
https://doi.org/10.1007/s11075-022-01285-z

ORIGINAL PAPER

Arbitrarily high-order energy-conserving methods
for Poisson problems

Pierluigi Amodio1 · Luigi Brugnano2 ·Felice Iavernaro1

Received: 28 October 2021 / Accepted: 15 February 2022 /
© The Author(s) 2022

Abstract
In this paper, we are concerned with energy-conserving methods for Poisson prob-
lems, which are effectively solved by defining a suitable generalization of HBVMs,
a class of energy-conserving methods for Hamiltonian problems. The actual imple-
mentation of the methods is fully discussed, with a particular emphasis on the
conservation of Casimirs. Some numerical tests are reported, in order to assess the
theoretical findings.

Keywords Poisson problems · Casimir function · Line integral methods ·
Hamiltonian boundary value methods · HBVMs

Mathematics Subject Classification (2010) 65L05 · 65P10

1 Introduction

A Poisson problem is in the form

ẏ = B(y)∇H(y) =: f (y), t > 0, y(0) = y0 ∈ R
m, B(y)� = −B(y),

(1)
where H(y) is a scalar function, usually called the Hamiltonian. For sake of sim-
plicity, hereafter both H(y) and B(y) will be assumed suitably regular. From the

� Luigi Brugnano
luigi.brugnano@unifi.it

Pierluigi Amodio
pierluigi.amodio@uniba.it

Felice Iavernaro
felice.iavernaro@uniba.it

1 Dipartimento di Matematica, Università di Bari, Bari, Italy

2 Dipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Firenze, Italy

Published online: 9 March 2022

Numerical Algorithms (2022) 91:861–894

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-022-01285-z&domain=pdf
http://orcid.org/0000-0002-6290-4107
mailto: luigi.brugnano@unifi.it
mailto: pierluigi.amodio@uniba.it
mailto: felice.iavernaro@uniba.it

skew-symmetry of B(y) one easily deduces that H(y) is a constant of motion, since,
along the solution of (1),

d

dt
H(y) = ∇H(y)�ẏ = ∇H(y)�B(y)∇H(y) = 0,

due to the skew-symmetry of B(y). Possible additional invariants of (1) are its
Casimirs, namely scalar functions C(y) for which

∇C(y)�B(y) = (0, . . . , 0) ∈ R
1×m (2)

holds true for all y. When matrix B(y) is constant, as in the case of Hamiltonian
problems,

ẏ = J∇H(y), t > 0, y(0) = y0, J� = −J, (3)

energy conservation can be obtained by solving problem (3) via HBVMs, a class of
energy-conserving Runge-Kutta methods for Hamiltonian problems (see, e.g., [7, 8,
11, 12] and the monograph [5], see also the recent review paper [6]). Nevertheless,
in the case where the problem is not Hamiltonian, HBVMs are no more energy-
conserving. This motivates the present paper, where an energy-conserving variant of
HBVMs for Poisson problems is derived and analyzed.

The numerical solution of Poisson problems has been tackled by following many
different approaches (see, e.g., [20, Chapter VII] and references therein). More
recently, it has been considered in [19], where an extension of the AVF method [22]
is proposed, and in [1, 3], where a line integral approach has been used instead.
Functionally fitted methods have been proposed in [21, 24–26]. In this paper we
further pursue the line integral approach to the problem, which will provide an
energy-conserving variant of HBVMs for solving (1).

With this premise, the structure of the paper is the following: in Section 2 we
describe the new framework, in which the methods will be derived; in Section 3 we
provide the final shape of the method, while in Section 4 its actual implementation
is studied; in Section 5 we present a few numerical tests confirming the theoretical
findings; at last, in Section 6 we give some concluding remarks.

2 The new framework

As anticipated above, the framework that we shall use to derive and analyze the
methods is that of the so-called line integral methods, namely methods where the
conservation properties are derived by the vanishing of a corresponding line integral
[5, 6]. Such methods have been largely investigated in the case of Hamiltonian prob-
lems, providing their major instance given by Hamiltonian Boundary Value Methods
(HBVMs). The analysis will strictly follow that in [11] and [17]. To begin with, let
us consider problem (1) on the interval [0, h],

ẏ(ch) = B(y(ch))∇H(y(ch)), c ∈ [0, 1], y(0) = y0. (4)

In fact, since we shall speak about a one-step method, it suffices to analyze its
first step of application, with h the time-step. Next, let us consider the orthonormal

Numerical Algorithms (2022) 91:861–894862

Legendre polynomial basis {Pj }j≥0 on the interval [0, 1],

degPj = j,

∫ 1

0
Pi(x)Pj (x)dx = δij , ∀i, j = 0, 1, . . . , (5)

with δij the Kronecker symbol, and the following expansions for the functions at the
right-hand side in (4):

∇H(y(ch)) =
∑
j≥0

Pj (c)γj (y), Pj (c)B(y(ch)) =
∑
i≥0

Pi(c)ρij (y), c ∈ [0, 1],
(6)

γj (y) =
∫ 1

0
Pj (τ)∇H(y(τh))dτ, ρij (y) =

∫ 1

0
Pi(τ)Pj (τ)B(y(τh))dτ, i, j = 0, 1,

The following properties hold true.

Lemma 1 Assume ψ : [0, h] → V , with V a vector space, admit a Taylor expansion
at 0. Then, for all j = 0, 1, . . . :∫ 1

0
Pj (c)c

iψ(ch)dc = O(hj−i), i = 0, . . . , j .

Proof By the hypotheses on ψ , one has:

ciψ(ch) =
∑
r≥0

ψ(r)(0)

r! hrcr+i .

Consequently, for all i = 0, . . . , j , by virtue of (5) it follows that:∫ 1

0
Pj (c)c

iψ(ch)dc =
∑
r≥0

ψ(r)(0)

r! hr

∫ 1

0
Pj (c)c

r+idc

=
∑

r≥j−i

ψ(r)(0)

r! hr

∫ 1

0
Pj (c)c

r+idc = O(hj−i).

Corollary 1 With reference to (6), for any suitably regular path σ : [0, h] → R
m

one has:

γj (σ) = O(hj), ρij (σ) = O(h|i−j |). ∀i, j = 0, 1, (7)

Proof Immediate from Lemma 1, by taking into account (6).

We also state, without proof, the following straightforward property, deriving from
the skew-symmetry of B.

Lemma 2 With reference to (6), for any path σ : [0, h] → R
m one has:

ρij (σ) = ρji(σ) = −ρij (σ)�, ∀i, j = 0, 1, (8)

Numerical Algorithms (2022) 91:861–894 863

Taking into account (6), the right-hand side in (4) can be rewritten as:

ẏ(ch) = B(y(ch))∇H(y(ch)) =
∑
j≥0

Pj (c)B(y(ch))γj (y) =
∑
i,j≥0

Pi(c)ρij (y)γj (y), c ∈ [0, 1],
(9)

from which one obtains that the solution of (4) can be formally written as:

y(ch) = y0 + h
∑
i,j≥0

∫ c

0
Pi(x)dxρij (y)γj (y), c ∈ [0, 1]. (10)

In particular, by considering (5) and that P0(c) ≡ 1, from which
∫ 1
0 Pi(x)dx = δi0,

one has:

y(h) = y0+h
∑
j≥0

ρ0j (y)γj (y) ≡ y0+h
∑
j≥0

∫ 1

0
Pj (c)B(y(ch))dc

∫ 1

0
Pj (c)∇H(y(ch))dc. (11)

In order to obtain a polynomial approximation of degree s to y, it suffices to truncate
the two infinite series in (9) after s terms:

σ̇ (ch) =
s−1∑

i,j=0

Pi(c)ρij (σ)γj (σ), c ∈ [0, 1], (12)

with ρij (σ) and γj (σ) defined according to (6) by formally replacing y by σ .
Consequently, (10) becomes

σ(ch) = y0 + h

s−1∑
i,j=0

∫ c

0
Pi(x)dxρij (σ)γj (σ), c ∈ [0, 1], (13)

providing the approximation

y1 := σ(h) = y0+h

s−1∑
j=0

ρ0j (σ)γj (σ) ≡ y0+h

s−1∑
j=0

∫ 1

0
Pj (c)B(σ(ch))dc

∫ 1

0
Pj (c)∇H(σ(ch))dc,

(14)

in place of (11).

Numerical Algorithms (2022) 91:861–894864

2.1 Interpretation of σ

We now provide an interesting interpretation of the polynomial approximation σ . For
this purpose, let us rewrite (9), by taking into account (6), as follows:

ẏ(ch) =
∑
i,j≥0

Pi(c)ρij (y)γj (y)

=
∑
i≥0

Pi(c)
∑
j≥0

∫ 1

0
Pi(τ)B(y(τh))Pj (τ)dτ

∫ 1

0
Pj (τ1)∇H(y(τ1h))dτ1

=
∑
i≥0

Pi(c)

∫ 1

0
Pi(τ)B(y(τh))

⎛
⎜⎜⎜⎜⎜⎝
∑
j≥0

Pj (τ)

∫ 1

0
Pj (τ1)∇H(y(τ1h))dτ1

︸ ︷︷ ︸
=∇H(y(τ))

⎞
⎟⎟⎟⎟⎟⎠
dτ

≡ B(y(ch))∇H(y(ch)),

as is expected. In a similar way, we can rewrite (12) as:

σ̇ (ch) =
s−1∑

i,j=0

Pi(c)ρij (σ)γj (σ)

=
s−1∑
i=0

Pi(c)

s−1∑
j=0

∫ 1

0
Pi(τ)B(σ(τh))Pj (τ)dτ

∫ 1

0
Pj (τ1)∇H(σ(τ1h))dτ1

=
s−1∑
i=0

Pi(c)

∫ 1

0
Pi(τ)B(σ(τh))

⎛
⎝s−1∑

j=0

Pj (τ)

∫ 1

0
Pj (τ1)∇H(σ(τ1h))dτ1

⎞
⎠ dτ

=:
s−1∑
i=0

Pi(c)

∫ 1

0
Pi(τ)B(σ(τh)) [∇H(σ(τh))]s dτ

≡ [
B(σ(τh)) [∇H(σ(τh))]s

]
s
,

having denoted by [·]s the best approximation in �s−1 (i.e., [·]s is the best polyno-
mial approximation of degree s − 1) of the function in argument. This fact provides
a noticeable interpretation of the polynomial approximation σ , which is the solution
of the initial value problem

σ̇ (ch) = [
B(σ(ch)) [∇H(σ(ch))]s

]
s
, c ∈ [0, 1], σ (0) = y0, (15)

equivalent to (12). Thus, the vector field of (15) is defined by a double projection
procedure onto the finite dimensional vector space �s−1 which involves, in turn, the
vector fields ∇H(σ(ch)) and B(σ(ch)) [∇H(σ(ch))]s , respectively.

