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Abstract
We propose a variant of PMHSS iteration method for solving and preconditioning a
class of complex symmetric indefinite linear systems. The unconditional convergence
theory of this iteration method is proved, and the choice of quasi-optimal parameter
is also discussed. The explicit expressions for the eigenvalues and eigenvectors of the
corresponding preconditioned matrix are derived. In addition, theoretical analyses
show that all eigenvalues are linearly distributed in the unit circle under suitable
conditions. Numerical experiments are reported to illustrate the effectiveness and
robustness of the proposed method.

Keywords Complex symmetric linear system · PMHSS method ·
Convergence theory · Preconditioning · Spectral properties

1 Introduction

Consider the iteration solution of the following complex linear system:

A x = b, (1)
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where A = W + iT ∈ C
n×n is a sparse complex matrix with matrices W, T ∈ R

n×n

being both symmetric, b ∈ C
n is a given vector and x ∈ C

n is an unknown vec-
tor. Here i = √−1 is the imaginary unit. Linear systems of the form (1) arise in
many problems in scientific computing and engineering applications, such as optimal
control problems for PDEs with various kinds of state stationary or time depen-
dent equations, e.g., Poisson, convection diffusion, Stokes [2], wave propagation and
structural dynamics. More details on this class of questions are given in references
[1, 7, 17].

Based on the Hermitian and skew-Hermitian parts of the coefficient matrix
A = H + S with H = 1

2 (A + A ∗) = W and S = 1
2 (A − A ∗) = iT , Bai

et al. [11] constructed the Hermitian and skew-Hermitian splitting (HSS) iteration
method for non-Hermitian positive definite linear systems. This iteration method is
algorithmically described in the following.

Method 1.1 (The HSS iteration method) Let x0 ∈ C
n be an arbitrary initial guess.

For k = 0, 1, 2, · · ·, until the sequence of iterates {xk}∞k=0 ⊂ C
n converges, compute

the next iterate xk+1 according to the following procedure:{
(αI + W)x

k+ 1
2

= (αI − iT )xk + b,

(αI + iT )xk+1 = (αI − W)x
k+ 1

2
+ b,

(2)

where α is a given positive constant and I ∈ R
n×n is the identity matrix.

When W ∈ R
n×n is a symmetric positive definite (SPD) matrix, we know that

the HSS iteration method is convergent for any positive constant α. Corollary 2.3 in
[11] shows that the quasi-optimal parameter α∗ is given by the extreme eigenvalues
of the matrix W and the convergence rate of the HSS iteration method is depended
on the spectral condition number of the SPD matrix W . For more details about the
HSS iteration method and its variants, we refer to [6, 10, 12].

A potential difficulty with the HSS iteration approach (2) is the need to solve
the shifted skew-Hermitian sub-system of linear equations with coefficient matrix
αI + iT at each iteration step, which is as difficult as that of the original problem
in some cases [7]. In order to avoid solving the complex sub-system, Bai et al. in [8]
presented the preconditioned modified HSS (PMHSS) iteration method by making
use of the special structure of the coefficient matrix A in (1). The PMHSS method
is algorithmically described as follows.

Method 1.2 (The PMHSS iteration method) Let x0 ∈ C
n be an arbitrary initial

guess. For k = 0, 1, 2, · · ·, until the sequence of iterates {xk}∞k=0 ⊂ C
n converges,

compute the next iterate xk+1 according to the following procedure:{
(αV + W)x

k+ 1
2

= (αV − iT )xk + b,

(αV + T )xk+1 = (αV + iW)x
k+ 1

2
− ib,

(3)

where α is a given positive constant and V ∈ R
n×n is a prescribed SPD matrix.
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Theoretical analysis in [8] has indicated that the PMHSS iteration converges to
the unique solution of the complex linear system (1) for any initial guess when the
matrices W, T are symmetric positive semi-definite (SPSD) with at least one of them
being SPD. Its asymptotic convergence rate is bounded by

max
γ̃j ∈Sp(V −1W)

√
α2 + γ̃ 2

j

α + γ̃j

· max
μ̃j ∈Sp(V −1T )

√
α2 + μ̃2

j

α + μ̃j

< 1, ∀α > 0,

where Sp(V −1W) and Sp(V −1T ) denote the spectrums of the matrices V −1W

and V −1T , respectively. In particular, the PMHSS-preconditioned GMRES method
shows meshsize-independent and parameter-insensitive convergence behavior for
some test problems, see also [9, 15, 16, 22].

