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Abstract
In this paper, we propose an inertial accelerated primal-dual method for the linear
equality constrained convex optimization problem. When the objective function has
a “nonsmooth + smooth” composite structure, we further propose an inexact iner-
tial primal-dual method by linearizing the smooth individual function and solving
the subproblem inexactly. Assuming merely convexity, we prove that the proposed
methods enjoy O(1/k2) convergence rate on the objective residual and the feasibil-
ity violation in the primal model. Numerical results are reported to demonstrate the
validity of the proposed methods.
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1 Introduction

Consider the linear equality constrained convex optimization problem:

min
x

F (x), s.t . Ax = b, (1)
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where F : Rn → R is a convex but possibly nonsmooth function, A ∈ R
m×n and

b ∈ R
m. The problem (1) captures a number of important applications arising in

various areas, and the following are three concrete examples.

Example 1.1 The basis pursuit problem (see, e.g., [9, 10]):

min
x

‖x‖1, s.t . Ax = b, (2)

where A ∈ R
m×n with m � n, and ‖ · ‖1 is the �1-norm of Rn defined by ‖x‖1 =∑n

i=1 |xi |. Algorithms for the basis pursuit problem can be found in [31] and [33].

Example 1.2 The linearly constrained �1 − �2 minimization problem [17]:

min
x

‖x‖1 + β

2
‖x‖22, s.t . Ax = b, (3)

where β > 0 and ‖ · ‖2 is the �2-norm of Rn defined by ‖x‖22 = ∑n
i=1 x2

i . When
β is small enough, a solution of the problem (3) is also a solution of the basis pur-
suit problem (2). Since the problem (3) has the regularization term β

2 ‖x‖22, it is less
sensitive to noise than the basis pursuit problem (2).

Example 1.3 The global consensus problem [8]:

min
X∈Rn×N

F (X) =
N∑

i=1

fi(Xi), s.t . Xi = Xj , ∀i, j ∈ {1, 2, · · ·N},

where fi : Rn → R is convex, i = 1, 2, · · · , N . The global consensus problem is a
widely investigated model that has important applications in signal processing [23],
routing of wireless sensor networks [22] and optimal consensus of agents [28].

Recall that (x∗, λ∗) ∈ R
n × R

m is a KKT point of the problem (1) if
{

−AT λ∗ ∈ ∂F (x∗),
Ax∗ − b = 0,

(4)

where ∂F is the classical subdifferential of F defined by

∂F (x) = {v ∈ R
n|F(y) ≥ F(x) + 〈v, y − x〉, ∀y ∈ R

n}.
Let � be the KKT point set of the problem (1). Then, for any (x∗, λ∗) ∈ �, from (4)
we have

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀(x, λ) ∈ R
n × R

m,

where L : Rn ×R
m → R is the Lagrangian function associated with the problem (1)

defined by

L(x, λ) = F(x) + 〈λ, Ax − b〉.
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A classical method for solving the problem (1) is the augmented Lagrangian method
(ALM) [6]:

{
xk+1 ∈ argminxL(x, λk) + σ

2 ‖Ax − b‖2,
λk+1 = λk + σ(Axk+1 − b).

(5)

In general, since L(x, λk) + σ
2 ‖Ax − b‖2 is not strictly convex, the subproblem may

have more than one solutions and be difficult to solve. To overcome this disadvantage,
the proximal ALM [11] has been proposed:

{
xk+1 = argminxF (x) + 〈AT λk, x〉 + σ

2 ‖Ax − b‖2 + 1
2‖x − xk‖2P ,

λk+1 = λk + σ(Axk+1 − b),
(6)

where ‖x‖2P = xT Px with a positive semidefinite matrix P and P + σAT A is
positive definite.

In some practical situations, the objective function F has the composite structure:
F(x) = f (x) + g(x), where f is a convex but possibly nonsmooth function and g

is a convex smooth function. Then, the problem (1) becomes the linearly constrained
composite convex optimization problem:

min
x

f (x) + g(x), s.t . Ax = b. (7)

An application of the method (6) to the problem (7) with linearizing the smooth
function g leads to the linearized ALM [32]:
{

xk+1 ∈ argminxf (x) + 〈∇g(xk) + AT λk, x〉 + σ
2 ‖Ax − b‖2 + 1

2‖x − xk‖2P ,

λk+1 = λk + σ(Axk+1 − b).
(8)

1.1 Related works

Under the assumption that F is smooth, He and Yuan [15] showed that the iteration-
complexity of the method (5) is O(1/k) in terms of the objective residual of the
associated L(x, λ). When F is nonsmooth, Gu et al. [13] proved that the method
(5) enjoys a worst-case O(1/k) convergence rate in the ergodic sense. A worst-case
O(1/k) convergence rate in the non-ergodic sense of the method (6) was shown in
[21]. When g has a Lipschitz continuous gradient with constant Lg and P  LgId ,
Xu [32] proved that the method (8) achieves O(1/k) convergence rate in the ergodic
sense. Tran-Dinh and Zhu [30] proposed a modified version of the method (8) and
proved that the objective residual and feasibility violation sequences generated by the
method both enjoyO(1/k) non-ergodic convergence rate. Liu et al. [24] investigated
the non-ergodic convergence rate of an inexact augmented Lagrangian method for
the problem (7).

Generally, naive first-order methods converge slowly. Much effort has been made
to accelerate the existing first-order methods in past decades. Nesterov [25] first
proposed an accelerated version of the classical gradient method for a smooth con-
vex optimization problem, and proved that the accelerated inertial gradient method
enjoys O(1/k2) convergence rate. Beck and Teboulle [5] proposed an iterative
shrinkage-thresholding algorithm for solving the linear inverse problem, which
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achievesO(1/k2) convergence rate. The acceleration idea of [25] was further applied
in Nesterov [26] to design the accelerated methods for unconstrained convex com-
posite optimization problems. Su et al. [29] first studied accelerated methods from
a continuous-time perspective. Since then, some new accelerated inertial methods
based on the second-order dynamical system have been proposed for unconstrained
optimization problems (see, e.g., [1, 3, 4]). For more results on inertial methods for
unconstrained optimization problems, we refer the reader to [2, 12, 27].

