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Abstract
In this article, we provide a rigorous study on the fractal dimension of the graph
of the mixed Riemann-Liouville fractional integral for various choices of continu-
ous functions on a rectangular region. We estimate bounds for the box dimension
and the Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional
integral of the functions which belong to the class of continuous functions and the
class of Hölder continuous functions. We also show that the box dimension of the
graph of the mixed Riemann-Liouville fractional integral of two-dimensional con-
tinuous functions is also two. Furthermore, we give the construction of unbounded
variational continuous functions. Later, we prove that the box dimension and the
Hausdorff dimension of the graph of the mixed Riemann-Liouville fractional integral
of unbounded variational continuous functions are two. Moreover, we illustrate our
results by using some examples.

Keywords Box dimension · Hausdorff dimension · Riemann-Liouville fractional
integral · Hölder condition · Bounded variation

Mathematics Subject Classification (2010) 26A33 · 28A80 · 28A78 · 26A30

1 Introduction

Fractional calculus (FC) and fractal geometry (FG) have become rapidly growing
fields in theory as well as applications. In the past, mathematics was primarily
concerned with sets and functions on which classical calculus methods could be
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applied, and the study of irregular and non-smooth sets or functions has been ignored.
Although irregular sets are much better at representing certain natural phenomena
than the figures of classical geometry do. FG provides a broad context for study-
ing such irregular sets. Since the last few decades, several researchers have been
fascinated by the graph of a function, its Hausdorff dimension, and box dimension.
The study of dimensions of graphs began with Weierstrass type functions. Readers
may encourage to see [5, 11, 21], for the details of Hausdorff dimension and the
box dimension of Weierstrass type functions. We refer the books [2] and [8] on FG,
for more details. FC deals with the concept of non-integer order differentiation and
integration and it is as old as classical calculus. In FC, generally, fractional deriva-
tives are represented in terms of fractional integrals, for instance, we refer to [17,
18, 20]. Since random fractals are better examples of irregular functions and for ana-
lyzing such functions, FC is the best mathematical operator. We have also seen by
using some examples and graphs that it smoothen the irregular functions. Nowadays
researchers are very much interested in the fractal dimension of graph of fractional
integrals and derivatives. A connection between FC and fractal dimension can be seen
in [13–16, 19, 22, 24–26]. In the smoothness analysis of any irregular function, the
box dimension plays an important role. Now, we will look over some of the available
results on fractional calculus and fractal dimension. A linear relation between the
order of the fractional integral of Riemann-Liouville (R-L) type and fractal dimen-
sion such as box dimension, K-dimension, Packing dimension is given in [25]. Liang
[16] investigated the box dimension of the graph of the fractional integral of R-L type
corresponding to a function having box dimension one. We know that in the study
of rectifiable curves and integrals, the bounded variation property of any function
plays a significant role. An important result on box dimension of a function which
is of bounded variation and continuous is given in [14]. In [14], Liang proved that if
f ∈ C([0, 1]) and of bounded variation on [0, 1], then dimB Gr(f, [0, 1]) = 1, and
dimB Gr(Iνf, [0, 1]) = 1, where

Iνf (x) = 1

�(ν)

∫ x

0
(x − s)ν−1f (s)ds,

is the fractional integral of R-L type. Now, we are interested in the notions of bounded
variation for several variables and we will see that how these notions play an impor-
tant role in the study of fractal dimension of the graph of the fractional integral of
mixed R-L type. Clarkson and Adams introduced the new notions of bounded vari-
ation such as Hahn, Peirpont, and Arzelá in [6] and related properties are given in
[1]. Using the bounded variation property in Arzelá sense, Verma and Viswanathan
established the results for the fractional integral of mixed R-L type in [23]. Addi-
tionally, they proved that if f ∈ C([a, b] × [c, d]) and f is of bounded variation
in sense of Arzelá on [a, b] × [c, d], then dimB Gr(f, [a, b] × [c, d]) = 2, and
dimB Gr(Iγ f, [a, b] × [c, d]) = 2, where

Iγ f (x, y) = 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

(x − u)γ1−1(y − v)γ2−1f (u, v)dudv,

with γ = (γ1, γ2); γ1 > 0, γ2 > 0, is the fractional integral of mixed R-L type.
Although some examples can be found of two-dimensional continuous functions
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which are not of bounded variation in [23]. Barnsley [3] developed the theory of
fractal interpolation functions (FIFs). Ruan et al. [19] introduced a new method to
compute the box dimension of linear fractal interpolation functions (FIFs) and by
using this they have established a relation between the order of fractional integral of
R-L type and box dimension of two linear FIFs. This is also motivation of this work
and we try to estimate box dimension of bivariate case of fractional integral in other
aspects. Feng [9] studied some properties of the variation and oscillation of bivariate
continuous functions. Also, he investigated the Minkowski dimension of the fractal
interpolation surface (FIS). Feng and Sun introduced a new construction method of
FIS by considering arbitrary interpolation nodes in [10], and they estimated the box
dimension of FIS. The generalized notion of FIS and its exact box dimension can be
seen in [4]. We proved that the fractional integral of mixed R-L type of FIS is again
FIS in [7].

From the above discussion, it is natural to arise the following questions:

(i) What is the bounds of the box dimension and the Hausdorff dimension of the
graph of Iγ f when f ∈ C(I × J ), where C(I × J ) denotes the set of all
continuous functions on I × J .

(ii) What is the bounds of the box dimension and the Hausdorff dimension of the
graph of Iγ f when f ∈ Hμ(I × J ), where Hμ(I × J ) denotes the set of all
μ-Hölder continuous functions on I × J .

(iii) What is the box dimension and the Hausdorff dimension of the graph of Iγ f

when f is unbounded variational continuous function.
(iv) What is the box dimension of the graph of Iγ f when f is two-dimensional

continuous function.

Above Questions (i), (ii) and (iii) are based on analytical aspects in the sense that we
are using fundamental properties of function f . Question (iv) is based on dimensional
aspects in the sense that we are using the dimension of function f to compute the
dimension of the graph of Iγ f . In this work, we investigate the above-mentioned
points and give a detailed analysis. Moreover, we also analyze both analytical and
dimensional aspects. To the best of our knowledge, not much literature is available
on the fractional integral of mixed R-L type. Our results are new for the fractional
integral of mixed R-L type and improve the exiting results as well.

This article is arranged as follows: Definitions of the mixed R-L fractional inte-
gral, box dimension, Hausdorff dimension and other basic terminologies are given
in Section 2. In Sections 3 and 4, we provide bounds for the box dimension and
the Hausdorff dimension of the graph of the fractional integral of mixed R-L type
of various choice of functions. In Section 5, we estimate the box dimension of the
graph of the fractional integral of mixed R-L type of a continuous function having
box dimension two. Section 6 is devoted to the construction of unbounded variational
continuous function and the fractal dimensions of its fractional integral of mixed R-L
type. Section 7 is devoted to the graphical representation of the fractional integral of
mixed R-L type. In Section 8, some open problems are formulated.
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2 Preliminaries

Let us recall basic definitions and other terminologies which act as a prelude to this
article.