Numerical Algorithms (2022) 91:861–894 865

2.2 Analysis

We now analyze the method (12)–(14). The following result then holds true, stating
that the method is energy-conserving.

Theorem 1 H(y1) = H(y0).

Proof In fact, by virtue of (1), (6), and (12)–(14) one has, by using the standard line
integral argument:

H(y1) − H(y0) = H(σ(h)) − H(σ(0)) =
∫ h

0
∇H(σ(t))�σ̇ (t)dt

= h

∫ 1

0
∇H(σ(ch))�σ̇ (ch)dc = h

∫ 1

0
∇H(σ(ch))�

s−1∑
i,j=0

Pi(c)ρij (σ)γj (σ)dc

= h

s−1∑
i,j=0

[∫ 1

0
Pi(c)∇H(σ(ch))dc

]�
ρij (σ)γj (σ) = h

s−1∑
i,j=0

γi(σ)�ρij (σ)γj (σ) = 0,

where the last equality follows from (8).

Concerning the accuracy of the new approximation, the following result holds true.

Theorem 2 Let y1 be defined according to (12)–(14). Then, y1−y(h) = O(h2s+1).1

Proof Let y(t) ≡ y(t, ξ, η) denote the solution of the initial value problem (see (1))

ẏ = B(y)∇H(y) =: F(y), t ≥ ξ, y(ξ) = η, (16)

Moreover, let us denote

�(t, ξ, η) = ∂

∂η
y(t, ξ, η), t ≥ ξ,

also recalling that

∂

∂ξ
y(t, ξ, η) = −�(t, ξ, η)F (η).

Then, by taking into account Lemma 1 and Corollary 1, and setting

i(σ) =
∫ 1

0
Pi(c)�(h, ch, σ (ch))dc = O(hi), i = 0, 1, . . . ,

1I.e., the approximation procedure has order of convergence 2s.

Numerical Algorithms (2022) 91:861–894866

one has:

y1 − y(h) = σ(h) − y(h) = y(h, h, σ (h)) − y(h, 0, σ (0)) =
∫ h

0

d

dt
y(h, t, σ (t))dt

=
∫ h

0

[
∂

∂ξ
y(h, ξ, σ (t))

∣∣∣∣
ξ=t

+ ∂

∂η
y(h, t, η)

∣∣∣∣
η=σ(t)

σ̇ (t)

]
dt

=
∫ h

0
[−�(h, t, σ (t))F (σ (t)) + �(h, t, σ (t))σ̇ (t)] dt

= −h

∫ 1

0
�(h, ch, σ (ch)) [F(σ(ch)) − σ̇ (ch)] dc

= −h

∫ 1

0
�(h, ch, σ (ch))

⎡
⎣B(σ(ch))∇H(σ(ch)) −

s−1∑
i,j=0

Pi(c)ρij (σ)γj (σ)

⎤
⎦ dc

= −h

∫ 1

0
�(h, ch, σ (ch))

⎡
⎣ ∑

i,j≥0

Pi(c)ρij (σ)γj (σ) −
s−1∑

i,j=0

Pi(c)ρij (σ)γj (σ)

⎤
⎦ dc

= −h

⎡
⎣ ∑

i,j≥0

i(σ)ρij (σ)γj (σ) −
s−1∑

i,j=0

i(σ)ρij (σ)γj (σ)

⎤
⎦

= −h

⎡
⎢⎣

s−1∑
i=0

∑
j≥s

i(σ)ρij (σ)︸ ︷︷ ︸
=O(hj)

γj (σ) +
∑
i≥s

s−1∑
j=0

i(σ) ρij (σ)γj (σ)︸ ︷︷ ︸
=O(hi)

+
∑
i,j≥s

i(σ)ρij (σ)γj (σ)

⎤
⎥⎦

= O(h2s+1).

At last, we observe that, since the procedure (12)–(14) is equivalent to defining
the path σ that joins σ(0) = y0 to σ(h) = y1, then the same procedure, when started
at y0 and going forward provides y1 and, when started from y1 and going backward,
brings back to y0. In other words, the following result holds true.

Theorem 3 The procedure (12)–(14) is symmetric.

Proof This result comes as an easy consequence of Theorem 11, where the analogous
property for the full discretized method is shown.

Remark 1 We conclude this section emphasizing that, when problem (1) is Hamilto-
nian, i.e., in the form (3), then matrix B(y) ≡ J is constant, and therefore (see (6))
ρij (σ) = δij J . Consequently, (13) becomes

σ(ch) = y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx

∫ 1

0
Pj (τ)J∇H(σ(τh))dτ, c ∈ [0, 1],

which (see [6, 8, 10]) is the so-called master functional equation defining the class of
energy-conserving methods namedHamiltonian Boundary Value Methods (HBVMs).

Numerical Algorithms (2022) 91:861–894 867

Consequently, when the problem is Hamiltonian, then the procedure (12)–(14)
reduces to the HBVM(∞, s) method in [8].

2.3 Conservation of Casimirs

In this section, we study the required modifications, in order to conserve Casimirs,
i.e., functions satisfying (2). For sake of simplicity, we shall consider the simpler case
of one Casimir, but multiple ones can be handled by slightly adapting the arguments,
as is sketched at the end of the section. To begin with, for the original problem (4),
and its equivalent formulation (9), one has:

0 = C(y(h)) − C(y0) =
∫ h

0
∇C(y(t))�ẏ(t)dt = h

∫ 1

0
∇C(y(ch))�ẏ(ch)dc

= h

∫ 1

0
∇C(y(ch))�B(y(ch))∇H(y(ch))dc = h

∫ 1

0
∇C(y(ch))�

∑
i,j≥0

Pi(c)ρij (y)γj (y)

= h
∑
i,j≥0

[∫ 1

0
Pi(c)∇C(y(ch))dc

]�
ρij (y)γj (y) =: h

∑
i,j≥0

πi(y)�ρij (y)γj (y), (17)

having set

πi(y) =
∫ 1

0
Pi(c)∇C(y(ch))dc = O(hi), (18)

the i-th Fourier coefficient of the gradient of the Casimir, with the last equality fol-
lowing from Lemma 1. Clearly, again from (2), one derives, by taking into account
(12):

C(y1) − C(y0) = C(σ(h)) − C(σ(0)) =
∫ h

0
∇C(σ(t))�σ̇ (t)dt = h

∫ 1

0
∇C(σ(ch))�σ̇ (ch)dc

= h

∫ 1

0
∇C(σ(ch))� [σ̇ (ch) − B(σ(ch))∇H(σ(ch))] dc

+

=0︷ ︸︸ ︷
h

∫ 1

0
∇C(σ(ch))�B(σ(ch))∇H(σ(ch))dc

= −h

∫ 1

0
∇C(σ(ch))�

⎡
⎣ ∑

i,j≥0

Pi(c)ρij (σ)γj (σ) −
s−1∑

i,j=0

Pi(c)ρij (σ)γj (σ)

⎤
⎦ dc

= −h

⎡
⎢⎣∑

i,j≥s

πi(σ)�ρij (σ)γj (σ) +
s−1∑
i=0

∑
j≥s

πi(σ)�ρij (σ)︸ ︷︷ ︸
=O(hj)

γj (σ) +
s−1∑
j=0

∑
i≥s

πi(σ)� ρij (σ)γj (σ)︸ ︷︷ ︸
=O(hi)

⎤
⎥⎦

= O(h2s+1). (19)

In order to recover the conservation of Casimirs, we shall use a strategy akin to
that used in [18] for HBVMs (see also [4]), i.e., suitably perturbing some of its coef-
ficients. In more details, let us consider the following modified polynomial in place

Numerical Algorithms (2022) 91:861–894868

of (12):2

σ̇α(ch) =
s−1∑

i,j=0

Pi(c)ρij (σα)γj (σα) − αB̃γ0(σα), c ∈ [0, 1], σα(0) = y0,

(20)
with B̃� = −B̃
= O an arbitrary skew-symmetric matrix. As is usual, the new
approximation will be y1 := σα(h). In other words, we have considered the following
perturbed coefficient:

ρ00(σα) − αB̃,

in place of ρ00(σ) in (12). The following result holds true.

Theorem 4 Assume that π0(σα)�B̃γ0(σα)
= 0. Then the CasimirC(y) is conserved,
provided that

α =
∑s−1

i,j=0 πi(σα)�ρij (σα)γj (σα)

π0(σα)�B̃γ0(σα)
. (21)

Moreover, α = O(h2s).

Proof In fact, by repeating similar steps as in (19), and replacing σ by σα , as defined
in (20), one obtains:

C(y1) − C(y0) = C(σα(h)) − C(σα(0)) = h

∫ 1

0
∇C(σα(ch))�σ̇α(ch)dc

= h

∫ 1

0
∇C(σα(ch))�

⎡
⎣ s−1∑

i,j=0

Pi(c)ρij (σα)γj (σα) − α B̃γ0(σα)

⎤
⎦ dc

= h

⎡
⎣ s−1∑

i,j=0

πi(σα)�ρij (σα)γj (σα) − α π0(σα)�B̃γ0(σα)

⎤
⎦ = 0,

provided that (21) holds true. The statement is completed by observing that the
numerator is O(h2s), whereas, the denominator is O(1). �

We now prove that the results of Theorems 1 and 2 continue to hold for the
polynomial (20).

Theorem 5 For any α: H(σα(h)) = H(σα(0)).

2Here, we take into account that P0(c) ≡ 1.

Numerical Algorithms (2022) 91:861–894 869

Proof Following similar steps as in the proof of Theorem 1, one has:

H(σα(h)) − H(σα(0)) =
∫ h

0
∇H(σα(t))�σ̇α(t)dt

= h

∫ 1

0
∇H(σα(ch))�σ̇α(ch)dc = h

∫ 1

0
∇H(σα(ch))�

s−1∑
i,j=0

Pi(c)ρij (σα)γj (σα)dc

−hα

[∫ 1

0
∇H(σα(ch))dc

]�
B̃γ0(γα)

= h

s−1∑
i,j=0

γi(σα)�ρij (σα)γj (σα)

︸ ︷︷ ︸
=0

−hα γ0(σα)�B̃γ0(σα) = 0,

due to the fact that B̃ is skew-symmetric, independently of the considered value of
the parameter α.

Theorem 6 Assume that the parameter α in (20) is chosen according to (21). Then,

σα(h) − y(h) = O(h2s+1).

