u® k+ou]k|2and|(1 a)u]k+on],:” ]|2

Combining (3.32) together with assumpnon (2.11) and (3.31) gives
IRV M| < Calle! =1y, (333)

Next, we will show that (3.20) and (3.21) hold for s = m. To do this, for s = m in
(3.17), by computing the inner product of (3.17) with ¢!”* and taking the imaginary
part of the result, we have

-«

——lle"™ 1> = —Im(R"" 71 ") + Im(P1 " 1), (3.34)
which implies
lle"™| <
< CTr@2—a)o? lroe™m=Doep2 4 1)
< Ctm DR Ly < ceS R+ 1), (3.35)

where (3.14), (3.29) and (3.33) where used. In order to estimate ||e1”" loo, We rewrite
(3.17) with s = m into the following form:

e
1, o 1, —1plm—1 - m—1
Apey = — p e;p —o 'R T o PO (3.36)

then taking the discrete L? norm of both sides of (3.36), we have

o~ ¢ B _ _ B
— "™+ o7 R 4 o T PO

C’u<c7]t(’"2)°‘ (h2 + r) 4 o(n=3)a (h2 + r) <h2 +r ))

co(m=3)a (r + hz) <ctt (z + h2> . (3.37)

le!™y <

IA

IA

where (3.14), (3.29), (3.33) and (3.35) were used. This completes the proof of
Lemma 3.7. O

Lemma 3.8 Suppose that the system (2.1)—(2.3) has a unique solution u satisfying
(2.11), then the scheme (2.6) has a unique solution U} o and there exists 1'1* > 0 such

that when 0 <t < t{, there is

le'll < Ct(h* + 1), el < Ce'™(h* 4+ 1), |U'lso<C.  (3.38)

Proof Taking s = m, in Lemma 3.7 and using Lemma 3.2 immediately give (3.38).
O

We now turn back to the proof of Theorem 2.1.

Proof From Lemma 3.8, we know that Theorem 2.1 holds for n = 1. By using
the mathematical induction method, we assume that (2.12) holds for n < [ with
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I <N-—-1,ie.,
le"l < Cx* +h?), [UMloo<C, n=12,---,L (3.39)
Direct calculation gives that
Ri_jua — (E)(AZ-'FU o UH—UAI]—i;{o) sl+o +f(|Ul | )él]—i;(a’ (3.40)
where & is some number between |ﬁljfk" | and |U§;" |2 and then it satisfies || < C.
This together with (3.39) gives
IR < cle™*e ) < c( + o)l + ol ). (3.41)

Next, we are going to prove that (2.12) hold forn =1 + 1. Let n = [ in (3.16), then
by taking the inner product of (3.16) with el 'HT and then taking the imaginary part of
the result, we arrive at

Re(DZe, ™) = —Im(R™7, ¢!7) + Im(P'T7, /1)

1 1
||el+0'||2 + _”Rl+0 ”2 + _”P[-‘r0'||2

A

IA

Cle™™M 12+l 1> + lle' M%) + C(h* + %), (3.42)
where Lemmas 3.4 and 3.6 were used. This together with (3.7) gives
D2l * < € (M2 + lle' 1 + lle!=11%) + C(h? + 7). (3.43)

By using Theorem 3.1, there exists a positive constant t* such that when t < 1%,

there is
I+ < c <h2 n r2> . (3.44)

In order to get the bound of ||U I+1]| o, we rewrite (3.16) with n = [ into the following
form,
Apei = —iDge! — R + P, (3.45)
then taking the discrete L? norm of both sides of (3.45), we have
€1 < IDge | + IR + 1P|

