
https://doi.org/10.1007/s11075-022-01291-1

ORIGINAL PAPER

Deviation maximization for rank-revealing QR
factorizations

Monica Dessole1 ·Fabio Marcuzzi1

© The Author(s) 2022

Abstract
In this paper, we introduce a new column selection strategy, named here “Devia-
tion Maximization”, and apply it to compute rank-revealing QR factorizations as an
alternative to the well-known block version of the QR factorization with the column
pivoting method, called QP3 and currently implemented in LAPACK’s xgeqp3 rou-
tine. We show that the resulting algorithm, named QRDM, has similar rank-revealing
properties of QP3 and better execution times. We present experimental results on a
wide data set of numerically singular matrices, which has become a reference in the
recent literature.

Keywords QR factorization · Rank revealing · Column pivoting · Block algorithm ·
Correlation

1 Introduction

The Rank-Revealing QR (RRQR) factorization was introduced by [16] and it is
nowadays a classic topic in numerical linear algebra; for example, [17] introduce
RRQR factorization for least squares problems where the matrix has not full col-
umn rank: in such a case, a plain QR computation may lead to an R factor in which
the number of nonzeros on the diagonal does not equal the rank and the matrix Q

does not reveal the range nor the null space of the original matrix. Here, the SVD
decomposition is the safest and most expensive solution method, while approaches
based on a modified QR factorization can be seen as cheaper alternatives. Since

� Monica Dessole
monica.dessole.ext@leonardo.com

Fabio Marcuzzi
marcuzzi@math.unipd.it

1 Department of Mathematics Tullio Levi Civita, University of Padova,
Via Trieste 63, 35121 Padua, Italy

Numerical Algorithms (2022) 91:1047–1079

Received: 4 June 2021 / Accepted: 28 February 2022 Published online: 5 April 2022/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01291-1&domain=pdf
http://orcid.org/0000-0002-2727-9123
mailto: monica.dessole.ext@leonardo.com
mailto: marcuzzi@math.unipd.it

the QR factorization is essentially unique once the column ordering is fixed, these
techniques all amount to finding an appropriate column permutation. The first algo-
rithm was proposed in [7] and it is referred as QR factorization with column pivoting
(QRP). It should be noticed that, if the matrix of the least squares problem has not
full column rank, then there is an infinite number of solutions and we must resort
to rank-revealing techniques which identify a particular solution as “special”. QR
with column pivoting identify a particular basic solution (with at most r nonzero
entries, where r is the rank of the matrix), while biorthogonalization methods [17],
identify the minimum �2 solution. Rank-revealing decompositions can be used in a
number of other applications [20]. The QR factorization with column pivoting works
pretty well in practice, even if there are some examples in which it fails, see, e.g., the
Kahan matrix [23]. However, further improvements are possible, see, e.g., [8] and
[15]: the idea here is to identify and remove small singular values one by one. Gu
and Eisenstat [19] introduced the strong RRQR factorization, a stable algorithm for
computing a RRQR factorization with a good approximation of the null space, which
is not guaranteed by QR factorization with column pivoting. Both can be used as
optional improvements to the QR factorization with column pivoting. Rank-revealing
QR factorizations were also treated in [9, 18, 22].

Column pivoting makes it more difficult to achieve high performances in QR com-
putation, see [3–6, 27]. The state-of-the-art algorithm for computing RRQR, named
QP3, is a block version [27] of the standard column pivoting and it is currently imple-
mented in LAPACK [1]. Other recent high-performance approaches are tournament
pivoting [10] and randomized pivoting [14, 25, 31]. In this paper we present a tech-
nique based on correlation analysis we call “Deviation Maximization”, that selects a
subset of sufficiently linearly independent columns. The deviation maximization may
be adopted as a block pivoting strategy in more complex applications that require
subset selection. We successfully apply the deviation maximization to the problem
of finding a rank-revealing QR decomposition, but, e.g., the authors experimented
also a preliminary version of this procedure in the context of active set methods, see
[11, 12]. The rest of this paper is organized as follows. In Section 2 we motivate
and describe this novel column selection technique. In Section 3 we define the rank-
revealing factorization, we review the QRP algorithm and then we introduce a block
algorithm for RRQR by means of deviation maximization; furthermore, we give the-
oretical worst case bounds for the smallest singular value of the R factor of the RRQR
factorizations obtained with these two methods. In Section 4 we discuss the algorithm
QRDM and some fundamental issues regarding its implementation. Section 5 com-
pares QP3 and QRDM against a relevant database of singular matrices, and finally,
the paper concludes with Section 6.

1.1 Notation

For any matrix A of size m × n, we denote by [A]I,J the submatrix of A obtained
considering the entries with row and columns indices ranging in the sets I and
J , respectively. We make use of the so-called colon notation, that is we denote
by [A]k:l,p:q the submatrix of A obtained considering the entries with row indices
k ≤ i ≤ l and column indices p ≤ j ≤ q. When using colon notation, we write

1048 Numerical Algorithms (2022) 91:1047–1079

[A]:,p:q ([A]k:l,:) as a shorthand for [A]1:m,p:q ([A]k:l,1:n). We also denote the (i, j)-th
entry as aij or [A]ij . The singular values of a matrix A are denoted as

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin(A) = σmin(m,n)(A) ≥ 0.

Given the vector norm ‖x‖p = (|x1|p + . . . |xn|p)1/p, p ≥ 1, we denote the family
of p-norms as

‖A‖p = sup
‖x‖p=1

‖Ax‖p.

We denote the operator norm by ‖A‖2 = σmax(A). When the context allows it, we
drop the subscript on the 2-norm. With a little abuse of notation, we define the max-
norm of A as ‖A‖max = maxi,j |aij |. Recall that the max-norm is not a matrix norm
(it is not submultiplicative), and it should not be confused with the ∞-norm ‖A‖∞ =
maxi

∑
j |aij |.

2 Column selection by deviationmaximization

Consider an m × n matrix A which has not full column rank, that is rank(A) = r <

n, and consider the problem of finding a subset of well-conditioned columns of A.
Before presenting a strategy to solve this problem, let us recall that for an m × k

matrix C = (c1 . . . ck) whose columns cj are non-null, the correlation matrix Θ has
entries

θij = cT
i cj

‖ci‖‖cj‖ , 1 ≤ i, j ≤ k. (1)

In particular, we have Θ = (
CD−1

)T
CD−1 = D−1CT CD−1, where D is the

diagonal matrix with entries di = ‖ci‖ , 1 ≤ i ≤ k. It is immediate to see that Θ

is symmetric positive semidefinite, it has only ones on the diagonal, and its entries
range from −1 to 1. Notice that θij is the cosine of αij = α(ci , cj) ∈ [0, π), the angle
(modulo π) between ci and cj . In order to emphasize this geometric interpretation,
from now on we refer to Θ as the cosine matrix.

Let us first recall a few definitions taken from [2]. A squared matrix A = Δ + N ,
where Δ is diagonal and N has a zero diagonal, is said to be τ -diagonally dominant
with respect to a norm ‖ · ‖ if ‖N‖ ≤ τ mini |Δii | for some 0 ≤ τ < 1. A matrix
A = D1(Δ + N)D2, where Δ, D1, D2 are diagonal and N has a zero diagonal, is
said to be τ -scaled diagonally dominant with respect to a norm ‖ · ‖ if Δ + N is
τ -diagonally dominant with respect to same norm, for some 0 ≤ τ < 1. If A is
symmetric, then Δ + N is symmetric and we have D := D1 = D2, with diagonal
entries di = |Aii |1/2. The main idea behind the deviation maximization is based on
the following result.

Lemma 1 Let C = (c1 . . . ck) be an m×k matrix such that ‖c1‖ = maxj ‖cj‖ > 0.
Suppose there exists 1 > τ > 0 such that ‖cj‖ ≥ τ‖c1‖ for all j , and that CT C is
τ -scaled diagonally dominant matrix with respect to the ∞-norm. Then

σmin(C) ≥ ‖c1‖
√

τ(τ − ‖N‖∞), (2)

σmin(C) ≥ ‖c1‖τ
√

1 − τ . (3)

1049Numerical Algorithms (2022) 91:1047–1079

Proof Let us write A = CT C = DΘD, where D = diag(dj), with dj = ‖cj‖, and
the cosine matrix Θ decomposes as Θ = (I + N).

We first prove (2). Let us show that A is diagonally dominant in the classic sense,
that is for i we have

|aii | −
∑

j �=i

|aij | = d2
i −
∑

j �=i

|didj θij | > 0.

For all 1 ≤ i ≤ k, we have
∑

j �=i

|didj θij | = |di |
∑

j �=i

|dj θij | ≤ |di | max
j

|dj |
∑

j �=i

|θij | = |di |‖c1‖
∑

j �=i

|θij |,

and hence

d2
i −
∑

j �=i

|didj θij | ≥ |di|‖c1‖τ − |di |‖c1‖
∑

j �=i

|θij | = |di|‖c1‖
⎛

⎝τ −
∑

j �=i

|θij |
⎞

⎠ .

Since |di | > 0 for all i, and ‖c1‖ > 0, the right-hand side is positive if and only if

τ > max
i

∑

j �=i

|θij | = ‖N‖∞,

that is true by assumption since the cosine matrix Θ is τ -diagonally dominant with
respect to the ∞-norm. Moreover, we have

min
i

⎧
⎨

⎩
d2
i −
∑

j �=i

|didj θij |
⎫
⎬

⎭
≥ τ‖c1‖2

⎛

⎝τ − max
i

∑

j �=i

|θij |
⎞

⎠ = τ‖c1‖2 (τ − ‖N‖∞)

= τ‖c1‖2 (τ − ‖N‖∞) .

For any strictly diagonally dominant matrix A with α = mini

{

|aii | − ∑
j �=i

|aij |
}

> 0,

we have (see [30])

‖A−1‖ <
1

α
⇒ ‖A−1‖−1 = σmin(A) > α.