However, when the matrix W is symmetric indefinite and T is SPD, the linear
system (1) is often referred to as the complex symmetric indefinite linear system [21,
22, 24, 26]. Then αV + W in (3) may be singular or indefinite, and the effectiveness
of the PMHSS method is seriously affected [25]. It is worth pointing out that the
same situation occurs in the modified HSS [7] and double-step scale splitting [27]
iteration methods.

Actually, in earlier times, Bai exquisitely designed the skew-normal splitting
(SNS) and skew scaling splitting (SSS) methods in [5] by using Hermitian positive
semi-definite matrix −(iT )2 = (iT )∗(iT ). Theoretical analyses in [5] show that
the SNS and SSS methods converge unconditionally to the unique solution of com-
plex symmetric indefinite linear systems of the form (1). Although the SNS and SSS
methods are convergent unconditionally, the algorithm implementation of both meth-
ods involves complex arithmetics which greatly reduce the computational efficiency
at each inner iteration.

Let x = y + iz and b = b1 + ib2, where y, z, b1, b2 ∈ R
n, in order to avoid

the complex arithmetic, the complex symmetric indefinite linear system (1) can be
rewritten into the block 2 × 2 equation [1, 3, 4, 9, 25]:

Â x̂ ≡
(

T −W

W T

)(
y

−z

)
=

(
b2
b1

)
≡ b̂. (4)

The block 2 × 2 linear equation (4) can be solved in real arithmetics by some
preconditioned Krylov subspace iteration methods (such as GMRES [19]). Recently,
based on the relaxed splitting preconditioning technique [14] for generalized saddle
point problems [13, 18], some block structure preconditioners have been created. For
example, a variant of HSS (VHSS) preconditioner is constructed in [20], which has
the form

PVHSS = 1

2α

(
αI + T 0

0 2αI

) (
αI −W

W T

)
. (5)

Zhang and Dai [24] made slight changes to the VHSS preconditioner and presented
a new block (NB) splitting preconditioner:

PNB = 1

α

(
αI −W

W T

) (
αI + T 0

0 αI

)
,
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they showed that PNB is a better approximation to the block 2 × 2 matrix Â in (4)
than the VHSS preconditioner PVHSS in (5).

The forms of PVHSS and PNB imply that they are both good approximations
to the coefficient matrix Â . However, when these preconditioners are applied to
accelerate Krylov subspace methods, a linear sub-system with real coefficient matrix
αT + W 2 must be solved at each inner iteration. As the spatial dimension increases,
these preconditioners may be invalid or computationally inefficient since the matrix
αT + W 2 becomes dense.

Therefore, in this paper, we strive to construct an iteration method that is uncon-
ditionally convergent for solving the complex symmetric indefinite linear system (1)
with W is symmetric indefinite and T is SPD. Moreover, the algorithm implementa-
tion of the iteration method and the corresponding preconditioner only involves the
solutions of sparse SPD linear sub-systems.

The remainder of this paper is organized as follows. In Section 2, a variant of
PMHSS (VPMHSS) iteration method which can be regarded as a generalization of
PMHSS method is introduced in detail, and the unconditional convergence theory
and quasi-optimal parameter expression are also established. In addition, the spectral
properties of the corresponding preconditioned matrix are discussed under suitable
conditions in Section 3. Numerical results are given in Section 4 to demonstrate the
efficiency of the VPMHSS iteration method and the corresponding preconditioner.
Some concluding results are drawn in Section 5.