Proof Repeating similar steps as those in the proof of Theorem 2 (and using the same
notation), and taking into account (20), one arrives at:3

σα(h) − y(h)

= −h

⎡
⎣ ∑

i,j≥0

i(σα)ρij (σα)γj (σα) −
s−1∑

i,j=0

i(σα)ρij (σα)γj (σα) + α0(σα)B̃γ0(σα)

⎤
⎦

= −h

⎡
⎢⎣

s−1∑
i=0

∑
j≥s

i(σα)ρij (σα)︸ ︷︷ ︸
=O(hj)

γj (σα) +
∑
i≥s

s−1∑
j=0

i(σα) ρij (σα)γj (σα)︸ ︷︷ ︸
=O(hi)

+
∑
i,j≥s

i(σα)ρij (σα)γj (σα) + α0(σα)B̃γ0(σα)︸ ︷︷ ︸
=O(h2s)

⎤
⎥⎦ = O(h2s+1).

Remark 2 We observe that the modified polynomial σα in (20) is the solution of the
approximate perturbed ODE-IVPs:

σ̇α(ch) =
[(

B(σα(ch)) + αB̃
)
[∇H(σα(ch))]s

]
s
, c ∈ [0, 1], σα(0) = y0,

(22)

3For sake of brevity, we skip here some of the intermediate passages, which are identical to those used in
the proof of Theorem 2.

Numerical Algorithms (2022) 91:861–894870

where the parameter α is such that C(σα(h)) = C(σα(0)). Clearly, when α = 0, one
recovers the problem (15) defining σ .

We end this section by sketching the case when we have r independent Casimirs,
so that C : Rm → R

r . In such a case, the notation introduced above formally still
holds true, with the following differences:

• The Fourier coefficients (see (18)) πi(uα) ∈ R
m×r , i = 0, . . . , s − 1;

• The polynomial (20) now becomes

σ̇α(ch) =
s−1∑

i,j=0

Pi(c)ρij (σα)γj (σα) −
r∑

�=1

α�B̃�γ0(σα), c ∈ [0, 1], σα(0) = y0,

(23)

having set α = (α1, . . . , αr)
� and with B̃�

i = −B̃i , i = 1, . . . , r , arbitrary
skew-symmetric matrices such that

M :=
[
π0(σα)�B̃1γ0(σα), . . . , π0(σα)�B̃rγ0(σα)

]
∈ R

r×r (24)

is nonsingular;
• The vector α, providing the conservation of all Casimirs, is given by (compare

with (21))

α = M−1
s−1∑

i,j=0

πi(σα)�ρij (σα)γj (σα). (25)

3 Discretization

The procedure (12)–(14) described in the previous section is not yet a ready to use
numerical method. In fact, in order for this to happen, the integrals γj (σ), ρij (σ),
i, j = 0, . . . , s−1, defined in (6) need to be conveniently computed or approximated.
For this purpose, as it has been done in the case of HBVMs [8], we shall use a
Gauss-Legendre quadrature formula of order 2k, i.e., the interpolatory quadrature
rule based at the zeros of Pk(c), with abscissae and weights (ci, bi), for a convenient
value k ≥ s. In so doing, we shall in general obtain a new polynomial approximation
u ∈ �s , in place of σ as defined in (12)–(13):

u̇(ch) =
s−1∑

i,j=0

Pi(c)ρ̂ij (u)γ̂j (u), u(ch) = y0 + h

s−1∑
i,j=0

∫ c

0
Pi(x)dxρ̂ij (u)γ̂j (u), c ∈ [0, 1],

(26)

γ̂j (u) =
k∑

�=1

b�Pj (c�)∇H(u(c�h)), ρ̂ij (u) =
k∑

�=1

b�Pi(c�)Pj (c�)B(u(c�h)), i, j = 0, . . . , s − 1.

Numerical Algorithms (2022) 91:861–894 871

Consequently, the new approximation to y(h) will be given by

y1 := u(h) = y0+h

s−1∑
j=0

ρ̂0j (u)γ̂j (u) ≡ y0+h

s−1∑
j=0

k∑
�=1

b�Pj (c�)B(u(c�h))

k∑
�=1

b�Pj (c�)∇H(u(c�h)),

(27)

which is the discrete counterpart of (14).
It is worth mentioning that, in a similar way as done in Section 2.1 for the

polynomial σ , for u one obtains, by virtue of (26):

u̇(ch) =
s−1∑

i,j=0

Pi(c)ρ̂ij (u)γ̂j (u)

=
s−1∑
i=0

Pi(c)

s−1∑
j=0

k∑
�=1

b�Pi(c�)B(u(c�h))Pj (c�)

k∑
�1=1

b�1Pj (c�1)∇H(u(c�1h))

=
s−1∑
i=0

Pi(c)

k∑
�=1

b�Pi(c�)B(u(c�h))

s−1∑
j=0

Pj (c�)

k∑
�1=1

b�1Pj (c�1)∇H(u(c�1h))

=:
s−1∑
i=0

Pi(c)

k∑
�=1

b�Pi(c�)B(u(c�h)) [∇H(u(c�h))](2k)
s

≡
[
B(u(ch)) [∇H(u(ch)](2k)

s

](2k)

s
,

having set [·](2k)
s the approximate best approximation in �s−1 obtained by using

a quadrature of order 2k for approximating the involved integrals.4 Consequently
(compare with (15)), the polynomial u is the solution of the initial value problem:

u̇(ch) =
[
B(u(ch)) [∇H(u(ch))](2k)

s

](2k)

s
, c ∈ [0, 1], u(0) = y0. (28)

Remark 3 We observe that the polynomial approximation defined by the problem

u̇(ch) = [
B(u(ch)) [∇H(u(ch))]s

](2s)
s

, c ∈ [0, 1], u(0) = y0,

corresponds to that provided by the methods in [19], when the Gauss-Legendre
abscissae are used, and to the methods in [26, Definition 3.2], upon selecting
the derivative space as �s−1. Similarly, some of the methods in [1] provide the
approximation

u̇(ch) =
[
B(u(ch)) [∇H(u(ch))](2k)

s

](2s)

s
, c ∈ [0, 1], u(0) = y0.

4I.e., limp→∞[·](p)
s = [·]s .

Numerical Algorithms (2022) 91:861–894872

Remark 4 When in (28) B(σ(ch)) ≡ J , a constant skew-symmetric matrix, we
derive the polynomial approximation provided by a HBVM(k, s) method:

u(ch) = y0 + h

∫ c

0
[J∇H(u(τh))](2k)

s dτ, c ∈ [0, 1]. (29)

3.1 Analysis

As was done in Section 2.2 for the continuous procedure, let us now analyze the fully
discrete method (26)–(27). To begin with, the following straightforward result holds
true.

Theorem 7 If

B ∈ �μ, H ∈ �ν, with μ ≤ 2k + 1

s
− 2, ν ≤ 2k

s
. (30)

Then (see (26) and (6)),

ρ̂ij (u) = ρij (u), γ̂j (u) = γj (u), ∀i, j = 0, . . . , s − 1, (31)

and, consequently, with reference to (26) and (13), one has u ≡ σ .

Proof In fact, if B is a polynomial of degree μ and H a polynomial of degree ν,
the integrand defining ρij (u) has at most degree μs + 2s − 2, whereas that defining
γj (u) has at most degree νs − 1. Consequently, these degrees do not exceed 2k − 1,
when (30) holds true. As a result, the quadrature is exact, so that (31) is valid and,
therefore, u ≡ σ .

Consequently, when (30) hold true, the method is energy-conserving and has order
2s, as stated by Theorems 1 and 2, respectively.

Concerning energy conservation, the following additional result holds true, in the
case where only H is a polynomial.

Theorem 8 If

H ∈ �ν, with ν ≤ 2k

s
, (32)

then H(y1) = H(y0).

Proof In fact, in such a case γj (u) = γ̂j (u), j = 0, . . . , s − 1, and the proof of
Theorem 1 continues formally to hold, upon replacing σ with u, and ρij with ρ̂ij ,
due to the fact that (compare with (8))

ρ̂ij (u) = ρ̂j i(u) = −ρ̂ij (u)�, ∀i, j = 0, 1, . . . , s − 1. (33)

Numerical Algorithms (2022) 91:861–894 873

When (31) does not hold true, there is a quadrature error that, upon regularity
assumptions, can be easily seen to be given by (see (6)):

ρ̂ij (u) − ρij (u) = χij (h) ≡ O(h2k−i−j), (34)

γ̂j (u) − γj (u) = �j(h) ≡ O(h2k−j), ∀i, j = 0, . . . , s − 1.

Nonetheless, also in this case it is straightforward to verify that (compare with (7)),

∀k ≥ s : γ̂j (u) = O(hj), ρ̂ij (u) = O(h|i−j |). ∀i, j = 0, 1, . . . , s − 1.
(35)

Consequently, with reference to the approximation y1 defined in (27), the follow-
ing result is easily obtained, when (32) is not valid.

Theorem 9 ∀k ≥ s : H(y1) = H(y0) + O(h2k+1).

Proof In fact, using arguments similar to those used in the proof of Theorem 1, one
has, by taking into account (33)–(35):

H(y1) − H(y0) = H(u(h)) − H(u(0)) =
∫ h

0
∇H(u(t))�u̇(t)dt

= h

∫ 1

0
∇H(u(ch))�u̇(ch)dc = h

∫ 1

0
∇H(u(ch))�

s−1∑
i,j=0

Pi(c)ρ̂ij (u)γ̂j (u)dc

= h

s−1∑
i,j=0

[∫ 1

0
Pi(c)∇H(u(ch))dc

]�

︸ ︷︷ ︸
=γi (u)�

ρ̂ij (u)
[
γj (u) + �j(h)

]

= h

s−1∑
i,j=0

γi(u)�ρ̂ij (u)γj (u)︸ ︷︷ ︸
=0

+ h

s−1∑
i,j=0

γi(u)�ρ̂ij (u)�j (h)

= h

⎡
⎢⎣

s−1∑
j=0

s−1∑
i=j

γi(u)�ρ̂ij (u)︸ ︷︷ ︸
=O(h2i−j)

�j (h) +
s−1∑
j=0

j−1∑
i=0

γi(u)� ρ̂ij (u)�j (h)︸ ︷︷ ︸
=O(h2k−i)

⎤
⎥⎦ = O(h2k+1).

Concerning the accuracy of the approximation (27), the following result, stating
that the convergence order of Theorem 2 is retained, holds true.

Theorem 10 ∀k ≥ s : y1 − y(h) = O(h2s+1).

