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Abstract
At present, many conjugate gradient methods with global convergence have been pro-
posed in unconstrained optimization, such as MPRP algorithm proposed by Zhang
et al. (IMA J. Numer. Anal. 26(4):629–640, 2006). Unfortunately, almost all of these
methods require gradient Lipschitz continuity condition. As far as we know, how do
the current conjugate gradient methods deal with gradient non-Lipschitz continuity
problems is basically blank. For gradient non-Lipschitz continuity problems, Algo-
rithm 1 and Algorithm 2 are proposed in this paper based on MPRP algorithm. The
proposed algorithms have the following characteristics: (i) Algorithm 1 retains suffi-
cient descent property independent of line search technology in MPRP algorithm; (ii)
for nonconvex and gradient non-Lipschitz continuous functions, the global conver-
gence of Algorithm 1 is obtained in combination with the trust region property and
the weak Wolfe-Powell line search technique; (iii) based on Algorithm 1, Algorithm
2 is further improved which global convergence can be obtained independently of line
search technique; (iv) according to numerical experiments, the proposed algorithms
perform competitively with other similar algorithms.
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1 Introduction

Consider unconstrained optimization problems

min{f (x)| x ∈ Rn}, (1.1)

where the objective function f : Rn −→ R is continuously differentiable. The
conjugate gradient (CG) algorithm for (1.1) has the iteration formula:

xk+1 = xk + αkdk, k = 0, 1, 2, · · · , (1.2)

where xk is the current iteration point, αk is the step size, and dk is the search
direction, which is defined by

dk =
{ −gk + βk−1dk−1, if k ≥ 1,

−gk, if k = 0,
(1.3)

where gk = �f (xk) is the gradient of f (x) at xk , and βk ∈ R is a CG scalar.
Various well-known conjugate gradient methods (see [4–6, 9, 15–17]), including the
Fletcher-Reeves (FR) method [6], the Polak-Ribière-Polyak (PRP) method [16, 17],
the Hestenes-Stiefel (HS) method [9], the Dai-Yuan (DY) method [4] and the con-
jugate descent method [5]. Zoutendjk [42] proved the global convergence of the FR
method for general functions under an exact line search. In practice, the FR method
[6] may produce a continuous small step length, which will lead to poor numerical
performance despite its satisfactory convergence. The global convergence of the DY
method [4] and the CD method [5] has been proven, and the global convergence of
the DY method [4] can be proven without descent condition. However, the perfor-
mances of the DY method and the CD method are weaker than those of the PRP
method [16, 17] and the HS method [9], where the performance of the HS method is
similar to that of the PRP method. Furthermore, the PRP method has a built-in restart
feature that can automatically adjust βk to solve the interference problem. Therefore,
we are more interested in the PRP formula with

βPRP
k = gT

k yk−1

‖gk−1‖2 ,

where ‖ · ‖ denotes the Euclidean norm of vectors and yk−1 = gk − gk−1. Many
scholars have studied the convergence (see [2, 3, 17–19, 35, 41] et al.) of the PRP
method. Polark and Ribière show that for convex problems, the global convergence
of the PRP method can be proven using an exact line search [16, 17]. However, for
the nonconvex problems, Powell [19] gave a three-dimensional counterexample and
pointed out that the convergence of the PRP method could not be guaranteed even if
an exact line search was adopted. Based on the above work, the research results of
Gilbert and Nocedal [7] show that if βPRP

k is strictly non-negative and the step size
αk is determined by a line search step that satisfies sufficient descent, then the PRP
method has global convergence.

It is well known that sufficient descent is a very important property for CG
algorithms which has the form

dT
k gk ≤ −c‖gk‖2, (1.4)
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where c > 0 is a constant and this property has been proven to play a critical role in
analyzing the global convergence of CG methods (see [7, 10, 36, 39] etc.). To ensure
that the sufficient descent condition is satisfied and establish the convergence of the
PRP method, the following weakWolfe-Powell (WWP) inexact line search technique
is proposed in optimization algorithms to find αk such that

f (xk + αkdk) ≤ f (xk) + δαkg
T
k dk (1.5)

and
g(xk + αkdk)

T dk ≥ σgT
k dk, (1.6)

where δ ∈ (0, 1
2 ) and σ ∈ (δ, 1).