2 The VPMHSS iterationmethod

By using the positive definiteness property of the matrix T and introducing a positive
factor ε, the complex linear system (1) is equivalent to

A x = (M + iδT )x = b, (6)

where M = εT + W and δ = 1 + iε. Here ε is an appropriate positive number such
that M is a SPD matrix, see [26]. Referred to the first half-step iteration format of the
PMHSS method in (3), it is easy to rewrite the linear (6) to

(αV + M)x = (αV − iδT )x + b, (7)

where α is a given positive constant and V ∈ R
n×n is a SPD matrix.

Similarly, compared with the second half-step iteration format of the PMHSS
method (3), we need to convert the complex matrix δT in (6) into a SPD matrix |δ|T
at first, where |δ| = √

1 + ε2 is the module of δ. Then we can reconstruct

(αV + |δ|T )x =
(

αV + i
δ∗

|δ|M
)

x − i
δ∗

|δ|b, (8)

where δ∗ = 1 − iε represents the conjugate of δ.
Combining (7) and (8), the VPMHSS iteration method is given immediately.
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Method 2.1 (The VPMHSS iteration method) Let x0 ∈ C
n be an arbitrary initial

guess. For k = 0, 1, 2, · · ·, until the sequence of iterates {xk}∞k=0 ⊂ C
n converges,

compute the next iterate xk+1 according to the following procedure:⎧⎨
⎩

(αV + M)x
k+ 1

2
= (αV − iδT )xk + b.

(αV + |δ|T )xk+1 =
(
αV + i δ∗

|δ|M
)

x
k+ 1

2
− i δ∗

|δ|b.
(9)

where α is a given positive constant, δ = 1 + iε and V ∈ R
n×n is a prescribed SPD

matrix.

Remark 2.1 Note that when ε = 0, i.e., the matrix W itself is a SPD matrix, Method
2.1 reduces to Method 1.2. Therefore, the VPMHSS method can be considered as a
generalization of the PMHSS method for solving the complex symmetric indefinite
linear system (1).

Since the matrices αV + M and αV + |δ|T are both sparse SPD matrices, the
two linear sub-systems involved in each step of (9) can also be solved effectively by
using a Cholesky factorization or inexactly by some conjugate gradient or multigrid
scheme [8, 9, 11, 27].

After straightforward derivations, the VPMHSS iteration scheme (9) can be
reformulated into the standard linear stationary iteration form

xk+1 = L(V, α)xk + R(V, α)b, k = 0, 1, 2, · · ·
where

L(V, α) = (αV + |δ|T )−1
(

αV + i
δ∗

|δ|M
)

(αV + M)−1(αV − iδT )

and

R(V, α) = α(1 − i
δ∗

|δ| )(αV + |δ|T )−1V (αV + M)−1.

In addition, if we introduce the matrices F(V, α) and G(V, α) with

F(V, α) = |δ|
α(|δ| − iδ∗)

(αV + M)V −1(αV + |δ|T )

and

G(V, α) = |δ|
α(|δ| − iδ∗)

(αV + i
δ∗

|δ|M)V −1(αV − iδT ),

then it holds that L(V, α) = F(V, α)−1G(V, α) and A = F(V, α) − G(V, α).
Concerning the convergence of the stationary VPMHSS iteration method, we have

the following theorem.

Theorem 2.1 Let A = M + iδT with M, T ∈ R
n×n being both SPD matrices,

δ = 1 + iε with ε > 0, and let α be a positive constant. Then the spectral radius
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ρ(L(V, α)) of the VPMHSS iteration matrix L(V, α) satisfies ρ(L(V, α)) ≤ σ(α),
where

σ(α) = max
γj ∈Sp(V −1M)

√
α2 + γ 2

j + 2αγj
ε√
1+ε2

α + γj

.

Therefore, it holds that

ρ(L(V, α)) ≤ σ(α) < 1, ∀α > 0,

i.e., the VPMHSS iteration method converges to the unique solution of the complex
symmtric indefinite linear systems (1) and (6) for any initial guess.