Then

σmin(C
T C) ≥ τ‖c1‖2 (τ − ‖N‖∞) ⇒ σmin(C) ≥ ‖c1‖

√
τ (τ − ‖N‖∞).

Let us now prove (3). First notice that the cosine matrix Θ = I +N is symmetric,
hence ‖N‖∞ = ‖N‖1. In particular, Θ is τ -diagonally dominant also with respect to
the 2-norm, since by Hölder’s inequality we get

‖N‖2 ≤ (‖N‖1‖N‖∞)1/2 = ‖N‖∞ < τ .

1050 Numerical Algorithms (2022) 91:1047–1079

Moreover, assume without loss of generality that d1 ≥ d2 ≥ · · · ≥ dk , where
di = ‖ci‖. Recall the variational characterization (Courant-Fischer Theorem) of the
eigenvalues λ1 ≥ · · · ≥ λk of a symmetric matrix A of order k

λi = min
S⊆Rn

dim(S)=i−1

max
x∈S⊥
‖x‖=1

xT Ax.

Let Si−1 ⊆ R
k be the subspace spanned by the first i − 1 elements of the canonical

basis. Its orthogonal complement S⊥
i−1 is then the subspace spanned by the last k −

i + 1 elements of the canonical basis. We have

λi ≤ max
x∈S⊥

i−1
‖x‖=1

xT Ax = max
‖x̂‖=1

x̂T Ai−1x̂,

where x̂ ∈ R
k−i+1 is the vector obtained by deleting the first i − 1 entries of x and

Ai−1 is the square submatrix of order k−i+1 obtained by deleting the first i−1 rows
and columns of A. Consider the eigenvalues λi of the symmetric matrix A = CT C.
Take x ∈ S⊥

i−1 with ‖x‖ = 1, then by Cauchy-Schwarz inequality

x̂T Ai−1x̂ = x̂T Di−1Θi−1Di−1x̂ = x̂T Di−1(I + Ni−1)Di−1x̂

= ‖Di−1x̂‖2+(Di−1x̂)T Ni−1Di−1x̂≤‖Di−1x̂‖2+‖Ni−1Di−1x̂‖‖Di−1x̂‖
≤ ‖Di−1x̂‖2 + τ‖Di−1x̂‖2 ≤ (1 + τ)‖Di−1‖2

= (1 + τ) max
i≤j≤k

‖cj‖2 = (1 + τ)‖ci‖2,

and thus λi ≤ (1 + τ)‖ci‖2 ≤ (1 + τ)‖c1‖2. Considering −A instead, we get

x̂T (−Ai−1)x̂ = x̂T Di−1(−I −Ni−1)Di−1x̂ = −‖Di−1x̂‖2 − (Di−1x̂)T Ni−1Di−1x̂

≤ (−1 + τ)‖Di−1x̂‖2

≤ (−1 + τ)‖ci‖2,

and thus λi ≥ (1 − τ)‖ci‖2. Since λi = σ 2
i , we have

σi ≥ ‖c1‖τ
√

1 − τ .

The proof of the bound (3) is mainly based on results contained in [2]. Inequalities
(2)–(3) show quite clearly that the bound on the smallest singular value of C depends
on the norms of the column vectors and on the angles between each pair of such
columns. This suggests to choose k columns of A, namely those with indices J =
{j1, . . . , jk}, k ≤ r , such that the submatrix C = [A]:,J has columns with large
euclidean norms, i.e., larger than the length defined by a parameter τ > 0, and with
large deviations, meaning that each pair of columns form an angle whose cosine

1051Numerical Algorithms (2022) 91:1047–1079

in absolute value is bounded by a parameter δ ≥ 0. For these reasons, the overall
procedure is called deviation maximization and it is presented in Algorithm 1.

Let us detail the above procedure. Define the vector u containing the column
norms of A, namely u = (ui) = (‖ai‖), for i = 1, . . . , n. The set J of column
indices is initialized at step 1 with a column index corresponding to the maximum
column norm, namely

J = {j : j ∈ arg max u} .

At step 2, a set of “candidate” column indices I to be added in J is identified by
selecting those columns with a large norm with respect to the parameter τ , that is

I = {i : ui ≥ τ maxu, i �= j} , (4)

and then the cosine matrix associated to the corresponding submatrix Θ , i.e., the
cosine matrix of [A]:,I , is computed at step 4. With a loop over the indices of the
candidate set I , an index i ∈ I is inserted in J only if the i-th column has a large
deviation from the columns whose index is already in J . In formulae, we ask

|θij | < δ, for all j ∈ J,

i.e., the columns ai and aj are orthogonal up to the factor δ. At the end of the itera-
tions, we have J = {j1, . . . , jk}, with 1 ≤ k ≤ kmax , where kmax is the cardinality
of the candidate set I , and we set C = [A]:,J . The following static choice of the
parameter δ, namely

δ = τ

kmax − 1
, (5)

yields a submatrix C = [A]:,J that satisfies the hypotheses of Lemma 1 for a fixed
choice of parameters δ and τ . Indeed, for every j ∈ J , this choice ensures

∑

i∈J
i �=j

|θij | < (k − 1)δ = (k − 1)
τ

kmax − 1
≤ (kmax − 1)

τ

kmax − 1
= τ,

and hence the cosine matrix Θ is τ -diagonally dominant. Other strategies are
possible: for example, at each iteration, an index i can be added to J if

|θij | < τ −
∑

l∈J
l �=j

|θlj |,

1052 Numerical Algorithms (2022) 91:1047–1079

for all j ∈ J , suggesting that the value δ can be updated dynamically as follows

δ = τ − max
j∈J

∑

l∈J
l �=j

|θlj |. (6)

In both (5) and (6), we have 0 ≤ δ < τ < 1. In practice, the value of δ can be chosen
independently from τ , as we detail in Section 4, and this is why it is kept as an input
parameter.

2.1 Computing the cosinematrix

Let us focus on some details of the implementation of the deviation maximization
presented in Algorithm 1. First, the candidate set I defined in (4) can be computed
with a fast sorting algorithm, e.g., quicksort, applied to the array of column norms.
The most expensive operation in Algorithm 1 is the computation of the cosine matrix
Θ in step 4. The cosine matrix of the columns indexed in the candidate set I is given
by

Θ = D−1[A]T:,I [A]:,ID−1, (7)

where D = diag(‖aj‖), with j ∈ I . The matrix Θ is symmetric, thus we only need
its upper (lower) triangular part. This can be computed as

Θ = UT
1 U1, U1 = [A]:,ID−1, (8)

or

Θ = D−1U2D
−1, U2 = [A]T:,I [A]:,I . (9)

The former approach requires m × n additional memory to store U1 and it requires
m2k2

max flops to compute U1 and (2m − 1)kmax(kmax − 1)/2 flops for the upper
triangular part of UT

1 U1, while the latter does not require additional memory since
the matrix U2 can be stored in the same memory space used for the cosine matrix
Θ , and it requires (2m − 1)kmax(kmax − 1)/2 flops the upper triangular part of U2
and kmax(kmax − 1) flops for the upper triangular part of D−1U2D

−1. The cheapest
strategy is to compute Θ according to (9), even if it requires to write an ad hoc
low level routine which is not implemented in the BLAS library. It should be noted
that both (8) and involve a symmetric matrix–matrix multiplication, which can be
efficiently computed with the BLAS subroutine xsyrk.

In order to limit the cost and the amount of additional memory of Algorithm 1, we
propose a restricted version of the deviation maximization pivoting. If the candidate
is given by I = {jl : l = 1, . . . , kmax}, we limit its cardinality to be smaller or equal
to a machine dependent parameter kDM , that is

I = {jl : l = 1, . . . , min(kmax, kDM)}. (10)

We refer to the value kDM as block size, and we discuss its value in terms of achieved
performances in Section 5.

1053Numerical Algorithms (2022) 91:1047–1079

3 Rank-revealing QR decompositions

In exact arithmetic, we say that an m×n matrix A is rank-deficient if 0 = σr+1(A) <

σr(A), where r < min(m, n) is its rank. However, rank determination is nontrivial in
presence of errors in the matrix elements. Golub and Van Loan [17] define ε-rank of
a matrix A as

rank(A, ε) = min‖A−B‖<ε
rank(B), (11)

for some small ε > 0. Thus, if the input data have an initial uncertainty of a known
order η, then it has sense to look at rank(A, η). Similarly, for a floating point matrix A

it is reasonable to regard A as numerically rank-deficient if rank(A, ε) < min(m, n),
where ε = u‖A‖ and u is the unit roundoff. This issue is discussed more in detail in
Section 3.4.

Let us now introduce the mathematical formulation for the problem of finding a
rank-revealing decomposition of a matrix A of size m × n with numerical rank r ,
defined up to a certain tolerance ε as discussed above. Let Π denote a permutation
matrix of size n, then we can compute

AΠ = QR = (Q1 Q2)

(
R11 R12

0 R22

)

, (12)

where Q is an orthogonal matrix of order m, Q1 ∈ m × r and Q2 ∈ m × (m − r),
R11 is upper triangular of order r , R12 ∈ r × (n − r) and R22 ∈ (m − r) × (n − r).
The QR factorization above is called rank-revealing if

σmin(R11) = σr(R11) ≈ σr(A),

or

σmax(R22) = σ1(R22) ≈ σr+1(A),

or both conditions hold. Notice that if σmin(R11)
 ε and ‖R22‖ is small, then the
matrix A has numerical rank r , but the converse is not true. In other words, even if
A has (min(m, n) − r) small singular values, it does not follow that any permutation
Π yields a small ‖R22‖, even if there exist strategies that ensure a small value of
‖R22‖ by identifying and removing small singular values, see, e.g., [8, 15]. It is easy
to show that for any factorization like (12) the following relations hold

σmin(R11) ≤ σr(A), (13)

σmax(R22) ≥ σr+1(A). (14)

The proof is an easy application of the interlacing inequalities for singular values
[29], namely

σk(A) ≥ σk(B) ≥ σk+r+s(A), k ≥ 1,

which hold for any (m − s) × (n − r) submatrix B of A. In fact we have

σmin(R11) = σmin

(
R11

0

)

= σr([QT AΠ]1:m,1:r) ≤ σr(Q
T AΠ) = σr(A),

σmax(R22) = σmax(0 R22) = σ1([QT AΠ]r+1:m,1:n) ≥ σr+1(Q
T AΠ) = σr+1(A).