I+1

< Ct™ | > e |2+ IR + | P
m=0
(1
< ¢ (3) (h2 + r2> e (||el+‘ I+ ||e’||) +C (/ﬂ + rz)
(1
< cr (349 (n+ r2) , (3.46)
where Lemma 3.5 was used. Noting that 0 = 1 — 5 > % > 1 -0 = § with
0 < a < 1, then by using Minkowski inequality, we obtain
gl —ole'ly < ale™a — (1 —0)le' < [*7 ], (3.47)

this together with (3.46) gives

(L
et — el < € (3+2) (fﬂ + r2>. (3.48)
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Summing (3.48) up for [/ from 1 to m, then replacing m by [, we obtain

I+1 ,(1+)
€12 < Je'l2+ € Y0 T (12 4 12)
m=1

IA

cr <h2 + 12) 4o (619) (hz + 1'2>
oo (3+9) (h2 + 12) , (3.49)

where Lemma 3.8 was used. This together with Lemma 3.2 gives

IA

1 (342
1 e = U1 (1471 -+ 16501 < o (78) (12 1. 2) . 350)

On the other hand, by using Lemma 3.3, we obtain

e loo < Con™ 1€ = Ch™" (W2 4 22), (3:51)
where (3.44) was used. Combining (3.50) with (3.51) gives

e oo < C min {r—(%+%>, h—l} <r2 n h2) . (3.52)
Hence, for both the case 7 < t and the case T < h, we always have

I oo < " loo + lle™ oo < C. (3.53)

Therefore, (3.20) and (3.21) hold for n = [ + 1. This completes the proof of
Theorem 2.1. O

Remark 3.2 The numerical method can be generalized to solve the initial-boundary
value problem of the time-fractional Gross-Pitaevskii equation (TFGPE) in d dimen-
sions. For simplicity, we here still take the two-dimensional TFGPE as an example,
ie.,

1
i ng‘u = [_EA + Vi(x,y) +,B|u|2:| u, (x,ye, 0<tr<T, (354

u(x,y, 1) =0, (x,y)€dQ, 0<t<T, (3.55)
u(x,y,0) = up(x, y), (x,y) € Q, (3.56)

where V = V(x, y) is a given real-valued function and § is a given real constant.
The extension of the linearized second-order finite difference scheme to solve the
initial-boundary value problem (3.54)—(3.56) reads

1 o A
DSV, + 3 AU — ViUl — IO ROLT =0, (b €T 1 <0 <,

o™ jk 2
(3.57)
Uiy =0, (kb ely n=12---,N, (3.58)
U =uolxjitn), (k) € Ty, (3.59)
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where V; = V(x;, yx) for (j, k) € 7'h0 To start the scheme (3.57)—(3.59), we
compute U! = U« ¢ X, by the following two-level scheme

l—a
1

iUl U0 4 MW Vil — WP =0 Gk e T,
s=1,2,--,mg, (3.60)

Uy =0, Uj=0, (keTh s=12,,mq, (3.61)

Uil =Uh Go Ty, (3.62)

where my 1= [é + %] and W' = (1 = )U° + U fors =0, 1,2, -, my.

4 Numerical experiments

In this section, we carry out several numerical results to show the performance of the
proposed scheme for solving the NTFS equation.

Example 4.1 Consider the following 1D cubic NTFS equation
i SD%u+ dgyu+ ulPu =0, xe(ab), te(T] @.1)
with initial condition
u(x,0)=e, xela,bl, 4.2)
and boundary condition
u(a,t) =u,t)=0, te(@0,T], (4.3)
wherea = —-10,6=10,T = 1.
To test the convergence order of the proposed scheme, we choose sufficiently

fine time step T and mesh size i (here we choose h = 1073, 7 = 1073) to get a
numerically “exact” solution. The L?-errors at time 7 = 1 and convergence rates of