Definition 2.1 [20] Let a function f which is defined on a closed rectangle [a, b] ×
[c, d] and a ≥ 0, c ≥ 0. Assuming that the following integral exists, mixed Riemann-
Liouville fractional integral of f is defined by

Iγ f (x, y) = 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

(x − u)γ1−1(y − v)γ2−1f (u, v)dudv,

where γ = (γ1, γ2) with γ1 > 0, γ2 > 0.

Definition 2.2 [8] Let E �= ∅ be a bounded subset of Rn. Let the smallest number
of sets which can cover E is denoted by Nδ(E) having diameter at most δ. Then

dimB(E) = lim
δ→0

logNδ(E)

− log δ
(Lower box dimension) (2.1)

and

dimB(E) = lim
δ→0

logNδ(E)

− log δ
(Upper box dimension). (2.2)

If dimB(E) = dimB(E), the common value is called the box dimension ofE. That is,

dimB(E) = lim
δ→0

logNδ(E)

− log δ
.

For the definition of the fractal dimensions, the reader may follow [8].

Definition 2.3 For a function f : A =: [a, b] × [c, d] → R, the maximum range of
f over A is defined by

Rf [A] := sup
(t1,t2),(x,y)∈A

|f (t1, t2) − (x, y)|.

Lemma 2.4 [23] Let f ∈ C(I × J ) and

|f (z1, t1)−f (z2, t2)| ≤ C‖(z1, t1)− (z2, t2)‖μ
2 , ∀(z1, t1), (z2, t2) ∈ I ×J, (2.3)

for C > 0 and 0 ≤ μ ≤ 1. Then 2 ≤ dimH Gr(f, I ×J ) ≤ dimBGr(f, I ×J ) ≤ 3−
μ. This remains true if (2.3) (Hölder condition) holds with ‖(z1, t1) − (z2, t2)‖2 < δ

for some δ > 0.
If μ = 1, then f is called Lipschitz continuous.

For 0 < μ < 1, we can rewrite Lemma 2.4 as below:

Lemma 2.5 For 0 < μ < 1 and C > 0, let

Hμ(I × J ) = {f (x, y) : |f (x + k1, y + k2) − f (x, y)| ≤ C‖(k1, k2)‖μ
2 ,

∀ (x + k1, y + k2), (x, y) ∈ I × J }.
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If f ∈ C(I × J ) and belongs to Hμ(I × J ), then

2 ≤ dimH Gr(f, I × J ) ≤ dimBGr(f, I × J ) ≤ 3 − μ.

The reader may refer [1] for the definition of bounded variation in Arzelá sense.

Theorem 2.1 [1] (Necessary and sufficient condition)
A function g : [a, b] × [c, d] → R is said to be of bounded variation in the sense
of Arzelá if it can be written in the difference of two bounded functions g1 and g2
satisfying the inequities

�10gi(x, y) ≥ 0, �01gi(x, y) ≥ 0, i = 1, 2,

where �10g(xi, yj ) = g(xi+1, yj ) − g(xi, yj ), �01g(xi, yj ) = g(xi, yj+1) −
g(xi, yj ).

Following notations are also used in this article: Gr(f ) represents the graph of f .
I × J = [a, b] × [c, d]. C is absolute constant and it may have different values even
in the same line at different occurrence. Sometimes, we use the abbreviation “the
fractional integral of mixed R-L type” in the place of “the mixed Riemann-Liouville
fractional integral”.

3 Fractal dimensions of Iγ f (x, y) with f (x, y) ∈ C(I × J)

In this section, we establish the bounds for the fractal dimensions of the fractional
integral of mixed R-L type corresponding to the continuous functions.

Theorem 3.1 For 0 < a < b < ∞, 0 < c < d < ∞ and 0 < γ1, γ2 < 1. If
f : [a, b] × [c, d] → R is continuous, then

dimH Gr(Iγ f, I × J ) ≤ dimBGr(Iγ f, I × J ) ≤ 3 − min{γ1, γ2}.

Proof Let 0 < a ≤ x < x + k1 ≤ b; 0 < c ≤ y < y + k2 ≤ d. Then

(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)

= 1

�(γ1)�(γ2)

∫ x+k1

a

∫ y+k2

c

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

− 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

(x − u)γ1−1(y − v)γ2−1f (u, v)dudv = L1 + L2 + L3 + L4,

1025



Numerical Algorithms (2022) 91:1021–1046

where

L1 = 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

[
(x + k1 − u)γ1−1(y + k2 − v)γ2−1 − (x − u)γ1−1(y − v)γ2−1

]
f (u, v)dudv

L2 = 1

�(γ1)�(γ2)

∫ x

a

∫ y+k2

y

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

L3 = 1

�(γ1)�(γ2)

∫ x+k1

x

∫ y

c

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

L4 = 1

�(γ1)�(γ2)

∫ x+k1

x

∫ y+k2

y

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv.

Because of continuity of f on [a, b] × [c, d], there exists M such that |f (t1, t2)| ≤
M ∀(t1, t2) ∈ [a, b] × [c, d].
Now, we estimate the bound for L1 as below:

|L1| ≤ 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

[
(x − u)γ1−1(y − v)γ2−1 − (x + k1 − u)γ1−1(y + k2 − v)γ2−1

]
|

f (u, v)|dudv ≤ M

�(γ1)�(γ2)

∫ x

a

∫ y

c

[
(x − u)γ1−1(y − v)γ2−1 − (x + k1 − u)γ1−1(y + k2 − v)γ2−1

]

dudv = M

�(γ1)�(γ2)

∫ x

a

∫ y

c

[
(x − u)γ1−1(y − v)γ2−1 − (x + k1 − u)γ1−1(y − v)γ2−1

+(x + k1 − u)γ1−1(y − v)γ2−1 − (x + k1 − u)γ1−1(y + k2 − v)γ2−1
]

dudv = M

�(γ1)�(γ2)

[∫ x

a

∫ y

c

(y − v)γ2−1
[
(x − u)γ1−1 − (x + k1 − u)γ1−1

]
dudv

+
∫ x

a

∫ y

c

(x + k1 − u)γ1−1
[
(y − v)γ2−1 − (y + k2 − v)γ2−1

]
dudv

]
.