1054 Numerical Algorithms (2022) 91:1047–1079

Ideally, the best rank-revealing QR decomposition is obtained by the column
permutation Π which solves

max
Π

σmin(R11), (15)

for a fixed rank r . Recall that the volume of a rectangular real matrix A is defined
as
√

det(AT A) or
√

det(AAT) depending on the shape of A [26], that is the volume
of A equals the square root of the product of the singular values of A. It is not dif-
ficult to show that problem (15) is equivalent to the problem of selecting r columns
such that the volume of the corresponding submatrix [ΠA]:,1:r is maximal. Problem
(15) clearly has a combinatorial nature, thus algorithms that compute RRQR usually
provide (see, e.g., [9, 22]) at least one of the following bounds

σmin(R11) ≥ σr(A)

p(n)
, (16)

σmax(R22) ≤ σr+1(A)q(n), (17)

where p(n) and q(n) are low degree polynomials in n. These are worst case bounds
and are usually not sharp. We provide a bound of type (16) in Section 3.3.

3.1 The standard column pivoting

Let us introduce the QR factorization with column pivoting proposed by [7], which
can be labeled as a greedy approach in order to cope with the combinatorial opti-
mization problem (15). Suppose at the s-th algorithmic step we have already selected
s < r well-conditioned columns of A, which are moved to the leading positions by
the permutation matrix Π(s) as follows

AΠ(s) = Q(s)R(s) = Q(s)

(
R

(s)
11 R

(s)
12

R
(s)
22

)

, (18)

where R
(s)
11 is an upper triangular block of order s, and the blocks R

(s)
12 and R

(s)
22 have

size s×(n−s) and (m−s)×(n−s), respectively. The block R
(s)
22 is what is left to be

processed, and it is often called the “trailing matrix”. Let us introduce the following
column partitions for R

(s)
12 , R

(s)
22 respectively

R
(s)
12 = (b1 . . .bn−s) ,

R
(s)
22 = (c1 . . . cn−s) .

We aim at selecting, within the n − s remaining columns, that column such that the
condition number of the next block R

(s+1)
11 is kept the largest possible. Formally, we

would like to solve

σmin

(
R

(s+1)
11

)
= σmin

(
R

(s)
11 bj

cj

)

= max
1≤i≤n−s

σmin

(
R

(s)
11 bi

ci

)

. (19)

Using the following fact

σmin

(
R

(s)
11 bj

cj

)

= σmin

(
R

(s)
11 bj

‖cj‖
)

,

1055Numerical Algorithms (2022) 91:1047–1079

which is a simple consequence of the invariance of singular values under left mul-
tiplication by orthogonal matrices and the insertion of null rows, and using the
bound

σmin(A) ≤ min
i

(‖eT
i A−1‖−1

2) ≤ √
nσmin(A), (20)

which holds for any nonsingular matrix A, we can approximate up to a factor
√

s + 1
the smallest singular value as

σmin

(
R

(s)
11 bj

cj

)

≈ min
h

∥
∥
∥
∥
∥
eT
h

(
R

(s)
11 bj

‖cj‖
)−1
∥
∥
∥
∥
∥

−1

,

where eh is the h-th element of the canonical basis of Rs+1.
Using this result, as argued in [9], the maximization problem (19) can be solved
approximately by solving

j = arg max
1≤i≤n−ns

‖cj‖ ≈ arg max
1≤i≤n−ns

σmin

(
R

(s)
11 bi

ci

)

.

The resulting procedure is referred as QR factorization with column pivoting, and it
is presented in Algorithm 2.

This algorithm can be efficiently implemented since the column norms of the trailing
matrix can be updated at each iteration instead of being recomputed from scratch.
This can be done [17] by exploiting the following property

Qa =
(

β

c

)
1

m − 1
⇒ ‖a‖2 = ‖Qa‖2 = β2 + ‖c‖2,

which holds for any orthogonal matrix Q and any vector a of order m. Therefore,
once defined the vector u(s) whose entry u

(s)
j is the j -th partial column norm of

AΠ(s), that is the norm of the subcolumn with row indices ranging from m−ns to m,
and initialized u

(1)
j = ‖aj‖2, with 1 ≤ j ≤ n, we can perform the following update

u
(s+1)
j =

⎧
⎨

⎩

√(
u

(s)
j

)2 − r2
sj , s + 1 ≤ j ≤ n, 2 ≤ s ≤ n,

0, j < s + 1,

(21)

1056 Numerical Algorithms (2022) 91:1047–1079

where rij is the entry of indices (i, j) in R(s), 1 ≤ i ≤ m, 1 ≤ j ≤ n. The partial
column norm update allows to reduce the operation count from O(mn2) to O(mn).
Actually, the formula (21) cannot be applied as it is because of numerical cancella-
tion, and it needs to modified, see, e.g., [13] for a robust implementation. The pivoting
strategy just presented produces a factor R that satisfies [21]

|rkk|2 ≥
j∑

i=k

|rij |2, k ≤ j ≤ n, 1 ≤ k ≤ n, (22)

and, in particular,

|r11| ≥ |r22| ≥ · · · ≥ |rnn|, (23)

|rkk| ≥ |rkj |, k ≤ j ≤ n, 1 ≤ k ≤ n. (24)

A block version of Algorithm 2 has been proposed [27], and it is currently imple-
mented in LAPACK’s xgeqp3 routine, that we will use in the numerical section for
comparison.

Remark 1 Geometric interpretation: Introduce the following block column partition-
ing R(s) = (R1 R2) and Q(s) = (Q1 Q2), where R1 and Q1 have s columns. By the
properties of the QR decomposition, we have

R (Q1) = R (R1) R (Q2) = R (R1)
⊥ .

where R(B) denotes the subspace spanned by the columns of a matrix B. Every
unprocessed column of A rewrites as

aj = Q1bj−s + Q2cj−s ,

where Q1bj−s and Q2cj−s are the orthogonal projection of aj on the subspace
R (Q1) and on its orthogonal complement R (Q2), respectively. The most linearly
independent column ai from the columns in R1 can be seen as the one with the largest
orthogonal projection of the complement on the subspace spanned by such columns,
namely

max
i≥s

∥
∥PR(Q2)ai

∥
∥ = max

i≥1
‖Q2ci‖ .

However, the matrix Q(s) is never directly available unless it is explicitly computed.
We then settle for the index j such that

‖cj−s‖ = max
i≥1

‖ci‖.

3.2 The deviationmaximization pivoting

Consider the partial factorization in (18), and now suppose at the s-th algorithmic
step we have already selected ns , with s ≤ ns < r , well-conditioned columns of A,
so that R

(s)
11 has size ns × ns , while blocks R

(s)
12 and R

(s)
22 have size ns × (n − ns) and

(m − ns) × (n − ns) respectively. The idea is to pick ks , with ns+1 = ns + ks ≤
r , linearly independent and well-conditioned columns from the remaining n − ns

columns of A, which are also sufficiently linearly independent from the ns columns

1057Numerical Algorithms (2022) 91:1047–1079

already selected, in order to keep the smallest singular value of the R11 block as large
as possible. We aim at selecting those columns with indices j1, . . . , jks that solve

σmin

(
R

(s)
11 bj1 . . . bjks

cj1 . . . cjks

)

= max
1≤i1,...,iks ≤n−ns

σmin

(
R

(s)
11 bi1 . . . biks

ci1 . . . ciks

)

. (25)

Of course, this maximization problem has the same combinatorial nature as problem
(15), so we rather solve it approximately. We propose to approximate the indices{
j1, . . . , jks

}
that solves problem (25) with the indices selected by means of the

deviation maximization procedure presented in Algorithm 1 applied to the trailing
matrix R

(s)
22 . For the moment, let τ > 0 and δ be fixed accordingly to (5) or (6).

More efficient choices will be widely discussed in Section 5. For sake of brevity, we
will denote by B = (bj1 . . . bjks

) and C = (cj1 . . . cjks
) the matrices made up of the

columns selected, and by B̄ and C̄ the matrices made up by the remaining columns.
The rest of the block update, which we detail below, proceeds in a way similar to the
recursive block QR. Let Q̃(s+1) be an orthogonal matrix of order (m − ns) such that

(
Q̃(s)
)T

C =
(

T

0

)

∈ R
(m−ns)×ks , (26)

where T is an upper triangular matrix of order ks . The matrix Q̃(s+1) is obtained as
a product of ks Householder reflectors, that we represent by mean of the so-called
compact WY form [28] as

Q̃(s) = I − Y (s)W(s)(Y (s))T ,

where Y (s) is lower trapezoidal with ks columns and W(s) is upper triangular of order
ks . This allows us to carry out the update of the rest of trailing matrix, that is

(
Q̃(s)
)T

C̄ =
(

T̄

R
(s+1)
22

)

∈ R
(m−ns)×(n−ns−ks), (27)

by means of BLAS-3 kernels, for performance efficiency. Denoting by Π̃(s) a per-
mutation matrix that moves columns with indices j1, . . . , jks to the current leading
positions, we set Π(s+1) = Π(s)Π̃ (s) and

Q(s+1) = Q(s)

(
I

Q̃(s)

)

∈ R
m×m,

then the overall factorization of AΠ(s+1) takes the form

Q(s)

(
R

(s)
11 B B̄

C C̄

)

= Q(s+1)

⎛

⎜
⎝

R
(s)
11 B B̄

T T̄

R
(s+1)
22

⎞

⎟
⎠ , (28)

where, for the successive iteration, we set

R
(s+1)
11 =

(
R

(s)
11 B

T

)

∈ R
ns+1×ns+1 ,

R
(s+1)
12 =

(
B̄

T̄

)

∈ R
ns+1×(n−ns+1),

1058 Numerical Algorithms (2022) 91:1047–1079

with ns+1 = ns + ks . The resulting procedure is presented in Algorithm 3.