Table 1 L>2-errors and convergence rates of the time with different « in solving Example 4.1

a=0.25 a=0.5 a=0.75
T Error Order Error Order Error Order
0.05 4.14E-03 — 3.44E-03 — 1.89E-03 —
0.04 2.66E-03 1.98 2.21E-03 1.97 1.22E-03 1.96
0.02 6.69E-04 1.99 5.61E-04 1.98 3.10E-04 1.97
0.01 1.68E-04 2.00 1.41E-04 1.99 7.86E-05 1.98
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Table 2 LZ-errors and convergence rates of the space with different « in solving Example 4.1

a =025 a=0.5 a=0.75
h Error Order Error Order Error Order
0.05 1.67E-04 - 1.98E-04 - 3.46E-04 -
0.04 1.07E-04 2.00 1.26E-04 2.00 2.22E-04 2.00
0.02 2.67E-05 2.00 3.16E-05 2.00 5.53E-05 2.00
0.01 6.61E-06 2.01 7.83E-06 2.01 1.37E-05 2.01

the proposed scheme in computing Example 4.1 with different « are listed in Tables 1
and 2. One can observe from the two tables that the proposed scheme has an accuracy
of O(t? + h?). As verifies the convergence results given in Theorem 2.1.

In order to test the influence of « to the evolution of the total mass and energy
of the NTFS equation, we draw the total mass and energy of the 1D NTFS equation
computed by the proposed scheme in Fig. 2, and draw the approximation of |u| in
Fig. 2. From Figs. 1 and 2, we can see that the nonlinear integer Schrodinger equation
is dispersive but the NTFS equation is dissipative, and the smaller the parameter « is,
the faster the mass and energy dissipate.

Example 4.2 Consider the following non-homogeneous 2D NTFS equation with
different nonlinearities

iSD%u+ Au+ f(uPu=g, () el0 1% te@© 1], (44

where the function g, the initial and boundary conditions are determined by the exact
solution

u = (2 +i)e'sin@mx)sin@2my).

a=0.1
50 =025 |4

a=0.1
—H—0a=025

Energy

0 0.2 0.4 0.6 0.8 1
t t

Fig. 1 Evolution of the mass and energy of the 1D NTFS (4.1) with different «
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(d) «=0.75 () a=0.9 f)a=1

Fig.2 Evolution of |u| of the 1D NTFES (4.1) with different o

The nonlinear term £ (s) is selected for three cases:

Case L f(s) =s;
Case II. f(s) =In(1+s);
Case IIL f(s)=1—e"".

In Example 4.2, we test the convergence order of the proposed scheme in comput-
ing the 2D NTFS equation. In order to reduce the computational cost and memory,
we choose i1 = hy = t and investigate the temporal convergence and spatial conver-
gence together by refining 7 and / simultaneously. The L-errors at time 7 = 1 and
convergence rates with different «’s are listed in Tables 3, 4 and 5. One can observe
again that the accuracy of the proposed scheme is of O (¢ +h?), which verifies again
the error estimate results given in Theorem 2.1.

Table 3 LZ2-errors and convergence rates of the proposed scheme with different « in case I

o =0.25 a=05 a =0.75
h=rt Error Order Error Order Error Order
0.1 3.43E-01 - 3.56E-01 - 3.74E-01 -
0.05 8.89E-02 1.95 9.28E-02 1.94 9.69E-02 1.95
0.02 1.59E-02 1.89 1.65E-02 1.88 1.70E-02 1.90
0.01 4.20E-03 1.92 4.35E-03 1.92 4.43E-03 1.94
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Table 4 LZ2-errors and convergence rates of the scheme with different « in case II

a =025 a=0.5 a =075
h=rt Order Error Order Error Order
0.1 1.27E-04 - 2.03E-04 - 2.50E-04 -
0.05 3.24E-05 1.97 5.14E-05 1.98 6.27E-05 1.99
0.02 5.25E-06 1.99 8.28E-06 1.99 1.01E-05 2.00
0.01 1.32E-06 1.99 2.08E-06 2.00 2.52E-06 2.00