Numerical Algorithms (2022) 91:861–894874

Proof By using arguments and notations similar to those used in the proof of
Theorem 2, one has, by taking into account (34) and that k ≥ s:

y1 − y(h) = u(h) − y(h) = y(h, h, u(h)) − y(h, 0, u(0)) =
∫ h

0

d

dt
y(h, t, u(t))dt

=
∫ h

0

[
∂

∂ξ
y(h, ξ, u(t))

∣∣∣∣
ξ=t

+ ∂

∂η
y(h, t, η)

∣∣∣∣
η=u(t)

u̇(t)

]
dt

=
∫ h

0
[−�(h, t, u(t))F (u(t)) + �(h, t, u(t))u̇(t)] dt

= −h

∫ 1

0
�(h, ch, u(ch)) [F(u(ch)) − u̇(ch)] dc

= −h

∫ 1

0
�(h, ch, u(ch))

⎡
⎣B(u(ch))∇H(u(ch)) −

s−1∑
i,j=0

Pi(c)ρ̂ij (u)γ̂j (u)

⎤
⎦ dc

= −h

∫ 1

0
�(h, ch, u(ch))

⎡
⎣ ∑

i,j≥0

Pi(c)ρij (u)γj (u) −
s−1∑

i,j=0

Pi(c)ρij (u)γj (u)

⎤
⎦ dc

︸ ︷︷ ︸
=O(h2s+1), from the proof of Theorem 2

−h

∫ 1

0
�(h, ch, u(ch))

⎡
⎣ s−1∑

i,j=0

Pi(c)ρij (u)γj (u) −
s−1∑

i,j=0

Pi(c)ρ̂ij (u)γ̂j (u)

⎤
⎦ dc

= O(h2s+1) − h

s−1∑
i,j=0

∫ 1

0
Pi(c)�(h, ch, u(ch))dc

︸ ︷︷ ︸
=i(u)

[
ρij (u)γj (u) − ρ̂ij (u)γ̂j (u)

]

= O(h2s+1) − h

s−1∑
i,j=0

i(u)
[
ρij (u)γj (u) − (

ρij (u) + χij (h)
) (

γj (u) + �j (h)
)]

= O(h2s+1) + h

s−1∑
i,j=0

i(u)

⎡
⎢⎣ρij (u)�j (h) + χij (h)γj (u)︸ ︷︷ ︸

=O(h2k−i)

+χij (h)�j (h)︸ ︷︷ ︸
=O(h4k−2j−i)

⎤
⎥⎦

= O(h2s+1) + O(h2k+1) + h

s−1∑
i,j=0

i(u)ρij (u)�j (h) = O(h2s+1) + h

s−1∑
i,j=0

i(u)ρij (u)�j (h).

Concerning the latter sum, one has:

h

s−1∑
i,j=0

i(u)ρij (u)�j (h) = h

s−1∑
i=0

s−1∑
j=i

i(u)ρij (u)︸ ︷︷ ︸
=O(hj)

�j (h) + h

s−1∑
i=0

i−1∑
j=0

i(u) ρij (u)�j (h)︸ ︷︷ ︸
=O(h2k−2j+i)

= O(h2k+1) + O(h2k+2) = O(h2k+1),

and, consequently, the statement follows.

Numerical Algorithms (2022) 91:861–894 875

Remark 5 By taking into account the results of Theorems 7 and 9, it follows that, by
choosing k large enough, one obtains either an exact conservation of the Hamiltonian
function, in the polynomial case, or a practical conservation, in the non polynomial
case. In fact, as it has been also observed for HBVMs [11], in the latter case it is
enough to choose k large enough so that the Hamiltonian error falls within the round-
off error level of the finite precision arithmetic used in the simulation.

It is worth mentioning that a result similar to that of Theorem 3 holds true for the
fully discrete method.

Theorem 11 The method (26)–(27) is symmetric, provided that the abscissae of the
quadrature satisfy 5

ck−i+1 = 1 − ci, i = 1, . . . , k. (36)

Proof Symmetry of a given one-step method y1 = �h(y0) applied to an initial value
problem y′ = f (y) with y(0) = y0, means that �−1

h = �−h that is, applying the
method to the state vector y1, but with the direction of time reversed, yields the initial
state vector y0, independently of the choice of the initial value y0. In our context,
with reference to (26)–(27), �h is defined by

y1 = y0 + h

s−1∑
j=0

ρ̂0j γ̂j , (37)

where ρ̂ij and γ̂j are the solutions of the nonlinear system

γ̂j =
k∑

�=1

b�Pj (c�)∇H

⎛
⎝y0 + h

s−1∑
μ,ν=0

∫ c�

0
Pμ(x)dxρ̂μνγ̂ν

⎞
⎠ ,

ρ̂ij =
k∑

�=1

b�Pi(c�)Pj (c�)B

⎛
⎝y0 + h

s−1∑
μ,ν=0

∫ c�

0
Pμ(x)dxρ̂μνγ̂ν

⎞
⎠ ,

i, j = 0, . . . , s − 1. (38)

We can obtain the explicit formulation of ȳ0 = �−h(y1) by introducing in (37)–(38)
the following substitutions: y1 in place of y0 and −h in place of h. In so doing, we
arrive at the method defined as

ȳ0 = y1 − h

s−1∑
j=0

ρ̄0j γ̄j , (39)

5This is, in fact, the case, for the Gauss-Legendre quadrature abscissae.

Numerical Algorithms (2022) 91:861–894876

where the unknown quantities ρ̄ij and γ̄j satisfy the following nonlinear system

γ̄j =
k∑

�=1

b�Pj (c�)∇H

⎛
⎝y1 − h

s−1∑
μ,ν=0

∫ c�

0
Pμ(x)dxρ̄μνγ̄ν

⎞
⎠ ,

ρ̄ij =
k∑

�=1

b�Pi(c�)Pj (c�)B

⎛
⎝y1 − h

s−1∑
μ,ν=0

∫ c�

0
Pμ(x)dxρ̄μνγ̄ν

⎞
⎠ ,

i, j = 0, . . . , s − 1, (40)

and we want to show that ȳ0 = y0. To this end, we introduce the following variables:

γ ∗
j := (−1)j γ̂j , ρ∗

ij := (−1)i+j ρ̂ij , i, j = 0, . . . , s − 1.

Exploiting the symmetry property of Legendre polynomials, (−1)jPj (c) = Pj (1 −
c), from the first equation in (38) we get

γ ∗
j =

k∑
�=1

b�(−1)jPj (c�)∇H

⎛
⎝y0+h

s−1∑
μ,ν=0

(∫ 1

0
Pμ(x)dx−

∫ 1

c�

Pμ(x)dx

)
ρ̂μν γ̂ν

⎞
⎠

=
k∑

�=1

b�Pj (1 − c�)∇H

⎛
⎝y1 − h

s−1∑
μ,ν=0

∫ 1

c�

Pμ(x)dxρ̂μνγ̂ν

⎞
⎠ .

Introducing the change of variables τ = 1 − x, transforms the latter integral as
∫ 1

c�

Pμ(x)dx = −
∫ 0

1−c�

Pμ(1 − τ)dτ = (−1)μ
∫ 1−c�

0
Pμ(τ)dτ .

Exploiting the symmetry assumption (36), which in turn implies symmetric weights,
bk−i+1 = bi , i = 1, . . . , k, we finally get

γ ∗
j =

k∑
�=1

bk−�+1Pj (ck−�+1)∇H

⎛
⎝y1 − h

s−1∑
μ,ν=0

∫ ck−�+1

0
Pμ(x)dx(−1)μ(−1)ν ρ̂μν(−1)ν γ̂ν

⎞
⎠

=
k∑

�=1

b�Pj (c�)∇H

⎛
⎝y1 − h

s−1∑
μ,ν=0

∫ c�

0
Pμ(x)dxρ∗

μνγ
∗
ν

⎞
⎠ .

The same flow of computation may be employed on the second equation in (38) to
see that

ρ∗
ij =

k∑
�=1

b�Pi(c�)Pj (c�)B

⎛
⎝y1 − h

s−1∑
μ,ν=0

∫ c�

0
Pμ(x)dxρ∗

μνγ
∗
ν

⎞
⎠ .

We then realize that γ ∗
j and ρ∗

ij satisfy the very same nonlinear system (40) governing
the quantities γ̄j and ρ̄ij . Thus we may conclude that

γ̄j = (−1)j γ̂j , ρ̄ij = (−1)i+j ρ̂ij , i, j = 0, . . . , s − 1,

Numerical Algorithms (2022) 91:861–894 877

and hence from (39),

ȳ0 = y1 − h

s−1∑
j=0

(−1)j ρ̂0j (−1)j γ̂j = y1 − h

s−1∑
j=0

ρ̂0j γ̂j = y0.

In the limit case when k → ∞, since the Gauss-Legendre quadrature formule are
convergent, we are led back to the symmetry property of the original non-discretized
procedure (12)–(14) that we anticipated in Theorem 3.

We conclude this section by emphasizing that, when problem (1) is in the form
(3), then (see (26)) ρ̂ij (σ) = δij J and, consequently, the polynomial approximation
u becomes

u(ch) = y0 + h

s−1∑
j=0

∫ c

0
Pj (x)dx

k∑
i=1

biPj (ci)J∇H(u(cih)), c ∈ [0, 1],

which is equivalent to (29). As anticipated in Remark 4, this equation (see, e.g., the
monograph [5] or the review paper [6, Section 2.2]) defines a Hamiltonian Bound-
ary Value Method with parameters k and s, in short HBVM(k, s). Moreover, also
Theorems 7–10 exactly describe, in the case of problem (3), their conservation and
accuracy properties. For this reason, the methods here presented can be regarded as
a generalization of HBVMs for solving Poisson problems and, therefore, this fact,
motivates the following definition.

Definition 1 We shall refer to the method (26)–(27) as to a PHBVM(k, s) method.

3.2 Conservation of Casimirs

This section is devoted to the conservation of Casimirs for the discrete PHBVM(k, s)

method (26)–(27), following similar steps as those in Section 2.3. For this purpose,
it is convenient to define the approximate Fourier coefficients, for k ≥ s, which we
assume hereafter:

π̂i(σ) =
k∑

�=1

b�Pi(c�)∇C(σ(c�h)) = O(hj), i = 0, . . . , s − 1. (41)

The following straightforward result is reported without proof.

Lemma 3 Assume that σ ∈ �s . Then, with reference to (18), for all i = 0, . . . , s−1,
one has:

π̂i(σ) = πi(σ), if C ∈ �ν, ν ≤ 2k/s,

π̂i(σ) = πi(σ) − θi(h), θi(h) = O(h2k−i), otherwise.