Proof By direct computations we have

ρ(L(V, α)) = ρ

(
(αV + i

δ∗

|δ|M)(αV + M)−1(αV − iδT )(αV + |δ|T )−1
)

≤
∥∥∥∥
(

αV + i
δ∗

|δ|M
)

(αV + M)−1
∥∥∥∥
2
· ‖(αV − iδT )(αV + |δ|T )−1‖2

= max
γj ∈Sp(V −1M)

∣∣∣∣∣
α + i δ∗

|δ|γj

α + γj

∣∣∣∣∣ · max
μj ∈Sp(|δ|V −1T )

∣∣∣∣∣
α − i δ

|δ|μj

α + μj

∣∣∣∣∣

= max
γj ∈Sp(V −1M)

√
α2 + γ 2

j + 2αγj
ε√
1+ε2

α + γj

· max
μj ∈Sp(|δ|V −1T )

√
α2 + μ2

j + 2αμj
ε√
1+ε2

α + μj

≤ max
γj ∈Sp(V −1M)

√
α2 + γ 2

j + 2αγj
ε√
1+ε2

α + γj

= σ(α).

As γj > 0, j = 1, 2, · · · , n and ε > 0, it then follows that

ρ(L(V, α)) ≤ σ(α) < 1, for ∀α > 0.

Therefore, the VPMHSS iteration method (9) converges to the unique solution of the
complex systems (1) and (6).

Remark 2.2 The VPMHSS is, in spirit, analogous to the PMHSS method discussed
in [8] for solving the complex symmetric semi-definite linear systems. However, the
unconditional convergence property of the VPMHSS method is still applicable for
the complex symmetric indefinite equations (1), and the convergence rate depends
on the relax parameter α and the positive factor ε.
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Regarding the quasi-optimal parameter αopt of the VPMHSS method (9), we refer
to literature [7, 8] and draw the following conclusion immediately.

Corollary 2.1 Let the conditions of Theorem 2.1 be satisfied, and γmin and γmax
be the smallest and the largest eigenvalues of the matrix V −1M , respectively. Then
the quasi-optimal parameter αopt that minimizes σ(α) is αopt = √

γminγmax. The
corresponding optimal convergence factor is bounded by

ρ(L(V, αopt)) ≤

√
1 + κ2(V −1M) + 2 ε√

1+ε2

√
κ2(V −1M)

1 + √
κ2(V −1M)

. (10)

where κ2(·) represent the spectral condition number of the corresponding matrix.

It is easy to see that the convergence rates of the VPMHSS iteration method are
bounded by σ(αopt), which only depends on the spectrum of the matrix V −1M .
Evidently, the smaller the condition number of the matrix V −1M is, the faster the
asymptotic convergence rate of the VPMHSS iteration method will be.

Now, according to the result of (10), we give the value of the quasi-optimal
parameter αopt for minimizing the upper bound σ(α) when V = M .

Corollary 2.2 Let V = M , then the quasi-optimal parameter αopt is 1, and the

corresponding spectral radius ρ(L(1)) is less than
√

1
2 + ε

2
√

1+ε2
.

In particular, when V = M , we have

L(α) := L(M, α) = α + i δ∗
|δ|

α + 1
(αM + |δ|T )−1(αM − iδT ),

and the VPMHSS iteration scheme is induced by the matrix splitting A = F(α) −
G(α) with

F(α) := F(M, α) = (α + 1)|δ|
α(|δ| − iδ∗)

(αM + |δ|T ),

and

G(α) := G(M, α) = (α + i δ∗
δ
)|δ|

α(|δ| − iδ∗)
(αM − iδT ).

The splitting matrix F(α) can be used as a preconditioner matrix for the complex
symmetric indefinite matrix A in (1). Note that the multiplicative factor (α+1)|δ|

α(|δ|−iδ∗)
has no effect on the preconditioning system and therefore it can be dropped. Algo-
rithm implementation of the VPMHSS preconditioner F(α) within Krylov subspace
acceleration only involves solution of the sub-linear system with real SPD matrix
αM + |δ|T .