5 Conclusion

In this paper, we proposed a linearized finite difference scheme to solve the NTFS
equation in d (d = 1, 2, 3) dimensions, and introduced a novel and concise analy-
sis method to establish the optimal error estimate of the numerical solution. Under a
weaker requirement of the coefficient function f than the literature, we introduced a
new analysis technique to prove that the proposed scheme is unconditionally conver-
gent with L? convergence order O (h> + t2). Our analysis methods can be adopted
to relax the requirement of the coefficient function f for the Galerkin FEMs given in
[25, 48]. Numerical results of the NTFS equation with several different types of non-
linear terms were carried out to illustrate our theoretical results. Furthermore, if the
exact solution is smooth enough, one can use some high accurate method to improve
the spatial accuracy, e.g., one can consider adopting the compact finite difference
method or Pseudo-spectral method to discretize the spatial derivatives to achieve
higher order accuracy in the space. Applying the analysis method used in this paper,
one can obtain the optimal error estimate of the high-order accurate scheme without
any restrictions on the grid ratio. In our future works, we will discuss a nonlinear
finite difference scheme, which can start by itself for solving the NTFS equation, and

Table 5 LZ-errors and convergence rates of the scheme with different « in case III

a =0.25 a=0.5 a =075
h=rt Order Error Order Error Order
0.1 8.33E-03 - 8.00E-03 - 7.82E-03 -
0.05 2.07E-03 2.00 1.99E-03 2.00 1.93E-03 2.02
0.02 3.32E-04 2.00 3.19E-04 2.00 3.09E-04 2.00
0.01 8.35E-05 1.99 8.06E-05 1.99 7.76E-05 1.99
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introduce a concise analysis method to establish the optimal error estimate without
any restriction on the grid ratio.

Appendix. Proof of the time-fractional Gronwall inequality given in
Lemma 3.1

In this appendix, we present two useful lemmas which are main tools used for proving
Lemma 3.1.

Lemma A.1 Let {p,} be a sequence defined by

1 1 n
n=gr P > €T = CDpaj. n= L. (A.D)
j=1
Then it holds that
1 n+1
M 0<pn<m D opnCiu=1 l<ksm (A2
0 j=k
n
.. (n+1)”
i) I'C—«a i< = A3
(i) TI'( )jgpn,_r(]ﬂ) (A3)
re-ow Z m—1
(iii) —an—j+1](m e
r'a+om— 1) ot
mo
Su, m=12---. (A4)
rad+ ma)

Proof (i) Since Cg >C{ >--->C? =0for j > 0,itis easy to verify inductively
from (A.1) that 0 < p, < 1/ Cg (n > 1) by mathematical induction. Moreover, we
have

n+1 n n
©u =) pujr1Ci =) pu—jC =) pu—jCiy=Puot.  nzl.
j=1 =0 j=1

(A5)
This implies ®, = &g = pocg = 1 for n > 1. Substituting j =1 +k — 1, we
further find

n+1 n—k+2
an—j+1c}-7_k = Z Prn—k4+2-1C]_ 1 = Ppjq1 = O = 1, 1 <k<n.
=k =1

The equality (A.2) is proved.
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(ii)) To prove (A.3) and (A.4), we introduce an auxiliary function g(t) =
t"*/T'(1 + ma) form > 1. Then for j > 1, we have

0 (j+o—5)"%'(s) ,  B(l—a,ma)(j+0)" DY (j4o)me
/0 'l — ) 5= ' — o) (ma) T T+ (m—-Da)
(A7)

Let Q(t) be a quadratic interpolation of ¢(#) using the points (s — 1,g(s —
1)), (s,q(s)), (s+1,q(s+1)) for I <s < j,and a linear interpolation of g (¢) using
the points (j, ¢(j)), (j + 1, g(j + 1)). We define the approximation error by

/”" q'(s) — Q'(s) S
o TU—-a)j+o—s"