Numerical Algorithms (2022) 91:861–894878

Next, let us consider the following perturbed polynomial, in place of the polyno-
mial u in (26),

u̇α(ch) =
s−1∑

i,j=0

Pi(c)ρ̂ij (uα)γ̂j (uα) − αB̃γ̂0(uα), c ∈ [0, 1], uα(0) = y0,

(42)
with B̃� = −B̃
= O an arbitrary matrix, and (compare with (21))

α =
∑s−1

i,j=0 π̂i(uα)�ρ̂ij (uα)γ̂j (uα)

π̂0(uα)�B̃γ̂0(uα)
= O(h2s). (43)

Theorem 12 If

B ∈ �μ, C, H ∈ �ν, with μ ≤ 2k + 1

s
− 2, ν ≤ 2k

s
. (44)

Then (see (26), (6)), (18), and (41)

ρ̂ij (uα) = ρij (uα), γ̂j (uα) = γj (uα), π̂i (uα) = πi(uα), ∀i, j = 0, . . . , s − 1,
(45)

and, consequently, with reference to (42) and (20), one has uα ≡ σα .

Differently, by setting y1 := uα(h) the new approximation, Theorems 8, 9, 10,
and 11 continue formally to hold. Moreover, the following result holds true.

Theorem 13 With reference to (42)–(43), one has:

C(y1) − C(y0) =
{

0, if C ∈ �ν, with ν ≤ 2k/s,

O(h2k+1), otherwise.

Proof By taking into account Lemma 3, one obtains:

C(y1) − C(y0) = h

∫ 1

0
∇C(uα(ch))�u̇α(ch)dc

= h

∫ 1

0
∇C(uα(ch))�

⎡
⎣ s−1∑

i,j=0

Pi(c)ρ̂ij (uα)γ̂j (uα) − α B̃γ̂0(uα)

⎤
⎦ dc

= h

⎡
⎣ s−1∑

i,j=0

(∫ 1

0
∇C(uα(ch))Pi(c)dc

)�
ρ̂ij (uα)γ̂j (uα)−α

(∫ 1

0
∇C(uα(ch))Pi(c)dc

)�
B̃γ̂0(uα)

⎤
⎦ dc

= h

⎡
⎣ s−1∑

i,j=0

πi(uα)�ρ̂ij (uα)γ̂j (uα) − α π0(uα)�B̃γ̂0(uα)

⎤
⎦ =: (∗).

Numerical Algorithms (2022) 91:861–894 879

In case C ∈ �ν with ν ≤ 2k/s, then, by virtue of Lemma 3, πi(uα) = π̂i(uα) and,
consequently, (∗) = 0 because of (43). Conversely, again from Lemma 3, one has:

(∗) = h

⎡
⎣ s−1∑

i,j=0

[
π̂i(uα) + θi(h)

]�
ρ̂ij (uα)γ̂j (uα)−α

[
π̂0(uα) + θ0(h)

]�
B̃γ̂0(uα)

⎤
⎦

= h

⎡
⎢⎢⎢⎢⎢⎣

s−1∑
i,j=0

θi(h)�ρ̂ij (uα)γ̂j (uα)

︸ ︷︷ ︸
=O(h2k)

− α θ0(h)�B̃γ̂0(uα)︸ ︷︷ ︸
=O(h2k+2s)

⎤
⎥⎥⎥⎥⎥⎦

= O(h2k+1).

Remark 6 From the arguments here exposed, one deduces that when using a finite
precision arithmetic, a (at least) practical conservation of both the Hamiltonian and
the Casimirs can be obtained, by choosing k large enough.

Definition 2 Following [18], we name enhanced PHBVM(k, s), in short
EPHBVM(k, s), the method defined by (42)–(43).

Following Remark 2, the polynomial uα defined by an EPHBVM(k, s) method is
the solution of the ODE-IVP (compare with (22)):

u̇α(ch) =
[(

B(uα(ch)) + αB̃
)
[∇H(uα(ch))](2k)

s

](2k)

s
, c ∈ [0, 1], uα(0) = y0.

Clearly, when α = 0 one retrieves the problem (28) defining the polynomial
approximation of the PHBVM(k, s) method.

Remark 7 From the results of Theorems 8, 9, and 13, one deduces the clear advantage
of choosing values of k suitably larger than s, in order to obtain a suitable conserva-
tion of non-quadratic Hamiltonians and/or Casimirs. This fact will be duly confirmed
in the numerical tests. Moreover, this is not a serious drawback, from the point of
view of the computational cost, since, as we shall see in the next section, the discrete
problem to be solved will always have (block) dimension s, independently of k.6

4 The discrete problem

In this section we deal with the efficient solution of the discrete problem generated
by the PHBVM(k, s) method (26). For this purpose, we observe that only the values

6This latter feature is inherited, in turn, from the original methods, HBVM(k, s) and EHBVM(k, s) for
Hamiltonian problems.

Numerical Algorithms (2022) 91:861–894880

Y� := u(c�h), � = 1, . . . , k, are actually needed. Consequently, (26) can be re-
written as:

Y� = y0 + h

s−1∑
i,j=0

∫ c�

0
Pi(x)dxρ̂ij γ̂j , � = 1, . . . , k, (46)

γ̂j =
k∑

�=1

b�Pj (c�)∇H(Y�), ρ̂ij =
k∑

�=1

b�Pi(c�)Pj (c�)B(Y�), i, j = 0, . . . , s − 1,

where, for sake of brevity, we have omitted the argument u for γ̂j and ρ̂ij , as was
already done in (37)–(38). The (46) can be cast in matrix form by defining the block
vectors and matrices

Y =
⎛
⎜⎝

Y1
...

Yk

⎞
⎟⎠ ∈ R

k·m, γ =
⎛
⎜⎝

γ̂0
...

γ̂s−1

⎞
⎟⎠ ∈ R

s·m, � =
⎛
⎜⎝

ρ̂00 . . . ρ̂0,s−1
...

...
ρ̂s−1,0 . . . ρ̂s−1,s−1

⎞
⎟⎠ ∈ R

s·m×s·m,

(47)

and

e =
⎛
⎜⎝

1
...
1

⎞
⎟⎠ ∈ R

k, � =
⎛
⎜⎝

b1
. . .

bk

⎞
⎟⎠ , Is =

(∫ ci

0
Pj−1(x)dx

)
, Ps = (

Pj−1(ci)
) ∈ R

k×s .

(48)

In fact, by also setting hereafter Ir the identity of dimension r , we can rewrite (46) as:

Y = e ⊗ y0 + h(Is ⊗ Im)�γ , γ = (P�
s � ⊗ Im)∇H(Y), � = (P�

s � ⊗ Im)B(Y)(Ps ⊗ Im),

(49)

where

∇H(Y) =
⎛
⎜⎝

∇H(Y1)
...

∇H(Yk)

⎞
⎟⎠ and B(Y) =

⎛
⎜⎝

B(Y1)

. . .
B(Yk)

⎞
⎟⎠ .

As is clear, the discrete problem (49) can be further reformulated in terms of the
product of the Fourier coefficients ρ̂ij and γ̂j . In fact, by setting

φ ≡
⎛
⎜⎝

φ0
...

φs−1

⎞
⎟⎠ := �γ ⇒ φi =

s−1∑
j=0

ρ̂ij γ̂j , i = 0, . . . , s − 1, (50)

the first equation in (49) becomes

Y = e ⊗ y0 + hIs ⊗ Imφ, (51)

Numerical Algorithms (2022) 91:861–894 881

whereas, multiplying side by side the third by the second gives

φ = (P�
s � ⊗ Im)B(Y) (PsP�

s � ⊗ Im)∇H(Y). (52)

Consequently, by substituting the right-hand side of (51) in the right-hand side of
(52), provides the new discrete problem:

F(φ) := φ − P�
s � ⊗ Im B (e ⊗ y0 + hIs ⊗ Imφ) (PsP�

s � ⊗ Im)∇H (e ⊗ y0 + hIs ⊗ Imφ)

= 0. (53)

Moreover, computing the vector φ in (50) allows us to obtain the new approximation
(27) as:

y1 = y0 + hφ0.

Remark 8 In case where the problem (1) is in the form (3), one has that B(Y) =
Is ⊗ J . Consequently, considering that

P�
s �Ps = Is, (54)

the discrete problem (53) reduces to:

φ − P�
s � ⊗ J∇H (e ⊗ y0 + hIs ⊗ Jφ) = 0.

This latter problem is exactly that generated by a HBVM(k, s) method applied for
solving (3) [9]. We observe, however, that while the original HBVM(k, s) method is
actually a k-stage Runge-Kutta method with Butcher tableau (see (48))

this is no more the case for the generalization defined by (49).

Remark 9 In the case k = s, one has thatPsP�
s � = Is . Consequently, (53) becomes,

by using the notation (16),

φ = (P�
s � ⊗ Im) F (e ⊗ y0 + hIs ⊗ Imφ).

This, in turn, is equivalent to the application of the s-stage Gauss method to the
problem (1) (see, e.g., [9]).

Instead, in the case k > s, the discrete problem (53) is equivalent to the application
of the HBVM(k, s) method to the problem (see (28)),

ẏ = B(y)[∇H(y)](2k)
s , t > 0, y(0) = y0,

in place of (1). This application , in turn, provides the polynomial approximation (28).

Numerical Algorithms (2022) 91:861–894882

We observe that the formulation (53) naturally induces a straightforward iterative
procedure for solving the discrete problem,

φr+1 =
P�

s � ⊗ Im B
(
e ⊗ y0 + hIs ⊗ Imφr

)
(PsP�

s � ⊗ Im)∇H
(
e ⊗ y0 + hIs ⊗ Imφr

)
,

r = 0, 1, . . . , (55)

for which the initial approximation φ0 = 0 can be conveniently used. It is also possi-
ble to use the simplified Newton iteration for solving (53) which, taking into account
(48), (54), and that (see, e.g., [5])

P�
s �Is = Xs :=

⎛
⎜⎜⎜⎜⎝

ξ0 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−1 0

⎞
⎟⎟⎟⎟⎠ , ξi =

(
2
√

|4i2 − 1|
)−1

, i = 0, . . . , s − 1,

(56)

takes the form:

solve:
[
Is ⊗ Im − hXs ⊗ F ′(y0)

]
δr = −F(φr), φr+1 := φr + δr , r = 0, 1, . . . , (57)

with F ′ the Jacobian of F (see (16)). Nevertheless, the iteration (57) requires the
factorization of a matrix having size s times larger than that of problem (1), which
can be costly, when s and/or m are large. Consequently, it is much more effective to
resort to a blended iteration for solving (53) (see, e.g., [9], we also refer to [13] for a
more detailed analysis of blended methods). In the present case, this latter iteration,
considering the matrix Xs defined in (56), denoting σ(Xs) its spectrum, and setting

� := Im − hλsF
′(y0) ∈ R

m×m, with λs = min
λ∈σ(Xs)

|λ|, (58)

assumes the form:

ηr := −F(φr), ηr
1 := λsX

−1
s ⊗ Im ηr , (59)

φr+1 := φr + Is ⊗ �−1
(
ηr
1 + Is ⊗ �−1 (ηr − ηr

1

))
, r = 0, 1,

Consequently, only the matrix � in (58), having the same size as that of the contin-
uous problem (1), needs to be factored. This fact is a common feature, in the many
instances where the blended iteration can be used. For this reason, in such cases, it
turns out to be extremely efficient (see, e.g., [2, 14–16, 23]).