Last, we point out that the partial column norms can be updated at each iteration also
in this case with some straightforward changes of (21), namely

u
(s+1)
j =

⎧
⎪⎪⎨

⎪⎪⎩

√
√
√
√
(
u

(s)
j

)2 −
ns+1∑

l=ns

r2
lj , ns+1 < j ≤ n, ns+1 ≤ n,

0, j ≤ ns+1.

(29)

The above formula cannot be applied as it is because of numerical cancellation, like
(21). Thus, we apply safety switch from [13] for a robust implementation.

Algorithm 2 has the particular feature that the diagonal elements of the final upper
triangular factor R are monotonically non-increasing in modulus, i.e., they satisfy
(23). This is because we have (22), that also implies that the diagonal element is
larger than any other extra diagonal entry in modulus, see (24). For what concerns
Algorithm 3, an analogous of (22) cannot hold in general. Suppose that Algorithm 3
terminates in S ≥ 1 steps for a given matrix A and parameters τ , δ, and the dimen-
sion of the R

(s)
11 factor at the s-th algorithmic step is ns , so that 0 = n0 < n1 <

· · · < nS = n. It is easy to show that a weaker version of (22) holds, namely
we have

|rns+1,ns+1|2 ≥
j∑

i=ns+1

|rij |2, ns + 1 < j ≤ n, 0 ≤ s < S, (30)

1059Numerical Algorithms (2022) 91:1047–1079

which essentially establishes that we have diagonally dominance only for the first
pivot of each block, while the standard pivoting ensures it for all pivots (22). In
particular, we can only ensure that

|rns ,ns | ≥ |rns+j,ns+j |, 1 ≤ j ≤ ns+1 − ns, 1 ≤ s < S (31)

|rns ,ns | ≥ |rns ,ns+j |, 1 ≤ j ≤ ns+1 − ns, 1 ≤ s < S. (32)

Thus Algorithm 3 does not ensure that the factor R will have a monotonically
decreasing diagonal, as it is not the case for other recently proposed pivoting
strategies [10].

Remark 2 Geometric interpretation: We pointed out in Remark 1 that the standard
pivoting can be seen as an approximate procedure to compute at each iteration the
most linearly independent column from the columns already processed. Following
this line, Algorithm 3 is an approximate procedure to compute at each iteration a
set of linearly independent columns which are the most linearly independent from
the columns already processed. In fact, the first task is achieved by selecting vector
columns {cj1 , . . . , cjk

} which are pairwise orthogonal up to a factor δ, i.e.,
∣
∣
∣
∣
∣

cT
ji
cjl

‖cji
‖‖cjl

‖

∣
∣
∣
∣
∣
< δ,

for all 1 ≤ i, l ≤ k, i �= l. The second task is achieved by selecting columns with the
largest norm up to a factor τ , i.e.,

‖cjl
‖ ≥ τ max

i
‖ci‖,

for all 1 ≤ l ≤ k.

3.3 Worst-case bound on the smallest singular value

Let us denote by σ̄ (s) the smallest singular value of the computed R
(s)
11 block at step

s, that is

σ̄ (s) = σmin

(
R

(s)
11

)
.

Let us first report from [9] an estimate of σ̄ (s+1) for QRP.

Theorem 1 LetR(s)
11 be the upper triangular factor of order s computed by Algorithm

2. We have

σ̄ (s+1) ≥ σs+1(A)
σ̄ (s)

σ1(A)

1√
2(n − s)(s + 1)

.

Before coming to the main result, we introduce the following auxiliary Lemma.

Lemma 2 With reference to the notation used for introducing the block partition in
(28), we have

σmin(T) ≥ τ
√

1 − τ√
n − ns+1 + 1

σns+1(A). (33)

1060 Numerical Algorithms (2022) 91:1047–1079

Proof Consider following column partitions T = (t1 . . . tk), T̄ = (tk+1 . . . tn−ns),

R
(s+1)
22 = (rk+1 . . . rn−ns), and set rj = 0, for 1 ≤ j ≤ k. Moreover, let T = (ti,j),

with 1 ≤ i ≤ j ≤ k, and T̄ = (ti,j) with 1 ≤ i ≤ k, 1 ≤ j ≤ n − ns . First, notice
that by (14) we have

∥
∥
∥
∥

tk,k tk,k+1, . . . , tk,n−ns

0 R
(s+1)
22

∥
∥
∥
∥ ≥ σns+1(A).

We have
∥
∥
∥
∥

tk,k tk,k+1, . . . , tk,n−ns

0 R
(s+1)
22

∥
∥
∥
∥

2

≤ (n − ns+1 + 1) max

{

t2
k,k, max

j≥k+1

(
‖rj‖2 + t2

k,j

)}

.

Since t2
k,j ≤ ‖tj‖2, for all 1 ≤ j ≤ n − ns , and computing the maximum on a larger

set of indices we have

max

{

t2
k,k, max

j≥k+1

(
‖rj‖2 + t2

k,j

)}

≤ max

{

‖tk‖2, max
j≥k+1

(
‖rj‖2 + ‖tj‖2

)}

≤ max
j≥1

(
‖rj‖2 + ‖tj‖2

)
.

From equations (26–27), for all 1 ≤ j ≤ n − ns , we have

‖cj‖2 = ‖rj‖2 + ‖tj‖2,

and, finally, since ‖t1‖2 = ‖c1‖2 = maxj ‖cj‖2 and by using Lemma 1, we get

∥
∥
∥
∥

tk,k tk,k+1, . . . , tk,n−ns

0 R
(s+1)
22

∥
∥
∥
∥

2

≤ (n − ns+1 + 1)‖c1‖2 ≤ n − ns+1 + 1

τ 2(1 − τ)
σ 2

min(C).

We can conclude by noticing that σmin(T) = σmin(C), since the two matrices differ
by a left multiplication by an orthogonal matrix.

By the interlacing property of singular values, we have

σ̄ (s+1) ≤ min

{

σ̄ (s), σmin

(
B

T

)}

,

thus the bounds on σ̄ (s) and σmin(T) are, by themselves, not a sufficient condi-
tion. Let us introduce the following result, which provides a bound of type (16) for
Algorithm 3.

Theorem 2 Let R
(s)
11 be the upper triangular factor of order ns computed by

Algorithm 3. We have

σ̄ (s+1) ≥ σns+1(A)
σ̄ (s)

σ1(A)

1
√

2(n − ns+1)ns+1

τ
√

1 − τ

k2ns

.

1061Numerical Algorithms (2022) 91:1047–1079

Proof Let us drop the subscript and the superscript on the inverse of R
(s)
11 and its

inverse
(
R

(s)
11

)−1
, which will be denoted as R and R−1 respectively. Then, the inverse

of matrix R
(s+1)
11 is given by

(
R

(s+1)
11

)−1 =
(

R−1 −R−1BT −1

T −1

)

.

Let us introduce the following partitions into rows

F = R−1BT −1 =
⎛

⎜
⎝

fT1
...
fTns

⎞

⎟
⎠ , R−1 =

⎛

⎜
⎝

gT
1
...

gT
ns

⎞

⎟
⎠ , T −1 =

⎛

⎜
⎝

hT
1
...
hT

k

⎞

⎟
⎠ .

The idea is to use (20), that is

σ̄ (s+1) ≤ min
h

∥
∥
∥
∥e

T
h

(
R−1 F

T −1

)∥
∥
∥
∥

−1

≤ √
ns+1σminσ̄

(s+1),

to estimate the minimum singular value up to a factor
√

ns+1. For 1 ≤ h ≤ ns+1 we
have

∥
∥
∥
∥e

T
h

(
R−1 F

T −1

)∥
∥
∥
∥

2

=
{

‖gh‖2 + ‖fh‖2, h ≤ ns,

‖hh−ns ‖2, h > ns .

We can bound ‖gh‖ using (20) again, which gives

σ̄ (s) ≤ min
h

(
‖gh‖−1

)
≤ √

nsσ̄
(s).

In particular, for every 1 ≤ h ≤ ns , we get

σ̄ (s) ≤ min
h

(
‖gh‖−1

)
≤ ‖gh‖−1 ,

and thus we have

‖gh‖ ≤ 1

σ̄ (s)
= 1

σmin(R)
= σmax(R

−1) = ‖R−1‖.

1062 Numerical Algorithms (2022) 91:1047–1079

Similarly, we can bound ‖hh−ns ‖ by ‖T −1‖. Let us now concentrate on bounding
‖fh‖. We have

‖fh‖2 ≤ ‖fh‖1 =
k∑

l=1

|fhl | =
k∑

l=1

∣
∣
∣
∣
∣

k∑

i=1

[R−1B]hi[T −1]il
∣
∣
∣
∣
∣

=
k∑

l=1

∣
∣
∣
∣
∣
∣

k∑

i=1

ns∑

j=1

[R−1]hj [B]ji[T −1]il
∣
∣
∣
∣
∣
∣

≤
k∑

l=1

k∑

i=1

ns∑

j=1

∣
∣
∣[R−1]hj

∣
∣
∣
∣
∣[B]ji

∣
∣
∣
∣
∣[T −1]il

∣
∣
∣

≤
k∑

l=1

k∑

i=1

ns∑

j=1

∥
∥
∥R−1

∥
∥
∥

max
‖B‖max

∥
∥
∥T −1

∥
∥
∥

max

= k2ns

∥
∥
∥R−1

∥
∥
∥

max
‖B‖max

∥
∥
∥T −1

∥
∥
∥

max

≤ k2ns

∥
∥
∥R−1

∥
∥
∥ ‖B‖

∥
∥
∥T −1

∥
∥
∥

= k2ns

σ̄ (s)
‖B‖
∥
∥
∥T −1

∥
∥
∥ ,

where we use the following well-known inequalities ‖x‖2 ≤ ‖x‖1, ‖A‖max ≤ ‖A‖.
Moreover, we can write

‖gh‖2 + ‖fh‖2 ≤ 1

(σ̄ (s))2
+ k4n2

s

(σ̄ (s))2
‖B‖2

∥
∥
∥T −1

∥
∥
∥

2

= σ 2
min(T) + k4n2

s ‖B‖2

(σ̄ (s)σmin(T))2
≤ ‖T ‖2 + k4n2

s ‖B‖2

(σ̄ (s)σmin(T))2

≤ 2k4n2
s

(σ̄ (s)σmin(T))2
max
{
‖T ‖2, ‖B‖2

}
≤ 2k4n2

s

(σ̄ (s)σmin(T))2
‖A‖2,

where, in the last inequality, we used the interlacing property and the invariance under
matrix transposition of the singular values. In fact

σ1(A) ≥ σ1

(
B

T

)

= σ1

(
BT T T

)
≥ max {σ1(B), σ1(T)} .