Let J1 and J2 defined as follows and by using Bernoulli’s inequality (1 + u)r
′ ≤

1 + r ′u for 0 ≤ r ′ ≤ 1 and u ≥ −1, we obtain

J1 =
∫ x

a

[
(x − u)γ1−1 − (x + k1 − u)γ1−1

]
du

= 1

γ1

[
(x + k1 − x)γ1 − (x + k1 − a)γ1 + (x − a)γ1

]

= 1

γ1

[
(k

γ1
1 − (x + k1 − a)γ1 + (x − a)γ1

]

≤ k
γ1
1

γ1
.

J2 =
∫ y

c

[
(y − v)γ2−1 − (y + k2 − v)γ2−1

]
dv

= 1

γ2

[
(y + k2 − y)γ2 − (y + k2 − c)γ2 + (y − c)γ2

]

= 1

γ2

[
(k

γ2
2 − (y + k2 − c)γ2 + (y − c)γ2

]

≤ k
γ2
2

γ2
.
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By using the values of J1 and J2, we get

|L1| ≤ M

�(γ1)�(γ2)

[
k
γ1
1

γ1

∫ y

c

(y − v)γ2−1dv + k2

γ2

∫ x

a

(x + k1 − u)γ1−1du

]

≤ M

�(γ1)�(γ2)

[
k
γ1
1

γ1γ2
(d − c)γ2 + k

γ2
2

γ1γ2
(b − a)γ1

]
.

Therefore for a suitable constant C, we obtain

|L1| ≤ C(k
γ1
1 + k

γ2
2 ).

Now, we estimate L2 as follows:

|L2| ≤ 1

�(γ1)�(γ2)

∫ x

a

∫ y+k2

y

(x + k1 − u)γ1−1(y + k2 − v)γ2−1|f (u, v)|dudv

≤ M

�(γ1)�(γ2)

∫ x

a

∫ y+k2

y

(x + k1 − u)γ1−1(y + k2 − v)γ2−1dudv

≤ (b − a)γ1k
γ2
2

γ1γ2
.

For suitable C, we get

|L2| ≤ Ck
γ2
2 .

Similarly

|L3| ≤ Ck
γ1
1 .

In similar way, we estimate L4

|L4| ≤ 1

�(γ1)�(γ2)

∫ x+k1

x

∫ y+k2

y

(x + k1 − u)γ1−1(y + k2 − v)γ2−1|f (u, v)|dudv

≤ M

�(γ1)�(γ2)

∫ x+k1

x

∫ y+k2

y

(x + k1 − u)γ1−1(y + k2 − v)γ2−1dudv

= k
γ1
1 k

γ2
2

γ1γ2
.

For suitable C, we have

|L4| ≤ Ck
γ1
1 k

γ2
2 .

Say α = min{γ1, γ2}. For suitable C and sufficiently small positive constants
k1, k2, α, we get

|(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)| ≤ |L1| + |L2| + |L3| + |L4| ≤ C(k
γ1
1 + k

γ2
2 ) ≤ C(kα

1 + kα
2 ).

Since k1 and k2 are sufficiently small, we have k1 ≤
√

k21 + k22 and k2 ≤
√

k21 + k22.
Consequently, we get

|(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)| ≤ C‖(x + k1, y + k2) − (x, y)‖α
2 .

The proof follows from Lemma 2.4.
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Now, we prove a very important property of such integrals which is called the
semigroup property. This property will be used to prove the further results.

Theorem 3.2 [Semigroup property] Let γ1 > 0, γ ′
1 > 0, γ2 > 0, γ ′

2 > 0 and 0 <

a < b < ∞, 0 < c < d < ∞. Let f : [a, b] × [c, d] → R is an integrable function
for which the fractional integral of mixed R-L type I(γ1,γ2)f exists, then

I(γ1,γ2)I(γ ′
1,γ

′
2)f = I(γ1+γ ′

1,γ2+γ ′
2)f .

Proof From the Dirichlet technique and Fubini’s theorem , we have

(I(γ1,γ2)I(γ ′
1,γ

′
2)f )(x, y) = 1

�(γ1)�(γ2)�(γ ′
1)�(γ ′

2)

∫ x

a

∫ y

c

[∫ x

s

∫ y

t

(x − v)γ1−1(v − s)γ
′
1−1

. (y − w)γ2−1(w − t)γ
′
2−1dvdw

]
f (s, t)dsdt

With the change of variable z1 = v−s
x−v

, we have
∫ x

s

(x − v)γ1−1(v − s)γ
′
1−1dv = (x − s)γ1+γ ′

1−1
∫ 1

0
(1 − z1)

γ1−1z
γ ′
1−1

1 dz1

= (x − s)γ1+γ ′
1−1�(γ1)�(γ ′

1)

�(γ1 + γ ′
1)

,

according to the known formulae for the beta function [12, 17].
Similarly, we can estimate with z2 = w−t

y−w
,

∫ y

t

(y − w)γ2−1(w − t)γ
′
2−1dw = (y − t)γ2+γ ′

2−1
∫ 1

0
(1 − z2)

γ2−1z
γ ′
2−1

2 dz2

= (y − t)γ2+γ ′
2−1�(γ2)�(γ ′

2)

�(γ2 + γ ′
2)

.

Consequently, we get

(I(γ1,γ2)I(γ ′
1,γ

′
2)f )(x, y) = 1

�(γ1 + γ ′
1)�(γ2 + γ ′

2)

∫ x

a

∫ y

c

(x − s)γ1+γ ′
1−1(y − t)γ2+γ ′

2−1f (s, t)dsdt

= (I(γ1+γ ′
1,γ2+γ ′

2)f )(x, y),

which completes the proof.

Theorem 3.3 Let f : [a, b] × [c, d] → R is continuous and 0 < a < b < ∞, 0 <

c < d < ∞.

(1) If 0 < γ1, γ2 < 1, then

2 ≤ dimH Gr(Iγ f, I × J ) ≤ dimB Gr(Iγ f, I × J ) ≤ 3 − min{γ1, γ2}.
(2) If γ1, γ2 ≥ 1, then

dimH Gr(Iγ f, I × J ) = dimBGr(Iγ f, I × J ) = 2.

The proof of the above theorem follows from Theorem 3.1, Theorem 3.2 and from
the relation between fractal dimensions.
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4 Fractal dimensions of Iγ f (x, y) with f (x, y) ∈ Hμ(I × J)

In this section, we establish the bounds for the fractal dimensions of the fractional
integral of mixed R-L type corresponding to the μ-Hölder continuous functions.

Theorem 4.1 Let f (x, y) is continuous on I × J and f (x, y) ∈ Hμ(I × J ) with
f (0, 0) = (0, 0) and provided that the fractional integral of mixed R-L type of f

exists. Then

dimH Gr(Iγ f, I×J ) ≤ dimBGr(Iγ f, I×J ) ≤ 3−μ, 0 < γ1, γ2 < 1, 0 < μ < 1.