Remark 10 In the practical use of the methods, it is customary to choose the parame-
ter k, related to the order of the quadrature, so that the discretization error falls within

Numerical Algorithms (2022) 91:861–894 883

the round-off error level. Nevertheless, round-off errors are unavoidable, as are iter-
ation errors in (55) or (59). This may cause a small numerical drift in the invariants,7

even in the case where the quadrature is exact. This phenomenon has been duly stud-
ied in [5, Chapter 4.3], where a simple correction procedure is given to avoid this
problem. The same procedure can be conveniently used in this setting, too. The reader
is referred to the above reference for full details.

4.1 Conservation of Casimirs

In this section we sketch the implementation of EPHBVM(k, s) methods described
in Section 3.2. For this purpose, besides the vector φ defined in (50), we need to
define the block vector

π̂ =
⎛
⎜⎝

π̂0
...

π̂s−1

⎞
⎟⎠ (60)

with the approximate Fourier coefficients (41) of the gradient of the Casimir.8 In so
doing, the discrete problem generated by an EHBVM(k, s) method becomes:

F(φ, α) :=
⎛
⎝ φ − P�

s � ⊗ Im B (Y) (PsP�
s � ⊗ Im)∇H (Y)

α − π̂�φ

π̂�
0 B̃γ̂0

⎞
⎠ = 0, (61)

with

Y = e ⊗ y0 + hIs ⊗ Imφ − αhc ⊗ (B̃γ̂0),

γ̂0 = b� ⊗ Im ∇H(Y),

π̂ = P�
s � ⊗ Im ∇C(Y),

and the new approximation given by

y1 = y0 + h
(
φ0 − α B̃γ̂0

)
.

We conclude this section by mentioning that, in case of multiple Casimirs, the
discrete problem (61) can be readily generalized, by considering discrete counterparts
of (24)–(25).

5 Numerical tests

In this section we present a couple of numerical tests concerning the solution of
Lotka-Volterra problems, with the last one possessing a Casimir. The numerical tests
have been carried out on a 3GHz Intel Xeon W10 core computer with 64GB of
memory running Matlab 2020a.

7 Usually, this is a very small drift, of the order of the machine epsilon per step.
8As before, for sake of brevity we now omit the argument uα of the approximate Fourier coefficients.

Numerical Algorithms (2022) 91:861–894884

Example 1 We consider the following Lotka-Volterra problem:

ẏ =
(

0 y1y2
−y1y2 0

)
∇H(y),

H(y) = a

(
ln y1 − y1

y∗
1

)
+ b

(
ln y2 − y2

y∗
2

)
, (62)

with

a = 1, b = 3, y∗
1 = y∗

2 = 1, y(0) = (5, 1)� ,

whose solution, which is periodic of period T ≈ 4.633434168477889, is depicted
in Fig. 1. At first, we solve the problem on one period with time-step h = T/n, by
using the following methods:

• The s-stage Gauss method, s = 1, 2, 3;
• The PHBVM(4, s), s = 1, 2, and PHBVM(6, 3) methods, which become soon

energy-conserving, as the value of n is increased.

The obtained results are summarized in Table 1, where we have denoted by ey and eH

the error in the solution and in the Hamiltonian after one period, respectively. Their
numerical rate of convergence is also reported, along with the mean blended itera-
tions (58)–(59) per time-step (it), in order to obtain convergence within full machine
accuracy, and the execution time in sec. From the listed results, one infers that:

• As is striking clear, the higher order methods are much more efficient than the
lower order ones, especially when a high accuracy is required;

• The theoretical rate of convergence for both the solution and the Hamiltonian
errors is that we expected (for PHBVMs, until the Hamiltonian error falls within
the round-off error level);

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
y1

0

0.5

1

1.5

2

2.5

3

y 2

Fig. 1 Solution of problem (62)

Numerical Algorithms (2022) 91:861–894 885

Table 1 Results for problem (62)

n ey Rate eH Rate it Time ey Rate eH Rate it Time

Gauss-1 PHBVM(4, 1)

50 3.54e-02 — 4.47e-02 — 7.4 0.01 7.64e-02 — 1.72e-07 — 8.5 0.02

100 8.56e-03 2.1 1.09e-02 2.0 5.8 0.01 1.85e-02 2.0 6.48e-10 8.1 6.7 0.03

200 2.12e-03 2.0 2.71e-03 2.0 5.1 0.02 4.58e-03 2.0 2.37e-12 8.1 5.5 0.05

400 5.29e-04 2.0 6.77e-04 2.0 4.4 0.04 1.14e-03 2.0 8.88e-16 ** 4.6 0.09

800 1.32e-04 2.0 1.69e-04 2.0 4.1 0.07 2.86e-04 2.0 8.88e-16 ** 4.3 0.16

1600 3.30e-05 2.0 4.23e-05 2.0 3.5 0.13 7.14e-05 2.0 1.78e-15 ** 4.0 0.30

3200 8.25e-06 2.0 1.06e-05 2.0 3.2 0.25 1.79e-05 2.0 8.88e-16 ** 3.4 0.56

6400 2.06e-06 2.0 2.64e-06 2.0 3.1 0.48 4.46e-06 2.0 1.78e-15 ** 3.1 1.08

12800 5.16e-07 2.0 6.61e-07 2.0 3.0 0.95 1.12e-06 2.0 1.78e-15 ** 3.0 2.12

25600 1.29e-07 2.0 1.65e-07 2.0 3.0 1.95 2.79e-07 2.0 1.78e-15 ** 3.0 4.18

51200 3.22e-08 2.0 4.13e-08 2.0 3.0 3.87 6.97e-08 2.0 1.78e-15 ** 3.0 8.41

102400 8.06e-09 2.0 1.03e-08 2.0 2.6 7.45 1.74e-08 2.0 1.78e-15 ** 2.9 16.54

204800 2.02e-09 2.0 2.58e-09 2.0 2.3 14.32 4.36e-09 2.0 2.66e-15 ** 2.4 30.83

409600 5.04e-10 2.0 6.45e-10 2.0 2.1 27.64 1.09e-09 2.0 2.66e-15 ** 2.2 59.74

819200 1.26e-10 2.0 1.61e-10 2.0 2.0 55.22 2.72e-10 2.0 2.66e-15 ** 2.0 114.18

Gauss-2 PHBVM(4, 2)

50 3.43e-04 — 1.83e-04 — 8.9 0.01 4.89e-05 — 7.97e-09 — 9.1 0.02

100 2.16e-05 4.0 1.15e-05 4.0 7.8 0.02 3.05e-06 4.0 3.19e-11 8.0 7.9 0.03

200 1.35e-06 4.0 7.21e-07 4.0 6.8 0.03 1.90e-07 4.0 8.88e-16 ** 6.9 0.05

400 8.44e-08 4.0 4.51e-08 4.0 6.0 0.06 1.19e-08 4.0 8.88e-16 ** 6.1 0.10

800 5.28e-09 4.0 2.82e-09 4.0 5.5 0.10 7.44e-10 4.0 1.78e-15 ** 5.6 0.18

1600 3.30e-10 4.0 1.76e-10 4.0 5.1 0.19 4.65e-11 4.0 8.88e-16 ** 5.2 0.35

3200 2.06e-11 4.0 1.10e-11 4.0 4.7 0.36 2.97e-12 4.0 1.78e-15 ** 4.7 0.65

6400 1.28e-12 4.0 6.84e-13 4.0 4.3 0.68 2.24e-13 3.7 1.78e-15 ** 4.3 1.23

Gauss-3 PHBVM(6, 3)

50 5.49e-07 — 2.88e-07 — 9.7 0.01 1.23e-07 — 8.88e-16 — 9.8 0.02

100 8.58e-09 6.0 4.49e-09 6.0 8.1 0.02 1.92e-09 6.0 8.88e-16 ** 8.2 0.03

200 1.34e-10 6.0 7.00e-11 6.0 7.0 0.03 3.00e-11 6.0 8.88e-16 ** 7.1 0.06

400 2.12e-12 6.0 1.10e-12 6.0 6.3 0.06 5.08e-13 5.9 1.78e-15 ** 6.4 0.12

800 5.30e-14 5.3 2.04e-14 5.7 5.7 0.11 4.80e-14 3.4 1.78e-15 ** 5.7 0.22

• For a fixed time-step h, the numerical solutions provided by the Gauss methods
and by the corresponding PHBVM method have a comparable accuracy, despite
the negligible Hamiltonian error of these latter methods;

• The execution times of the PHBVM methods are about double than those of
the corresponding Gauss methods, even though the mean number of blended

Numerical Algorithms (2022) 91:861–894886

100 101 102

periods

10-16

10-14

10-12

10-10

10-8

10-6

H
am

ilt
on

ia
n

er
ro

r

Gauss-3

PHBVM(6,3)

100 101 102

periods

10-9

10-8

10-7

10-6

10-5

10-4

so
lu

tio
n

er
ro

r

PHBVM(6,3)

Gauss-3

Fig. 2 Hamiltonian error (left plot) and solution error (right plot) when solving problem (62) with time-
step h = T/100 over 100 periods

iterations per time-step is practically the same (this latter, decreasing with the
time-step h, and slightly increasing with s).

As a result, one would conclude that the conservation of the Hamiltonian apparently
gains no practical advantage. However, this conclusion is readily confuted if we look
at the error growth in the Hamiltonian and in the solution. In fact, in Fig. 2 there is the
plot of the Hamiltonian error (left plot) and the solution error (right plot) by using the
3-stage Gauss method and the PHBVM(6,3) method with time-step h = T/100 over
100 periods. As one may see, now it is clear that the 3-stage Gauss method exhibits
a numerical drift in the energy, unlike PHBVM(6,3). As a result, this latter method
exhibits a linear error growth, whereas the former one has a quadratic error growth.