Hence, we get

1
√‖gh‖2 + ‖fh‖2

≥ σ̄ (s)σmin(T)√
2k2nsσ1(A)

.

1063Numerical Algorithms (2022) 91:1047–1079

If σ̄ (s) is a good approximation of σns (A), we can suppose that σ̄ (s)/σns (A) ≈ 1, and
we can write

√
ns+1σ̄

(s+1) ≥ min

{

min
h

‖hh‖−1, min
h

1
√‖gh‖2 + ‖fh‖2

}

≥ min

{

1,
σ̄ (s)

√
2k2nsσ1(A)

}

σmin(T)

= σ̄ (s)

√
2k2nsσ1(A)

σmin(T).

Finally, using Lemma 2, we get

σ̄ (s+1) ≥ σns+1(A)
σ̄ (s)

σ1(A)

1
√

2(n − ns+1)ns+1

τ
√

1 − τ

k2ns

,

which is the desired bound.

This shows that even if the leading ns columns have been carefully selected, so
that σ̄ (s) is an accurate approximation of σns (A), there could be a potentially dramatic
loss of accuracy in the estimation of the successive block of singular values, namely
σns+1(A), . . . , σns+1(A), just like for the standard column pivoting. In fact, it is well
known that failure of QRP algorithm may occur (one such example is the Kahan
matrix [23]), as well as for other greedy algorithms, but it is very unlikely in practice.

3.4 Termination criteria

In principle, both Algorithms 2 and 3 reveal the rank of a matrix. In finite arithmetic
we have (

R̂
(s)
11 R̂

(s)
12

R̂
(s)
22

)

, (34)

where R̂
(s)
ij is the block R

(s)
ij computed in finite representation, for i = 1, 2, j = 2.

If the block R̂
(s)
22 is small in norm, then it is reasonable to say that the matrix A has

rank ns , where ns is the order of the upper triangular block R̂
(s)
11 . [17] propose the

following termination criterion
∥
∥
∥R̂

(s)
22

∥
∥
∥ ≤ f (n)ε ‖A‖ , (35)

where ε is the machine precision and f (n) is a modestly growing function of the
number n of columns. Notice that even if a block R̂

(s)
22 with small norm implies

numerical rank-deficiency, the converse is not true in general: an example is the
Kahan matrix [23], discussed in Section 5.1. Let us write the column partition
R̂

(s)
22 = (ĉ1 . . . ĉn−ns). We have

∥
∥
∥R̂

(s)
22

∥
∥
∥ ≤ √

n − ns max
i

∥
∥ĉi

∥
∥ , max

i
‖ai‖ ≤ ‖A‖ .

1064 Numerical Algorithms (2022) 91:1047–1079

Therefore, the stopping criterion (35) holds if

√
n − ns max

i

∥
∥ĉi

∥
∥ ≤ f (n)ε max

i
‖ai‖ , (36)

but the converse is not true in general. Suppose now to have input data with an initial
uncertainty of a known order η in A. In this case, the numerical rank may be defined
up to a perturbation of order η, see (11), and the stopping criterion (36) is replaced
as follows

√
n − ns max

i

∥
∥ĉi

∥
∥ ≤ η max

i
‖ai‖ , (37)

where η is a user defined input parameter. We do not investigate this case, however it
is left as an option in the software. In Section 5 we test the practical stopping criterion
(36) and discuss the following two choices:

f (n) = n, (38)

f (n) = √
n. (39)

4 The QRwith deviationmaximization algorithm

In this section we introduce the QR with deviation maximization (QRDM) algorithm
and discuss some crucial aspects related to its implementation.

The deviation maximization procedure exploits diagonal dominance in order to
ensure linear independence. Diagonal dominance is sufficient but obviously not nec-
essary and it often turns out to be a too strong condition to be satisfied in practice.
Let us briefly comment the choice of the parameter τ : on the one hand, its value
should be small in order to get a large candidate set I ; on the other hand, a small
value of τ implies a small value of δ < τ if (5) or (6) are applied, likely yielding
fewer selected columns. Notice that when the value of δ is close to zero, only pair-
wise nearly orthogonal columns are selected, and it is unlikely to find such matrices
in real world problems. However, the value of δ can be chosen independently from
τ , as we now detail. Suppose to give up the constraint δ < τ and to settle for any
value of τ and δ in the interval (0, 1). Then the deviation maximization may identify
a set of numerically linearly dependent columns. In order to overcome this issue, we
incorporate a filtering procedure in the Householder triangularization. The selected
columns

{
j1, . . . , jks

}
at the s-th algorithmic step satisfy

‖[A]ns :m,ns+j‖ ≥ εs := τ max
i>ns

‖[A]ns :m,i‖, j = j1, . . . , jks , (40)

before being reduced to triangular form. If a partial column norm becomes too small
during the Householder triangularization, then that column is not sufficiently linearly
independent from the columns already processed and the procedure is interrupted.
In general, the converse is not true. For instance, we demand that the partial column
norms ‖[A]ns+l:m,ns+l‖ do not become smaller than the parameter εs defined above
in order to compute the related Householder reflectors.

1065Numerical Algorithms (2022) 91:1047–1079

The QR computation obtained in this way is called QRDM and it is presented in
Algorithm 4, where the filtering procedure on the partial column norms appears at
step 9.

Other values of εs are possible, e.g., a small and constant threshold. However,
numerical tests show that the choice (40) works well in practice. In this case, the
Householder reduction to triangular form terminates with l < k Householder reflec-
tors, and the algorithm continues with the computation and the application of the
compact WY representation of these l reflectors. At the next iteration, the pivoting
strategy moves the rejected column away from the leading position, if necessary. As
we show in Section 5, this break mechanism enables us to independently set values
for τ and δ, and thus to obtain the best results in execution times.

4.1 Minimizingmemory communication

The performance of an algorithm is highly impacted by the amount of communication
performed during its execution, as explicitly pointed out in the literature, see, e.g.,
[10], where communication refers to data movement within a memory hierarchy of a
processor or even between different processors of a parallel computer. In this context,
the goal of this section is to design a pivoting strategy that is effective in revealing the
rank of a matrix but also minimizes communication. Each time step 5 in Algorithm 3
is reached, the deviation maximization selects ks columns

{
j1, . . . , jks

}
to be moved

to the leading positions {ns + 1, . . . , ns + ks}. However, if one of more columns are
already situated within the leading position indices then it is not necessary to move
them from their current positions: in this case, since the columns

{
j1, . . . , jks

}
are

1066 Numerical Algorithms (2022) 91:1047–1079

placed in the leading positions with a different ordering, the smallest singular value
σ̄ (s) of the R

(s)
11 factor is unchanged, i.e., Theorem 2 still holds. This change on the

pivoting strategy allows a huge memory saving in terms of data movement without
affecting the rank-revealing properties of the resulting decomposition. This result
does not come for free, namely we lose any monotonically decreasing trend in the
magnitude of the diagonal elements of the R11 factor and the weak diagonally dom-
inance established in (30)–(32) does not hold anymore. Let us briefly describe the
structure of the permutations employed. For every i = 1, . . . , ks , the column ji is not
moved if it is within the ks leading positions. Otherwise, it is moved in place of the
first free spot within the ks leading positions, namely we swap the columns ji and
ns + l, where l is the minimum integer 1 ≤ l ≤ ks such that ns + l /∈ {j1, . . . , jks

}
.

In this way, the memory communication is minimized and the pivoting strategy
requires only m additional memory slots. Let us stress that this communication avoid-
ing pivoting strategy if possible only when multiple columns are selected at once,
and hence it cannot be extended to the QR decomposition with standard column
pivoting.

5 Numerical experiments

In this section we discuss the numerical accuracy of QRDM against the SVD
decomposition and the block QRP algorithm, briefly called QP3 [27]. We report
experimental results comparing the double precision codes dgeqrf and dgeqp3
from LAPACK, and dgeqrdm, a double precision C implementation of our block
algorithm QRDM available online at the URL: https://github.com/mdessole/qrdm.
All tests are carried out on a computer with an Intel(R) Core(TM) i7-2700K proces-
sor and a 8 GB system memory, employing CBLAS and LAPACKE, the C reference
interfaces to BLAS and LAPACK implementations on Netlib, respectively. All codes
have been compiled through a GNU Compiler Collection or a GNU Fortran compiler
on a Linux system. The libraries BLAS and LAPACK have been installed from the
package libatlas-base-dev for Linux Ubuntu, derived from the well-known
ATLAS project (Automatically Tuned Linear Algebra Software), http://math-atlas.
sourceforge.net/. It must be pointed out that the absolute timings of the algorithms
here discussed are sensitive to the particular optimization adopted for the BLAS
library, but it does not change the significance of the results here presented. Actu-
ally, a better optimization of the BLAS means more efficient BLAS-3 operations and
QRDM increases the speedup with respect to QP3.

Particular importance is given to the values on the diagonal of the upper triangular
factor R of the RRQR factorization, which are compared with the singular values of
the R11 block and with the singular values of the input matrix A. The tests are carried
out on several instances of the Kahan matrix [23] and on a subset of matrices from
the San Jose State University Singular matrix database, which were used in other
previous papers on the topic, see, e.g., [10, 19].

