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Abstract
In this paper, based on the Gauss transformation of a quaternion matrix, we study
the full rank decomposition of a quaternion matrix, and obtain a direct algorithm and
complex structure-preserving algorithm for full rank decomposition of a quaternion
matrix. In addition, we expand the application of the above two full rank decomposi-
tion algorithms and give a fast algorithm to calculate the quaternion linear equations.
The numerical examples show that the complex structure-preserving algorithm is
more efficient. Finally, we apply the structure-preserving algorithm of the full rank
decomposition to the sparse representation classification of color images, and the
classification effect is well.
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1 Introduction

A quaternion, which was found in 1840 by William Rowan Hamilton, is in the form
of q = q1 +q2i+q3j+q4k, i2 = j2 = k2 = −1, ijk = −1, where q1, q2, q3, q4 ∈ R,
and ij = −ji = k, jk = −kj = i, ki = −ik = j. With the further development
of quaternion algebras, the quaternion matrices have been widely used in computer
science, quantum mechanics, signal and color image processing, control theory, geo-
metric rotation and other fields [1–8]. Especially in recent years, after Professor Wei
Musheng and others proposed the real structure-preserving algorithm of a quater-
nion matrix, they greatly promoted the research and application of the algorithm of
a quaternion matrix. In papers [9–18], by using the real structure-preserving algo-
rithm of quaternion matrices, the authors studied the LU decomposition problem of
quaternion matrices, the singular value decomposition problem of quaternion matri-
ces, eigenvalue problem of Hermitian quaternion matrices and the power method of
eigenvalues of quaternion matrices and so on.

As a fundamental property of matrix algebras, the full rank decomposition is
always a hot topic. In the field of face recognition, full rank decomposition can avoid
iterative steps and solve the sparse system directly, save a lot of time and improve the
classification accuracy [20–23]. In paper [19], the authors proposed a fast and robust
face recognition method named enhancing sparsity via full rank decomposition. The
proposed method first represented the test sample as a linear combination of the train-
ing data as the same as sparse representation, then made a full rank decomposition
of the training data matrix. Finally, obtained the generalized inverse of the training
data matrix and solved the general solution of the linear equation. In the field of sys-
tem control, the full rank system compensator extended the internal model control
to the structural rank deficient system, which effectively avoided the characteristic
that the model control method is only suitable for the square systems. In paper [24],
the authors proposed an internal model control method for structured rank deficient
systems based on the full rank decomposition. The system converted into a column
full rank system by designing a pre-compensator. Then a feedback-compensator is
designed to improve the dynamic characteristics of the full rank system and decrease
the controller design difficulties.

Based on the extensive application of quaternion algebra and the full rank decom-
position in the above fields, and the structure-preserving algorithm greatly improves
the timeliness of a quaternion matrix decomposition, and its results are better than
quaternion toolbox (QTFM) to a certain extent. We find that the complex preserving
structure algorithm is also efficient for the full rank decomposition of a quater-
nion matrix. The theoretical basis of complex structure-preserving algorithm is the
same as real structure-preserving algorithm, but its algorithm writing form is rela-
tively simple, the dimensions of the matrix are reduced by half, and scholars have
not studied and given the full rank decomposition algorithm of quaternion matri-
ces. This paper, by means of the Gauss elimination method of quaternion matrices,
derives the direct algorithm and complex structure-preserving algorithm for the full
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rank decomposition of a quaternion matrix, proves the full rank decomposition form
of the generalized inverse matrix of a quaternion matrix. In addition, by using the
above two full rank decomposition algorithms, we also give a fast algorithm for solv-
ing the quaternion linear equations. The feasibility and timeliness of the algorithm
are proved by numerical examples. Finally, this algorithm can also be applied to the
sparse representation classification of color images, and the classification effect is
well.