Meanwhile, inertial accelerated methods for linearly constrained optimization
problems have also been well-developed. When f is differentiable, He and Yuan [15]
proposed an accelerated inertial ALM for the problem (1) and proved that its conver-
gence rate is O(1/k2) by using an extrapolation technique similar to [5]. When f is
a differentiable function with Lipschitz continuous gradient, by time discretization
of dynamical system, Boţ et al. [7] proposed an inertial ALM with O(1/k2) con-
vergence rate and provided the convergence of the sequence of iterates. Kang et al.
[18] presented an inexact version of the accelerated ALM with inexact calculations
of subproblems and showed that the convergence rate remains O(1/k2) under the
assumption that F is strongly convex. Kang et al. [17] further presented an acceler-
ated Bregman method for the linearly constrained �1−�2 minimization problem, and
a convergence rate of O(1/k2) was proved when the accelerated Bregman method
is applied to solve the problem (1). To linearize the augmented term of the Bregman
method, Huang et al. [16] raised an accelerated linearized Bregman algorithm with
O(1/k2) convergence rate. For the problem (7), Tran-Dinh and Zhu [30] proposed an
inertial primal-dual method which enjoys o(1/k

√
log k) convergence rate. Xu [32]

proposed an accelerated version of the linearized ALM (8), named the accelerated
linearized augmented Lagrangian method, which is formulated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̂k = (1 − αk)x̄k + αkxk,

xk+1 ∈ argminxf (x) + βk

2 ‖Ax−b‖2 + 1
2‖x−xk‖2Pk

+ 〈∇g(x̂k) + AT λk, x〉,
x̄k+1 = (1 − αk)x̄k + αkxk+1,

λk+1 = λk + γk(Axk+1 − b).

(9)

It was shown in Xu [32] that the algorithm (9) enjoys O(1/k2) convergence rate
under specific parameter settings. It is worth mentioning that to achieve theO(1/k2)

rate, linearization to the augmented term is not allowed in the algorithm (9) since
it may cause great difficulty on solving subproblems. Xu [32] did not discuss the
convergence analysis of the method when the subproblem is solved inexactly.

1.2 Inertial primal-dual methods

We first propose Algorithm 1, an inertial version of the proximal ALM (6), for
solving the problem (1). Algorithm 1 is inspired by the second-order primal-dual
dynamical system in [14, 34] and the Nesterov accelerated methods for unconstrained
optimization problem [2, 5, 25]. When the objective has the composite structure:
F(x) = f (x) + g(x), by linearizing the smooth function g and introducing the per-
turbed sequence {εk}k≥1 in Step 2 of Algorithm 1, we propose an inexact inertial
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accelerated primal-dual method (Algorithm 2) for the problem (7). As a compari-
son to Algorithm 1, we solve the subproblem inexactly by finding an approximate
solution instead of an exact solution.
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1.3 Outline

The rest of the paper is organized as follows. In Section 2, we investigate the
convergence rates of the proposed methods. In Section 3, we perform numerical
experiments. Finally, we give a concluding remark in Section 4.

2 Convergence analysis

In this section we analyze the convergence rates of Algorithm 1 and Algorithm 2.
Assuming merely convexity, we show that both of them enjoy O(1/k2) convergence
rates in terms of the objective function and the primal feasibility.

To do so, we first recall some standard notations and results which will be used in
the paper. In what follows, we always use ‖ · ‖ to denote the �2-norm.

Let S+(n) denote the set of all positive symmetric semidefinite matrixes in R
n×n

and Id be the identity matrix. For M ∈ S+(n), we introduce the semi-norm on R
n:

‖x‖M = √
xT Mx for any x ∈ R

n. This introduces on S+(n) the following partial
ordering: for any M1, M2 ∈ S+(n),

M1 � M2 ⇐⇒ ‖x‖M1 ≥ ‖x‖M2 , ∀x ∈ R
n.

For any x, y ∈ R
n, the following equality holds:

1

2
‖x‖2M − 1

2
‖y‖2M = 〈x, M(x − y)〉 − 1

2
‖x − y‖2M, ∀M ∈ S+(n). (10)

Now, we start to analyze Algorithm 1.

Lemma 1 Let {(xk, λk, x̄k)}k≥1 be the sequence generated by Algorithm 1. Then,

k+α−2

k
Mk(xk+1− x̄k) ∈ −s

(

∂F (xk+1) + AT (λk+1 + k−1

α−1
(λk+1 − λk))

)

. (11)

Proof From step 2, we have

0 ∈ ∂F (xk+1)+ k + α − 2

sk
Mk(xk+1−x̄k)+ sk(k + α − 2)

(α − 1)2
AT (Axk+1−ηk)+AT λ̂k .

This yields

k+α−2

k
Mk(xk+1− x̄k) ∈ −s

(

∂F (xk+1)+AT

(
sk(k+α−2)

(α−1)2
(Axk+1− ηk) + λ̂k

))

.

(12)
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It follows from Step 2 and Step 3 that

sk(k + α − 2)

(α − 1)2
(Axk+1 − ηk) + λ̂k

= sk(k + α − 2)

(α − 1)2
Axk+1 − sk(k − 1)

(α − 1)2
Axk − sk

α − 1
b + λ̂k

= sk

α − 1
(Axk+1 − b + k − 1

α − 1
A(xk+1 − xk)) + λ̂k

= k + α − 2

α − 1
(λk+1 − λ̄k) + k + α − 2

α − 1
λ̄k − k − 1

α − 1
λk

= λk+1 + k − 1

α − 1
(λk+1 − λk).