1067Numerical Algorithms (2022) 91:1047–1079

https://github.com/mdessole/qrdm
http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/

5.1 Kahanmatrix

We first discuss the Kahan matrix [24, p. 31], that is defined as follows

K(n, ϕ) = diag
(

1, ς, . . . , ςn−1
)

⎛

⎜
⎜
⎜
⎜
⎝

1 −ϕ . . . −ϕ

1
. . .

...
. . . −ϕ

1

⎞

⎟
⎟
⎟
⎟
⎠

, (41)

where ς2 + ϕ2 = 1, and, in general we have

K(n, ϕ) =
(

1 −ϕ . . . −ϕ

0 ςK(n − 1, ϕ)

)

, ϕ = cos(α), ς = sin(α). (42)

For ϕ = 0, the singular values are all equal to one. An increasing gap between the last
two singular values is obtained when the value of ϕ is increased. The QRP algorithm
does not perform any pivoting, producing a RRQR factorization in which the Q factor
is the identity matrix and thus leaving these matrices unchanged [17]. This implies

that
∥
∥
∥R

(s)
22

∥
∥
∥ ≥ ςn−1, for 1 ≤ s ≤ n−1. For example, the matrix K(300, 0.99) has no

particular small trailing matrix though, since ς299 ≈ 0.5. In such case σmin(R
(n−1)
11)

can be much smaller than σn−1(K(n, ϕ)) [19]. It is not difficult to see that the QRDM
algorithm does not perform any pivoting on these matrices too. Let us show this
fact by induction on the algorithmic step s. Let (k1 . . .kn) be the column partition
of K(n, ϕ). It is easy to see that all columns of the Kahan matrix have unit norm.
Moreover, take i < j and we have

θij = kT
i kj =

n∑

l=1

kliklj =
i∑

l=1

kliklj = ϕ2
i−1∑

l=1

ς2(l−1) +
(
−ϕςi−1

)
ςi−1

= 1 − ς2(i−1)(1 + ϕ),

that is the cosine of the angle αij ∈ [0, π) between ki and kj does not depend on
j . In other words, the column ki forms the same angle (modulo π) with all columns
kj , with j > i, thus no column permutations are necessary in the first iteration of
QRDM. Suppose no permutations are necessary in the first s iterations, then (42)
allows to write

K(n, ϕ) =
(

K(ns, ϕ) b1 . . . bn−ns

c1 . . . cn−ns

)

=
(

K(ns, ϕ) b1 . . . bn−ns

ςns K(n − ns, ϕ)

)

.

At the s-th algorithmic step the trailing matrix is then R
(s)
22 = ςns K(n−ns, ϕ), whose

columns all have the same norm equal to ςns . Moreover, the column ci forms the
same angle (modulo π) with all other columns cj , for 1 ≤ i < j ≤ (n − ns), hence
no permutations are necessary. However, the matrix K(n, ϕ) may not be in rank-
revealed form. In this case, QRDM shows poor rank-reveling properties, similarly to
QRP. It is well known that rounding errors due to finite precision may cause nontrivial
permutation and the QRP algorithm may reveal the rank. Following [10], in order to

1068 Numerical Algorithms (2022) 91:1047–1079

avoid this issue we consider instead the matrix

K̂(n, ϕ, ξ) = K(n, ϕ)

⎛

⎜
⎜
⎜
⎝

(1 − ξ)

(1 − ξ)2

. . .
(1 − ξ)n

⎞

⎟
⎟
⎟
⎠

, (43)

where 1 > ξ > 0. In other words, the j -th column of the matrix K̂(n, ϕ, ξ) is the j -th
column of K(n, ϕ) scaled by (1 − ξ)j , for j = 1, . . . , n. Tables 1 and 2 show results
for scaled Kahan matrices K̂(n, ϕ, ξ), with size n = 128, for several values of ϕ. For
each test case, we show the last two singular values σn−1, σn and the last two diagonal
entries kn−1,n−1, kn,n of the current instance of K̂(n, ϕ, ξ). For both algorithms QRP
and QRDM, we report the (n − 1)-th singular value σ̄n−1 of the R11 block of order
n − 1 and the absolute value of the last two diagonal entries dn−1, dn of the factor
R. The singular values here presented computed with the xgejsv subroutine of
LAPACK. Here, we use the following setting for the hyperparameters τ = 0.15 and
δ = 0.9, whose choice is motivated in the next section. When ξ is small (see Table 1),
e.g., ξ = 10−15, both algorithms reveal the rank for some values of ϕ. However,
when the parameter ξ is increased (see Table 2), e.g., ξ = 10−7, the algorithms do
not perform any pivoting for any value of ϕ, thus resulting in poor rank revealing,
according to results in [10]. This fact can be deduced by comparing the diagonal
values dn−1, dn of the R factor with the corresponding singular values σn−1, σn, and
the singular value σ̄n−1 of the computed R11 block with the corresponding singular
value σn−1.

5.2 SJSUmatrices

We now discuss results coming from two subsets of the San Jose State University
Singular matrix database, that we call:

1. “small matrices”: it consists of the 261 matrices with m ≤ 1024, 32 < n ≤ 2048,
sorted in ascending order with respect to the number of columns n;

2. “big matrices”: it consists of the first 247 matrices with m > 1024, n > 2048,
sorted in ascending order with respect to the number of columns n.

These datasets consist of “fat” (m > n), “tall” (m < n) and square matrices, the
results presented hereafter do not depend on this characteristic. For each matrix A,
we denote by σi the i-th singular value of A computed with the xgejsv subroutine
of LAPACK, and by r the numerical rank computed with the option JOBA=‘A’: in
this case, small singular values are comparable with roundoff noise and the matrix
is treated as numerically rank deficient. Deviation maximization does not guarantee
that the diagonal values of the factor R are monotonically decreasing in modulus,
therefore we do not sort the diagonal entries and we denote by di the i-th diagonal
entry with positive sign. As an example, we show in Fig. 1 the singular values σi and
diagonal values di computed with both QP3 and QRDM for the instance n. 3 of the
set “small matrices”. Figure 1a shows that the diagonal values di computed with QP3
are monotonically decreasing, while the diagonal values di computed with QRDM

1069Numerical Algorithms (2022) 91:1047–1079

Ta
bl
e
1

N
um

er
ic

al
te

st
s

on
sc

al
ed

K
ah

an
m

at
ri

ce
s
K̂

(n
,
ϕ
,
ξ
),

w
he

re
n

=
12

8
an

d
ξ

=
10

−1
5

ϕ
Si

ng
ul

ar
va

lu
es

D
ia

go
na

lv
al

ue
s

Q
R

P
Q

R
D

M

σ
n
−1

σ
n

k
n
−1

,n
−1

k
n
,n

σ̄
n
−1

d
n
−1

d
n

σ̄
n
−1

d
n
−1

d
n

0.
1

5.
57

E
-0

1
5.

71
E

-0
6

5.
31

E
-0

1
5.

28
E

-0
1

6.
32

E
-0

6
5.

31
E

-0
1

5.
28

E
-0

1
6.

32
E

-0
6

5.
31

E
-0

1
5.

28
E

-0
1

0.
2

8.
37

E
-0

2
1.

26
E

-1
1

7.
64

E
-0

2
7.

49
E

-0
2

1.
54

E
-1

1
7.

64
E

-0
2

7.
49

E
-0

2
6.

58
E

-0
7

9.
17

E
-0

2
5.

52
E

-0
6

0.
3

3.
00

E
-0

3
1.

59
E

-1
7

2.
63

E
-0

3
2.

51
E

-0
3

8.
72

E
-0

4
3.

42
E

-0
3

8.
02

E
-1

5
1.

79
E

-0
6

3.
42

E
-0

3
1.

52
E

-1
2

0.
4

2.
01

E
-0

5
7.

96
E

-2
4

1.
70

E
-0

5
1.

56
E

-0
5

2.
01

E
-0

5
2.

38
E

-0
5

6.
45

E
-2

2
1.

20
E

-0
6

2.
38

E
-0

5
5.

40
E

-1
9

0.
5

1.
65

E
-0

8
9.

21
E

-3
1

1.
35

E
-0

8
1.

17
E

-0
8

1.
65

E
-0

8
2.

02
E

-0
8

3.
61

E
-2

8
1.

65
E

-0
8

2.
02

E
-0

8
6.

16
E

-2
7

0.
6

7.
79

E
-1

3
1.

06
E

-3
8

6.
16

E
-1

3
4.

93
E

-1
3

7.
79

E
-1

3
9.

85
E

-1
3

9.
33

E
-3

7
7.

79
E

-1
3

9.
85

E
-1

3
6.

41
E

-3
5

1070 Numerical Algorithms (2022) 91:1047–1079

Ta
bl
e
2

N
um

er
ic

al
te

st
s

on
sc

al
ed

K
ah

an
m

at
ri

ce
s
K̂

(n
,
ϕ
,
ξ
),

w
he

re
n

=
12

8
an

d
ξ

=
10

−7

ϕ
Si

ng
ul

ar
va

lu
es

D
ia

go
na

lv
al

ue
s

Q
R

P
Q

R
D

M

σ
n
−1

σ
n

k
n
−1

,n
−1

k
n
,n

σ̄
n
−1

d
n
−1

d
n

σ̄
n
−1

d
n
−1

d
n

0.
1

5.
57

E
-0

1
5.

71
E

-0
6

5.
31

E
-0

1
5.

28
E

-0
1

6.
32

E
-0

6
5.

31
E

-0
1

5.
28

E
-0

1
6.

32
E

-0
6

5.
31

E
-0

1
5.

28
E

-0
1

0.
2

8.
37

E
-0

2
1.

26
E

-1
1

7.
64

E
-0

2
7.

49
E

-0
2

1.
54

E
-1

1
7.

64
E

-0
2

7.
49

E
-0

2
1.