Let R denote the real number field, C the complex number field, Q = R ⊕ Ri ⊕
Rj ⊕ Rk the quaternion ring, in which i2 = j2 = k2 = ijk = −1, ij = −ji =
k, jk = -kj = i, ki = -ik=j. For any matrix A = A1 + A2i + A3j + A4k ∈ Qm×n,
A = A1 − A2i − A3j − A4k, AT = AT

1 + AT
2 i + AT

3 j + AT
4 k, A

∗ = AT
1 − AT

2 i −
AT
3 j−AT

4 k, denote the conjugate, the transpose, the conjugate transpose of the matrix
A, respectively. Fm×n denotes the set of m × n matrices over the ring of F. For any
quaternion q = q1+q2i+q3j+q4k, q = q1−q2i−q3j−q4k is the conjugate of q, the

norm of the quaternion q is defined to be ‖q‖ = √|qq| =
√∣∣q2

1 + q2
2 + q2

3 + q2
4

∣∣.

2 Preliminaries

In this section, we first review some basic properties about quaternion matrices and
their complex representation matrices, and then prove the full rank decomposition
form of the generalized inverse matrix of a quaternion matrix.

For A = A1 + A2i + A3j + A4k = M1 + M2j ∈ Qm×n, A1, A2, A3, A4 ∈ Rm×n,
a complex representation matrix Aσ of A is defined to be

Aσ =
[

M1 M2

−M2 M1

]
∈ C2m×2n, (2.1)

where M1 = A1 + A2i, M2 = A3 + A4i ∈ Cm×n. By (2.1), we have

Aσ = [
Aσ

c QT
mAσ

c

] =
[

Aσ
r

Aσ
r Qn

]
, QT

mAσ Qn = Aσ , (2.2)

where Aσ
r = [

M1 M2
]
, Aσ

c =
[

M1

−M2

]
, Qt =

[
0 It

−It 0

]
. By (2.1) and (2.2), it is

easy to prove the following results.

Proposition 2.1 [18] Let A, B ∈ Qm×n, C ∈ Qn×p, a ∈ R. Then

(A + B)σ = Aσ + Bσ , (AC)σ = Aσ Cσ , (aA)σ = aAσ , (2.3)

(A + B)σr = Aσ
r + Bσ

r , (AC)σr = Aσ
r Cσ , (aA)σr = aAσ

r . (2.4)
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For any matrix A ∈ Qn×n, by the Frobenius norm and 2 norm of a complex matrix,
define the following Frobenius norm and 2 norm of a quaternion matrix

‖A‖F = 1√
2

∥∥Aσ
∥∥

F
, ‖A‖2 = ∥∥Aσ

∥∥
2 , (2.5)

then the Frobenius norm and 2 norm are unitarily invariant norms of a quaternion
matrix. From the above discussion, it is easy to prove the following results.

Proposition 2.2 Let A ∈ Qm×n, b ∈ Qm. Then

‖A‖F = ∥∥Aσ
r

∥∥
F

, ‖b‖2 = ∥∥bσ
c

∥∥
2 . (2.6)

Proposition 2.3 For any quaternion matrices A, B, we have

(1) rank(A) = 1
2 rank(A

σ );
(2) rank(AB) � min {rank(A), rank(B)} , in which A ∈ Qm×n, B ∈ Qn×p;
(3) rank(A∗) = rank(A) = rank(AT ), rank(A∗A) = rank(A), in which A ∈

Qm×n;
(4) rank(A) = rank(B) if and only if rank(Aσ ) = rank(Bσ ), in which A, B ∈

Qm×n.

From [18], supposed that A ∈ Qm×n, if there exists X ∈ Qn×m such that

(1) (AX)∗ = AX; (2) (XA)∗ = XA; (3) AXA = A; (4) XAX = X, (2.7)

then X is called the generalized inverse matrix of matrix A, denoted by A†, and the
matrix A† satisfies the following properties,

(1) (A∗)† = (A†)∗;
(2) If rank(A) = m, then A† = A∗(AA∗)−1;
(3) If rank(A) = n, then A† = (A∗A)−1A∗.

Proposition 2.4 [18] Supposed that A ∈ Qm×n, b ∈ Qn. Then when the quaternion
linear equation Ax = b is regarded as the least squares problem, its solution sets
and the compatible linear system Ax = AA†b are the same. A general solution of
the quaternion least squares problem have the following expression x = A†b + (I −
A†A)y, in which y ∈ Qn is any quaternion vector.

