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Abstract
In this paper, we study a proximal method for the minimization problem arising from
0-regularization for nonlinear inverse problems. First of all, we prove the existence of
solutions and give an optimality condition for solutions to the minimization problem.
Then, we propose and prove the convergence of the proximal method for this mini-
mization problem, which is controlled by step size conditions. Finally, we illustrate
performance of the proximal method by applying it to a numerical example.
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1 Introduction

In this paper, is denoted to be a real separable Hilbert space, and are
respectively the scalar product and the norm in . We assume that

is an orthonormal basis of the Hilbert space . For each , we denote
, where is the th component of with respect to the basis

. Note that all results from this paper are true not only for an orthonormal basis
but also for a frame in the real separable Hilbert space . However, for simplicity,
we assume that is an orthonormal basis of the Hilbert space . We
study the proximal method for the minimization problem

min (1)
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where is a Fréchet differentiable functional and
is defined by

0 0 (2)

with

0
1 if 0

0 if 0.

Problem (1) appears in 0-regularization of inverse problems, i.e., we want to find
a solution of the operator equation

(3)

where is a Fréchet differentiable operator (linear or nonlinear), is the
exact data, which is unknown and we only obtain a noisy data of with

. (4)

Further, we assume that problem (3) is ill-posed, which the solutions to the prob-
lem do not depend continuously on the data [5]. Therefore, the real problem is finding
an approximation of the solution given the operator and a noisy data . Applying
0-regularization for this problem the regularized approximate solutions to (3)–(4) are
seen to be minimizers of the minimization problem

min (5)

where measuring the difference between and is a Fréchet
differentiable functional. Note that problem (5) is an example of problem (1).

The advantage of 0-regularization is preserving the edges between homogeneous
regions and nonhomogeneous. Thus, 0-regularization is used in many applications
such as signal and image analysis, wavelet frame, compressive sensing, dictionary
building, machine learning and actuator location problems. For linear inverse prob-
lems, Blumensath and Davies in [2, 3] have proposed an iterative thresholding
scheme and proven the local convergence of this scheme. Needell and Tropp have
presented the compressive sampling matching pursuit (CoSaMP). Foucart [7] has
also improved CoSaMP by introducing hard thresholding pursuit based on a com-
bination of iterative hard thresholding and compressive sampling matching pursuit
algorithm. The other method is suggested by Lu et al. in [9]. Nikolova and E. Sou-
bies have studied in detail about global solutions, see [13, 14]. Recently, Wachsmuth
has studied the hard-iterative thresholding to optimal control problems with 0

control cost in space 2 in [15]. But for nonlinear inverse problems, there are few
algorithms proposed to solve problem (1) in a real separable Hilbert space.

In this paper, we will propose a proximal method for problem (5) in a real sepa-
rable Hilbert space based on the ideas of the proximal method in [8, 11]. Note that
since the functional is nonconvex, problem (1) is different from the minimization
problem arising from 1-regularization in [8, 11]. Therefore, the results and the meth-
ods of proof for the convergence of the proximal method in our paper are different
from those in [8, 11]. Furthermore, the iterative thresholding [2] or the iterative hard
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thresholding [3] are special cases of our proposed method since they are only applied
to linear inverse problem, i.e., to problem (5) with 2 and
is a linear operator. Thus, the results in this paper are extensions of those in [2, 3] to
nonlinear inverse problems.

The main results in our paper are

The existence and the optimality condition for solutions to problem (1).
The convergence of the proximal method for problem (1) and the practical choice
for step sizes.

The paper is organized as follows: In Section 2 we give explicit formula for the
unique minimizer of the quadratic approximation of the cost functional. In Section 3,
we study the existence and the optimality condition for solutions to problem (1).
Section 4 is devoted to prove the convergence of the proximal method. A method of
choosing step sizes is given in Section 5. Finally, we illustrate the performance of the
proximal method by applying it to an identification problem in elliptic equations in
Section 6.