289



Numerical Algorithms (2022) 91:283–300

3 Spectral properties of the preconditionedmatrix

The spectral properties of the corresponding preconditioned matrix F(α)−1A are
established in the following theorem.

Theorem 3.1 Let the conditions of Theorem 2.1 be satisfied. Then the eigenvalues of
the preconditioned matrix F(α)−1A are given by

λ
(α)
j = α

|δ|(α + 1)(α + |δ|μj )

[
1 + |δ|μj

|δ| + ε
− i(1 − |δ|μj )

]
, j = 1, 2, · · · , n.

(11)
and the corresponding eigenvectors are given by

xj = M− 1
2 qj , j = 1, 2, · · · , n.

with μj being the eigenvalues and qj being the corresponding orthogonal

eigenvectors of the SPD matrix T̂ = M− 1
2 T M− 1

2 , respectively. Therefore, it
holds that F(α)−1A = X
X−1, where X = (x1, x2, · · · , xn) and 
 =
diag

(
λ

(α)
1 , λ

(α)
2 , · · · , λ

(α)
n

)
with κ2(X) = √

κ2(M).

Proof The proof is quite similar to that of Theorem 3.2 in [8], and is omitted.

Theorem 3.1 indicates that the matrix F(α)−1A is diagonalizable, with the matrix
X, formed by its eigenvectors, satisfying κ2(X) = √

κ2(M). Hence, when employed
to solve the complex symmetric indefinite linear systems (1) and (6), the precondi-
tioned Krylov subspace iteration methods (such as GMRES [19]) can be expected to
converge rapidly, at least when

√
κ2(M) is not too large.

Finally, under the selection of quasi-optimal parameter, a more refined eigenvalue
distributions of F(α)−1A is given.

Corollary 3.1 When α = 1, the real part Re
(
λ

(1)
j

)
of the eigenvalues λ

(1)
j in (11) is

Re(λ
(1)
j ) = 1

2|δ|(|δ| + ε)
,

and the imaginary part Im
(
λ

(1)
j

)
of the eigenvalues λ

(1)
j is

Im
(
λ

(1)
j

)
= −1

2|δ| · 1 − |δ|μj

1 + |δ|μj

∈
(

− 1

2|δ| ,
1

2|δ|
)
.

Therefore, the eigenvalues of the preconditioned matrix F(1)−1A are linearly
distributed and only related to the positive factor ε.

Corollary 3.2 If α = 1, then Corollary 2.2 leads to ρ(L(1)) ≤
√

1
2 + ε

2
√

1+ε2
. This

shows that when

F(1) = 2|δ|
|δ| − iδ∗ (M + |δ|T )
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is used to precondition the matrix A , the eigenvalues of the preconditioned matrix

F(1)−1A are well-clustered in the circle with radius
√

1
2 + ε

2
√

1+ε2
and centered

at (1, 0).

4 Numerical experiments

In this section, we use two examples to assess the feasibility and effectiveness of
the VPMHSS method when it is used either as a solver or as a preconditioner for
solving the system of linear equations (1) and (6). We also compare the VPMHSS
with the PMHSS both as iterative solvers and as preconditioners for the GMRES
method. In addition, numerical results of GMRES in conjunction with the VHSS and
NB preconditioners for solving the real system (4) are also presented.

The initial guess is chosen to be the zero vector and the iteration is terminated if

the relative residual error satisfies ‖r(k)‖2
‖r(0)‖2 < 10−6. IT denotes the number of iteration,

CPU denotes the computing time (in seconds) required to solve a problem. All codes
are running in MATLAB on an Intel(R) Core(TM) i7-4790 CPU @3.60GHz, 8G
memory and Win 7 operating system, with machine precision 10−16.

In the implementation, the relax parameters α in different methods are selected by
the following ways.