The above work is particularly important for the global convergence of algorithms,
and the gradient Lipschitz continuity condition is usually used as a hypothetical
condition in the convergence proof for each algorithm. Next, we will analyze the
convergence of various classical CG formulas and the use of the gradient Lipschitz
continuity condition in the corresponding proofs.

The FR method [1] proves global convergence under the strong Wolfe line search,
while generating sufficient descent directions. In the global convergence proof of the
FR method, the following three conditions are required: (i) the objective function f

is continuously differentiable; (ii) the level set S = {x ∈ Rn : f (x) ≤ f (x1)} is
bounded; (iii) the gradient function g(x) satisfies the gradient Lipschitz continuity
condition. According to the above conditions, we can get lim infk→∞ ‖gk‖ = 0.

The DY method [4] is a classic CG formula that always generates descent direc-
tions under a standard Wolfe line search. The global convergence of the DY method
is assumed under two conditions: (i) f is bounded below on Rn and is continuously
differentiable in a neighborhoodN of the level set S = {x ∈ Rn : f (x) ≤ f (x1)}; (ii)
the gradient ∇f (x) is Lipschitz continuous in N , i.e., there exists a constant L > 0
such that ‖∇f (x) − ∇f (y)‖ ≤ L‖x − y‖ for any x, y ∈ N . In addition, the DY
method satisfies the Zoutendijik condition with

∞∑
k=0

(gT
k dk)

2

‖dk‖2 < ∞

under the assumption of the gradient Lipschitz continuity condition.
In [16, 17], the PRP method can converge at a square rate, and its finite-

dimensional smooth objective function f (x) needs to satisfy the requirement that
f (x) is a twice differentiable strongly convex function, with a bounded second
derivative that satisfies gradient Lipschitz continuity condition. Then, we can obtain

‖xkN − x∗‖ ≤ cq2k, q < 1.

Moreover, the gradient Lipschitz continuity condition is used in the proof of the
above inequality. This also indicates that the PRP method with an exact line search
is globally convergent under the assumption that f is strongly convex.

The method that was proposed by Hager and Zhang (see [10]) in 2005 is also a
well-known CG formula. This method is considered to satisfy either the Goldstein
conditions [8]

δ1αkg
T
k dk ≤ f (xk + αkdk) − f (xk) ≤ δ2αkg

T
k dk,
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where 0 < δ2 < 1
2 < δ1 < 1 and αk > 0, or the Wolfe conditions [25, 26].

Assuming that the objective function f is strongly convex and the gradient function
satisfies gradient Lipschitz continuity condition, global convergence can be achieved.
Moreover, if the line search satisfies the Goldstein conditions, then

αk ≥ (1 − δ1)

L

|gT
k dk|

‖gk‖2 ,

and if the line search satisfies the Wolfe conditions [25, 26], then

αk ≥ (1 − σ)

L

|gT
k dk|

‖gk‖2 .

Inspired by the above observations, many scholars have proposed modified CG
methods based on the PRP formula (see [7, 10, 11, 14, 27–32, 36, 38, 40] etc.).
An improved three-term Polak-Ribière-polyak (MPRP) method proposed by Zhang
et al. is one of the good results. Contradiction proof is used in the MPRP algorithm
for global convergence, and ‖dk‖ ≤ Md (Md is a positive constant) is obtained in
the proof process, which makes us naturally associate with the trust region property.
It is well known that the trust region method is an effective method for optimization
problems ([13, 20–24, 33, 34] etc.), which has desirable theoretical properties, i.e., it
possesses very strong convergent features. The subproblem model of the trust region
to finds a trial step dk is determined by

min
x∈
n

gT
k dk + 1

2
dT Bkd = qk(d),

s.t . ‖dk‖ ≤ �k .

where �k is called trust region radius. According to the subproblem model, we think
that dk has the trust region feature if it can ensure that the following relation

‖dk‖ ≤ cM‖gk‖. (1.7)

holds, where cM is a positive constant. Inspired by MPRP algorithm, we consider to
prove the global convergence of algorithms combined with the trust region proper-
ties. However, it is well known that the gradient Lipschitz continuity condition is still
needed to prove the global convergence of MPRP algorithm. The following ques-
tion is considered: can the global convergence proceed smoothly without gradient
Lipschitz continuity condition? At present, few scholars have obtained good results
[12, 37]. Based on the MPRP method, this paper gives a positive answer, and the
following results are obtained:

• The sufficient descent property (1.4) of MPRP algorithm independent of line
search technology is retained in Algorithm 1.