Theorem 2.5 Suppose that matrix A has the full rank decomposition A = BC, in
which B ∈ Qm×r , C ∈ Qr×n, rank(B) = rank(C) = r > 0. Then A† = C†B† =
C∗(CC∗)−1(B∗B)−1B∗ is a generalized inverse matrix of matrix A.
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Proof Since B is a column full rank matrix, C is a row full rank matrix, it is easy to
get B† = (B∗B)−1B∗, C† = C∗(CC∗)−1. Let X = C†B†, easy to verify that matrix
X satisfies (2.7), i.e., X is the generalized inverse matrix of A, and A† = C†B† =
C∗(CC∗)−1(B∗B)−1B∗.

3 Gaussian elimination algorithm for full rank decomposition
of a quaternionmatrix

Gauss elimination method is widely used in matrix decomposition, for example,
full rank decomposition, LU decomposition, LDL∗ decomposition, and Cholesky
decomposition. In this section, we derive the full rank decomposition process of a
quaternion matrix by the Gauss elimination method, and give a direct algorithm of
the full rank decomposition.

Given a quaternion vector x = (x1, x2, · · · , xn)
T ∈ Qn, if xi �= 0, then

li = (
0, · · · , 0, li+1,i , li+2,i , · · · ln,i

)T
, (3.1)

where lk,i = xkx
−1
i = xkxi

‖xi‖2 , k = i + 1, · · · , n. Define the following quaternion

Gauss transformation matrix,

Li = In − lie
T
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
0 · · · 1 0 · · · 0
0 · · · −li+1,i 1 · · · 0
...
. . .

...
...
. . .

...
0 · · · −ln,i 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.2)

clearly, Lix = (x1, · · · , xi, 0, · · · , 0)T . Li, li , lk,i denote the quaternion Gauss
transformation matrix, quaternion Gauss transformation vector, quaternion multi-
plier, respectively.

For any matrix A = (aij ) ∈ Qm×n, the process of full rank decomposition of
matrix A is as follows.

(1) If a11 �= 0, construct a quaternion Gauss transformation matrix L1 such that

L1A =

⎡
⎢⎢⎢⎢⎣

a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

...
...

0 a
(2)
m2 · · · a

(2)
mn

⎤
⎥⎥⎥⎥⎦

= A(2), where L1 =

⎡
⎢⎢⎢⎢⎢⎣

1
−l21 1
−l31 1
...

. . .
−lm1 1

⎤
⎥⎥⎥⎥⎥⎦
.

(3.3)
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(2) If a11 = 0. Suppose that there exists ai1 �= 0. Interchange rows 1 and i of
matrix A, i.e., there exists a permutation matrix P1 such that

L1P1A = A(2). (3.4)

(3) Similarly, the result after step k − 1, we have the following results,

A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 a

(1)
12 · · · a

(1)
1k · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2k · · · a

(2)
2n

. . .
...

...
...

a
(k)
kk · · · a

(k)
kn

...
...

...
a

(k)
mk · · · a

(k)
mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

In the above process, if a
(k)
kk = a

(k)
kk+1 = · · · = a

(k)
mk = 0, then go to the operation

on the k + 1 column element. After step t above, convert the original quaternion
matrix to the upper triangular matrix is as follows,

LrPr · · · L1P1A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(1)
11 · · · a

(1)
1r · · · a

(1)
1n

...
. . .

...
...

0 · · · a
(r)
rr · · · a

(r)
rn

0 · · · 0
...

...
0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

C

0

]

⇒ A = P −1L−1
[

C

0

]
= [

B ∗ ] [
C

0

]
= BC, (3.6)

in which L = Lr · · · L1, P = Qr · · · Q2P1, Qi =
(Li−1 · · · L1)

−1Pi(Li−1 · · · L1), 2 � i � r, LrPr · · · L1P1A =
LrPr · · · L2L1Q2P1A = Lr · · · L1Qr · · · Q2P1A = LPA.

Theorem 3.1 Let A ∈ Qm×n, rank(A) = r , then there exist B ∈ Qm×r , C ∈ Qr×n

and rank(B) = rank(C) = r , such that A = BC.

Next, we give a direct algorithm for full rank decomposition of a quaternion
matrix. This algorithm is based on quaternion toolbox (QTFM), which directly
decomposes the quaternion matrix.
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4 Complex structure-preserving algorithm for the full rank
decomposition of quaternionmatrices

In this section, based on the algorithm of the previous chapter, we use the isomor-
phic complex representation of a quaternion matrix, transform the corresponding
algorithm operation to the complex field, reduce the matrix dimension and the
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amount of calculation, and obtain a structure-preserving algorithm of the full rank
decomposition.