Fig. 3 Solution of problem (63)

Numerical Algorithms (2022) 91:861–894 887

Ta
bl
e
2

R
es
ul
ts
fo
r
pr
ob
le
m

(6
3)

n
e y

R
at
e

e H
R
at
e

e C
R
at
e

it
T
im

e
e y

R
at
e

e H
R
at
e

e C
R
at
e

it
T
im

e

G
au
ss
-1

PH
B
V
M

(4
,
1)

50
6.
25
e-
02

—
4.
89
e-
01

—
3.
86
e-
02

—
8.
4

0.
03

1.
23
e-
01

—
1.
01
e-
05

—
5.
45
e-
02

—
9.
8

0.
05

10
0

1.
62
e-
02

1.
9

1.
26
e-
01

2.
0

9.
80
e-
03

2.
0

6.
5

0.
01

3.
00
e-
02

2.
0

3.
80
e-
08

8.
0

1.
32
e-
02

2.
0

7.
2

0.
03

20
0

4.
10
e-
03

2.
0

3.
18
e-
02

2.
0

2.
44
e-
03

2.
0

5.
6

0.
03

7.
46
e-
03

2.
0

5.
55
e-
15

∗∗
3.
26
e-
03

2.
0

5.
9

0.
06

40
0

1.
03
e-
03

2.
0

7.
97
e-
03

2.
0

6.
09
e-
04

2.
0

4.
7

0.
04

1.
86
e-
03

2.
0

5.
11
e-
15

∗∗
8.
13
e-
04

2.
0

5.
0

0.
10

80
0

2.
57
e-
04

2.
0

1.
99
e-
03

2.
0

1.
52
e-
04

2.
0

4.
3

0.
08

4.
65
e-
04

2.
0

2.
00
e-
15

∗∗
2.
03
e-
04

2.
0

4.
4

0.
18

16
00

6.
42
e-
05

2.
0

4.
99
e-
04

2.
0

3.
81
e-
05

2.
0

3.
8

0.
14

1.
16
e-
04

2.
0

2.
44
e-
15

∗∗
5.
07
e-
05

2.
0

4.
1

0.
33

32
00

1.
60
e-
05

2.
0

1.
25
e-
04

2.
0

9.
51
e-
06

2.
0

3.
5

0.
25

2.
91
e-
05

2.
0

3.
77
e-
15

∗∗
1.
27
e-
05

2.
0

3.
6

0.
59

64
00

4.
01
e-
06

2.
0

3.
12
e-
05

2.
0

2.
38
e-
06

2.
0

3.
1

0.
49

7.
27
e-
06

2.
0

3.
33
e-
15

∗∗
3.
17
e-
06

2.
0

3.
4

1.
14

12
80
0

1.
00
e-
06

2.
0

7.
79
e-
06

2.
0

5.
95
e-
07

2.
0

3.
0

0.
97

1.
82
e-
06

2.
0

3.
77
e-
15

∗∗
7.
93
e-
07

2.
0

3.
1

2.
19

25
60
0

2.
51
e-
07

2.
0

1.
95
e-
06

2.
0

1.
49
e-
07

2.
0

3.
0

1.
93

4.
54
e-
07

2.
0

3.
77
e-
15

∗∗
1.
98
e-
07

2.
0

3.
0

4.
32

51
20
0

6.
27
e-
08

2.
0

4.
87
e-
07

2.
0

3.
72
e-
08

2.
0

3.
0

3.
87

1.
14
e-
07

2.
0

3.
77
e-
15

∗∗
4.
95
e-
08

2.
0

3.
0

8.
61

10
24
00

1.
57
e-
08

2.
0

1.
22
e-
07

2.
0

9.
29
e-
09

2.
0

2.
9

7.
67

2.
84
e-
08

2.
0

4.
22
e-
15

∗∗
1.
24
e-
08

2.
0

3.
0

17
.1
8

20
48
00

3.
92
e-
09

2.
0

3.
04
e-
08

2.
0

2.
32
e-
09

2.
0

2.
5

14
.7
0

7.
10
e-
09

2.
0

5.
11
e-
15

∗∗
3.
10
e-
09

2.
0

2.
7

33
.3
4

40
96
00

9.
79
e-
10

2.
0

7.
61
e-
09

2.
0

5.
81
e-
10

2.
0

2.
3

28
.7
9

1.
77
e-
09

2.
0

5.
55
e-
15

∗∗
7.
74
e-
10

2.
0

2.
5

63
.8
5

81
92
00

2.
45
e-
10

2.
0

1.
90
e-
09

2.
0

1.
45
e-
10

2.
0

2.
1

55
.8
0

4.
44
e-
10

2.
0

5.
55
e-
15

∗∗
1.
93
e-
10

2.
0

2.
2

12
2.
89

G
au
ss
-2

PH
B
V
M

(4
,
2)

Numerical Algorithms (2022) 91:861–894888

Ta
bl
e
2

(c
on
tin

ue
d)

n
e y

R
at
e

e H
R
at
e

e C
R
at
e

it
T
im

e
e y

R
at
e

e H
R
at
e

e C
R
at
e

it
T
im

e

50
2.
56
e-
04

—
1.
79
e-
03

—
8.
08
e-
04

—
10
.4

0.
02

2.
18
e-
04

—
3.
49
e-
07

—
9.
72
e-
04

—
10
.4

0.
03

10
0

1.
58
e-
05

4.
0

1.
11
e-
04

4.
0

5.
37
e-
05

3.
9

8.
5

0.
02

1.
30
e-
05

4.
1

1.
52
e-
09

7.
8

6.
22
e-
05

4.
0

8.
7

0.
04

20
0

9.
88
e-
07

4.
0

6.
97
e-
06

4.
0

3.
32
e-
06

4.
0

7.
4

0.
03

8.
05
e-
07

4.
0

3.
77
e-
15

∗∗
3.
86
e-
06

4.
0

7.
5

0.
06

40
0

6.
17
e-
08

4.
0

4.
35
e-
07

4.
0

2.
09
e-
07

4.
0

6.
5

0.
06

5.
02
e-
08

4.
0

2.
00
e-
15

∗∗
2.
42
e-
07

4.
0

6.
5

0.
11

80
0

3.
86
e-
09

4.
0

2.
72
e-
08

4.
0

1.
31
e-
08

4.
0

6.
0

0.
11

3.
13
e-
09

4.
0

2.
00
e-
15

∗∗
1.
51
e-
08

4.
0

6.
2

0.
21

16
00

2.
41
e-
10

4.
0

1.
70
e-
09

4.
0

8.
16
e-
10

4.
0

5.
4

0.
20

1.
96
e-
10

4.
0

3.
77
e-
15

∗∗
9.
46
e-
10

4.
0

5.
4

0.
37

32
00

1.
51
e-
11

4.
0

1.
06
e-
10

4.
0

5.
10
e-
11

4.
0

5.
0

0.
38

1.
23
e-
11

4.
0

3.
77
e-
15

∗∗
5.
91
e-
11

4.
0

5.
1

0.
71

64
00

9.
98
e-
13

3.
9

6.
65
e-
12

4.
0

3.
19
e-
12

4.
0

4.
5

0.
71

8.
54
e-
13

3.
8

3.
77
e-
15

∗∗
3.
70
e-
12

4.
0

4.
5

1.
35

G
au
ss
-3

PH
B
V
M

(6
,
3)

n
e y

ra
te

e H
ra
te

e C
ra
te

it
tim

e
e y

ra
te

e H
ra
te

e C
ra
te

it
tim

e

50
1.
13
e-
06

—
6.
47
e-
06

—
3.
57
e-
06

—
10
.9

0.
01

5.
51
e-
07

—
5.
11
e-
15

—
1.
97
e-
06

—
11
.1

0.
03

10
0

1.
76
e-
08

6.
0

1.
00
e-
07

6.
0

5.
43
e-
08

6.
0

8.
9

0.
02

9.
34
e-
09

5.
9

3.
33
e-
15

∗∗
2.
79
e-
08

6.
1

9.
1

0.
04

20
0

2.
76
e-
10

6.
0

1.
60
e-
09

6.
0

8.
86
e-
10

5.
9

7.
7

0.
03

1.
49
e-
10

6.
0

2.
89
e-
15

∗∗
4.
26
e-
10

6.
0

7.
8

0.
07

40
0

4.
23
e-
12

6.
0

2.
50
e-
11

6.
0

1.
38
e-
11

6.
0

6.
8

0.
06

2.
25
e-
12

6.
0

2.
89
e-
15

∗∗
6.
62
e-
12

6.
0

6.
9

0.
12

80
0

3.
08
e-
14

7.
1

4.
05
e-
13

5.
9

2.
17
e-
13

6.
0

6.
3

0.
11

6.
30
e-
14

5.
2

3.
33
e-
15

∗∗
1.
03
e-
13

6.
0

6.
3

0.
23

Numerical Algorithms (2022) 91:861–894 889

100 101 102

periods

10-16

10-14

10-12

10-10

10-8

10-6

10-4

Hamiltonian error Gauss-3
Casimir error Gauss-3
Hamiltonian error PHBVM(6,3)
Casimir error PHBVM(6,3)

100 101 102

periods

10-8

10-7

10-6

10-5

10-4

so
lu

tio
n

er
ro

r

Gauss-3

PHBVM(6,3)

Fig. 4 Hamiltonian and Casimir errors (left plot) and solution error (right plot) when solving problem (63)
with time-step h = T/100 over 100 periods with the 3-stage Gauss and PHBVM(6,3) methods

Example 2 The second example, taken from [20], is given by:

ẏ =
⎛
⎝ 0 y1y2 y1y3

−y1y2 0 −y2y3
−y1y3 y2y3 0

⎞
⎠∇H(y),

H(y) = a

(
ln y1 − y1

y∗
1

)
+ b

(
ln y2 − y2

y∗
2

)
+ c

(
ln y3 − y3

y∗
3

)
, (63)

C(y) = − ln y1 − ln y2 + ln y3,

with

a = 1, b = 2, c = 3, y∗
1 = 1, y∗

2 = 10, y∗
3 = 50, y(0) = (1, 1, 1)� ,

whose solution, which is periodic of period T ≈ 2.143610709155912, is depicted in
Fig. 3.

At first, we compare the same methods used for the previous example, again with
time-step h = T/n. The obtained results for the s-stage Gauss and PHBVM meth-
ods are listed in Table 2: the conclusions that one can derive from them are similar
to those driven from Table 1 for the previous example, with the additional remark
that now the Casimir C(y) is not conserved.9 This fact, in turn, produces the results
depicted in the two plots in Fig. 4, concerning the application of the Gauss-3 and
PHBVM(6,3) methods for solving the problem with time-step h = T/100 over
100 periods. From the two plots, one infers that both methods exhibit a drift in the
Casimir, whereas only Gauss-3 exhibits a drift in the Hamiltonian, too (left plot);
however, both methods exhibit a quadratic error growth in the solution, despite the
fact that PHBVM(6,3) conserves the Hamiltonian. For this reason, in Table 3 we
list the obtained results by using the EHBVM(4,1), EHBVM(4,2), and EHBVM(6,3)

9In Table 2 eC denotes the error in the Casimir.