- X’: /" ¢ Q) /H" q'(s) = Q'(s)
= - s+ - ds
e Ta—aG+o—9" "), Ta-a(+o-s°

=Y R{+R] (A.8)
k=1
where
; k '(s) — Q'(s)
Rl = f 73
T o T —a)(j+o —s)”
@ £g6) = 06
- T —a) Jioy (j+o —s)et!
@ kodg"E) (s — (k= 1) —k)(s — (k+ 1))
= — - ds,
Il —a) Ji—1 (j+o —s)et!
1 <k<j, (A.9)
RJ

o /H" q'(s) = Q'(s)
Ji Td—o)( +o -9
B /HU 46 —aG+)+aG+) =0
—Jj F(l—a)(j+o —s)"
N /W 29"+ )6 =G +3)+q"E)6s — G+ 5)?
J; (1 —a)(j + 0 —s)

/f'*” q" (&) J
_ > s
j 241 —a)(j + 0 — 5)*
N /W q" )6 — (G +3)7
J; 2 —o)(j+o —s)"

j+o 7
— f ! q_ (&) ds. (A.10)
j

ds

24T (1 —a)(j 4+ 0 — 9)@
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Combining (A.7) and (A.8) yields

Groeme 1 L I
T Do ~Te—w ];ijk(Q(k"Fl)_Q(k))‘i‘];Rk+RU. (A1)

Noting that ¢"”’ () > 0 for m = 1, we have R,{ <0and

i d"® [T R6-G+3)? -1

s = 5 . ds
24T° (1 — @) j (j+o0 —s)
= @ oD __ <o (A.12)
24T (1 — &) 2o + Do (2o — 1)
so we have
| j
Te—o gcj_mm D—qk) = 1. (A13)

Multiplying (A.13) by I'(2 — &) p,— j and summing it over for j from 0 to n, we have

n n j+1
PQ=a)Y puj <) Pu-j Y Coppr(qk) — gk — 1)
j=0 j=0 k=1
n+1 n
=Y (qk) =gk —1) > pujCT 4y
k=1 j=k—1
n+1 n+1
= (@) —qk—1) Y puj11CT
k=1 j=k
n+1
=Y (qk) —qlk— 1)
k=1
1 o
Gl (A.14)
rd+a)
where we the equality (A.2) was used.
(iii1) Consider of (A.11), we have
j(m—l)ot - (] +O.)(m—1)a
T+ (@m—Da) ~ T(1+ (m — Da)
A
- > gk +1) —qlk
F(z_a);q,k(g( +1) —q (k)
+> R{+R. (A.15)

k=1
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We multiply (A.15) by I'(2 — @) p,— j+1 and sum the resulting inequality for j from
1 to n to obtain

re-—a) " (=D
T(l+ (m— Da) ;”"‘””

n J
<Y Pjri ) Co (gl +1) — q(k)

j=1 k=0
n J ) ‘
T2 =) Y puji | D RL+RI|. (A.16)
j=1 k=1

Ifl <m <1/a,q"(t) > 0,then R/ <0and R} <0, so (A.4) follows immediately
from the above estimate. If m > 1/«, by (A.8), we have

R — /k q'()— Q')
o TA—a)(j+o —9)

_/k q/(av)—[q(k)—q(k—1>+<q<k—1)—2q<k)+q<k+1>)<s—<k—§>)1d
i F(l—a)(j+o0 —s)

_ /k 96— @k —qk—1)
k-1 T —a)(j+o—s5)*

+/k (s — (k — Iqtk) — gk — D= @k+1 =g
1 T —a)(j+o—s)*

‘ (J+(7_5) a/ / "
/k] Td—a Ji q" (mdndpds
¢ s—(k—1) k
/ d d
+/k_1 Frl—a)(j+o -9 fk_lqw) uds

k s—k—1) k1
_/k 1F(1—a)(j+g_s)af q (Wdpds

k o
(J+o—s5)" / f o T
/kl Tl—a) Ji q" (mdndpds
k s—(k_j) k )
dud
+/k71F(l_“)(jJF"—S)“./kflq(M)”“s