• For nonconvex and gradient non-Lipschitz continuous functions, the global con-
vergence of Algorithm 1 is established by combining trust region properties and
using the weak Wolfe-Powell line search technique.

• Algorithm 2 is further improved from Algorithm 1, and the global convergence
can be obtained independently of the line search technique.

• The proposed algorithms perform competitively with other similar algorithms.
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The motivation and Algorithm 1 are presented in the next section. Section 3 intro-
duces the global convergence of Algorithm 1 under the WWP line search, as well as
the sufficient descent property. In Section 4, Algorithm 2 is analyzed and the global
convergence of Algorithm 2 is given without gradient Lipschitz continuity condition.
In Section 5, the numerical results of image restoration are introduced by A-PRP-A
algorithm, A-PRP-A-W algorithm, MPRP algorithm and Hager-Zhang algorithm.

2 Motivation and algorithm

Sufficient descent property plays an important role in the proof of the global conver-
gence of the CG algorithm. The first three-term CG formula proposed by Zhang et al.
[43] is called the MPRP method which have the sufficient descent property described
above with dT

k gk = −‖gk‖2 independent of any line search. The search direction dk

iterative formula is as follows

dk =
{ −gk, if k = 0,

−gk + gT
k yk−1dk−1−gT

k dk−1yk−1

‖gk−1‖2 , if k ≥ 1.
(2.1)

The global convergence of MPRP algorithm is proved under Armijo line search tech-
nique and gradient Lipschitz continuity condition. In addition, in the process of proof
using the contradiction, assuming ‖gk‖ ≥ ε > 0, you can obtain

‖dk‖ ≤ Md,

where Md is a positive constant. Inspired by the form of the above formula, we con-
sider combining trust region property in the proof of global convergence and expect
to obtain the trust region property of the following form

‖dk‖ ≤ cM‖gk‖
holds, where cM is a positive constant. According to the above, for gradient non-
Lipschitz continuous functions, we present a new formula on the basis of formula
(2.1), and combine the trust region properties to prove global convergence. The
search direction dk iterative formula is as follows:

dk =
{ −gk, if k = 0,

−gk + αk−1
gT
k yk−1dk−1−gT

k dk−1yk−1

‖gk−1‖2 , if k ≥ 1,
(2.2)

In this formula, prefix αk−1 is added to the formula (2.1) and the specified formula
is called an adaptive three-term CG formula. This modification is helpful for the
implementation of the algorithm in this paper. The sufficient descent property, global
convergence and other properties of this method will be proven in the next section.
Based on the above discussions, Algorithm 1 is presented as follows.

Algorithm 1: An adaptive three-term PRP algorithm (A-T-PRP-A)

Step 0: Given any initial point x0 ∈ Rn, d0 = −g0, constants ε ∈ (0, 1), δ ∈ (0, 1
2 ),

σ ∈ (δ, 1), μ > 0, and set k = 0.
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Step 1: Stop if ‖gk‖ ≤ ε holds.
Step 2: Find αk satisfying the WWP line search (1.5) and (1.6).
Step 3: The next point xk+1 = xk + αkdk is defined.
Step 4: Stop if ‖gk+1‖ ≤ ε is true.
Step 5: Compute the conjugate gradient direction by (2.2).
Step 6: Set k = k + 1, and go to Step 2.

3 The global convergence of Algorithm 1

In this section, we will prove that Algorithm 1 is globally convergent. First, the
sufficient descent property of the new formula will be demonstrated.

Lemma 1 The direction is generated by Algorithm 1 where gT
k dk = −‖gk‖2, i.e.,

Algorithm 1 has sufficient descent (1.4).