• For the VPMHSS and PMHSS methods, we use both the experimentally optimal
parameters (denoted by αexp) and the fix parameter α = 1. The involved pre-
conditioning matrices for the two methods are chosen as V = M and V = T ,
respectively. Moreover, the positive factor ε in (6) is

√
n‖W‖∞/‖T ‖F , see [26].

• For the VHSS preconditioner [20]:

αVHSS = √
λmaxλmin,

where λmax and λmin are the maximum and the minimum eigenvalues of the
SPD matrix T , respectively. In this section, it should be noted that we use the
power method and the inverse power method to calculate the λmax and λmin,
respectively, but the calculation time is not shown in Tables 2 and 4.

• For the NB preconditioner [24]:

αNB =
(
tr(T W 2T )

n

) 1
4

,

where tr(·) denotes the trace of a matrix.

Example 4.1 (See [4, 8, 20, 26]) The complex symmetric indefinite linear system (1)
is of the following form:

A x =
[
(−ω2G + K) + i(ωCV + CH )

]
x = b, (12)

where G is the inertia matrix, CV and CH are the viscous and the hysteretic damping
matrices, respectively, and K is the stiffness matrix. See [7] for more information.
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In this example, we take G = I , CV = 0.05G, CH = μK . The matrix K ∈
R

n×n possesses the tensor-product form K = I ⊗ Vm + Vm ⊗ I with Vm = h−2 ·
tridiag(−1, 2, −1) ∈ R

m×m. SoK is a n×n block-tridiagonal matrix with n = m2. In
addition, we set ω = 2π , μ = 5, and the right-hand side vector b = (1+i)A 1with 1
being the vector of all entries equal to 1. As before, we normalize the system (12) by
multiplying both sides by h2. Then we conclude that the SPDmatrix T = ωCV +CH ,
and the symmetric indefinite matrix W = −ω2G + K . The numerical results of the
tested methods for Example 4.1 are listed in Tables 1 and 2.

In Table 1, we display the numerical results of the PMHSS and VPMHSS iteration
methods. From Table 1, we see that the ITs for VPMHSS method remain constant
with problem size, while that of PMHSSmethod do not. Moreover, VPMHSS consid-
erably outperforms PMHSS both in terms of IT and CPU times, except for m = 512.
Additionally, pictures of IT versus α for PMHSS and VPMHSS iteration methods
with m = 128 andm = 256 are plotted in Fig. 1. It should be noted that if the number
of iteration steps of the PMHSS method is more than 100, it is calculated and plotted
as 100. Compare with the iteration counts of PMHSS, VPMHSS is more stable with
respect to the iteration parameter α, see Fig. 1.

In Table 2, we report results for the VHSS-, NB-, PMHSS- and VPMHSS-
preconditioned GMRES methods. From these results we observe that when used as
preconditioners, VPMHSS and PMHSS perform much better than VHSS and NB in
IT steps and CPU times. The ITs for PMHSS and VPMHSS almost keep consistent
with problem size and relax parameters. Moreover, when the iteration parameter
α is fixed to be 1, the ITs and CPU for the VPMHSS iteration method and the
VPMHSS-preconditioned GMRES method are almost identical to those obtained
with experimentally found optimal parameters αexp in Tables 1 and 2.

Table 1 IT and CPU for PMHSS and VPMHSS iteration methods for Example 4.1

Method m × m 64 × 64 128 × 128 256 × 256 512 × 512

PMHSS αexp 1.9 1.9 2.0 1.8

IT 53 47 42 37

CPU 0.0682 0.3448 1.8314 8.6869

PMHSS α 1.0 1.0 1.0 1.0

IT 93 83 73 63

CPU 0.1050 0.5321 2.8798 13.4141

VPMHSS αexp 1.5 1.5 1.5 1.5

IT 36 36 36 36

CPU 0.0555 0.2945 1.7163 8.9014

VPMHSS αopt 1.0 1.0 1.0 1.0

IT 37 37 37 37

CPU 0.0562 0.2960 1.7564 9.0902
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Table 2 IT and CPU for the preconditioned GMRES method of Example 4.1