This together with (12) yields (11).

Lemma 2 Suppose that F is a convex function, � �= ∅ and Mk−1 � Mk . Let
{(xk, λk, x̄k, λ̂k)}k≥1 be the sequence generated by Algorithm 1 and (x∗, λ∗) ∈ �.
Define

Ek = s(k2 − k)

(α − 1)2
(L(xk, λ

∗) − L(x∗, λ∗)) + 1

2
‖x̂k − x∗‖2Mk−1

+ 1

2
‖λ̂k − λ∗‖2 (13)

with

x̂k = k + α − 2

α − 1
x̄k − k − 1

α − 1
xk . (14)

Then, for any k ≥ 1, we have

Ek+1 ≤ Ek − (k + α − 2)2

2(α − 1)2
(‖xk+1 − x̄k‖2Mk

+ ‖λk+1 − λ̄k‖2).

Proof By computation,

x̂k+1 = k + α − 1

α − 1
(xk+1 + k − 1

k + α − 1
(xk+1 − xk)) − k

α − 1
xk+1

= k + α − 2

α − 1
xk+1 − k − 1

α − 1
xk (15)

= k + α − 2

α − 1
(xk+1 − x̄k) + k + α − 2

α − 1
x̄k − k − 1

α − 1
xk

= x̂k + k + α − 2

α − 1
(xk+1 − x̄k)

and

x̂k+1 − x∗ = xk+1 − x∗ + k − 1

α − 1
(xk+1 − xk). (16)

Similarly, we have

λ̂k+1 = λ̂k + k + α − 2

α − 1
(λk+1 − λ̄k) (17)

and

λ̂k+1 − λ∗ = λk+1 − λ∗ + k − 1

α − 1
(λk+1 − λk). (18)
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By the definition of L(x, λ), we get ∂xL(x, λ) = ∂F (x) + AT λ. Combining this
and equality (18), we can rewrite (11) as

k + α − 2

k
Mk(xk+1 − x̄k) ∈ −s(∂F (xk+1) + AT λ∗ + AT (λk+1

−λ∗ + k − 1

α − 1
(λk+1 − λk)))

= −s∂xL(xk+1, λ
∗) − sAT (λ̂k+1 − λ∗),

which implies

ξk := −k + α − 2

sk
Mk(xk+1 − x̄k) − AT (λ̂k+1 − λ∗) ∈ ∂xL(xk+1, λ

∗). (19)

Since Mk−1 � Mk � 0, it follows from (10) and (15) that

1

2
‖x̂k+1 − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk−1

= 1

2
‖x̂k+1 − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk−1−Mk

≤ 〈x̂k+1 − x∗, Mk(x̂k+1 − x̂k)〉 − 1

2
‖x̂k+1 − x̂k‖2Mk

= k + α − 2

α − 1
〈x̂k+1 − x∗, Mk(xk+1 − x̄k)〉

− (k + α − 2)2

2(α − 1)2
‖xk+1 − x̄k‖2Mk

(20)

= − sk

α − 1
(〈x̂k+1 − x∗, ξk〉 + 〈x̂k+1 − x∗, AT (λ̂k+1 − λ∗)〉)

− (k + α − 2)2

2(α − 1)2
‖xk+1 − x̄k‖2Mk

.

Since L(x, λ∗) is a convex function with respect to x, from (16) and (19) we get

〈x̂k+1−x∗, ξk〉 = 〈xk+1 − x∗, ξk〉 + k − 1

α − 1
〈xk+1 − xk, ξk〉

≥ L(xk+1, λ
∗)−L(x∗, λ∗) + k−1

α−1
(L(xk+1, λ

∗)−L(xk, λ
∗)). (21)

Combining (20) and (21) together, we have

1

2
‖x̂k+1 − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk−1

≤ − sk

α − 1
(L(xk+1, λ

∗) − L(x∗, λ∗)) − s(k2 − k)

(α − 1)2
(L(xk+1, λ

∗) − L(xk, λ
∗))

− sk

α − 1
〈x̂k+1 − x∗, AT (λ̂k+1 − λ∗)〉 − (k + α − 2)2

2(α − 1)2
‖xk+1 − x̄k‖2Mk

. (22)

Since Ax∗ = b, it follows from Step 3 of Algorithm 1 and (16) that

λk+1−λ̄k = sk

k+α−2
(Axk+1−Ax∗+ k − 1

α − 1
A(xk+1−xk)) = sk

k+α − 2
A(x̂k+1−x∗).
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This together with (10) and (17) yields

1

2
‖λ̂k+1 − λ∗‖2 − 1

2
‖λ̂k − λ∗‖2 = 〈λ̂k+1 − λ∗, λ̂k+1 − λ̂k〉 − 1

2
‖λ̂k+1 − λ̂k‖2

= k + α − 2

α − 1
〈λ̂k+1 − λ∗, λk+1 − λ̄k〉 − (k + α − 2)2

2(α − 1)2
‖λk+1 − λ̄k‖2 (23)

= sk

α − 1
〈λ̂k+1 − λ∗, A(x̂k+1 − x∗)〉 − (k + α − 2)2

2(α − 1)2
‖λk+1 − λ̄k‖2.

It follows from (22) and (23) that

Ek+1 − Ek

= s(k2 + k)

(α − 1)2
(L(xk+1, λ

∗) − L(x∗, λ∗)) − s(k2 − k)

(α − 1)2
(L(xk, λ

∗) − L(x∗, λ∗))

+1

2
‖x̂k+1 − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk−1

+ 1

2
‖λ̂k+1 − λ∗‖2 − 1

2
‖λ̂k − λ∗‖2

≤ (3−α)sk

(α−1)2
(L(xk+1, λ

∗)−L(x∗, λ∗))− (k+α−2)2

2(α−1)2 (‖xk+1−x̄k‖2Mk
+‖λk+1−λ̄k‖2)

≤ − (k + α − 2)2

2(α − 1)2
(‖xk+1 − x̄k‖2Mk

+ ‖λk+1 − λ̄k‖2),

where the last inequality follows from α ≥ 3 and (x∗, λ∗) ∈ �. This yields the desire
result.