Let li = l
(1)
i + l

(2)
i j ∈ Qn, where l

(j)
i =

(
0, · · · , 0, l(j)

i+1,i , l
(j)

i+1,i , · · · , l
(j)
n,i

)T

, i =
1, 2, · · · , n − 1, j = 1, 2, by (3.2), the complex representation matrix of Gaussian
transformation matrix Li is as follows:

(4.1)

it is easy to get,

(4.2)

For any quaternion vector, x = x(1) + x(2)j ∈ Qn, x(j) =
(
x

(j)

1 , · · · , x
(j)
n

)T ∈
Cn, j = 1, 2, if we take the k(i < k ≤ n) member of vector and convert it to
0(xi �= 0), let

l
(j)
i =

(
0, · · · , 0, l(j)

k,i , 0, · · · , 0
)T

, i < k ≤ n, j = 1, 2, (4.3)

where l
(1)
k,i =

(
x

(1)
k x

(1)
i + x

(2)
k x

(2)
i

)
/‖xi‖2, l(2)k,i =

(
−x

(1)
k x

(2)
i + x

(2)
k x

(1)
i

)

/‖xi‖2, ‖xi‖2 =
∥∥∥x

(1)
i

∥∥∥
2 +

∥∥∥x
(2)
i

∥∥∥
2
, then Lix = (x1, x2, · · · xk−1, 0, xk+1, · · · xn)

T .
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For any matrix A = A1 + A2i + A3j + A4k = M1 + M2j ∈ Qm×n, M1 =(
a

(1)
ij

)
, M2 =

(
a

(2)
ij

)
∈ Cm×n, let the initial matrix be as follows,

(4.4)

(1) If ‖a11‖2 =
∥∥∥a

(1)
11

∥∥∥
2 +

∥∥∥a
(2)
11

∥∥∥
2

> 0, construct the complex representation

matrix of Gaussian transformation matrix L1,

(4.5)

in which, l(1)i1 =
(

a
(1)
i1 a

(1)
11 + a

(2)
i1 a

(2)
11

)
/‖a11‖2, l

(2)
i1 =

(
−a

(1)
i1 a

(2)
11 + a

(2)
i1 a

(1)
11

)

/‖a11‖2, i = 2, ..., m, then,

(4.6)

clearly, Lσ
1Aσ is the complex representation matrix of matrix

[
â

(1)
11 M̂

(1)
12

0 M̂
(1)
22

]
+

[
â

(2)
11 M̂

(2)
12

0 M̂
(2)
22

]
j, and M̂

(1)
12 , M̂

(2)
12 ∈ C1×(n−1), M̂

(1)
22 , M̂

(2)
22 ∈ C(m−1)×(n−1) are

submatrix after Gauss transformation of matrix M1, M2.

(2) If ‖a11‖2 =
∥∥∥a

(1)
11

∥∥∥
2+

∥∥∥a
(2)
11

∥∥∥
2 = 0, choose i0(2 ≤ i0 ≤ m) such that,

∥∥ai01
∥∥2 =

∥∥∥a
(1)
i01

∥∥∥
2 +

∥∥∥a
(2)
i01

∥∥∥
2

> 0, interchange rows 1 and i0 of A, i.e., there exists a real
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permutation matrix P1 such that,

(4.7)

in which case, P σ
1 Aσ satisfies (1), by (4.6), construct the matrix L1 such that,

(4.8)

clearly, Lσ
1P σ

1 Aσ is a complex representation matrix of matrix

[
â

(1)
11 M̂

(1)
12

0 M̂
(1)
22

]
+

[
â

(2)
11 M̂

(2)
12

0 M̂
(2)
22

]
j, in which M̂

(1)
12 , M̂

(2)
12 ∈ C1×(n−1), M̂

(1)
22 , M̂

(2)
22 ∈ C(m−1)×(n−1)

are submatrix after Gauss transformation of matrix M1, M2.