Proof Let 0 ≤ a ≤ x < x + k1 ≤ b, 0 ≤ c ≤ y < y + k2 ≤ d and 0 < γ1, γ2 < 1.
Then

(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)

= 1

�(γ1)�(γ2)

∫ x+k1

a

∫ y+k2

c

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

− 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

(x − u)γ1−1(y − v)γ2−1f (u, v)dudv = I1 + I2 + I3 + I4 − I5,

where

I1 = 1

�(γ1)�(γ2)

∫ a+k1

a

∫ c+k2

c

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

I2 = 1

�(γ1)�(γ2)

∫ a+k1

a

∫ y+k2

c+k2

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

I3 = 1

�(γ1)�(γ2)

∫ x+k1

a+k1

∫ c+k2

c

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

I4 = 1

�(γ1)�(γ2)

∫ x+k1

a+k1

∫ y+k2

c+k2

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

I5 = 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

(x − u)γ1−1(y − v)γ2−1f (u, v)dudv.

By change of variable in I5, we have

I ′
5 = 1

�(γ1)�(γ2)

∫ x+k1

a+k1

∫ y+k2

c+k2

(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u − k1, v − k2)dudv.

I4 − I ′
5 = I6 = 1

�(γ1)�(γ2)

∫ x+k1

a+k1

∫ y+k2

c+k2

(x + k1 − u)γ1−1(y + k2 − v)γ2−1

.[f (u − k1, v − k2) − f (u, v)]dudv.

|I6| ≤ 1

�(γ1)�(γ2)

∫ x+k1

a+k1

∫ y+k2

c+k2

|(x + k1 − u)γ1−1(y + k2 − v)γ2−1

.[f (u − k1, v − k2) − f (u, v)]|dudv.
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Since f (x, y) ∈ Hμ(I × J ) on [a, b] × [c, d], we have

|I6| ≤C‖(k1, k2)‖μ
2

�(γ1)�(γ2)

∫ x+k1

a+k1

∫ y+k2

c+k2

|(x + k1 − u)γ1−1(y + k2 − v)γ2−1|dudv

= C‖(k1, k2)‖μ
2

�(γ1 + 1)�(γ2 + 1)
(x − a)γ1(y − c)γ2

For (x, y) ∈ [a, b] × [c, d], we get

|I6| ≤ C‖(k1, k2)‖μ
2

�(γ1 + 1)�(γ2 + 1)
(b − a)γ1(d − c)γ2 .

|I6| ≤C‖(k1, k2)‖μ
2 , where C = (b − a)γ1(d − c)γ2

�(γ1 + 1)�(γ2 + 1)
.

Now for the bound of I1, we apply similar steps as done above.

|I1| ≤ 1

�(γ1)�(γ2)

∫ a+k1

a

∫ c+k2

c

|(x + k1 − u)γ1−1(y + k2 − v)γ2−1||f (u, v) − f (0, 0)|dudv

≤C‖(k1, k2)‖μ
2

�(γ1)�(γ2)

∫ a+k1

a

∫ c+k2

c

|(x + k1 − u)γ1−1(y + k2 − v)γ2−1|dudv

≤C‖(k1, k2)‖μ
2

�(γ1)�(γ2)

∫ a+k1

a

∫ c+k2

c

|(a + k1 − u)γ1−1(c + k2 − v)γ2−1|dudv

= C‖(k1, k2)‖μ
2

�(γ1 + 1)�(γ2 + 1)
k
γ1
1 k

γ2
2 .

So, we have

|I1| ≤C‖(k1, k2)‖μ
2 , where C = k

γ1
1 k

γ2
2

�(γ1 + 1)�(γ2 + 1)
.

In similar way, we obtain the bounds for I2 and I3 as follows

|I2| ≤C‖(k1, k2)‖μ
2 , where C = k

γ1
1 (d − c)γ2

�(γ1 + 1)�(γ2 + 1)
,

|I3| ≤C‖(k1, k2)‖μ
2 , where C = (b − a)γ1k

γ2
2

�(γ1 + 1)�(γ2 + 1)
.

Consequently, we get for a suitable constant C

|(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)| ≤|I1| + |I2| + |I3| + |I4| + |I5|
≤C‖(k1, k2)‖μ

2 .

In view of Lemma 2.5 the proof follows.

Remark 4.1 If f (x, y) is any fractal function having box dimension 3−μ, then upper
box dimension of the fractional integral of mixed R-L type corresponding to f (x, y)

is non-increasing. Since,

dimBGr(f, I × J ) = 3 − μ.

We have
dimBGr(Iγ f, I × J ) ≤ 3 − μ.
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That is

dimBGr(Iγ f, I × J ) ≤ dimBGr(f, I × J ) = 3 − μ.

Theorem 4.2 Let f (x, y) be a continuous function defined on [a, b] × [c, d] with
f (0, 0) = (0, 0) and satisfies Lipschitz condition, then for 0 < γ1, γ2 < 1,

dimH Gr(Iγ f, I × J ) = dimBGr(Iγ f, I × J ) = 2.

In view of Lemma 2.4 and Theorem 4.1 the proof of the Theorem 4.2 follows.

5 Fractal dimension of Iγ f (x, y) of 2-dimensional continuous
functions

So far we have estimated the bounds for fractal dimensions. Now a question arises:
For which class of continuous functions the box dimension of the fractional integral
of mixed R-L type is equal to two. The answer of this question is given below. First,
we give the following Lemma 5.1 which acts as a prelude for the main Theorem 5.1
and then we corroborate our result with the help of existing results.

Lemma 5.1 Let f : [0, 1] × [0, 1] → R is continuous and 0 < δ < 1, 1
δ

< m, n <

1 + 1
δ
for some m, n ∈ N. If the number of δ-cubes that intersect the graph Gr(f ) is

denoted by Nδ(Gr(f )), then

n∑
j=1

m∑
i=1

max

{
Rf [Aij ]

δ
, 1

}
≤ Nδ(Gr(f )) ≤ 2mn + 1

δ

n∑
j=1

m∑
i=1

Rf [Aij ],

where Aij is the (i, j)-th cell corresponding to the net under consideration.

Proof If f (x, y) is continuous on I × J , the number of cubes having side δ in the
part above Aij which intersect Gr(f, I × J ) is at least

max

{
Rf [Aij ]

δ
, 1

}

and at most

2 + Rf [Aij ]
δ

.

By summing over all such parts we get the required result.