Proof Algorithm 1 generates the sequence {xk, dk, αk, gk} , then, if k = 0, d0 = −g0.
In this case, Algorithm 1 has sufficient descent (1.4).
If k ≥ 1, the following relation can be obtained from the iterating formula (2.2):

gT
k dk = gT

k (−gk + αk−1
gT

k yk−1dk−1 − gT
k dk−1yk−1

‖gk−1‖2 )

= −‖gk‖2 + gT
k

gT
k yk−1(xk − xk−1) − gT

k (xk − xk−1)yk−1

‖gk−1‖2
= −‖gk‖2.

Then sufficient descent property (1.4) holds. The proof is complete.

Remark 3.1 (1) It is not difficult to observe that the direction has the property of
sufficient descent and requires no additional assumptions.

(2) From the above results, the following relation can be obtained:

−‖dk‖‖gk‖ ≤ gT
k dk = −‖gk‖2,

this means that
‖gk‖ ≤ ‖dk‖, ∀ k. (3.1)

The following assumption is needed to prove the global convergence of
Algorithm 1.

Assumption (I). The level set S = {x| f (x) ≤ f (x0)} is defined and bounded, and
the nonconvex function f (x) is continuously differentiable and bounded below.

Remark 3.2 (1) Under Assumption I, we conclude that there exists a constant c0 >

0 satisfying
‖xk‖ ≤ c0, ∀k.

(2) From Assumption I, the nonconvex function f (x) is continuously differentiable
then the gradient function g(x) is continuous. In addition, the level set S is
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bounded; therefore, the function f (x) is bounded in the level set S. And the gra-
dient function g(x) is continuous, that is, the gradient function g(x) is bounded
in the level set S. Namely there exists a constant Mg > 0 such that

‖g(x)‖ ≤ Mg, ∀x ∈ Rn. (3.2)

(3) Note, gradient non-Lipschitz continuous functions are common. We give a sim-

ple example where the original function f (x) = x
3
2 , x ∈ [0, +∞], the gradient

function g(x) = 3
2x

1
2 , and at x = 0 the gradient does not satisfy gradient

Lipschitz continuity condition.

Theorem 1 Suppose that Assumption I is satisfied and sequence {xk, dk, αk, gk} is
generated by Algorithm 1, then, we get

lim inf
k→∞ ‖gk‖ = 0. (3.3)

Proof In this proof, global convergence is obtained by using contradiction. Fist of
all, suppose

‖gk‖ ≥ ε0 (3.4)

holds. The global convergence of Algorithm 1 is proved below. Using (1.5) and the
relation (1.4) of Lemma 1, we have

f (xk + αkdk) ≤ f (xk) + δαkg
T
k dk ≤ f (xk) − δαk‖gk‖2,

and

δαk‖gk‖2 ≤ f (xk) − f (xk + αkdk).

Summing the above inequalities from k = 0 to ∞, we obtain

δ

∞∑
k=0

αk‖gk‖2 < ∞,

then

lim
k→∞ αk‖gk‖2 = 0. (3.5)

Therefore, the following relation can be obtained from (3.4) and (3.5)

αk → 0, k → ∞.

In the next place, similar to the proof of Lemma 1, if k = 0, d0 = −g0. Then,

‖d0‖ = ‖g0‖. (3.6)
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If k ≥ 1, it can be deduced from formulas (3.4) and Remark 3.2

‖dk‖ = ‖ − gk + αk−1
gT

k yk−1dk−1 − gT
k dk−1yk−1

‖gk−1‖2 ‖

= ‖ − gk + gT
k yk−1(xk − xk−1) − gT

k (xk − xk−1)yk−1

‖gk−1‖2 ‖

≤ ‖gk‖ + 2‖gk‖‖yk−1‖‖xk − xk−1‖
‖gk−1‖2

≤ ‖gk‖ + 2‖gk‖(‖gk‖ + ‖gk−1‖) · 2c0
‖gk−1‖2

≤ (1 + 8c0Mg

ε20

)‖gk‖.