After the above step t , M1, M2 are two unit upper triangular matrices, i.e.,

(4.9)

For unified representation, P1, · · · , Pr display all exists, Pi(0 ≤ i ≤ r) not all of
them exist in the actual operation, and M̂(1), M̂(2) ∈ Cr×n are submatrix after Gauss
transformation of matrix M1, M2, then the complex representation matrix of the full
rank decomposition matrix is

Cσ =
[

M̂(1) M̂(2)

−M̂
(2)

M̂
(1)

]
∈ C2r×2n, Bσ = P σ Lσ (:, [1 : r, n : n + r]) ∈ C2m×2r ,

(4.10)
where P σ = (

Qσ
r · · · Qσ

2P σ
1

)−1
, Qσ

i = (
Lσ

i−1 · · · Lσ
1

)−1
P σ

i

(
Lσ

i−1 · · · Lσ
1

)
, 2 �

i � r, Lσ = (
Lσ

r · · · Lσ
1

)−1.

Theorem 4.1 Supposed that A ∈ Qm×n, rank(A) = r , then there exist Bσ ∈
C2m×2r , Cσ ∈ C2r×2n, rank(Bσ ) = rank(Cσ ) = 2r , satisfies Aσ = Bσ Cσ , i.e.,
A = BC.
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By (2.2) and Proposition 2.1, we only need to calculate the first row block of the
complex representation matrix in the actual program operation. Next, we give the
specific algorithm of the above structure-preserving process.
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Fig. 1 CPU time scatter diagram

Example 4.1 For any quaternion matrix A = A1 + A2i + A3j + A4k ∈ Qm×n,
let m = n = 10 : 10 : 500, A1 = rand(m, n), A2 = rand(m, n), A3 =
rand(m, n), A4 = rand(m, n). Calculate the CPU time and relative error of two algo-
rithms for the full rank decomposition of random quaternion matrices of order 10 to

500
(
ηk = ‖Ak−BkCk‖‖A‖

)
as follows (Figs. 1 and 2).

Example 4.1 shows that the error of Algorithm 2 is smaller than that of Algorithm
1, and the running time of CPU is also shortened obviously. It can be seen that the
result of complex structure-preserving algorithm for the full rank decomposition of
quaternion matrices have better timeliness, small error and short running time, which
is conducive to the analysis and discussion of a quaternion matrix.

Fig. 2 Error scatter diagram of algorithms 1 and 2
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5 A fast algorithm for solving the quaternion linear equations

The main application of the full rank decomposition is to solve the generalized
inverse matrix, and then to solve the general solution of corresponding linear equa-
tion. At the same time, in the process of the full rank decomposition, we can also
get the rank of matrix and so on. In this section, we extend the above two full rank
decomposition algorithms, give two algorithms for solving quaternion linear equa-
tions, and compare the feasibility and timeliness of the two algorithms. Finally, the
complex structure-preserving algorithm of the full rank decomposition is applied to
the sparse representation of color images, and the test images are classified.

In addition, the above steps 1–3 is also a fast algorithm for calculating the
generalized inverse matrix of quaternion matrix.

Example 5.1 Find the general solution to the system of linear equations Ax = b by
the full rank decomposition of matrix A, in which

A =
⎡
⎣
1 + 2i 3j 2k

0 4 + 2k i+j
2 + 4i 8i+12j −3 + 3k

⎤
⎦ , b =

⎡
⎣

−3 + 14j+5k
3 + 13i+5j+k

−29 + 5i+33j-11k

⎤
⎦ .
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(1) By (2.1) and (2.2), we have

Run Algorithm 2, and we get

B1 =
⎡
⎣
1 0
0 1
2 i

⎤
⎦ , B2 =

⎡
⎣
0 0
0 0
0 2

⎤
⎦ , C1 =

[
1 + 2i 0 0

0 4 i

]
, C2 =

[
0 3 2i
0 2i 1

]
,

i.e., rand(A) = 2, the full rank decomposition is A = BC, in which

B =
⎡
⎣

1 0
0
2

1
i + 2j

⎤
⎦ , C =

[
1 + 2i 3j 2k
0 4 + 2k i + j

]
.

(2) By (1) and Algorithm 4, it is easy to get

A†b =
⎡
⎣

−0.2286+0.4929i+2.8357j−1.0286k
1.4357+2.0143i−0.2429j+0.0929k
3.2000+2.4000i+0.1571j+1.2571k

⎤
⎦ ,

then the general solution of linear equations Ax = b is x = A†b + (I − A†A)y, in
which y ∈ Qn is any quaternion vector.