Numerical Algorithms (2022) 91:861–894890

Table 3 Further results for problem (63)

n ey Rate eH Rate eC Rate it Time

EPHBVM(4, 1)

50 1.26e-01 — 9.36e-06 — 2.21e-06 — 11.1 0.06

100 3.07e-02 2.0 3.73e-08 8.0 9.48e-09 7.9 8.2 0.04

200 7.45e-03 2.0 5.55e-15 ∗∗ 1.78e-15 ∗∗ 6.8 0.07

400 1.90e-03 2.0 3.77e-15 ∗∗ 1.78e-15 ∗∗ 5.6 0.12

800 4.70e-04 2.0 3.77e-15 ∗∗ 8.88e-16 ∗∗ 4.8 0.22

1600 1.18e-04 2.0 3.77e-15 ∗∗ 1.78e-15 ∗∗ 4.4 0.39

3200 2.96e-05 2.0 3.77e-15 ∗∗ 1.78e-15 ∗∗ 4.1 0.71

6400 7.44e-06 2.0 5.11e-15 ∗∗ 1.78e-15 ∗∗ 3.9 1.39

12800 1.83e-06 2.0 5.11e-15 ∗∗ 1.78e-15 ∗∗ 3.5 2.64

25600 4.64e-07 2.0 6.88e-15 ∗∗ 1.78e-15 ∗∗ 3.3 5.16

51200 1.18e-07 2.0 6.88e-15 ∗∗ 1.78e-15 ∗∗ 3.1 9.98

102400 2.83e-08 2.1 6.88e-15 ∗∗ 1.78e-15 ∗∗ 3.0 19.71

204800 7.20e-09 2.0 5.55e-15 ∗∗ 1.78e-15 ∗∗ 2.8 38.16

409600 1.79e-09 2.0 6.88e-15 ∗∗ 1.78e-15 ∗∗ 2.5 72.98

819200 4.53e-10 2.0 7.33e-15 ∗∗ 1.78e-15 ∗∗ 2.2 140.73

EPHBVM(4, 2)

50 1.29e-04 — 3.49e-07 — 1.72e-07 — 10.4 0.03

100 6.20e-06 4.4 1.52e-09 7.8 6.01e-10 8.2 8.7 0.04

200 1.34e-07 5.5 5.11e-15 ∗∗ 8.88e-16 ∗∗ 7.5 0.07

400 2.54e-08 2.4 3.33e-15 ∗∗ 1.78e-15 ∗∗ 6.5 0.12

800 6.73e-10 5.2 3.33e-15 ∗∗ 8.88e-16 ∗∗ 6.2 0.24

1600 9.47e-11 2.8 3.33e-15 ∗∗ 1.78e-15 ∗∗ 5.4 0.42

3200 6.25e-12 3.9 4.22e-15 ∗∗ 1.78e-15 ∗∗ 5.1 0.83

6400 5.46e-13 3.5 3.77e-15 ∗∗ 1.78e-15 ∗∗ 4.5 1.54

EPHBVM(6, 3)

50 5.32e-07 – 3.33e-15 — 8.88e-16 — 11.1 0.03

100 7.44e-09 6.2 3.77e-15 ∗∗ 1.78e-15 ∗∗ 9.1 0.05

200 5.78e-11 7.0 3.33e-15 ∗∗ 1.78e-15 ∗∗ 7.8 0.08

400 1.81e-12 5.0 2.00e-15 ∗∗ 8.88e-16 ∗∗ 6.9 0.14

800 8.24e-14 4.5 4.22e-15 ∗∗ 1.33e-15 ∗∗ 6.3 0.27

methods for solving problem (63), by using the same time-steps considered for
obtaining the results of Table 2. As one may see, now the conservation of the Casimir
is soon obtained, as the time-step is decreased, besides that of the Hamiltonian, with
a computational cost perfectly comparable to that of the corresponding PHBVM
method. The conservation of both invariants, in turn, allows to recover a linear error
growth in the numerical solution, as is shown in the plot of Fig. 5.

Numerical Algorithms (2022) 91:861–894 891

100 101 102

periods

10-20

10-15

10-10

10-5

er
ro
rs

solution

Hamiltonian

Casimir

Fig. 5 Hamiltonian, Casimir, and solution errors when solving problem (63) with time-step h = T/100
over 100 periods with the EPHBVM(6,3) method

6 Conclusions

In this paper we have presented a class of energy-conserving line integral methods
for Poisson problems. In the case where the problem is Hamiltonian, these meth-
ods reduce to the class of Hamiltonian Boundary Value Methods (HBVMs), which
are energy-conserving methods for such problems. Consequently, the new methods
can be regarded as an extension of HBVMs for Poisson (not Hamiltonian) problems,
which we called PHBVMs. Moreover, a further enhancement of such methods (EPH-
BVMs) allows to obtain the conservation of Casimirs, too. A thorough analysis of the
methods has been carried out, confirmed by a couple of numerical tests. As a further
direction of investigation, we mention the study of the application of the methods for
solving highly oscillatory Poisson problems, similarly as done with HBVMs in the
Hamiltonian case [27–29].

Acknowledgements The authors wish to thank the reviewers for their suggestions and for carefully
reading the manuscript.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE
Agreement.

Data availability All data generated or analyzed during this study are included in this published article.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

Numerical Algorithms (2022) 91:861–894892

licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Brugnano, L., Calvo, M., Montijano, J.I., Rández, L.: Energy preserving methods for Poisson systems.
J. Comput. Appl. Math. 236, 3890–3904 (2012)

2. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Efficient implementation of Gauss collocation and
Hamiltonian Boundary Value Methods. Numer. Algorithms 65, 633–650 (2014)

3. Brugnano, L., Gurioli, G., Iavernaro, F.: Analysis of energy and QUadratic invariant preserving
(EQUIP) methods. J. Comput. Appl. Math. 335, 51–73 (2018)

4. Brugnano, L., Iavernaro, F.: Line integral methods which preserve all invariants of conservative
problems. J. Comput. Appl. Math. 236, 3905–3919 (2012)

5. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman and
Hall/CRC, Boca Raton (2016)

6. Brugnano, L., Iavernaro, F.: Line integral solution of differential problems. Axioms 7(2), article n. 36
(2018). https://doi.org/10.3390/axioms7020036

7. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian BVMs (HBVMs): A family of “drift-free”
methods for integrating polynomial Hamiltonian systems. AIP Conf. Proc. 1168, 715–718 (2009)

8. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving
discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5(1–2), 17–37 (2010)

9. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian
BVMs. J. Comput. Appl. Math. 236, 375–383 (2011)

10. Brugnano, L., Iavernaro, F., Trigiante, D.: The lack of continuity and the role of infinite and infinitesi-
mal in numerical methods for ODEs: the case of symplecticity. Appl. Math. Comput. 218, 8056–8063
(2012)

11. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of
effective one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012)

12. Brugnano, L., Iavernaro, F., Trigiante, D.: Analisys of Hamiltonian Boundary Value Methods
(HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polyno-
mial Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 20, 650–667 (2015)

13. Brugnano, L., Magherini, C.: Blended implementation of block implicit methods for ODEs. Appl.
Numer. Math. 42, 29–45 (2002)

14. Brugnano, L., Magherini, C.: The BiM code for the numerical solution of ODEs. J. Comput. Appl.
Math. 164-165, 145–158 (2002)

15. Brugnano, L., Magherini, C.: Blended implicit methods for the numerical solution of DAE problems.
J. Comput. Appl. Math. 189, 34–50 (2006)

16. Brugnano, L., Magherini, C.: Recent advances in linear analysis of convergence for splittings for
solving ODE problems. Appl. Numer. Math. 59, 542–557 (2009)

17. Brugnano, L., Montijano, J.I., Rández, L.: High-order energy-conserving line integral methods for
charged particle dynamics. J. Comput. Phys. 396, 209–227 (2019)

18. Brugnano, L., Sun, Y.: Multiple invariants conserving Runge-Kutta type methods for Hamiltonian
problems. Numer. Algorithms 65, 611–632 (2014)

19. Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT Numer. Math.
51, 91–101 (2011)

20. Hairer, E., Lubich, C., Wanner, G. Geometric Numerical Integration, 2nd edn. Springer, Berlin (2006)
21. Miyatake, Y.: A derivation of energy-preserving exponentially-fitted integrators for Poisson systems.

Comput. Phys. Commun. 187, 156–161 (2015)
22. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J.

Phys. A 41(4), 045206 (2008)
23. Wang, B., Meng, F., Fang, Y.: Efficient implementation of RKN-type Fourier collocation methods for

second-order differential equations. Appl. Numer. Math. 119, 164–178 (2017)

Numerical Algorithms (2022) 91:861–894 893

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms7020036

24. Wang, B., Wu, X.: Functionally-fitted energy-preserving integrators for Poisson systems. J. Comput.
Phys. 364, 137–152 (2018)

25. Wang, B., Wu, X.: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions.
Springer Nature Singapore Pte Ltd (2021)

26. Mei, L., Huang, L., Wu, X.: A unified framework for the study of high-order energy-preserving
integrators for solving Poisson systems. J. Comput. Phys. https://doi.org/10.1016/j.jcp.2021.110822

27. Brugnano, L., Montijano, J.I., Rández, L.: On the effectiveness of spectral methods for the numerical
solution of multi-frequency highly-oscillatory Hamiltonian problems. Numer. Algorithms 81, 345–
376 (2019)

28. Brugnano, L., Iavernaro, F., Montijano, J.I., Rández, L.: Spectrally accurate space-time solution of
Hamiltonian PDEs. Numer. Algorithms 81, 1183–1202 (2019)

29. Amodio, P., Brugnano, L., Iavernaro, F.: Analysis of spectral Hamiltonian boundary value methods
(SHBVMs) for the numerical solution of ODE problems. Numer. Algorithms 83, 1489–1508 (2020)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Numerical Algorithms (2022) 91:861–894894

https://doi.org/10.1016/j.jcp.2021.110822

	Arbitrarily high-order energy-conserving methods for Poisson problems
	Abstract
	Introduction
	The new framework
	Interpretation of
	Analysis
	Conservation of Casimirs

	Discretization
	Analysis
	Conservation of Casimirs

	The discrete problem
	Conservation of Casimirs

	Numerical tests
	Conclusions
	References