Let M = 1 + 8c0Mg

ε20
> 0. According to the above derivation and (3.6), that is to say

‖dk‖ ≤ M‖gk‖, (3.7)

where k ≥ 0. In addition, according to (3.1) in Remark 3.1, we can infer that

‖gk‖ ≤ ‖dk‖ ≤ M‖gk‖.
From the above derivation, the level set is bounded means that

xkj
→ x∗, j → ∞,

where {xkj
} is a convergent sequence in xk . By Assumption I, the objective function

f (x) is continuously differentiable. Therefore, for all ε1 > 0, there exists an integer
N1 > 0 such that

‖g(xkj
) − g(x∗)‖ < ε1, ∀ j > N1. (3.8)

Using (3.7), for all ε2 > 0, there exists an integer N2 > 0 that satisfies

‖d(xkj
) − d(x∗)‖ < ε2, ∀ j > N2. (3.9)

From (3.8), (3.9) and Remark 3.1(2), we obtain

g(x∗)T d(x∗) ≤ −‖g(x∗)‖2 < −cε0 < 0. (3.10)

According to the second relation (1.6) of the WWP line search, the following relation
can be obtained

gT
k+1dk ≥ σgT

k dk,

this means that
gT

k+1dk − σgT
k dk ≥ 0,

Let N = max{N1, N2}, when k > N, we can deduce that

lim
k→∞(gT

k+1dk − σgT
k dk) = (1 − σ)g(x∗)T d(x∗) ≥ 0.

Finally, the above relation also implies that

g(x∗)T d(x∗) ≥ 0

holds. This contradicts the relation (3.10) that was obtained under our hypothesis
(3.3). The proof is completed.
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Remark 3.3 (1) According to the above proof process, the global convergence can
be proven in the absence of gradient Lipschitz continuity condition.

(2) In the process of proving the global convergence, we use contradiction, and the
proof for trust region simplifies the whole proof process.

4 Algorithm 2 and its proof of convergence

In the above section, we use the WWP line search method to determine αk and pro-
pose a new CG formula for determining the direction of descent dk . It is not difficult
to observe that the proof of global convergence is still valid in the absence of gradi-
ent Lipschitz continuity condition. This section will continue to explore and give an
algorithm without a line search or the gradient Lipschitz continuity condition, and
global convergence will also hold. The algorithm is presented as follows:

Algorithm 2: An adaptive three-term PRP algorithmwithout gradient Lipschitz
continuity condition (A-T-PRP-A-W)

Step 0: Given any initial point x0 ∈ Rn,d0 = −g0, constants ε ∈ (0, 1), δ ∈ (0, 1),
σ0 ∈ (0, 1), μ > 0, and set k=0.

Step 1: Stop if ‖gk‖ ≤ ε holds.
Step 2: The next point xk+1 = xk + dk is defined.
Step 3: If f (xk+1) > f (xk) + δ0g

T
k dk , setf (xk+1) = f (xk) + σ0δ0g

T
k dk .

Step 4: Stop if ‖gk+1‖ ≤ ε is true.
Step 5: Compute the conjugate gradient direction by (2.1).
Step 6: Set k=k+1, and go to Step 2.

Remark 4.1 (1) The difference between Algorithm 1 and Algorithm 2 is the step 2
and the step 3. We assume that αk is always equal to 1, and formula (2.2) will
become a classical formula (2.1).

(2) According to the Taylor formula, we obtain

f (xk + dk) = f (xk) + gT
k dk + O(‖dk‖2).

Using Lemma 1 has gT
k dk = −‖gk‖2. In the third step of Algorithm 2, if we

choose a sufficiently small scalar δ0, then f (xk+1) ≤ f (xk)+gT
k dk +O(‖dk‖2)

will be true in most cases. This also means that case f (xk+1) = f (xk) +
σ0δ0g

T
k dk might not hold. Therefore, it can be divided into the following two

situations with

Case(i):f (xk+1)≤f (xk)+δ0g
T
k dk and Case(ii):f (xk+1)=f (xk)+σ0δ0g

T
k dk .

(3) In the following we set f b(xk+1) = f (xk+1) in Case(ii)

Lemma 2 Suppose that Assumption I holds, for Case(ii), we can deduce that f b(xk)

is bounded below.
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Proof By the definition of f b, we have

f b(xk+1) = f (xk) + σ0δ0g
T
k dk = f (xk) − σ0δ0‖gk‖2.

Then

f (xk) − σ0δ0β
2 ≤ f b(xk+1) ≤ f (xk).

Since f (x) is bound below, the result of this lemma is true. The proof is complete.

Theorem 2 Suppose that Assumption I hold, then we get

lim
k→∞ ‖gk‖ = 0. (4.1)

Proof This theorem will be proved in the following four situations.