2 First-order condition for global minimizers for quadratic
approximation of the cost functional

The proximal methods developed in [2–4, 11] are based on quadratic approximate
functionals and the proximal operators. In order to present the proximal method as
well as the first-order optimality condition of problem (1), we need to introduce the
proximal operator for 0-regularization and the quadratic approximate functionals.

The proximal operator (also known as the hard-thresholding operator ) is defined
by

1 2 (6)

where

0 if

0 if

if

. (7)

Note that is a multi-valued mapping.
For each fixed 0, the so called quadratic approximate functional of at

a given point is defined as follows:

2
2 . (8)

Using the proximal operator, we can show that the minimization problem,
min , has at least one solution. This result is given in the following
theorem.

Theorem 2.1 Let 1 . Then, for any fixed, the problem

min
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has at least one solution and is a solution if and only if

2
1

.

Proof By simple calculation, which ignores constant term in , the minimization
problem, min , is equivalent to

min
1

2

1 2

.

This problem can be rewritten as

min
1

2

1 2

0 . (9)

Therefore, the minimum of the problem, min , can be calculated by min-
imizing with respect to individually. For each we distinguish two cases, 0
and 0. In the first case, by the definition of . 0, we have

1

2

1 2

0
1

2

1 2

.

In the second case, we have

1

2

1 2

0

where the equality sign is obtained when 1 .
Comparing the values for both cases, the minimum of component of problem (9)

is

min
1

2

1 2

that is equal to

1
2

1
2

if 1 2

1
2

1
2

if 1 2

if 1 2 .

Note that the first value is obtained when 0, the second one is obtained
when 0 or 1 , and the last value is obtained when

1 0, i.e., the minimum of component is attained at

2
1

.

Therefore, the problem, min , has a solution

1 2
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or

2
1

.

3 Existence of optimal solutions and optimality conditions

Before presenting the results of the existence of optimal solutions and optimality
conditions to problem (1), we recall some basic notions which are not often used.
The other basic notions such as convexity, Lipschitz continuity, Lipschitz Fréchet
differentiability are well-known in calculus or convex analysis, so we do not recall
them here.

Definition 3.1 Let a functional .

1) is called bounded from below if there exists a constant such that
for all .

2) is called coercive if as .
3) is called lower semi-continuous if for every and every sequence

as , we have

lim inf .

In our paper, the functionals, and , in problem (1) have some properties of .
In fact, is assumed to be bounded from below, coercive and lower semi-continuous
(see Assumption 1) and is lower semi-continuous (see Lemma 3.1). In order to
prove the existence of solutions and give the optimality conditions to problem (1) as
well as the convergence of the proximal method, we need the following assumption.

Assumption 1 Assume that

a) is coercive, bounded from below and lower semi-continuous.
b) is Lipschitz Fréchet differentiable with the Lipschitz constant , i.e.,

.

Note that In Assumption 1, Condition a) is used to make sure the existence of a
solution to problem (1), and Condition b) is used to obtain the optimality condition
of solutions to problem (1) as well as the convergence of the proximal method for
this problem. In fact, by Condition b) we have for

2
2.

This is the key inequality used to prove the main results of the paper.

Lemma 3.1 The functional defined by (2) is non-negative, nonconvex, and lower
semi-continuous.
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Proof The first two properties are clear. The last property is followed by the lower
semi-continuity of 0.

Note that functional in 0-regularization (given by (2)) is nonconvex and not
coercive. Thus, problem (1) is nonconvex as well. To make sure the existence of a
solution to problem (1) we need some properties of the functional . Such sufficient
conditions for are given in the following lemma.

Lemma 3.2 Assume that satisfies Condition a) of Assumption 1. Then, problem
(1) has at least a solution (global minimizer).

Proof The proof is standard and it is left to the readers.

Theorem 3.1 Assume that satisfies Condition b) of Assumption 1. Then, is a
solution (global minimizer) of problem (1) if and only if

2
1

(10)

for any fixed .

Proof Since is a global minimizer of , we have for any
. For , we have

2
2 0.

Therefore, for any . It means that is the
global minimizer of . Then, the proof deduces from Theorem 2.1.

Definition 3.2 Any point satisfying (10) with is called a stationary point
of .