k s—(k=13) k1
_/k 1F(1—t¥)(i+a—s)a/ q (wdpuds

Jj—k+1 ’ /k+1
= dndp + d
F(z—a)LI/,Lq(")”“ ra— )f q'(wydp

be_ k+1

IA

q'(wdp
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g k ma—1 _ , ma—1 b? k ma—1
_ Aik+1 k 12 du+ —k+1 o du
F2—a) Jio I'(ma) 2 -a) Ji— T'ima)
B b(}—k+1 k+1 ’u'mozfl i
re—-o) Ji I'(ma)
_ a}lk+1 k  pma—1 _ Mma—ldu B b‘;ikJrl ko gma—1 _ Mmot—l du
Fr2-—a) Jio1 [ (ma) F2—oa) Jio1 F(ma)
b(]T—k-H k+1 Jma—1 _ Mma—l ”
re—ow) Ji I'(ma)
- a;-lkJrl — b;’lk+l /k Jme—1 _ Mma—ldu
- N k=1 I (ma)
be k+1 ma—1 _ , ma—1
k1 (k+1) Iz dp (A17)
re-—a) i I'(ma)
and
Ri = / 46 - 0
=), Ta-o(+to-s
e to -5 (I
= / —/ q'(s) — q'(wdpuds
j F(l — C() j
a® J+1 s yme=1 _  ma—1
< 0 f G+1D L, (A.18)
re-ow) /; I"(ma)
so that
Xj: ; ) XJ: k+1 (k + 1)ma71 _ Mmozfl
R, + R < o / du. (A.19)
k o — j—k
k=1 k=0 k ['(ma)
Because of

n J
Y Pyt ) Cl(qk+1) — (k)

j=1 k=0

=Y (@k+1)=q®) D pa-jt1CT—g = par1¢§ (g(1) — q(0))

k=0 j=k
n n+1

<) (qk+1)—q)) Y paj+1CT;
k=0 j=k

_ (D™ (A.20)
rad+ma)’ ’
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and

n J
FQ—a)Y  pojri (Z R + Rg,)

j=1 k=1

k+1 (k + l)ma—l _ 'umot—l

n J
- (o d
jX_; Pn—j+1 I;) j—k fk T (ma) 123

IA

n k+1 mo—1 ma—1 n 1 moa—1
= /k T (ma) duzpn*j"’lcjfk Pn+IC0[) 7F(ma) du
k=0 =k
n k+1 ma—1 ma—1 n+l
(k+1) — .
< d n—i+1C5_
< g/k Fona) Mj;p +1C7 4
_ i: (k+ l)ma—l B (n+ l)ma
P I'(ma) '+ ma)
(n + 1)"‘!0[ _ (n + l)mC(
= T +ma) Td+ma)
=0, (A21)
one can immediately get (A.4), and the proof of Lemma A.1 is completed. O
LemmaA.2 Lete = (1,1,---, DT € R**! and
0pi - pu—1 Pn
00 --- Pn—2 Pn—1
J =22 —a)at® | ¢ : : (A.22)
00 0 m
00 0 0 (n+1)x(n+1)
Then, it holds that
(i J'=0, I=n+1; (A.23)
.. - 1 T
) J"e< AT ma) (AL D™, QA -+, AH)™)"
m=0,1,2,---; (A.24)
1 n
(i) Y JIe=Y JIe < (Ea@Ml,)). EaQM2), - EaM))"
Jj=0 Jj=0
[>n+1. (A.25)

Proof The proof is similar to that of Lemma 3.3 in [24], and we here omit it for

brevity.
We now turn back to the proof of Lemma 3.1
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Proof of Lemma 3.1 By the definition of DS, we get

j
Zc;f_k(wk“—wk) <TQ2-a)t* Mo/ e/ +130/ Y+ 2—a)t%/, j > 1. (A.26)
k=0

Multiplying inequality (A.26) by p,_; and summing over for j from 1 to n, we
have

j+l1

n
D i D CT @t —ofTh
=1 k=1

n
STQ=-a)t )Y pujOae’™™ + 200/ + 230/
j=1

n
T2 - o)t Y pujg’. (A.27)
j=1

By using the result (A.2) in Lemma A.1, we obtain

n Jj+1
Yo i Y Co @ =0k h
j=1 k=1
n+1 n
=Y @ =) Y puiCly — PaCE (@' =)
k=1 j=k+1
n+1
=) (@ =o' = pCi 0! — )
k=1
=" — 0¥ — pCT (0 —°), n>1. (A.28)