Theorem 5.1 Let a non-negative function f (x, y) ∈ C([0, 1]×[0, 1]) and 0 < γ1 <

1, 0 < γ2 < 1.
If

dimB Gr(f, [0, 1] × [0, 1]) = 2, (5.1)
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then, the box dimension of the fractional integral of mixed R-L type of f (x, y) of
order γ = (γ1, γ2) exists and is equal to 2 on [0, 1] × [0, 1], as

dimB Gr(Iγ f, [0, 1] × [0, 1]) = 2. (5.2)

Proof Since f (x, y) ∈ C([0, 1] × [0, 1]), Iγ f (x, y) is also continuous on [0, 1] ×
[0, 1] (from Theorem 4.2 in [23]). From the definition of the box dimension, we can
get

dimBGr(Iγ f, [0, 1] × [0, 1]) ≥ 2. (5.3)

Now, to prove (5.2), we have to prove the following inequality

dimBGr(Iγ f, [0, 1] × [0, 1]) ≤ 2. (5.4)

Suppose that 0 < δ < 1
2 ,

1
δ

< m, n < 1+ 1
δ
and Nδ(Gr(f )) is the number of δ-cubes

that intersect Gr(f ). From (5.1), it holds

lim
δ→0

logNδ(Gr(f ))

− log δ
= 2.

Let Nδ(Gr(Iγ f )) is the number of δ-cubes that intersect Gr(Iγ f ). Thus, (5.4) can
be written as

lim
δ→0

logNδ(Gr(Iγ f ))

− log δ
≤ 2. (5.5)

Now, we are ready to prove (5.5).
Let f (x, y) ∈ C([0, 1]×[0, 1]) and 0 < γ1, γ2 < 1. If k1 > 0, k2 > 0 and x+k1 ≤

1, y + k2 ≤ 1, then

(�(γ1)�(γ2))
[
(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)

]

=
∫ x+k1

0

∫ y+k2

0
(x + k1 − u)γ1−1(y + k2 − v)γ2−1f (u, v)dudv

−
∫ x

0

∫ y

0
(x − u)γ1−1(y − v)γ2−1f (u, v)dudv.

By integral transform, let (
u

x + k1

)
= s,

and (
v

y + k2

)
= t .

Then

dudv = |J |dsdt,
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where

J =
[

∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

]

= (x + k1)(y + k2).

Thus, we have

(�(γ1)�(γ2))
[
(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)

]

=
∫ 1

0

∫ 1

0
(x + k1)

γ1 (1 − u)γ1−1(y + k2)
γ2 (1 − v)γ2−1f ((x + k1)u, (y + k2)v) dudv

−
∫ 1

0

∫ 1

0
xγ1 (1 − u)γ1−1yγ2 (1 − v)γ2−1f (xu, yv)dudv

=
∫ 1

0

∫ 1

0
(x + k1)

γ1 (1 − u)γ1−1(y + k2)
γ2 (1 − v)γ2−1f ((x + k1)u, (y + k2)v) dudv

−
∫ 1

0

∫ 1

0
(x + k1)

γ1 (1 − u)γ1−1(y + k2)
γ2 (1 − v)γ2−1f (xu, yv)dudv

+
∫ 1

0

∫ 1

0
(x + k1)

γ1 (1 − u)γ1−1(y + k2)
γ2 (1 − v)γ2−1f (xu, yv)dudv

−
∫ 1

0

∫ 1

0
xγ1 (1 − u)γ1−1yγ2 (1 − v)γ2−1f (xu, yv)dudv

=
∫ 1

0

∫ 1

0
(1 − u)γ1−1(1 − v)γ2−1(x + k1)

γ1 (y + k2)
γ2 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

+
∫ 1

0

∫ 1

0
(1 − u)γ1−1(1 − v)γ2−1f (xu, yv)

[
(x + k1)

γ1 (y + k2)
γ2 − xγ1yγ2

]
dudv.

For 0 < δ < 1
2 ,

1
δ

< m, n < 1 + 1
δ
, let non-negative integers i and j such that

0 ≤ i ≤ m, 0 ≤ j ≤ n. Then

(�(γ1)�(γ2))RIγ f [Aij ] = sup
(x+k1,y+k2),(x,y)∈Aij

|(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)|,

where Aij = [iδ, (i + 1)δ] × [jδ, (j + 1)δ].
Here,

= |(Iγ f )(x + k1, y + k2) − (Iγ f )(x, y)| ≤ (x + k1)
γ1 (y + k2)

γ2

∣∣∣
∫ 1

0

∫ 1

0
(1 − u)γ1−1(1 − v)γ2−1 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

∣∣∣

+ (
(i + 1)γ1 (j + 1)γ2 − iγ1jγ2 )

)
δγ1+γ2

∫ 1

0

∫ 1

0
(1 − u)γ1−1(1 − v)γ2−1f (xu, yv)dudv.
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Let i ≥ 1, j ≥ 1. On the one hand

∣∣∣
∫ 1

0

∫ 1

0
(1 − u)γ1−1(1 − v)γ2−1 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

∣∣∣

=
∣∣∣
∫ 1

i+1

0

∫ 1
j+1

0
(1 − u)γ1−1(1 − v)γ2−1 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

∣∣∣

+
j∑

p=1

∣∣∣
∫ 1

i+1

0

∫ p+1
j+1

p
j+1

(1 − u)γ1−1(1 − v)γ2−1 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

∣∣∣

+
i∑

q=1

∣∣∣
∫ q+1

i+1

q
i+1

∫ 1
j+1

0
(1 − u)γ1−1(1 − v)γ2−1 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

∣∣∣

+
i∑

q=1

j∑
p=1

∣∣∣
∫ q+1

i+1

q
i+1

∫ p+1
j+1

p
j+1

(1 − u)γ1−1(1 − v)γ2−1 [f ((x + k1)u, (y + k2)v) − f (xu, yv)] dudv

∣∣∣

≤ 1

(i + 1)(j + 1)
Rf [[0, δ] × [0, δ]]

+
j∑

p=1

1

(i + 1)(j + 1)

(
Rf [[0, δ] × [(p − 1)δ, pδ]] + Rf [[0, δ] × [pδ, (p + l)δ]])

+
i∑

q=1

1

(i + 1)(j + 1)
(Rf [[(q − 1)δ, qδ] × [0, δ]] + Rf [[qδ, (q + 1)δ] × [0, δ]])

+
i∑

q=1

j∑
p=1

1

(i + 1)(j + 1)
(Rf [[(q − 1)δ, qδ] × [(p − 1)δ, pδ]] + Rf [[(q − 1)δ, qδ] × [pδ, (p + 1)δ]]

+Rf [[qδ, (q + 1)δ] × [(p − 1)δ, pδ]] + Rf [[qδ, (q + 1)δ] × [pδ, (p + 1)δ]]).

By using Bernoulli’s inequality (1 + u)r
′ ≤ 1 + r ′u for 0 ≤ r ′ ≤ 1 and u ≥ −1, we

can see that

∫ 1
i+1

0

∫ 1
j+1

0
(1 − u)γ1−1(1 − v)γ2−1dudv ≤ 1

(i + 1)(j + 1)
.