Remark 3.1 The condition is necessary to obtain the last inequality in the
proof of Theorem 3.1. For we could not prove such a result. This is different
from 1-regularization, which we can prove a similar result for any 0, see, e.g.,
in [1, 10]. Furthermore, Condition (10) is only true for global minimizers of problem
(1). We could not prove such a result for local minimizers. This is also the other
difference when it is compared with 1-regularization, see, e.g., [10].

4 Proximal method

The main idea of the proximal method is based on the quadratic approximation
method. In fact, at the th iteration, 1 is determined by solving the quadratic
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approximation of at , i.e.,

1 argmin

and then we need to propose some conditions for 0 such that (with a subse-
quence) converges to a stationary point of the original problem. Here, the functional

is defined by (8).
By Theorem 2.1, the sequence 1 argmin is later given by

1
2

1
. (11)

Nowwe prove the convergence of this sequence.We separate the result into several
following lemmas and theorems.

Lemma 4.1 Let Assumption 1 hold and is a sequence defined by (11), where
the sequence satisfies with 0 for all . Then, the
sequence is monotonically decreasing, the sequence is bounded and
lim 1 0.

Proof Since is Lipschitz differentiable with Lipschitz constant . Therefore, for
we have

2
2.

Hence, with we obtain

2
2 .

Consequently, we have (since )

1 1 .

In addition, since 1 is the solution to (see (11)), we have

1 1 .

Thus, the sequence is monotonically decreasing.
The boundedness of is a consequence of the decreasing of , the

boundedness from below and the coercivity of .
For each , since is the Lipschitz constant of and , we have

1 1 1

1

2
1 2 1

1

2
1 2 1

min

.
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This implies that

1

2
1 2 1 2

or
1 1 1 2.

Summing the above inequalities over 0 1 ... yields

1 0 1

0

1 2 .

One infers that the series 0
1 2 converges. Therefore, lim 1

0.

Theorem 4.1 (Convergence) Let satisfy Assumption 1 and is a sequence
defined by (11), where , 0 and . Then, there exists a
subsequence of weakly converging to some as and is
a stationary point of .

Proof By Lemma 4.1, the sequence is decreasing and the sequence is
bounded. Since is Lipschitz continuous, the sequence is bounded as
well. Therefore, there exists a subsequence of such that converges
weakly to some , converges weakly to , and
converges to as . By Lemma 4.1 1 also converges
weakly to . We define

0
1 2

1
1 2

0 1

and

0
1 2

1
1 2

0 1 .

We consider three cases:
Case 1 (for each 0): Since 1 converges to 1

and converges to , there exists such that for all we have 0 .
Therefore, if , then

1
2

1
0.
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Let , we have
0.

This implies that

0 2
1

.

Case 2 (for each 1): Since 1 converges to 1

and converges to , there exists such that for all we have 1 .
Therefore, if , then

1
2

1 1
.

Let , we have
1

.

This implies that

0
2

and 2
1

.

Case 3 (for each ): We have

1
2

1
0

1
.

Let , we have

0
1

.

Thus

2
1

.

Combining three cases, we have

2
1

.

5 Step size choice and realization of the proximal method

From Lemma 4.1 the condition for the convergence of proximal method is that
parameters must satisfy for some fixed 0. In practice, there are
two following cases:

(i) In the first case, the Lipschitz constant is known.
(ii) In the second one, the Lipschitz constant is unknown or very hard to find.

To make sure the convergence of the proximal method: in the first case we can
choice with 0 for all . However, the bigger the Lipschitz constant is,
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the smaller of step size is. As a result, the algorithm converges slower. Thus, we do
not want to choose too large for all . To overcome this situation and for the second
case, we propose a practical way to select step size as follow: we can choose 0 that
is not too large and choose the parameter that satisfies the condition 1

1 by the back-tracking rule. By this method, the sequence is
monotonically decreasing (see the proof of Lemma 4.1). With this choice rule, there
are two cases: In the first case we have for all and thus the conditions
in Lemma 4.1 are not satisfied, i.e., the proximal method may not converge. In the
second case there exists a such that , i.e., the proximal method
converges. In practice, by the backtracking rule the first case rarely happen, especially
when the number of iterations is large since the sequence is increasing. Thus, the
above method of choosing step sizes is practical.