To obtain the fast convergence rates, we need the following lemma.

Lemma 3 ([20, Lemma 2], [19, Lemma 3.18]) Let {ak}+∞
k=1 be a sequence of vectors

in R
n such that

‖(τ + (τ − 1)K)aK+1 +
K∑

k=1

ak‖ ≤ C, ∀K ≥ 1,

where τ > 1 and C ≥ 0. Then, ‖∑K
k=1 ak‖ ≤ C for all K ≥ 1.

Now, we discuss the O(1/k2) convergence rate of Algorithms 1.

Theorem 1 Suppose that F is a convex function, � �= ∅ and Mk−1 � Mk . Let
{(xk, λk, x̄k, λ̄k)}k≥1 be the sequence generated by Algorithm 1 and (x∗, λ∗) ∈ �.
The following conclusions hold:

(i)
∑+∞

k=1 k2(‖xk+1 − x̄k‖2Mk
+ ‖λk+1 − λ̄k‖2) < +∞.

(ii) For all k > 1,

‖Axk − b‖ ≤ 4(α − 1)2
√
2E1

s(k − 1)(k + α − 3)
,

|F(xk) − F(x∗)| ≤ (α − 1)2E1
s(k2 − k)

+ 4(α − 1)2
√
2E1‖λ∗‖

s(k − 1)(k + α − 3)
,
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where E1 = 1
2‖x1 − x∗‖2M0

+ 1
2‖λ1 − λ∗‖2.

Proof From Lemma 2, we have

Ek+1 −Ek ≤ − (k + α − 2)2

2(α − 1)2
(‖xk+1 − x̄k‖2Mk

+‖λk+1 − λ̄k‖2) ≤ 0, ∀k ≥ 1. (24)

By the definition of Ek and (24), {Ek}k≥1 is a nonincreasing and positive sequence.
As a consequence, Ek converges to some point. It follows from (24) that

+∞∑

k=1

(k + α − 2)2

2(α − 1)2
(‖xk+1 − x̄k‖2Mk

+ ‖λk+1 − λ̄k‖2))

≤ lim
K→+∞

K∑

k=1

(Ek − Ek+1)

= E1 − lim
K→+∞ EK+1 (25)

< +∞,

which is (i).
Combining (13) and (24), we have

‖λ̂k − λ∗‖ ≤ √
2Ek ≤ √

2E1, ∀k ≥ 1.

This yields
∥
∥
∥
∥
∥

K∑

k=1

(λ̂k+1 − λ̂k)

∥
∥
∥
∥
∥

=
∥
∥
∥λ̂K+1 − λ̂1

∥
∥
∥

≤
∥
∥
∥λ̂K+1 − λ∗

∥
∥
∥ +

∥
∥
∥λ̂1 − λ∗

∥
∥
∥ (26)

≤ 2
√
2E1

for all K ≥ 1. It follows form (17) and Step 3 of Algorithm 1 that
∥
∥
∥
∥
∥

K∑

k=1

(λ̂k+1 − λ̂k)

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

K∑

k=1

k + α − 2

α − 1
(λk+1 − λ̄k)

∥
∥
∥
∥
∥

= s

α − 1

∥
∥
∥
∥
∥

K∑

k=1

k(Axk+1 − b + k − 1

α − 1
A(xk+1 − xk))

∥
∥
∥
∥
∥

= s

(α − 1)2

∥
∥
∥
∥
∥

K∑

k=1

(k(k + α − 2)(Axk+1 − b) − k(k − 1)(Axk − b))

∥
∥
∥
∥
∥

= s

(α − 1)2

∥
∥
∥
∥
∥
K(K + α − 2)(AxK+1 − b) +

K∑

k=1

(α − 3)(k − 1)(Axk − b)

∥
∥
∥
∥
∥
.
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This together with (26) implies
∥
∥
∥
∥
∥
K(K+α−2)(AxK+1−b)+

K∑

k=1

((α−3)(k−1)(Axk−b))

∥
∥
∥
∥
∥
≤ 2(α−1)2

√
2E1

s
. (27)

When α = 3, it follows from (27) that

‖K(K + α − 2)(AxK+1 − b)‖ ≤ 2(α − 1)2
√
2E1

s
.

When α > 3: applying Lemma 3 with ak = (α − 3)(k − 1)(Axk − b), τ = α−2
α−3 and

C = 2(α−1)2
√
2E1

s
, from (27), we obtain

∥
∥
∥
∥
∥

K∑

k=1

((α − 3)(k − 1)(Axk − b))

∥
∥
∥
∥
∥

≤ 2(α − 1)2
√
2E1

s
,

which together with (27) yields

‖K(K + α − 2)(AxK+1 − b)‖ ≤ 4(α − 1)2
√
2E1

s
.

From above discussion, when α ≥ 3, we have

‖Axk − b‖ ≤ 4(α − 1)2
√
2E1

s(k − 1)(k + α − 3)
, ∀k > 1. (28)

It follows form the definition of Ek and (24) that

L(xk, λ
∗) − L(x∗, λ∗) ≤ (α − 1)2Ek

s(k2 − k)
≤ (α − 1)2E1

s(k2 − k)

for all k > 1. This together with (28) implies that

|F(xk) − F(x∗)| = |L(xk, λ
∗) − L(x∗, λ∗) − 〈λ∗, Axk − b〉|

≤ L(xk, λ
∗) − L(x∗, λ∗) + ‖λ∗‖‖Axk − b‖

≤ (α − 1)2E1
s(k2 − k)

+ 4(α − 1)2
√
2E1‖λ∗‖

s(k − 1)(k + α − 3)

for all k > 1. The proof is complete.