On the other hand

(
(i + 1)γ1(j + 1)γ2 − iγ1jγ2)

)
δγ1+γ2

∫ 1

0

∫ 1

0
(1 − s)γ1−1(1 − t)γ2−1f (xs, yt)dsdt

≤ (i + 1)γ1(j + 1)γ2δγ1+γ2
max0≤(x,y)≤1 f (x, y)

γ1γ2
.
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From Lemma 5.1, we have

Nδ(Gr(Iγ f )) ≤ 2mn + 1

δ

n∑
j=1

m∑
i=1

RIγ f [Aij ] ≤ 2mn + 1

δ

n∑
j=1

m∑
i=1

(
1

(i + 1)(j + 1)
Rf [[0, δ] × [0, δ]]

+
j∑

p=1

1

(i + 1)(j + 1)

(
Rf [[0, δ] × [(p − 1)δ, pδ]] + Rf [[0, δ] × [pδ, (p + l)δ]])

+
i∑

q=1

1

(i + 1)(j + 1)
(Rf [[(q − 1)δ, qδ] × [0, δ]] + Rf [[qδ, (q + 1)δ] × [0, δ]])

+
i∑

q=1

j∑
p=1

1

(i + 1)(j + 1)

(
Rf [[(q − 1)δ, qδ] × [(p − 1)δ, pδ]] + Rf [[(q − 1)δ, qδ]×

[pδ, (p + 1)δ]] + Rf [[qδ, (q + 1)δ] × [(p − 1)δ, pδ]] + Rf [[qδ, (q + 1)δ] × [pδ, (p + 1)δ]]))

+ 1

δ

n∑
j=1

m∑
i=1

(i + 1)γ1 (j + 1)γ2δγ1+γ2
max0≤(x,y)≤1 f (x, y)

γ1γ2

≤ 1

δ

⎛
⎝C +

n∑
j=1

m∑
i=1

(
1

(i + 1)(j + 1)
Rf [[0, δ] × [0, δ]]

+
j∑

p=1

1

(i + 1)(j + 1)

(
Rf [[0, δ] × [(p − 1)δ, pδ]] + Rf [[0, δ] × [pδ, (p + l)δ]])

+
i∑

q=1

1

(i + 1)(j + 1)
(Rf [[(q − 1)δ, qδ] × [0, δ]] + Rf [[qδ, (q + 1)δ] × [0, δ]])

+
i∑

q=1

j∑
p=1

1

(i + 1)(j + 1)

(
Rf [[(q − 1)δ, qδ] × [(p − 1)δ, pδ]] + Rf [[(q − 1)δ, qδ]

×[pδ, (p + 1)δ]] + Rf [[qδ, (q + 1)δ] × [(p − 1)δ, pδ]] + Rf [[qδ, (q + 1)δ] × [pδ, (p + 1)δ]])))

≤ C

δ

⎛
⎝ n∑

j=0

m∑
i=0

1

(i + 1)(j + 1)

⎞
⎠

⎛
⎝ n∑

j=0

m∑
i=0

Rf [Aij ]
⎞
⎠ ≤ C

δ
(logm)(log n)

n∑
j=0

m∑
i=0

Rf [Aij ]

≤ C(logm)(log n)Nδ(Gr(f )).

Therefore, we get

logNδ(Gr(Iγ f ))

− log δ
≤ log {C(logm)(log n)Nδ(Gr(f ))}

− log δ

≤ logC

− log δ
+ log(logm)

− log δ
+ log(log n)

− log δ
+ logNδ(Gr(f ))

− log δ
.

So, we obtain

dimBGr(Iγ f, [0, 1] × [0, 1]) = lim
δ→0

logNδ(Gr(Iγ f ))

− log δ

≤ lim
δ→0

(
logC

− log δ
+ log(logm)

− log δ
+ log(log n)

− log δ
+ logNδ(Gr(f ))

− log δ

)

≤ lim
δ→0

logNδ(Gr(f ))

− log δ
= lim

δ→0

logNδ(Gr(f ))

− log δ
= 2.
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Thus, Inequality (5.5) holds. By combining Inequalities (5.3) and (5.5), we get the
desired result.

Corollary 5.2 Let f : [0, 1] × [0, 1] → R be a continuous function and 0 < γ1 <

1, 0 < γ2 < 1. If f is of bounded variation in Arzelá sense, then

dimB Gr(Iγ f, [0, 1] × [0, 1]) = 2.

Proof From Remark 3.13 in [23], if f : [0, 1] × [0, 1] → R is continuous and of
bounded variation in Arzelá sense on [0, 1] × [0, 1], then

dimB Gr(f, [0, 1] × [0, 1]) = 2.

Thus, by using Theorem 5.1, we get

dimB Gr(Iγ f, [0, 1] × [0, 1]) = 2.

This completes the proof.

Remark 5.2 Thus, Theorem 4.5 of [23] follows from our Theorem 5.1. In [23], Verma
and Viswanathan proved that the box dimension of the fractional integral of mixed
R-L type of a continuous function which is of bounded variation in Arzelá sense
on [0, 1] × [0, 1] is 2. Their results are more concerned with analytical aspects in
the sense that they are using the notion of bounded variation. But in Theorem 5.1,
we have proved that if a continuous function has box dimension two, then the box
dimension of its fractional integral of mixed R-L type is also two. Here, we are
using the dimension of function to compute the dimension of its fractional integral
of mixed R-L type. So, our results are more concerned with dimensional aspects.
From Theorem 5.1, we conclude that the fractional integral of mixed R-L type of any
two-dimensional continuous function preserves its dimension.

Now, we are going to corroborate Theorem 5.1 by using existing results.

Lemma 5.3 [23] Let a function h : [c, d] → R be continuous. Consider a set as
H = {(x, y, h(y)) : x ∈ [a, b], y ∈ [c, d]} with a < b. Then it holds, dimB(H) ≤
dimB(Gr(h)) + 1.

Remark 5.4 Let h1 : [a, b] → R and h2 : [c, d] → R are two continuous maps.
Now, define g1, g2 : [a, b] × [c, d] → R such that

g1(x, y) = h1(x) + h2(y), and g2(x, y) = h1(x)h2(y).

From Lemma 5.3, we get dimBGr(g1) ≤ dimBGr(h2) + 1 and dimBGr(g2) ≤
dimBGr(h2) + 1.

Remark 5.5 Let g : [a, b] → R be a continuous function which box dimension
is 1. We define a bivariate continuous function f : [a, b] × [c, d] → R such that
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f (x, y) = g(x). From definition 2.1, we have

Iγ f (x, y) = 1

�(γ1)�(γ2)

∫ x

a

∫ y

c

(x − u)γ1−1(y − v)γ2−1f (u, v)dudv.