Since the proximal operator is a multi-valued operator, there are many sequences
generated by the proximal method. In practice we only need one of them. Thus,

we use one of two modified proximal operators as follows:

1 2 1 2 (12)

where

1 0 if

if
2 0 if

if
. (13)

Combining the choice of step sizes and the modified proximal operator, the iter-
ation (8), is presented in Algorithm 1. We will illustrate Algorithm 1 with different
modified proximal operators in Section 6.
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6 Application to an inverse source problem

For a numerical example we consider the inverse problem of estimating the source
2 in the elliptic boundary problem

div in 2
0 on (14)

from a noisy data of the exact solution.
We assume that is a Lipschitz domain and , where

0

Then, for each 2 and 0
1 2 problem (14) has a unique

weak solution 1, see, e.g., [6].
Let be the parameter that needs to recover and be the solution to (14) with

fixed parameters 0 and . Let 2 1 , the solution
operator of (14) with fixed and 0. The inverse problem is equivalent to solving the
equation

(15)

where only a noisy approximation of is available with

2 .

Using least square approach together with 0-regularization, the approximation to
is the solution to the following problem

min
2

1

0 (16)

where

1

2
2
2 (17)

0 is a regularization parameter and with 1 is an orthonormal
basis of 2 .

The wellposedness of problem (16), the convergence and convergence rates of
its solutions to solutions of operator (15) are still open (by our best knowledge),
but it can be obtained by standard approaches in theory of regularization for inverse
problems. For examples, Wang et al. have proved some such results relating to 0-
regularization for general operator equations in [16, 17]. Here, as an example we try
to solve problem (16) by our proximal method. The numerical results will show the
wellposedness of problem (16) and the convergence of its solutions to operator (15).
Note that the proximal method can be applied for problem (16) since satisfies
Assumption 1, where the Lipschitz differentiability of is given in the following
lemma.

Lemma 6.1 The functional 2 is Fréchet differentiable at any point
2 , Fréchet derivative is Lipschitz continuous and , where is
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the weak solution to the following problem

div in 0 on (18)

where .

Proof We first recall the following well-known results:

(a) 1
0 is embedding compactly into 2 . This implies that there exists a

constant 0 such that

2 1
0

1
0 . (19)

(b) In 1
0 the norm . is equivalent to 1

0
, i.e.,

there exist constants 1 2 0 such that

1 1
0

2 1
0

1
0 . (20)

Using above results, we now prove the Fréchet differentiability of at 2 .
Indeed, for 2 we have

2 2 2

2 1
2

1 2
2

19
2 1

2
1 2

1
0

20
2 1

2
1

1 2
(21)

where 1 . Furthermore, by the formula of weak solutions
we have

. 1
0 (22)

1. 1
0 . (23)

Subtracting both sides of equations (22) and (23) we have

1 . 1
0 . (24)

Inserting 1 and into (24) we obtain

1
2

1 (25)

1 . . (26)

By the formula of weak solution to (18) we have

. 1
0 . (27)
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Inserting 1 1
0 into (27) we have

. 1 1 . (28)

From (21), (25), (26) and (28) we have

2 2 . 1

1

1

2
1

1

2
1

2
1

2

2 0 2 (29)

since 1
2 0 as 0 (due to the continuity of the operator ). The

inequality (29) implies that is Fréchet differentiable and , where is
the weak solution to (18).