To investigate the convergence of Algorithm 2, we need the following assumption.

Assumption (H) � �= ∅, f is a convex function, g is a convex smooth function and
has a Lipschitz continuous gradient with constant Lg > 0, i.e.,

‖∇g(x) − ∇g(y)‖ ≤ Lg‖x − y‖, ∀x, y ∈ R
n,

equivalently,

g(x) ≤ g(y) + 〈∇g(y), x − y〉 + Lg

2
‖x − y‖2, ∀x, y ∈ R

n. (29)
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Lemma 4 Let {(xk, λk, x̄k)}k≥1 the sequence generated by Algorithm 2. Then,

k + α − 2

k
Mk(xk+1 − x̄k)

∈ −s

(

∂f (xk+1) + ∇g(x̄k) + AT (λk+1 + k − 1

α − 1
(λk+1 − λk)) − εk

)

. (30)

Proof From Step 2 of Algorithm 2 , we have

0 ∈ ∂f (xk+1) + ∇g(x̄k) + k + α − 2

sk
Mk(xk+1 − x̄k)

+ sk(k + α − 2)

(α − 1)2
AT (Axk+1 − ηk) + AT λ̂k − εk,

which yields

k + α − 2

k
Mk(xk+1 − x̄k)

∈ −s

(

∂f (xk+1) + ∇g(x̄k) + AT

(
sk(k + α − 2)

(α − 1)2
(Axk+1 − ηk) + λ̂k

)

− εk

)

.

The rest of the proof is similar as the one of Lemma 1, and so we omit it.

Lemma 5 Assume that Assumption (H) holds, and Mk−1 � Mk � sLgId . Let
{(xk, λk, λ̂k)}k≥1 be the sequence generated by Algorithm 2 and (x∗, λ∗) ∈ �. Define

Eε
k = Ek −

k∑

j=1

s(j − 1)

α − 1
〈x̂j − x∗, εj−1〉, (31)

where Ek is defined in (13) and x̂k is defined in (14). Then, for any k ≥ 1,

Eε
k+1 ≤ Eε

k .

Proof By same arguments as in the proof of Lemma 2, we get

x̂k+1 − x̂k = k + α − 2

α − 1
(xk+1 − x̄k), (32)

x̂k+1 − x∗ = xk+1 − x∗ + k − 1

α − 1
(xk+1 − xk), (33)

λ̂k+1 − λ̂k = k + α − 2

α − 1
(λk+1 − λ̄k), (34)

λ̂k+1 − λ∗ = λk+1 − λ∗ + k − 1

α − 1
(λk+1 − λk). (35)

For notation simplicity, we denote

Lf (x) = f (x) + 〈λ∗, Ax − b〉. (36)

Then, Lf is a convex function, ∂Lf (x) = ∂f (x) + AT λ∗, and
L(x, λ∗) = Lf (x) + g(x). (37)
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It follows from (30) and (35) that

k + α − 2

k
Mk(xk+1 − x̄k) ∈ −s(∂f (xk+1) + AT λ∗) − s∇g(x̄k)

−sAT (λk+1 − λ∗ + k − 1

α − 1
(λk+1 − λk)) + sεk

= −s∂Lf (xk+1) − s∇g(x̄k) − sAT (λ̂k+1 − λ∗) + sεk,

which yields

ξk := −k + α − 2

ks
Mk(xk+1 − x̄k) − ∇g(x̄k) − AT (λ̂k+1 − λ∗) + εk ∈ ∂Lf (xk+1).

(38)
Since Mk−1 � Mk , it follows from (10), (32) and (38) that

1

2
‖x̂k+1 − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk−1

≤ 〈x̂k+1 − x∗, Mk(x̂k+1 − x̂k)〉 − 1

2
‖x̂k+1 − x̂k‖2Mk

= − sk

α − 1
(〈x̂k+1 − x∗, ξk〉 + 〈x̂k+1 − x∗, AT (λ̂k+1 − λ∗)〉 (39)

+〈x̂k+1 − x∗, ∇g(x̄k)〉 − 〈x̂k+1 − x∗, εk〉) − (k + α − 2)2

2(α − 1)2
‖xk+1 − x̄k‖2Mk

.

From (33) and (38), we have

〈x̂k+1 − x∗, ξk〉 = 〈xk+1 − x∗, ξk〉 + k − 1

α − 1
〈xk+1 − xk, ξk〉

≥ Lf (xk+1) − Lf (x∗) + k − 1

α − 1
(Lf (xk+1) − Lf (xk)), (40)

where the inequality follows from the convexity of Lf . Since g has a Lipschitz
continuous gradient, from (29) we get

g(xk+1) ≤ g(x̄k) + 〈∇g(x̄k), xk+1 − x̄k〉 + Lg

2
‖xk+1 − x̄k‖2. (41)

By the convexity of g, we have

〈∇g(x̄k), xk+1 − x̄k〉 = 〈∇g(x̄k), xk+1 − x∗〉 + 〈∇g(x̄k), x
∗ − x̄k〉

≤ 〈∇g(x̄k), xk+1 − x∗〉 + g(x∗) − g(x̄k) (42)

and

〈∇g(x̄k), xk+1 − x̄k〉 = 〈∇g(x̄k), xk+1 − xk〉 + 〈∇g(x̄k), xk − x̄k〉
≤ 〈∇g(x̄k), xk+1 − xk〉 + g(xk) − g(x̄k). (43)

It follows from (41)–(43) that

〈∇g(x̄k), xk+1 − x∗〉 ≥ g(xk+1) − g(x∗) − Lg

2
‖xk+1 − x̄k‖2,

and

〈∇g(x̄k), xk+1 − xk〉 ≥ g(xk+1) − g(xk) − Lg

2
‖xk+1 − x̄k‖2.
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This together with (33) yields

〈x̂k+1 − x∗, ∇g(x̄k)〉 = 〈∇g(x̄k), xk+1 − x∗〉 + k − 1

α − 1
〈∇g(x̄k), xk+1 − xk〉

≥ g(xk+1) − g(x∗) + k − 1

α − 1
(g(xk+1) − g(xk)) (44)

− (k + α − 2)Lg

2(α − 1)
‖xk+1 − x̄k‖2.