For γ2 = 1, we get

Iγ f (x, y) = 1

�(γ1)

∫ x

a

∫ y

c

(x − u)γ1−1f (u, v)dudv.

By definition of f , we obtain

Iγ f (x, y) = y − c

�(γ1)

∫ x

a

(x − u)γ1−1g(u)du.

So, we have a relation between the fractional integral of R-L type of g, namely

Iγ1g(x) = 1

�(γ1)

∫ x

a

(x − u)γ1−1g(u)du,

and the fractional integral of mixed R-L type of f as

Iγ f (x, y) = (y − c)Iγ1g(x).

Now, from remark 5.4, we know that dimBGr(Iγ f ) ≤ dimBGr(Iγ1g) + 1. Since,
dimB Gr(g) = 1, from Theorem 3.1 in [16], it follows that dimB Gr(Iγ1g) = 1, and
hence dimB Gr(Iγ f ) = 2. This corroborates Theorem 5.1.

6 Fractal dimension of Iγ f (x, y) of unbounded variational
continuous functions

To study the fractional integral of mixed R-L type of unbounded variational (UV)
continuous functions with examples, we follow the construction from [24].

Construction of UV continuous functions Consider [0, 1] × [0, 1]. Let limn→∞ an =
1, where (an) is the increasing sequence of real numbers in [0, 1]. For our con-
struction, we take a sequence (an)n≥0 by considering a0 = 0 and an = 1

2 + 1
22

+
... + 1

2n , n ∈ N. Let us define a continuous function 	(x, y) = x(x − 0.5)y on
[0, 0.5] × [0, 1] such that

	(0, y) = 	(0.5, y), ∀ y ∈ [0, 1].
We shall refer 	 as generating function. Let ϒn be map from [an−1, an] onto [0, 0.5]
given by

ϒn(x, y) = 2(n−1)(x − an−1).

Let us define G1(x, y) = 	(x, y) for (x, y) ∈ [0, 0.5] × [0, 1] and n ≥ 2,

Gn(x, y) = 1

n
	(ϒn(x), y) + n − 1

n
	(0, y) for (x, y) ∈ [an−1, an] × [0, 1].

Now, we denote that Fn(x, y) is the composed of G1(x, y), G2(x, y), ..., Gn(x, y).
Let

M(x, y) = lim
n→∞ Fn(x, y).
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Fig. 1 M(x, y)

The graph of M(x, y) is given in Fig. 1.

Theorem 6.1 The function M is not of bounded variation on [0, 1] × [0, 1].

Proof It can be seen that 	 is non-constant function along the line y = y0 for some
y0 ∈ [0, 1]. For C > 0 and some u1, u2 ∈ [a0, a1] with u1 < u2, we have

|	(u1, y0) − 	(u2, y0)| ≥ C.

Choose w1, w2 ∈ [a0, a1], w1 < w2 such that

|G1(w1, y0) − G1(w2, y0)| = |	(u1, y0) − 	(u2, y0)| ≥ C.

We can choose w3, w4 ∈ [a1, a2], w3 < w4 such that

|G2(w3, y0) − G2(w4, y0)| = 1

2
|	(u1, y0) − 	(u2, y0)| ≥ C

2
.

We can see that for i > 1, wi = ϒ−1
i−1(u1) and wi+1 = ϒ−1

i−1(u2). By proceeding in
similar way, we get a collection P ′ = {wi : w1 < w2 < w3 < ... < w2n}. Now, we
take partition P of [0, 1] such that P ′ ⊂ P . The variation of M along the line y = y0
denoted by V (M, [0, 1], y0) is

V (M, [0, 1], y0) ≥
2n∑
i=1

|M(wi+1, y0)−M(wi, y0)| ≥
n∑

i=1

|Gi(wi+1, y0)−Gi(wi, y0)| ≥
n∑

i=1

C

i
.
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Since C > 0 and
∑n

i=1
1
i

= ∞, restriction of M , M|y=y0 , is not of bounded variation
on [0, 1] along the line y = y0. So, M|y=y0 can not be written as difference of two
increasing functions g1, g2 : [0, 1] → R along the line y = y0. That is, M|y=y0 =
g1 − g2 with �10gi(x, y0) ≥ 0, i = 1, 2 does not hold. Now, by using Theorem 2.1,
it is clear that the function M is not of bounded variation on [0, 1] × [0, 1] in Arzelá
sense.

Lemma 6.1 [23] If f (x, y) ∈ C([0, 1]×[0, 1]) and of bounded variation on [0, 1]×
[0, 1] in Arzelá sense, then Iγ f (x, y) ∈ C([0, 1] × [0, 1]) and of bounded variation
on [0, 1] × [0, 1] in Arzelá sense.

The following theorem gives the box dimension and the Hausdorff dimension of
Iγ M(x, y).

Theorem 6.2 Let 0 < γ1 < 1, 0 < γ2 < 1. Then Iγ M(x, y) is finite on [0, 1] ×
[0, 1] and

dimH Gr(Iγ M, [0, 1] × [0, 1]) = dimB Gr(Iγ M, [0, 1] × [0, 1]) = 2.

Proof For 0 < γ1 < 1, 0 < γ2 < 1, we have

|Iγ M(x, y)| =
∣∣∣∣ 1

�(γ1)�(γ2)

∫ x

0

∫ y

0
(x − u)γ1−1(y − v)γ2−1M(u, v)dudv

∣∣∣∣
≤ 1

�(γ1 + 1)�(γ2 + 1)
xγ1yγ2 max

(x,y)∈[0,1]×[0,1]
|M(x, y)| ≤ 1

�(γ1 + 1)�(γ2 + 1)
.

This shows that Iγ M(x, y) is finite on [0, 1] × [0, 1]. Since M(x, y) is a continu-
ous function and of bounded variation on [0, 1) × [0, 1), then from Lemma 6.1 we
know that Iγ M(x, y) is continuous and of bounded variation on [0, 1) × [0, 1) for
0 < γ1 < 1, 0 < γ2 < 1.
Let 0 < δ < 1 and a positive constant C, when (x, y) ∈ [0, 1 − δ) × [0, 1 − δ),
Iγ M(x, y) is of bounded variation. Let the smallest number of sets of diameter δ

which can cover graph of Iγ M(x, y) is C

δ2
. Now, when (x, y) ∈ [1, 1−δ)×[1, 1−δ),

then the number of δ-cubes that intersect graph of Iγ M(x, y) is at most 1
δ2
.

Hence, the smallest number of sets of diameter δ which can cover graph of
Iγ M(x, y) is at most C+1

δ2
. Thus, we have

dimBGr(Iγ M, [0, 1] × [0, 1]) = lim
δ→0

logNδ(Gr(Iγ M, [0, 1] × [0, 1]))
− log δ

≤ lim
δ→0

log C+1
δ2

− log δ
= 2.