To finish the proof, we need to prove the Lipschitz continuity of . Indeed, let
1 1 and 2 2 . Then, 1 2

1
0 and they respectively satisfy

1. 1
1
0 (30)

and

2. 2
1
0 (31)

where 1 1 and 2 2 . Subtracting both sides of (30) and (31) we have

1 2 . 1 2
1
0 . (32)

Inserting 1 2 into (32) we obtain

1 2 . 1 2 1 2 1 2 . (33)

Similarly, subtracting both sides of the formula of the weak solutions 1 and 2 we
have

1 2 . 1 2
1
0 . (34)

Inserting 1 2 into (32) we obtain

1 2 . 1 2 1 2 1 2 . (35)
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From (19), (20) and (33) we have

1 2
2
2

19
2

1 2
2

2

20 2

2
1

1 2
2

33 2

2
1

1 2 1 2

2

2
1

1 2 2 1 2 2

1 2 2
2

2
1

1 2 2 . (36)

Similarly, from (19), (20) and (35) we have

1 2 2
2

2
1

1 2 2 . (37)

Finally, from (36) and (36) we deduce

1 2 2
4

4
1

1 2 2 . (38)

This implies that is Lipschitz continuous with Lipschitz constant
4

4
1
.

7 Numerical solution

In this section we illustrate the performance of the proximal method for the inverse
source problem in previous section. We assume that 1 1 2 and

1 2 1 2
1

2
2 0 1 1 2

10 2
1

2
2 .

We discretize problems (14) and (16) by the finite element method (FEM). The
domain is divided into triangles and define the following finite element spaces:

1
1

0
1
0 1

where 1 denotes the set of linear polynomials in , and are respectively
the number of nodes and the set of triangles of the mesh. Let 1 is the
basis consisting of piecewise linear finite elements in discretized space . Then,
the discretization of problem (14) is: find such that

. 0 and 0 on (39)

where is the interpolation in FEM.
Similarly, the discretization of problem (16) is

min (40)

where

1

2
2

1
0 (41)
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Fig. 1 The value of 2 and computational time in Prox.Al.1 and Prox.Al.2

with 2 .
To obtain and , we solve (39) on a mesh with 887 nodes and 1680

triangles. The solution to (39) and all the parameters 0 and are represented
by piecewise linear finite elements. Problem (40) is solved by the proximal method,
Algorithm 5.1.

We measure the convergence of the computed minimizers to the true parameter
by the mean square error sequence

2

and

2

1
2 1 2

with 100.

7.1 Numerical experiments with 0

We first discuss results without noise, i.e., . Let Prox.Al.1 and Prox.Al.2 be
Algorithm 5.1 with 1 and 2 respectively. In these algorithms we set 0.5,

5 10 4 5 104 and 10 6.

Convergence and convergence rate In Fig. 1 we see that the sequences
2 generated by Prox.Al.1 and Prox.Al.2 are decreasing to zero, i.e.,
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the sequences converge to stationary points of . The behavior of
indicate that the sequences in two algorithms converge to the unknown parame-
ter . We also see that the objective functionals decrease monotonically in
two algorithms. These observations are suitable with the theory results in Lemma 4.1.
The computational times in two algorithms are similar. Figure 3 shows that after the
first iteration, the step sizes 1 do not change. Thus, we believe that they are smaller
than 1 , the Lipschitz constant of .

Note that we do not have any result about convergence rate of the proximal algo-
rithm in this paper. Since problem (9) is nonconvex and nondifferentiable, such a
result is very hard to prove. However, in [12] for the convex problem of the same form
of (9), the convergence rate is proven to be 1 , where is the number of iterations
of the proximal method. This implies that the convergence rate of the proximal algo-
rithm for problem (9) do not better than 1 . Figure 1 shows this statement is true
since the sequences in two algorithms are decreasing slower than 0 .

Quality of recovered solutions Figure 2 illustrates and with 500 in two
algorithms. The parameter has been reconstructed very well. The mean square

Fig. 2 3D plots and contour plots: exact (top); with 500 in Prox.Al.1 (middle) and in Prox.Al.2
(bottom)
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Fig. 3 Number of nonzero elements of (left) and step size (right) in Prox.Al.1 and Prox.Al.2

errors in two algorithms are the same. Note that is always greater than zero (there
are many components close to zero), but two reconstructions, with 500 in
two algorithms have many zero components, which are shown in Fig. 3.