It follows from (39), (40) and (44) that

1

2
‖x̂k+1 − x∗‖2Mk

− 1

2
‖x̂k − x∗‖2Mk−1

≤ − sk

α − 1
(Lf (xk+1) + g(xk+1) − (Lf (x∗) + g(x∗)))

− sk(k − 1)

(α − 1)2
(Lf (xk+1) + g(xk+1) − (Lf (xk) + g(xk)))

− sk

α − 1
〈x̂k+1 − x∗, AT (λ̂k+1 − λ∗)〉 + sk

α − 1
〈x̂k+1 − x∗, εk〉 (45)

−k + α − 2

2(α − 1)2
‖xk+1 − x̄k‖2(k+α−2)Mk−sLgkId

≤ − sk

α − 1
(L(xk+1, λ

∗) − L(x∗, λ∗)) − sk(k − 1)

(α − 1)2
(L(xk+1, λ

∗) − L(xk, λ
∗))

− sk

α − 1
〈x̂k+1 − x∗, AT (λ̂k+1 − λ∗)〉 + sk

α − 1
〈x̂k+1 − x∗, εk〉,

where the second inequality follows from the assumption Mk � sLgId � sLgk

k+α−2Id .
It follows from (23), (31) and (45) that

Eε
k+1 − Eε

k = Ek+1 − Ek − sk

α − 1
〈x̂k+1 − x∗, εk〉

≤ (3 − α)sk

(α − 1)2
(L(xk+1, λ

∗) − L(x∗, λ∗)) − (k + α − 2)2

2(α − 1)2
‖λk+1 − λ̄k‖2

≤ 0, (46)

where the last inequality follows from α ≥ 3 and (x∗, λ∗) ∈ �.

To analyze the convergence of Algorithm 2, we need the following discrete version
of the Gronwall-Bellman lemma.

Lemma 6 [2, Lemma 5.14] Let {ak}k≥1 and {bk}k≥1 be two nonnegative sequences
such that

∑+∞
k bk < +∞ and

a2k ≤ c2 +
k∑

j=1

bjaj
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for all k ≥ 1, where c ≥ 0. Then,

ak ≤ c +
+∞∑

j=1

bj

for all k ≥ 1.

Theorem 2 Assume that Assumption (H) holds, Mk−1 � Mk � sLgId for all k ≥ 1,
and +∞∑

k=1

k‖εk‖ < +∞.

Let {(xk, λk)}k≥1 be the sequence generated by Algorithm 2 and (x∗, λ∗) ∈ �. Then,
for all k > 1,

‖Axk − b‖ ≤ 4(α − 1)2
√
2C

s(k − 1)(k + α − 3)
,

|f (xk) + g(xk) − f (x∗) − g(x∗)| ≤ (α − 1)2C

s(k2 − k)
+ 4(α − 1)2

√
2C‖λ∗‖

s(k − 1)(k + α − 3)
,

where

C := 1

2
‖x1−x∗‖2M0

+1

2
‖λ1−λ∗‖2+ s

α−1

⎛

⎝

√
2E1
sLg

+ 2

(α−1)Lg

+∞∑

j=1

j‖εj‖
⎞

⎠×
+∞∑

j=1

j‖εj‖.

Proof From Lemma 5 we have

Eε
k+1 ≤ Eε

k ≤ Eε
1 ,

and it yields

Ek ≤ E1 +
k∑

j=1

s(j − 1)

α − 1
〈x̂j − x∗, εj−1〉. (47)

This together with (13) and Cauchy-Schwarz inequality implies

‖x̂k − x∗‖2Mk−1
≤ 2E1 + 2s

α − 1

k∑

j=1

(j − 1)‖x̂j − x∗‖ · ‖εj−1‖.

Since Mk−1 � sLgId ,

‖x̂k −x∗‖2 ≤ 1

sLg

‖x̂k −x∗‖2Mk−1
≤ 2E1

sLg

+ 2

(α − 1)Lg

k∑

j=1

(j −1)‖x̂j −x∗‖·‖εj−1‖.
(48)

Since
∑+∞

j=1 j‖εj‖ < +∞, applying Lemma 6 with ak = ‖x̂k − x∗‖ to (48), we
obtain

‖x̂k − x∗‖ ≤
√

2E1
sLg

+ 2

(α − 1)Lg

+∞∑

j=1

j‖εj‖ < +∞, ∀k ≥ 1. (49)
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This together with (47) yields

Ek ≤ E1 + s

α − 1
sup
k≥1

‖x̂k − x∗‖ ×
+∞∑

j=1

j‖εj‖

≤ E1 + s

α − 1

⎛

⎝

√
2E1
sLg

+ 2

(α − 1)Lg

+∞∑

j=1

j‖εj‖
⎞

⎠ ×
+∞∑

j=1

j‖εj‖ (50)

for any k ≥ 1. Denote

C := E1 + s

α − 1

⎛

⎝

√
2E1
sLg

+ 2

(α − 1)Lg

+∞∑

j=1

j‖εj‖
⎞

⎠ ×
+∞∑

j=1

j‖εj‖

= 1

2
‖x1 − x∗‖2M0

+ 1

2
‖λ1 − λ∗‖2

+ s

α − 1

⎛

⎝

√
2E1
sLg

+ 2

(α − 1)Lg

+∞∑

j=1

j‖εj‖
⎞

⎠ ×
+∞∑

j=1

j‖εj‖.