From Definition 2.2 and Lemma 5.1, we know that

dimBGr(Iγ M, [0, 1] × [0, 1]) ≥ 2.

This implies that
dimB Gr(Iγ M, [0, 1] × [0, 1]) = 2. (6.1)

Also, we know that

2 ≤ dimH Gr(Iγ M, [0, 1] × [0, 1]) ≤ dimB Gr(Iγ M, [0, 1] × [0, 1]). (6.2)

From (6.1) and (6.2), we get the required result.
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Remark 6.2 From [23], we know that if a function is continuous and of bounded
variation in Arzelá sense, then its fractional integral of mixed R-L type is also contin-
uous and of bounded variation in Arzelá sense and its box dimension and Hausdorff
dimension is two. From Theorem 6.2, we conclude that the box dimension and the
Hausdorff dimension of the fractional integral of mixed R-L type of unbounded varia-
tional continuous function is also two. So, M is such example which is of unbounded
variational continuous function but the fractal dimension of its fractional integral of
mixed R-L type is two.

7 Graph of Iγ=(γ1,γ2)M(x, y)

In Section 6, we give the construction of M(x, y). Now, we calculate its fractional
integral of mixed R-L type and draw the following graphs.
If (x, y) ∈ [0, 1

2 ] × [0, 1],

Iγ M(x, y) =
(

2

�(γ1 + 3)
xγ1+2 − 1

2�(γ1 + 2)
xγ1+1

)(
1

�(γ2 + 2)
yγ2+1

)
.

Fig. 2 I(0.1,0.1)M(x, y)
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Fig. 3 I(0.2,0.2)M(x, y)

Fig. 4 I(0.3,0.3)M(x, y)
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Fig. 5 I(0.7,0.7)M(x, y)

Fig. 6 I(0.9,0.9)M(x, y)
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If (x, y) ∈ [ 12 , 3
4 ] × [0, 1],

Iγ M(x, y) =
(

2

�(γ1 + 3)
xγ1+2 − 1

2�(γ1 + 2)
xγ1+1 − 1

�(γ1 + 2)

(
x − 1

2

)γ1+1

+ 2

�(γ1 + 3)

(
x − 1

2

)γ1+2
)(

1

�(γ2 + 2)
yγ2+1

)
.

If (x, y) ∈ [ 34 , 7
8 ] × [0, 1],

Iγ M(x, y) =
(

2

�(γ1 + 3)
xγ1+2 − 1

2�(γ1 + 2)
xγ1+1 − 1

�(γ1 + 2)

(
x − 1

2

)γ1+1

+ 2

�(γ1 + 3)

(
x − 1

2

)γ1+2

− 7

6�(γ1 + 2)

(
x − 3

4

)γ1+1

+ 20

3�(γ1 + 3)

(
x − 3

4

)γ1+2
)(

1

�(γ2 + 2)
yγ2+1

)
.

Fig. 7 I(1.0,1.0)M(x, y)
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If (x, y) ∈ [ 78 , 15
16 ] × [0, 1],

Iγ M(x, y) =
(

2

�(γ1 + 3)
xγ1+2 − 1

2�(γ1 + 2)
xγ1+1 − 1

�(γ1 + 2)

(
x − 1

2

)γ1+1

+ 2

�(γ1 + 3)

(
x − 1

2

)γ1+2

− 7

6�(γ1 + 2)

(
x − 3

4

)γ1+1

+ 20

3�(γ1 + 3)

(
x − 3

4

)γ1+2

− 5

3�(γ1 + 2)

(
x − 7

8

)γ1+1

+ 64

3�(γ1 + 3)

(
x − 7

8

)γ1+2
) (

1

�(γ2 + 2)
yγ2+1

)
.

Similarly, we can calculate Iγ M(x, y) for other Gn(x, y) on (x, y) ∈ [an−1, an] ×
[0, 1] but above values are sufficient for the smoothness analysis of the graphs (Figs.
2, 3, 4, 5, 6 and 7).

Remark 7.1 As we can notice from the graphs of the fractional integral of mixed R-
L type that increments in γ will give more smooth surfaces, that is, the bigger the γ ,
the smoother the Gr(Iγ M, [0, 1] × [0, 1]). So, we can say that fractional integrals
are the best mathematical operator to study the smoothness of irregular functions as
we discussed in the introduction part.

8 Open problems

It will be interesting to explore the following problems:

(i) The box dimension of the graph of the fractional integral of mixed R-L type of
fractal functions.

(ii) The box dimension of the graph of the fractional integral of mixed R-L type of
a continuous function having the box dimension greater than two.

Conclusion Calculating fractal dimension of the graph of a function not simple even
for real-valued functions. While in this article, we compute fractal dimension of the
graph of the mixed Riemann-Liouville fractional integral. Various estimates, and in
some special cases the exact value of the box dimensions and the Hausdorff dimen-
sion of the graph Gr(Iγ f ) of Iγ f are given which depend on γ = (γ1, γ2) and f .
For a typical result, if f is μ-Hölder with f (0, 0) = (0, 0), then dimH Gr(Iγ f ) ≤
dimB Gr(Iγ f ) ≤ 3−μ provided that 0 < γ1, γ2 < 1. There are other results when f

has the graph of dimension 2, and when f is of bounded variation. Particular empha-
sis is given to the cases where dimB Gr(Iγ f ) = 2; this is the minimum possible for
a surface and this is the case where an exact value is found. There is an example of a
function that is not of bounded variation but with the graph of the Riemann-Liouville
integral function nevertheless equal to 2; these surfaces are illustrated for various
choices of parameters.

Let us conclude this report with some remarks. Theorem 3.1 is more general hav-
ing fewer restrictions. We can construct a continuous function (Weierstrass type, for
instance, we refer to [24]) having 2.1-dimension, in this case, we can give bounds for
fractal dimensions of the fractional integral of mixed R-L type by using Theorem 3.1
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but we cannot use Theorem 5.1 for this case. Now, let f be a Hölder continuous func-
tion with Hölder exponent 0.5 and dim f = 2.5, in this case, we can use the Theorem
4.1 and also the Theorem 3.1 for the bounds of the fractal dimensions of the frac-
tional integral of mixed R-L type by we cannot apply the Theorem 5.1 for this case.
Similarly, we can illustrate other theorems. So, from the above discussion, we can
conclude that each theorem has special attention and importance. This work is also
an attempt to give geometric and physical interpretations to the fractional integrals
by using fractal dimension as a suitable tool. Overall, this paper may be viewed as
a contribution to link two fields-fractional calculus and fractal geometry. The paper
should be of interest to a broad readership including those interested in fractional
calculus and fractal geometry.
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