54
E

-1
1

7.
64

E
-0

2
7.

49
E

-0
2

0.
3

3.
00

E
-0

3
1.

55
E

-1
7

2.
63

E
-0

3
2.

51
E

-0
3

2.
17

E
-1

7
2.

63
E

-0
3

2.
51

E
-0

3
2.

22
E

-1
7

2.
63

E
-0

3
2.

51
E

-0
3

0.
4

2.
01

E
-0

5
5.

43
E

-2
1

1.
70

E
-0

5
1.

55
E

-0
5

9.
02

E
-2

2
1.

70
E

-0
5

1.
55

E
-0

5
9.

02
E

-2
2

1.
70

E
-0

5
1.

55
E

-0
5

0.
5

1.
65

E
-0

8
1.

91
E

-2
4

1.
35

E
-0

8
1.

17
E

-0
8

1.
90

E
-2

4
1.

35
E

-0
8

1.
17

E
-0

8
1.

20
E

-2
4

2.
02

E
-0

8
2.

20
E

-1
0

0.
6

7.
79

E
-1

3
9.

28
E

-2
9

6.
16

E
-1

3
4.

93
E

-1
3

3.
08

E
-2

9
6.

16
E

-1
3

4.
93

E
-1

3
1.

37
E

-2
8

9.
85

E
-1

3
2.

65
E

-1
4

1071Numerical Algorithms (2022) 91:1047–1079

(a) (b)

Fig. 1 Singular values σi (·) and diagonal values di computed with QP3 (×) and QRDM (+) for the 3rd
instance of the set “small matrices”, natural (a) and logarithmic (b) scale

are not ordered. However, as it is highlighted in Fig. 1b, the order of magnitude of σi

is well approximated by that of the corresponding di for both methods.
Let us first discuss results provided by QP3. Figure 2 compares the positive diag-

onal entry di and the correspoding singular value σi for each matrix in the two
collections, by taking into account the maximum and minimum value of the ratios
di/σi . Results show that the positive diagonal value di approximates the correspond-
ing singular value σi up to a factor 10, for i = 1, . . . , r . Moreover, Fig. 3 compares
σi(R11), that is the i-th singular value of R11 = [R]1:r,1:r computed by LAPACK’s
xgejsv, with σi for each matrix in the two collections, by taking into account the
ratios σi(R11)/σi . These results confirm that QP3 provides an approximation of the
singular value σr up to a factor 10.

Before providing similar results for QRDM, let us discuss the sensitivity of param-
eters τ and δ to the rank-revealing property (16). To this aim, we set a grid G of

(a)

(b)

Fig. 2 Ratio di/σi , minimum and maximum values for QP3 on the dataset “small matrices” (a) and “big
matrices” (b)

1072 Numerical Algorithms (2022) 91:1047–1079

(a)

(b)

Fig. 3 Ratio σi(R11)/σi , minimum and maximum values for QP3 on the dataset “small matrices” (a) and
“big matrices” (b)

values G (i, j) = (δi, τj) = (0.05 i, 0.05 j), with i, j = 0, . . . , 20, and we consider
the R factor obtained by QRDM. Figure 4a shows the order of magnitude of

min
A

min
1≤i≤r

di

σi(A)
,

where A ranges in the collection “small matrices”, for each grid point (δi, τj). We
see that the positive diagonal elements provide an approximation up to a factor 10 of
the singular values for a wide range of parameters, corresponding to the light gray
region of the grid that we call stability region. In practice, any choice of 1 ≥ τ > 0
and 1 > δ ≥ 0 leads to a rank-revealing QR decomposition.

(a) (b)

Fig. 4 Order of magnitude of the minimum min(ri/σi) over all matrices (a) and cumulative execution
times for QRDM (b) in function of the parameters τ and δ on the “small matrices” data set

1073Numerical Algorithms (2022) 91:1047–1079

Therefore, for an optimal parameters’ choice, we look at execution times.
Figure 4b shows the cumulative execution times (in seconds)

∑
A tQRDM(A) where

A ranges in the “small matrices” collection and where tQRDM(A) is the execution
time of QRDM, for each grid point (δi, τj) in the stability region. It is evident that
best performances are obtained toward the right-bottom corner, in correspondence of
the dark gray region. Hence, we set τ = 0.15 and δ = 0.9, which are the optimal
values for the validation set here considered.

We can now analyze the quality of the RRQR factorization obtained by QRDM
with the choice of parameters just discussed. Figure 5 shows that the positive diagonal
entries approximate the singular values up to a factor 10, and Fig. 6 shows that the
singular values of R11 provide an approximation up to a factor 102, loosing an order
of approximation with respect to QP3 in very few cases.

Let us now consider QRDM with a stopping criterion. We show the accuracy in
the determination of the numerical rank, and the benefits in terms of execution times,
when the matrix rank is much smaller than its number of columns. We consider the
stopping criterion in (36)–(38): the numerical rank is this case is given by the number
of columns processed by QRDM and we denote it by r̃ . The matrix

Ar̃ = Q

(
R11 R12

0 0

)

ΠT

denotes the corresponding rank-r̃ approximation of A. Figure 7 shows the ratios
σr̃+1/‖A‖ (in red) and ‖A − Ar̃‖/‖A‖ (in blue), for all matrices in the “small matri-
ces” (Fig. 7a) and “big matrices” (Fig. 7b) collections. Whenever the i-th matrix has
full rank, i.e., it has rank r̃ , the singular value σr̃+1 does not exist and we replaced
its value with ε = 10−16. We also considered the stopping criterion in (36) with the

(a)

(b)

Fig. 5 Ratio di/σi , minimum and maximum values for QRDM on the dataset “small matrices” (a) and
“big matrices” (b)

1074 Numerical Algorithms (2022) 91:1047–1079

(a)

(b)

Fig. 6 Ratio σi(R11)/σi , minimum and maximum values for QRDM on the dataset “small matrices” (a)
and “big matrices” (b)

choice (39), which turned out to be less accurate and for this reason we omit the
results.

Finally, we compare the execution times of QR computations for the matrices of
the set “big matrices”. Here, the instances have been ordered accordingly to the total
number of entries nm. Figure 8 shows the speedup of QRDM (Fig. 8a) and QRDM
with stopping criterion (Fig. 8b) over QP3, namely the ratio tQP 3/tQRDM , where

(a)

(b)

Fig. 7 Relative error on the computed numerical rank r̃ for QRDM expressed as the ratios σr̃+1/‖A‖ (+)
and ‖A − Ar̃‖/‖A‖ (·), on the set “small matrices” (a) and “big matrices” (b)

1075Numerical Algorithms (2022) 91:1047–1079

(a) (b)

Fig. 8 Speedup of QRDM (a) and QRDM with stopping criterion (b) over QP3

tQP 3 and tQRDM are the execution times (in seconds) of QP3 and QRDM respec-
tively. The algorithm QRDM achieves an average speedup of 2.1×, as a consequence
of the lower amount of memory communication employed to carry out the pivoting,
as detailed in Section 4.1. In a stopping criterion is adopted, the average speedup
reached is 2.5×. It may also be interesting to consider a comparison with an imple-
mentation of QP3 with a termination criterion, but this is beyond the scope of the
present work.

Figure 9 compares QP3 and QRDM with the QR without pivoting, briefly called
QR, implemented by the dgeqrf subroutine of LAPACK. We display the ratios
tQRDM/tQR and tQP 3/tQR , where tQR is the array of execution times (in seconds) of
QR. The standard QR is indeed faster, since it does not involve any column permuta-
tion, and it is in average 3× faster than QP3 while it is only 1.3× faster than QRDM.
This result is obtained thanks to the permutation strategy described in Section 4.1.

Last, let us discuss briefly the effect of the block size kDM introduced to limit
the cardinality of the candidate set in (10). This parameter depends on the specific
architecture, mainly in terms of cache-memory size, and typical values are kDM =

Fig. 9 Overhead of QRDM (+) and QP3 (·) over the QR without pivoting

1076 Numerical Algorithms (2022) 91:1047–1079

32, 64, 128. We observed that there is an optimal value of kDM , in sense that it gives
the smallest for a fixed experimental setting, and its computation is similar to the
well-known computation practice of the BLAS block size, which is out of scope of
this paper. For sake of clarity we say that in our test environment we observed the
optimal value kDM = 64, but other choices exhibit a similar behavior, e.g., kDM =
32.

6 Conclusions

In this work we have presented a new subset selection strategy we called “Devia-
tion Maximization”. Our method relies on correlation analysis in order to select a
subset of sufficiently linearly independent vectors. Despite this strategy is not suf-
ficient by itself to identify a maximal subset of linearly independent columns for
a given numerically rank deficient matrix, it can be adopted as a column pivoting
strategy. We introduced the rank-revealing QR factorization with Deviation Maxi-
mization pivoting, briefly called QRDM, and we compared it with the rank-revealing
QR factorization with standard column pivoting, briefly QRP. We have provided a
theoretical worst case bound on the smallest singular value for QRDM and we have
shown it is similar to available results for QRP. Extensive numerical experiments
confirmed that QRDM reveals the rank similarly to QRP and provides a good approx-
imation of the singular values obtained with LAPACK’s xgejsv routine. Moreover,
we have shown that QRDM has better execution times than those of QP3 imple-
mented in LAPACK’s double precision dgeqp3 routine for a large number of test
cases, thanks to the lower amount of memory communication involved. The software
implementation of QRDM used in this article is available at the URL: https://github.
com/mdessole/qrdm.

Our future work will focus on applying deviation maximization as pivoting strat-
egy to other problems which require column selection, e.g., constrained optimization
problems, on which the authors successfully experimented a preliminary version
in the context of active set methods for NonNegative Least Squares problems,
see [11, 12].

Acknowledgements The authors sincerely thank the anonymous referees for their constructive sugges-
tions that improved the quality of the paper.