By the definition of Ek and (50), we have

s(k2 − k)

(α − 1)2
(L(xk, λ

∗) − L(x∗, λ∗)) ≤ Ek ≤ C

and

‖λ̂k − λ∗‖ ≤ √
2Ek ≤ √

2C, ∀k ≥ 1.

By similar arguments in Theorem 1, we obtain

‖Axk − b‖ ≤ 4(α − 1)2
√
2C

s(k − 1)(k + α − 3)

and

|f (xk) + g(xk) − f (x∗) − g(x∗)|
≤ L(xk, λ

∗) − L(x∗, λ∗) + ‖λ∗‖‖Axk − b‖
≤ (α − 1)2C

s(k2 − k)
+ 4(α − 1)2

√
2C‖λ∗‖

s(k − 1)(k + α − 3)

for all k > 1.

Remark 1 It was shown in [32, Theorem 2.9] that the algorithm (9) with adaptive
parameters enjoys O(1/k2) rate. Xu [32] did not discuss whether the convergence
rate of algorithm (9) is preserved when the subproblem is solved inexactly. By
Theorem 2, theO(1/k2) convergence rate of Algorithm 2 is preserved even if the sub-
problem is solved inexactly, provided the errors are sufficiently small. The numerical
experiments in section 3 also show the effectiveness of the inexact algorithm.
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3 Numerical experiments

In this section, we present numerical experiments to illustrate the efficiency of the
proposed algorithms. All codes are run on a PC (with 2.3 GHz Quad-Core Intel Core
i5 and 8 GB memory) under MATLAB Version 9.4.0.813654 (R2018a).

3.1 The quadratic programming problem

In this subsection, we test the algorithms on the nonnegative linearly constrained
quadratic programming problem (NLCQP):

min
1

2
xT Qx + qT x, s.t . Ax = b, x ≥ 0,

where q ∈ R
n, Q ∈ R

n×n is a positive semidefinite matrix, A ∈ R
m×n, b ∈ R

m.
Here, we compare Algorithm 2 (Al2) with the accelerated linearized augmented
Lagrangian method (AALM [32, Algorithm 1]), which enjoys O(1/k2) convergence
rate with adaptive parameters.

Setm = 100 and n = 500. Let q be generated by standard Gaussian distribution, b
be generated by uniform distribution, A = [B, Id] with B ∈ R

m×(n−m) generated by
standard Gaussian distribution, Q = 2HT H with H ∈ R

n×n generated by standard
Gaussian distribution. Then,Qmay not be positive definite. The optimal value F(x∗)
is obtained by Matlab function quadprog with tolerance 10−15. In this case, F(x) =
f (x) + g(x) with f (x) = Iy≥0(x), g(x) = 1

2x
T Qx + qT x, where Iy≥0 is the

indicator function of the set {y|y ≥ 0}, i.e.,

Iy≥0(x) =
{
0, x ≥ 0,

+∞ otherwise.

Set the parameters of Algorithm 2 as: s = ‖Q‖, Mk = s ∗‖Q‖Id. Set the parameters
of AALM ([32, Algorithm 1]) with adaptive parameters, in which αk = 2

k+1 , βk =
γk = ‖Q‖k, Pk = 2‖Q‖

k
Id . Subproblems for both algorithms are solved by interior-

point algorithms to a tolerance subtol. Figure 1 describes the distance of optimal
value |F(xk) − F(x∗)| and violation of feasibility ‖Axk − b‖ given Al2 with α =
10, 20, 30 and AALM for the first 500 iterations. As shown in Fig. 1, Algorithm 2
performs better and more stable than AALM under different subtol.

3.2 The basis pursuit problem

Consider the following basis pursuit problem:

min
x

‖x‖1, s.t . Ax = b,

where A ∈ R
m×n, b ∈ R

m and m ≤ n. Let A be generated by standard Gaussian
distribution. The number of nonzero elements of the original solution x∗ is fixed at
0.1 ∗ n, and the nonzero elements are selected randomly in [−2, 2]. Set b = Ax∗.
We compare Algorithm 1 with the inexact augmented Lagrangian method (IAL [24,
Algorithm 1]). Here, subproblems for both algorithms are solved by fast iterative
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Fig. 1 Error of objective function and constraint of Al2 and AALM with different subtol

shrinkage-thresholding algorithm (FISTA [5], [24, Algorithm 2]), and the stopping
condition of the FISTA is when

‖xk − xk−1‖2
max{‖xk−1‖, 1} ≤ subtol

is satisfied or the number of iterations exceeds 100, where accuracy subtol = 1e −
4, 1e − 6, 1e − 8. In each test, we calculate the residual error ‖Axk − b‖ (Res) and
the relative error of the solution ‖xk−x∗‖

‖x∗‖ (Rel) with the stopping condition Res +
Rel ≤ 1e − 8. Set the parameters of Algorithm 1 as α = n, s = 100, Mk =
0, and the parameter of IAL as β = 1. Let Init and T ime denote the number of
iterations, and the CPU time in seconds, respectively. Under different tolerance subtol
of subproblem, Tables 1, 2 and 3 report the results for the basis pursuit problem with

Table 1 Numerical results of Algorithm 1 and IAL with subtol = 1e − 4

ID Algorithm 1 IAL

Res Rel Init T ime Res Rel Init T ime

m = 60, n = 100 8.0e-9 3.5e-10 158 0.07 7.4e-9 3.2e-10 186 0.09

m = 200, n = 300 7.4e-9 1.1e-10 231 0.78 9.3e-9 1.4e-10 281 0.92

m = 300, n = 500 8.3e-9 7.8e-11 278 2.26 9.1e-9 8.5e-11 322 2.63

m = 600, n = 1000 7.5e-9 3.3e-11 300 10.73 7.8e-9 3.5e-11 374 13.78

m = 1000, n = 1500 8.7e-9 2.6e-11 284 35.12 7.6e-9 2.3e-11 327 46.28
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Table 2 Numerical results of Algorithm 1 and IAL with subtol = 1e − 6