Situation I: Case(i) always holds. According to Assumption I, (1.4), we obtain

f (xk+1) ≤ f (xk) + δ0g
T
k dk = f (xk) − δ0‖gk‖2,

then

δ0‖gk‖2 ≤ f (xk) − f (xk+1).

Summing the above inequalities from k = 0 to ∞ and using
Assumption I, we get

δ0

∞∑
k=0

‖gk‖2 ≤ f0 − f∞ < ∞,

so (4.1) is true.
Situation II: Case(ii) always holds. According to the above definition and (1.4),

we obtain

f b(x1) = f (x0) + σ0δ0g
T
0 d0 = f (x0) − σ0δ0‖g0‖2,

f b(x2) = f b(x1) + σ0δ0g
T
1 d1 = f b(x1) − σ0δ0‖g1‖2,

f b(x3) = f b(x2) + σ0δ0g
T
2 d2 = f b(x2) − σ0δ0‖g2‖2,

f b(x4) = f b(x3) + σ0δ0g
T
3 d3 = f b(x3) − σ0δ0‖g3‖2,

· · · ,

f b(xk+1) = f b(xk) + σ0δ0g
T
k dk = f b(xk) − σ0δ0‖gk‖2,

· · · ,

summing up the above relations obtains

σ0δ0

∞∑
k=0

‖gk‖2 = f (x0) − f b(x∞) < ∞,

From Lemma 2 and Assumption I, it can also be inferred that (4.1)
holds.
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Situation III: Case(i) and Case(ii) both hold. It has

f b(x1) = f (x0) + σ0δ0g
T
0 d0 = f (x0) − σ0δ0‖g0‖2,

f (x2) ≤ f b(x1) + δ0g
T
1 d1 ≤ f b(x1) − σ0δ0‖g1‖2,

f b(x3) = f (x2) + σ0δ0g
T
2 d2 = f (x2) − σ0δ0‖g2‖2,

f (x4) = f b(x3) + δ0g
T
3 d3 = f b(x3) − σ0δ0‖g3‖2,

f b(x5) = f (x4) + σ0δ0g
T
4 d4 = f (x4) − σ0δ0‖g4‖2,

· · · ,

similar to Situation I and II, we can also obtain

σ0δ0

∞∑
k=0

‖gk‖2 < ∞,

which means that (4.1) is true.
Situation IV: Case(i) and Case(ii) hold with irregular alternation. By a way sim-

ilar to the above analysis, we can turn out that (4.1) is true. The
proof is complete.

Fig. 1 From left to right, the images disturbed by 30% salt-and-pepper noise, the images restored by A-
T-PRP-A, the images restored by A-T-PRP-A-W algorithm, the images restored by MPRP algorithm and
the images restored by Hager-Zhang algorithm
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Fig. 2 From left to right, the images disturbed by 45% salt-and-pepper noise, the images restored by A-
T-PRP-A, the images restored by A-T-PRP-A-W algorithm, the images restored by MPRP algorithm and
the images restored by Hager-Zhang algorithm

5 Image restoration problems

In this section, the numerical results of image restoration are introduced. This section
aims at restoring the original image from an image that was damaged by impulse
noise. Image restoration is of great importance in optimization experiments and is
applied in many fields. All the numerical tests are run on an Intel (R) Core (TM) i5-
4590 CPU @ 3.30 GHz with RAM 4.0 GB of memory on the Windows 10 operating
system.

Usually, after image compression, the output image differs from the original
image. In experiments, to measure the image quality after processing, we usually
refer to the PSNR value to measure whether a process is satisfactory. In general, the
higher the value of PSNR is, the better the quality of the output image. Therefore,
PSNR is an objective standard for image evaluation, which is defined as

PSNR = 10 × log10(
(2n − 1)2

MSE
),
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Fig. 3 From left to right, the images disturbed by 60% salt-and-pepper noise, the images restored by A-
T-PRP-A, the images restored by A-T-PRP-A-W algorithm, the images restored by MPRP algorithm and
the images restored by Hager-Zhang algorithm

where MSE is the mean square error between the original image (voice) and the pro-
cessed image (speech) and n is the number of bits per sample value. The algorithm
will stop if ‖fk+1−fk‖

‖fk‖ < 10−4 is satisfied. The parameters of the algorithms are:
δ = 0.2, σ = 0.9, δ0 = 0.2, σ0 = 0.9, μ = 0.01.