Prec. m × m 64 × 64 128 × 128 256 × 256 512 × 512

VHSS αVHSS 0.9663 0.4856 0.2449 0.1227

IT 15 21 28 38

CPU 0.1003 0.7528 6.4872 50.8061

NB αNB 11.3631 11.3846 11.3937 11.3979

IT 44 82 155 282

CPU 0.2705 3.1282 60.3767 845.3032

PMHSS αexp 2.5 2.0 2.0 2.0

IT 4 5 5 5

CPU 0.0169 0.0803 0.4451 2.2802

PMHSS α 1.0 1.0 1.0 1.0

IT 5 5 5 5

CPU 0.0181 0.0814 0.4518 2.2862

VPMHSS αexp 0.5 1.2 1.2 1.2

IT 4 5 5 5

CPU 0.0141 0.0792 0.4300 2.2088

VPMHSS αopt 1.0 1.0 1.0 1.0

IT 5 5 5 5

CPU 0.0159 0.0790 0.4293 2.2111

To further show the efficiency of the VPMHSS preconditioner, eigenvalue dis-
tributions (64 × 64 grids) of the four preconditioned matrices are plotted in Fig. 2.
From Fig. 2, we can see that all eigenvalues of the four preconditioned matrices are
located in a circle at 1 with radius strictly less than 1. In particular, we noticed that the
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Fig. 1 Pictures of IT versus α for PMHSS and VPMHSS iteration methods for Example 4.1; left:m = 128,
and right: m = 256
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Fig. 2 Eigenvalue distributions of the preconditioned matrices for Example 4.1 with m = 64

eigenvalues of VPMHSS-preconditioned matrix are linearly distributed, which con-
firm the theoretical results in Corollary 3.1, and the eigenvalues are more clustered.

Example 4.2 (A distributed optimal control for time-periodic hyperbolic equations)
The second complex symmetric indefinite linear system (1) is of the form

A x = [√
ν(K − ωT ) + iT

]
x = b,

where K, T ∈ R
(m−1)2×(m−1)2 are the stiffness and mass matrices, respectively.

ν > 0 is a regularization parameter and ω > 0 is a frequency parameter. See [23] for
more information.

Note that we have W = √
ν(K − ωT ) is a symmetric indefinite matrix. We vary

the parameters (ν, ω) = (10−4s , 10s) with s = {1, 2}. The numerical results of the
tested methods for Example 4.2 are depicted in Tables 3 and 4.

As the numerical results reported in Table 3, the VPMHSS iteration method out-
performs the PMHSS method for s = 2 both in ITs and CPU times, while for s = 1
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Table 3 IT and CPU for PMHSS and VPMHSS iteration methods for Example 4.2

Method m × m 64 × 64 128 × 128 256 × 256 512 × 512

s = 1 PMHSS αexp 1.4 1.4 1.4 1.4

IT 53 53 53 53

CPU 0.0781 0.8467 5.0971 36.6095

PMHSS α 1.0 1.0 1.0 1.0

IT 56 56 56 56

CPU 0.0981 0.8312 5.0517 37.7708

VPMHSS αexp 1.9 1.6 1.4 1.2

IT 42 52 72 110

CPU 0.0641 0.7865 6.6286 74.5050

VPMHSS αopt 1.0 1.0 1.0 1.0

IT 45 54 73 111

CPU 0.0667 0.8114 6.8052 75.8735

s = 2 PMHSS αexp 1.1 1.1 1.2 1.1

IT 42 42 42 42

CPU 0.0658 0.6530 4.0819 29.4573

PMHSS α 1.0 1.0 1.0 1.0

IT 42 42 42 42

CPU 0.0754 0.6049 3.7909 28.9119

VPMHSS αexp 1.3 1.5 1.6 1.6

IT 39 38 37 35

CPU 0.0616 0.5867 3.6011 24.9719

VPMHSS αopt 1.0 1.0 1.0 1.0

IT 39 39 38 37

CPU 0.0589 0.6014 3.6596 26.0398

and large values of m (m = 256, 512), the VPMHSS iteration method can not
compete with PMHSS method. In addition, pictures of IT versus α for PMHSS and
VPMHSS methods are plotted in Fig. 3.