ID Algorithm 1 IAL

Res Rel Init T ime Res Rel Init T ime

m = 60, n = 100 9.0e-9 3.9e-10 86 0.05 6.2e-9 2.6e-10 130 0.08

m = 200, n = 300 6.0e-9 8.6e-10 140 0.48 9.2e-9 1.4e-10 174 0.58

m = 300, n = 500 8.8e-9 8.0e-11 185 1.61 9.5e-9 8.9e-11 215 1.78

m = 600, n = 1000 7.8e-9 3.6e-11 232 8.34 8.4e-9 3.7e-11 262 9.68

m = 1000, n = 1500 9.6e-9 2.7e-11 193 24.25 8.6e-9 2.6e-11 277 34.67

different dimensions. We observe that when the subproblem is solved with different
accuracy, Algorithm 1 is faster than IAL in terms of the number of iterations and the
cpu time.

3.3 The linearly constrained �1 − �2 minimization problem

Consider the following problem:

min
x

‖x‖1 + β

2
‖x‖22 s.t . Ax = b,

where A ∈ R
m×n and b ∈ R

m. Let m = 1500, n = 3000, and A be generated by
standard Gaussian distribution. Suppose that the original solution (signal) x∗ ∈ R

n

has only 150 non-zero elements which are generated by the Gaussian distribution
N (0, 4) in the interval [−2, 2] and that the noise ω is selected randomly with ‖ω‖ =
10−4,

b = Ax∗ + ω.

Table 3 Numerical results of Algorithm 1 and IAL with subtol = 1e − 8

ID Algorithm 1 IAL

Res Rel Init T ime Res Rel Init T ime

m = 60, n = 100 8.5e-9 3.7e-10 32 0.03 8.7e-9 3.0e-10 37 0.03

m = 200, n = 300 8.3e-9 1.2e-10 85 0.28 8.4e-9 1.2e-10 100 0.34

m = 300, n = 500 9.8e-9 9.0e-11 95 0.84 9.5e-9 8.5e-11 121 1.00

m = 600, n = 1000 9.0e-9 4.2e-11 108 4.32 8.1e-9 3.3e-11 136 5.47

m = 1000, n = 1500 9.8e-9 2.8e-11 108 13.63 8.6e-9 2.4e-11 144 18.67
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Table 4 Numerical results of Algorithm 2 and IAALM with subtol = 1e − 8

β 0.01 0.05 0.1 0.5 1 1.5

Init Al2 10 10 10 13 15 42

IAALM 35 37 34 33 35 100+

T ime Al2 13.15 11.80 10.47 12.38 14.99 46.75

IAALM 38.12 36.77 35.34 36.50 34.54 106.45

Res Al2 4.18e-4 3.37e-4 3.18e-4 2.47e-4 4.74e-4 4.34e-4

IAALM 4.91e-4 4.82e-4 4.75e-4 4.22e-4 4.21e-4 6.50e-3

Rel Al2 1.31e-6 8.01e-7 6.35e-7 4.18e-7 9.09e-7 7.58e-2

IAALM 9.05e-7 8.47e-7 9.19e-7 8.15e-7 9.62e-7 7.34e-2

SNR Al2 1.17e+2 1.22e+2 1.24e+2 1.28e+2 1.21e+2 2.24e+1

IAALM 1.20e+2 1.21e+2 1.21e+2 1.22e+2 1.20e+2 2.27e+1

Set parameters for Algorithm 2 (Al2) with α = 20, s = 1, Mk = sβ, and the param-
eters of IAALM ([18, Algorithm 1]) with γ = 1. Subproblems are solved by FISTA
and the stopping condition is when

‖xk − xk−1‖2
max{‖xk−1‖, 1} ≤ subtol

is satisfied or the number of iterations exceeds 100, where accuracy subtol = 1e −
6, 1e − 8. We terminate all the methods when ‖Axk − b‖ ≤ 5 ∗ 10−4. In each test,
we calculate the residual error res = ‖Ax − b‖, the relative error rel = ‖x−x∗‖

‖x∗‖ and
the signal-to-noise ratio

SNR = 10 log10
‖x∗ − mean(x∗)‖2

‖x − x∗‖2 ,

where x is the recovery signal.
In Table 4, we present the numerical results of Algorithm 2 and IAALM for var-

ious β. When subtol = 1e − 6, IAALM does not work well, we list the numerical
results of Algorithm 2 in Table 5. Based on the Rel and SNR, it is seen that the
sparse original signal is well restored when β ≤ 1. This is also shown in Fig. 2.

Table 5 Numerical results of Algorithm 2 with subtol = 1e − 6

β 0.01 0.05 0.1 0.5 1 1.5

Init 25 22 17 13 18 100+

T ime 8.29 8.11 7.52 8.65 12.74 36.48

Res 4.62e-4 4.89e-4 4.93e-4 4.36e-4 4.36e-4 1.50e-3

Rel 1.52e-6 1.68e-6 1.30e-6 7.17e-7 9.12e-7 8.10e-2

SNR 1.16e+2 1.15e+2 1.18e+2 1.22e+2 1.21e+2 2.18e+1
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Fig. 2 Original sparse signal and the final estimated solution of Algorithm 2 with subtol = 1e − 8

4 Conclusion

In this paper, we propose two inertial accelerated primal-dual methods for solving
linear equality constrained convex optimization problems. Assuming merely convex-
ity, we show the inertial primal-dual methods own O(1/k2) convergence rates even
if the subproblem is solved inexactly. The numerical results demonstrate the validity
and superior performance of our methods over some existing methods.
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