7.2 Numerical experiments with noisy data

We now consider noisy data. To obtain 2 , we compute
2

,

where is computed with the MATLAB routine with setting
0 . Here, we choose 10 2. Figure 4 illustrates the graph of

. It shows that the data is noisy.
With noisy data we also use the same setting in Prox.Al.1 and Prox.Al.2 , i.e., all

parameters are the same as those in the case of no noise. From Fig. 5 we have the sim-
ilar observations on convergence and convergence rate as well as computational time.
However, for they are decreasing in the first number of iterations, but they
are increasing after that. This is always happened in regularization of inverse prob-
lems. With noisy data we need to study a rule of stopping the algorithms. Such a rule
is out of the aim of this paper. Here, we choose such that is the small-
est in the sequences of generated by two algorithms. These approximate
solutions are illustrated in Fig. 6.

Fig. 4 3D graph of
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Fig. 5 The value of 2 and computational time in Prox.Al.1 and Prox.Al.2

Fig. 6 3D plots and contour plots: exact (top); with 139 in Prox.Al.1 (middle) and in Prox.Al.2
(bottom)
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7.3 Numerical experiments with a nonsmooth source functional

We close this section by considering an inverse source problem with a nonsmooth
source functional . Here, we use the same setting as two previous subsections, but
replace the source functional by another nonsmooth functional, i.e., we assume that

1 1 2 and

1 2 1 2
1

2
2 0 1

1 2

2 if 1 2 0.6 0.2 0.6 0.2

2 if 1 2 0.2 0.6 0.2 0.6

0 otherwise.

.

We generate noisy data as previous subsection with 10 2. For Prox.Al.1 and
Prox.Al.2 , we set 0.5, 5 10 4 5 104 and 10 6. In Fig. 7,
the sequences show that the sequences converge to stationary points
of , the sequences also approach to the exact parameter but the sequences

have higher values than those in the smooth case (see Fig. 5). Figure 8
shows the sparsity of recovered solutions and the behaviors of the stepsizes 1 ,
which are suitable with theoretical analysis. It is harder to recover a nonsmooth
parameter than a smooth parameter. The qualities of reconstructions are worse in this
situation (see Fig. 9).

Fig. 7 The value of 2 and computational time in Prox.Al.1 and Prox.Al.2
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Fig. 8 Number of nonzero elements of (left) and step size (right) in Prox.Al.1 and Prox.Al.2

From three situations, we see that Prox.Al.1 and Prox.Al.2 converge to stationary
points of and the sequences of the objective functional are decreasing monotoni-
cally. Prox.Al.1 is faster than Prox.Al.2 , but they have the same order of convergence
rates. Furthermore, the computational time for each iteration seems to be constant
in both algorithms. Finally, at the same noise level the reconstructions for smooth
unknown parameters are better than those for nonsmooth unknown parameters.

Fig. 9 3D plots and contour plots: exact (top); with 139 in Prox.Al.1 (middle) and in Prox.Al.2
(bottom)
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8 Conclusion and future work

We have considered the minimization problem

min

where is Fréchet differentiable, is Lipschitz continuous and
0.
Under Assumption 1 and the condition on step sizes , Theorem 4.1 has shown

that the iteration

1
2

1
. (42)

converges (under a subsequence) to a stationary point , i.e., satisfies

2
1

for some .
Note that the proximal method falls in class of gradient type methods. Thus, it

converges quite slow and has linear convergence rate. Therefore, we will study some
better methods in the next step, e.g., some algorithms fall into class of Newton
method. To make this point clearer, we note that instead of solving the above min-
imization problem, we can concentrate on solving its first-order optimal condition
equation:

0 2
1

for some fixed . Therefore, we can extend Newton method or quasi-Newton
method to solve the last equation. It is valuable to show that the last equation is
not continuous. As a result, it is most difficult part of extending Newton and quasi-
Newton method to deal with this situation. We will propose our ideas to overcome
this issue in future.

There are some other issues which are needed to study such as the rules of
choosing regularization parameter with respect to noise level, the rules of stop-
ping the algorithms in the case of noisy data and the algorithms for the constrained
minimization problem

min

where is Fréchet differentiable, is Lipschitz continuous and
0.
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