Funding Open access funding provided by Università degli Studi di Padova within the CRUI-CARE
Agreement. M. Dessole gratefully acknowledges the company beanTech S.r.l. for funding the doctoral
grant “GPU computing for modeling, nonlinear optimization and machine learning”. This work was
partially supported by the Project BIRD192932 of the University of Padova.

Data availability The data that support the findings of this study are available from https://github.com/
mdessole/qrdm, the datasets analyzed are available from http://www.math.sjsu.edu/singular/matrices.

Declarations

Conflict of interest The authors declare no competing interests.

1077Numerical Algorithms (2022) 91:1047–1079

https://github.com/mdessole/qrdm
https://github.com/mdessole/qrdm
https://github.com/mdessole/qrdm
https://github.com/mdessole/qrdm
http://www.math.sjsu.edu/singular/matrices

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum,
A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 3rd edn. ISBN 0-89871-447-8 (paperback) (1999)

2. Barlow, J., Demmel, J.: Computing accurate eigensystems of scaled diagonally dominant matrices.
SIAM J. Numer. Anal. 27, 11 (1990). https://doi.org/10.1137/0727045

3. Bischof, C., Hansen, P.: A block algorithm for computing rank-revealing QR factorizations. Numer.
Algo. 2, 371–391,10 (1992). https://doi.org/10.1007/BF02139475

4. Bischof, C., Quintana-Ortı́, G.: Computing rank-revealing QR factorizations of dense matrices. ACM
Trans. Math. Softw. 24, 226–253, 06 (1998a). https://doi.org/10.1145/290200.287637

5. Bischof, C., Quintana-Ortı́, G.: Algorithm 782: codes for Rank-Revealing QR factorizations of dense
matrices. ACM Trans. Math. Softw. 24, 254–257, 07 (1998b). https://doi.org/10.1145/290200.287638

6. Bischof, J.R.: A block QR factorization algorithm using restricted pivoting. In: Supercomputing
’89:Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, pp. 248–256 (1989).
https://doi.org/10.1145/76263.76290

7. Businger, P., Golub, G.H.: Linear Least Squares Solutions by Householder Transformations. Numer.
Math. 7(3), 269–276 (1965). ISSN 0029-599X. https://doi.org/10.1007/BF01436084

8. Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. 88-89, 67–82 (1987). ISSN 0024-
3795. https://doi.org/10.1016/0024-3795(87)90103-0. http://www.sciencedirect.com/science/article/
pii/0024379587901030

9. Chandrasekaran, S., Ipsen, I.C.F.: On Rank-Revealing factorisations. SIAM J. Matrix Anal. Appl.
15(2), 592–622 (1994). https://doi.org/10.1137/S0895479891223781

10. Demmel, J., Grigori, L., Gu, M., Xiang, H.: Communication avoiding rank revealing QR factorization
with column pivoting. SIAM J. Matrix Anal. Appl. 36, 55–89, 01 (2015). https://doi.org/10.1137/
13092157X

11. Dessole, M., Marcuzzi, F., Vianello, M.: Accelerating the Lawson-Hanson NNLS solver for
large-scale Tchakaloff regression designs. Dolomites Research Notes on Approximation 13,
20–29 (2020a). ISSN 2035-6803. https://doi.org/10.14658/PUPJ-DRNA-2020-1-3. https://drna.
padovauniversitypress.it/2020/1/3

12. Dessole, M., Marcuzzi, F., Vianello, M.: DCATCH—a numerical package for d-variate near g-optimal
Tchakaloff regression via fast NNLS. Mathematics 8, 7 (2020b). https://doi.org/10.3390/math80
71122

13. Drmač, Z., Bujanović, Z.: On the Failure of Rank-Revealing QR Factorization Software – A Case
Study. ACM Trans. Math. Softw. 35(2). ISSN 0098-3500. https://doi.org/10.1145/1377612.1377616
(2008)

14. Duersch, J.A., Gu, M.: Randomized QR with column pivoting. SIAM J. Sci. Comput. 39(4), C263–
C291 (2017). https://doi.org/10.1137/15M1044680

15. Foster, L.V.: Rank and null space calculations using matrix decomposition without column inter-
changes. Linear Algebra Appl. 74, 47–71 (1986). ISSN 0024-3795. https://doi.org/10.1016/0024-
3795(86)90115-1. https://www.sciencedirect.com/science/article/pii/0024379586901151

16. Golub, G.: Numerical methods for solving linear least squares problems. Numer. Math. 7(3), 206–216
(1965). ISSN 0029-599X. https://doi.org/10.1007/BF01436075

17. Golub, G., Van Loan, C.: Matrix Computations (4th ed.). Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, Baltimore (2013). ISBN 9781421407944

1078 Numerical Algorithms (2022) 91:1047–1079

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/0727045
https://doi.org/10.1007/BF02139475
https://doi.org/10.1145/290200.287637
https://doi.org/10.1145/290200.287638
https://doi.org/10.1145/76263.76290
https://doi.org/10.1007/BF01436084
https://doi.org/10.1016/0024-3795(87)90103-0
http://www.sciencedirect.com/science/article/pii/0024379587901030
http://www.sciencedirect.com/science/article/pii/0024379587901030
https://doi.org/10.1137/S0895479891223781
https://doi.org/10.1137/13092157X
https://doi.org/10.1137/13092157X
https://doi.org/10.14658/PUPJ-DRNA-2020-1-3
https://drna.padovauniversitypress.it/2020/1/3
https://drna.padovauniversitypress.it/2020/1/3
https://doi.org/10.3390/math8071122
https://doi.org/10.3390/math8071122
https://doi.org/10.1145/1377612.1377616
https://doi.org/10.1137/15M1044680
https://doi.org/10.1016/0024-3795(86)90115-1
https://doi.org/10.1016/0024-3795(86)90115-1
https://www.sciencedirect.com/science/article/pii/0024379586901151
https://doi.org/10.1007/BF01436075

18. Golub, G., Klema, V., Stewart, G.W.: Rank degeneracy and least squares problems. Technical Report
STAN-CS-76-559. Department of Computer Science Stanford University, Stanford (1976)

19. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong Rank-Revealing QR factorization.
SIAM J. Sci. Comput. 17(4), 848–869 (1996). https://doi.org/10.1137/0917055

20. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inver-
sion. Society for Industrial and Applied Mathematics, USA (1999). ISBN 0898714036

21. Higham, N.J.: A survey of condition number estimation for triangular matrices. SIAM Rev. 29(4),
575–596 (1987). ISSN 0036-1445. https://doi.org/10.1137/1029112

22. Hong, Y.P., Pan, C.-T.: Rank-revealing QR factorizations and the singular value decomposition. Math.
Comput. 58(197), 213–232 (1992). ISSN 00255718, 10886842. http://www.jstor.org/stable/2153029

23. Kahan, W.: Numerical linear algebra. Can. Math. Bull. 9, 757–801 (1966)
24. Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 15. SIAM, Bangkok (1995)
25. Martinsson, P.G.: Blocked rank-revealing QR factorizations: How randomized sampling can be used

to avoid single-vector pivoting. Report, 05. arXiv:1505.08115 (2015)
26. Mikhalev, A., Oseledets, I.: Rectangular maximum-volume submatrices and their applications. Lin-

ear Algebra Appl. 538, 187–211 (2018). ISSN 0024-3795. https://doi.org/10.1016/j.laa.2017.10.014.
https://www.sciencedirect.com/science/article/pii/S0024379517305931

27. Quintana-Ortı́, G., Sun, X., Bischof, C.H.: A BLAS-3 version of the QR factorization with column piv-
oting. SIAM J. Sci. Comput. 19(5), 1486–1494 (1998). https://doi.org/10.1137/S1064827595296732

28. Schreiber, R., VanLoan, C.: A Storage-Efficient WY representation for products of householder
transformations. SIAM J. Sci. Stat. Comput. 10, 02 (1989). https://doi.org/10.1137/0910005

29. Thompson, R.: Principal submatrices IX: Interlacing inequalities for singular values of submatrices.
Linear Algebra Appl. 5(1), 1–12 (1972). ISSN 0024-3795. https://doi.org/10.1016/0024-3795(72)
90013-4. https://www.sciencedirect.com/science/article/pii/0024379572900134

30. Varah, J.: A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11(1), 3–
5 (1975). ISSN 0024-3795. https://doi.org/10.1016/0024-3795(75)90112-3. http://www.sciencedirect.
com/science/article/pii/0024379575901123

31. Xiao, J., Gu, M., Langou, J.: Fast Parallel Randomized QR with Column Pivoting Algorithms for
Reliable Low-Rank Matrix Approximations. In: 2017 IEEE 24Th International Conference on High
Performance Computing (HiPC), pp. 233–242, 12 (2017). https://doi.org/10.1109/HiPC.2017.00035

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1079Numerical Algorithms (2022) 91:1047–1079

https://doi.org/10.1137/0917055
https://doi.org/10.1137/1029112
http://www.jstor.org/stable/2153029
http://arxiv.org/abs/1505.08115
https://doi.org/10.1016/j.laa.2017.10.014
https://www.sciencedirect.com/science/article/pii/S0024379517305931
https://doi.org/10.1137/S1064827595296732
https://doi.org/10.1137/0910005
https://doi.org/10.1016/0024-3795(72)90013-4
https://doi.org/10.1016/0024-3795(72)90013-4
https://www.sciencedirect.com/science/article/pii/0024379572900134
https://doi.org/10.1016/0024-3795(75)90112-3
http://www.sciencedirect.com/science/article/pii/0024379575901123
http://www.sciencedirect.com/science/article/pii/0024379575901123
https://doi.org/10.1109/HiPC.2017.00035

	Deviation maximization for rank-revealing QR factorizations
	Abstract
	Introduction
	Notation

	Column selection by deviation maximization
	Computing the cosine matrix

	Rank-revealing QR decompositions
	The standard column pivoting
	The deviation maximization pivoting
	Worst-case bound on the smallest singular value
	Termination criteria

	The QR with deviation maximization algorithm
	Minimizing memory communication

	Numerical experiments
	Kahan matrix
	SJSU matrices

	Conclusions
	References