From Table 4, we observe that the proposed VPMHSS-preconditioned GMRES
method can keep steady in IT steps when the mesh grids increase. We also find
that the PMHSS and VPMHSS methods outperform VHSS and NB methods with
respect to both IT steps and CPU times. Moreover, the NB preconditioned GMRES
method has a wide range of iteration steps and takes more time. Although the VHSS
preconditioned GMRES method has a good performance in the iteration steps, the
determination of its optimal parameters is difficult and time-consuming.
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Table 4 IT and CPU for the preconditioned GMRES method of Example 4.2

Prec. m × m 64 × 64 128 × 128 256 × 256 512 × 512

s = 1 VHSS αVHSS 0.0026 0.0026 0.0013 0.0007

IT 14 19 19 20

CPU 0.1151 1.0552 6.4921 40.0204

NB αNB 0.1400 0.1174 0.0987 0.0830

IT 71 81 81 70

CPU 0.4697 4.2480 30.3957 145.8403

PMHSS αexp 0.1 0.1 0.1 0.1

IT 4 8 7 7

CPU 0.0151 0.1842 0.9988 6.9668

PMHSS α 1.0 1.0 1.0 1.0

IT 7 10 9 8

CPU 0.0193 0.2112 1.2380 7.5997

VPMHSS αexp 3.0 5.0 5.0 4.0

IT 6 10 9 9

CPU 0.0168 0.2185 1.2714 8.9265

VPMHSS αopt 1.0 1.0 1.0 1.0

IT 7 11 11 11

CPU 0.0193 0.2292 1.4975 10.6962

s = 2 VHSS αVHSS 0.0026 0.0026 0.0013 0.0007

IT 30 30 36 50

CPU 0.2023 1.5888 12.2427 101.5461

NB αNB 0.0464 0.0389 0.0327 0.0275

IT 51 51 106 150

CPU 0.3192 2.5619 43.1451 399.1063

PMHSS αexp 1.0 1.0 1.0 1.0

IT 14 14 14 13

CPU 0.0331 0.2973 1.8061 11.8095

VPMHSS αexp 1.3 1.3 1.5 1.7

IT 14 14 14 13

CPU 0.0330 0.2897 1.8361 11.8436

VPMHSS αopt 1.0 1.0 1.0 1.0

IT 14 14 14 13

CPU 0.0355 0.2876 1.8293 12.0509
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Fig. 3 Pictures of IT versus α for PMHSS and VPMHSS iteration methods for Example 4.2; left: m =
128, s = 1, and right: m = 128, s = 2

Eigenvalue distributions (64 × 64 grids) of the four preconditioned matrices are
plotted in Figs. 4 and 5 for different variables s. It is evident that the VPMHSS-
preconditioned matrix F(1)−1A is of a well-clustered spectrum around 1 away from
zero.
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Fig. 4 Eigenvalue distributions of the preconditioned matrices for Example 4.2 with m = 64 and s = 1
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Fig. 5 Eigenvalue distributions of the preconditioned matrices for Example 4.2 with m = 64 and s = 2

5 Conclusions

In this paper, motivated by the ideas of [8] and [26], we present a variant of PMHSS
iteration method (9), which can be regarded as a generalization of the PMHSS
method for solving a class of complex symmetric indefinite linear systems (1) and
(6). The algorithm implementation of the VPMHSS iteration method and the cor-
responding preconditioner avoids complex matrix and dense matrix operations, and
only involves the solutions of sparse SPD linear sub-systems. Then the uncondition-
ally convergence properties of the VPMHSS method are confirmed. At the same
time, the simple optimal iteration parameter and the corresponding optimal conver-
gence factor of our method are also derived. Finally, numerical experiments are given
to show the effectiveness and robustness of the proposed method.
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