In the experiment, we choose Lena(512×512), Baboon(512×512), Barbara
(512×512) and Cameraman (512×512) as the test images. We use the A-T-PRP-A
algorithm and A-T-PRP-A-W algorithm to restore the images after adding noise, and
compare the results with those of the MPRP algorithm and Hager-Zhang algorithm.
The detailed performance results are shown in Figs. 1, 2 and 3. Figures 1, 2 and 3
describe the results of repair by the A-T-PRP-A algorithm, A-T-PRP-A-W algorithm,
MPRP algorithm and Hager-Zhang algorithm under noises addition of 30%, 45%
and 60% respectively. As shown in Figs. 1, 2 and 3, the A-T-PRP-A algorithm and
A-T-PRP-A-W algorithm can successfully restore the image with noise. In addition,
Table 1 lists the PSNR values in the experiment. According to Table 1, although the
differences in PSNR values of the restored images that are obtained by the four algo-
rithms are small, it can still be seen that the PSNR values that are obtained by the
A-T-PRP-A algorithm and A-T-PRP-A-W algorithm are superior to those obtained
by the MPRP algorithm and Hager-Zhang algorithm. This shows that the A-T-PRP-
A algorithm and A-T-PRP-A-W algorithm are competitive with the MPRP algorithm
and Hager-Zhang algorithm in performance.
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Table 1 Peak signal-to-noise ratio (PSNR) of A-T-PRP-A algorithm, A-T-PRP-A-W algorithm, MPRP
algorithm and Hager-Zhang algorithm

Lena Baboon Barbara Cameraman T otal

30% noise

A-T-PRP-A algorithm 38.6029 27.4365 29.0481 30.6062 125.6937

A-T-PRP-A-W algorithm 38.5858 27.4209 29.0968 30.7759 125.8794

MPRP algorithm 38.4313 27.3959 28.9551 30.3775 125.1598

Hager-Zhang algorithm 38.4798 27.4198 28.9841 30.4838 125.3675

45% noise

A-T-PRP-A algorithm 35.8123 25.2508 27.0440 28.0649 116.1720

A-T-PRP-A-W algorithm 35.8195 25.2406 26.9782 28.0817 116.1200

MPRP algorithm 35.6602 25.1841 26.9259 28.0441 115.8143

Hager-Zhang algorithm 35.5914 25.1990 26.8680 27.6658 115.3242

60% noise

A-T-PRP-A algorithm 33.3761 23.4403 25.4296 26.2770 108.5230

A-T-PRP-A-W algorithm 33.4423 23.4871 25.4456 25.9833 108.3583

MPRP algorithm 33.1939 23.3829 25.4194 25.8205 107.8167

Hager-Zhang algorithm 33.2362 23.4011 25.4153 25.8349 107.8875

6 Conclusion

For non-convex and gradient non-Lipschitz continuous functions, two adaptive three-
term PRP algorithms are presented in this paper. Algorithm 1 is proposed on the
basis of MPRP algorithm and its sufficient descent property is preserved independent
any line search. The global convergence of Algorithm 1 is obtained using WWP
line search technique without the gradient Lipschitz continuity condition, and the
proof is combined with the trust region properties by using contradiction. Algorithm
2 is further improved from Algorithm 1 to obtain global convergence independent of
line search technique. In addition, numerical experiment shows that Algorithm 1 and
Algorithm 2 have certain competitiveness compared with other algorithms.

Algorithm 1 and Algorithm 2 are proposed based on MPRP algorithm. In addi-
tion, it can be seen from the proof of Lemma1 and (3.3) in this paper that if sufficient
descent and trust region properties are satisfied, global convergence may be estab-
lished. However, for classical CG algorithms, such as PRP algorithm, it is a pity that
even sufficient descent properties cannot be satisfied.

In the future, there are several aspects can be further studied. The first one is
whether there exist other proof methods for the global convergence of CG algorithms
and nonconvex without gradient Lipschitz continuity condition. The second one is
the convergence of some improved CG method in the absence of gradient Lipschitz
continuity condition.
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