It follows that

n
0" < @0+ p,CY (@' — %) + T2 - a)r® an,jgj
j=l1

n
T2 =) puj (Alw-i+1 + e’ + k3wj_l> . (A29)

j=1
Because of
ag 1 0 0 1 0 0
—— (0w —w’) =D% < Mw' + 1o
F(2—a)t°‘< ) s S A + Ao+ g
and
Cg  af +by <6
al a? 7
0 0
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we get

n
" < ¥+ 6I'2 — a)t¥pp(hi0! + 200° + g% + T2 — a)r® Z Pnj&’
j=1

n
+I' 2 —a)t® Z Pn—j Mo’ 4+ Mo’ + 230/
j=1
=TQ2-a)AMtpo™ + (1 + 6T 2 — a)A2tpn + T2 — @)A1 pp_1)0’°

n
+6I' (2 — )t pug’ + T2 — )t Y pujg’
j=1
n—1

+6I'(2 — )M T ppow’ + T2 — @)A1 7¢ Z P jol !

j=1
n n
+T 2 — a)rrt® Z Pn—jo’ + T2 — a)r3t® Z pn—jo’ . (A.30)
j=1 j=2
It follows that
n—1
o™ < 60 +12I'(2 — )7 an j¢ H12PQ =)ty pujolt!
Jj=0 Jj=0
n
20 Q2 = a)dat® Y pyjo
j=1
n
Q2 — )3t Y pujo’ ™ n= 1, (A.31)
j=2

when t < 7*. By using the result (A.3) in Lemma A.1, we obtain

n
FQ-a)t® )y pujg’ < TQ-awr® [max g’ZPn j

j=0
t¢ .
<" max g/, n>1. (A.32)
I'(l 4+ a) o<j<n
It follows that
n—1
"t <Y, +TQ2—-a) 12x 7 an ij+l + 20177 an ij + 2x37¢ an ja)J ! s
Jj=0 j=1 j=2
(A.33)
where
12t )
W, =60 + — 1 max g/, (A.34)

'l +a)o<j<n
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and it is easy to get that W, > Wy forn > k > 1. Let V = (@t ", -, T,
then (A.33) can be written in a vector form by
V < Wé+ (6A1J] + Aadr +23J3)V, (A.35)
where
_0 PlL " Pn—1 Dn ]
00 --- Pn—2 Pn—1
J1 =22 —a)t® Lo : , (A.36)
00 - 0 P1
_0 0 - 0 0 Jdm+D)xm+1)
[0 po -+ pu—2 Pu—1]
00 - Pn—-3 Pn-2
JHr=2T2—a)t® Dot : , (A.37)
O 0 0 Po
0 0 0 0 Jd(n+1)x((n+1)
00 - pp—3 pn—2
00 - pn—a pn-3
J3=2'2 —a)r? T : . (A.38)
0 0 - 0 0
00--- 0 0 (n+1)x(n+1)
By (A.1), we have
cq (0r
e <—"Y 55, A.39
pi = ce—c? Pi+1 pP1 = co - Cgpz+2 ( )
therefore,
o 1 o 1
LV -JV, LV < -JV, A.40
g -con 2T =Co—coa (A.40)
which shows that
V<JV+Ye, (A41)
C Ao Cokg

where J is defined in (A.22) with A = 611+ C” o + As aresult, we see that

cy-Cc3-

1
JV+W,8<JJV +W,8) + V,é = J*V + , Z JIié

V<
j=0
n
< =SV ey e (A42)
j=0
This together with Lemma A.2 completes the proof. O
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