Example 5.2 For any quaternion matrix A = A1 + A2i + A3j + A4k ∈
Qm×n, x = x1 + x2i + x3j + x4k ∈ Qn×1, let m = n = 10 : 10 :
500, A1 = rand(m, n), A2 = rand(m, n), A3 = rand(m, n), A4 = rand(m, n), x1 =
rand(n, 1), x2 = rand(n, 1), x3 = rand(n, 1), x4 = rand(n, 1), b = Ax. Calculate
the CPU time and relative error of two algorithms for the solution of quaternion linear

equations Ax = b of order 10 to 500

(
ηk =

∥∥A†b−x
∥∥

F‖x‖F

)
as follows (Figs. 3 and 4).

Example 5.2 shows that in terms of calculating the linear equations, the running
time and calculation error of Algorithm 4 are also far less than the result of Algo-
rithm 3. And for the calculation of high-dimensional linear equations, Algorithm 3
is difficult to implement, but Algorithm 4 is still fast. In the above chart, in order to
compare the results of the two algorithms, we only performed operations within 500
dimensions. In fact, Algorithm 4 can perform higher-dimensional operations.

Example 5.3 Given a color face recognition training data set (Fig. 5), and the cor-
responding test sample (Figs. 6, 7) are classified. (Color image classification for
different subjects. Images of a subject from the Faces95 database.)
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Fig. 3 CPU time scatter diagram

Fig. 4 Error scatter diagram of algorithms 3 and 4

Fig. 5 The set of training samples 1, c=4
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Fig. 6 The test sample 1

Let A = Ri+Gj+Bk be quaternion representation matrix of the training data set
(Fig. 5), b = Rbi+Gbj+Bbk be quaternion representation matrix of the test sample
(Figs. 6, 7), where R, Rb, G, Gb, B, Bb are real matrices standing for red, green, and
blue colors. A training set is divided into c(c = 4) categories. The goal is exactly
to predict the label of b from the given c class training samples. For each class i, let
δi : Rn → Rn be the characteristic function which selects the coefficients associated
with the ith class. The test sample b can be approximated by b̂i = Aδi(x) which uses
the vector δi from each class. By using Algorithm 4 and the reconstruction residual
for ith class ri(b) = ‖b − b̂i‖2, we can obtain the approximate sparse representation
and classification results of the test image (Figs. 8, 9, 10 and 11).

Fig. 7 The test sample 2
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Fig. 8 The approximate test
sample 1

In Example 5.3, four subjects were randomly selected from Faces95 database, and
the color face sparse representation was performed on the test images of the first
subject and the fourth subject respectively. The results show that the classification is
more accurate.

Example 5.4 Given a color face recognition training data set (Fig. 12), and the cor-
responding test data (Fig. 13) are classified. (Color image classification of different
micro expressions of the same subject.) By using Algorithm 4, we can obtain the
approximate sparse representation and classification results of the test image (Figs.
14 and 15).

Fig. 9 Figure 6 belongs to the first category of the set of training samples
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Fig. 10 The approximate test
sample 2

Fig. 11 Figure 7 belongs to the fourth category of the set of training samples

Fig. 12 The set of training samples 2, c=4
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Fig. 13 The test sample 1

Fig. 14 The approximate test
sample 1
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Fig. 15 Figure 13 belongs to the first category of the set of training samples

In Example 5.4, several sets of micro expression data sets of a subject are randomly
selected from the network to sparse represent the different expression images of the
same subject. The results show that the classification method is more accurate.

6 Conclusions

In this paper, based on the Gauss elimination method of quaternion matrix, we discuss
the direct Gauss transform (based on quaternion toolbox (QTFM) and the complex
structure-preserving Gauss transform of a quaternion matrix. By using the Gauss
transformation, we obtain the direct algorithm and complex structure-preserving
algorithm for the full rank decomposition of a quaternion matrix. Finally, this algo-
rithm can also be applied to the sparse representation classification of color images.
The feasibility and timeliness of the proposed algorithms are demonstrated by the
corresponding application examples.
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