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Convergence of the Nelder-Meadmethod

Aurél Galántai1

Abstract
We develop a matrix form of the Nelder-Mead simplex method and show that its
convergence is related to the convergence of infinite matrix products. We then char-
acterize the spectra of the involved matrices necessary for the study of convergence.
Using these results, we discuss several examples of possible convergence or failure
modes. Then, we prove a general convergence theorem for the simplex sequences
generated by the method. The key assumption of the convergence theorem is proved
in low-dimensional spaces up to 8 dimensions.
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1 Introduction

We study the convergence of the Nelder-Mead simplex method [35] for the solution
of the unconstrained minimization problem

f (x) → min
(
f : Rn → R

)
,

where f is continuous. The Nelder-Mead method is widely used in derivative-free
optimization and various application areas [2, 6, 21, 28, 42].

There are several forms and variants of the Nelder-Mead method. We use the ver-
sion of Lagarias, Reeds, Wright and Wright [23]. The vertices of the initial simplex
S are denoted by x1, x2, . . . , xn+1 ∈ R

n. It is assumed that vertices x1, . . . , xn+1 are
ordered such that

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1) (1)
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and this condition is maintained during the iterations of the Nelder-Mead algorithm.
Define the center xc = 1

n

∑n
i=1 xi and x (λ) = (1 + λ) xc − λxn+1. The related

evaluation points are

xr = x (1) , xe = x (2) , xoc = x

(
1

2

)
, xic = x

(
−1

2

)
.

Then one (major) iteration of the method consists of the following operations or
inner steps:

Operation Nelder-Mead simplex method

0. Ordering Order the vertices of S such that
f (x1) ≤ · · · ≤ f (xn+1).

1. Reflect If f (x1) ≤ f (xr) < f (xn), then replace
xn+1 by xr and goto 0.

2. Expand If f (xr) < f (x1) and f (xe) < f (xr),
then replace xn+1 by xe and goto 0.
If f (xe) ≥ f (xr), then replace
xn+1 by xr and goto 0.

3. Contract outside If f (xn) ≤ f (xr) < f (xn+1) and f (xoc) ≤ f (xr),
then replace xn+1 by xoc and goto 0.

4. Contract inside If f (xr) ≥ f (xn+1) and f (xic) < f (xn+1)

then replace xn+1 by xic and goto 0.
5. Shrink xi ← (xi + x1) /2, f (xi) (for all i) and goto 0.

It is assumed that the above operations (or inner steps) are executed in the given
order. Since the related logical conditions are mutually disjoint, any order of steps
1–5 results in the same output.

There are two rules that apply to reindexing after each iteration. If a nonshrink
step occurs, then xn+1 is replaced by a new point v ∈ {xr , xe, xoc, xic}. The following
cases are possible:

f (v) < f (x1) , f (x1) ≤ f (v) ≤ f (xn) , f (v) < f (xn+1) .

If

j =
{
1, if f (v) < f (x1)

max2≤�≤n+1 {f (x�−1) ≤ f (v) ≤ f (x�)} , otherwise
.

then the new simplex vertices are

xnew
i = xi (1 ≤ i ≤ j − 1) , xnew

j = v, xnew
i = xi−1 (i = j + 1, . . . , n + 1) . (2)

This rule inserts v into the ordering with the highest possible index. If one of opera-
tions 1–4 is executed and the insertion rule (2) is used, the ordering operation can be
skipped in the next iteration. If shrinking occurs, then

x′
1 = x1, x′

i = (xi + x1) /2 (i = 2, . . . , n + 1)

and the ordering operation is necessary in the next iteration. By convention, if
f
(
x′
1

) ≤ f
(
x ′
i

)
(i = 2, . . . , n), then xnew

1 = x1.
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We adopt the following notations. The simplex of iteration k is denoted by S(k) =[
x

(k)
1 , x

(k)
2 , . . . , x

(k)
n+1

]
∈ R

n×(n+1) with vertices that satisfy the condition

f
(
x

(k)
1

)
≤ f

(
x

(k)
2

)
≤ · · · ≤ f

(
x

(k)
n+1

)
(k ≥ 0) . (3)

The initial simplex is S(0). The center, reflection, expansion and contraction points of
simplex S(k) are denoted by x

(k)
c , x

(k)
r , x(k)

e , x(k)
oc and x

(k)
ic , respectively. The function

values at the vertices x
(k)
j and the points x

(k)
c , x

(k)
r , x

(k)
e , x

(k)
oc and x

(k)
ic are denoted

by f
(
x

(k)
j

)
= f

(k)
j (j = 1, . . . , n + 1), f

(k)
c , f

(k)
r = f

(
x

(k)
r

)
, f

(k)
e = f

(
x

(k)
e

)
,

f
(k)
oc = f

(
x

(k)
oc

)
and f

(k)
ic = f

(
x

(k)
ic

)
, respectively.

The insertion rule (2) guarantees that

f
(k+1)
i ≤ f

(k)
i (i = 1, 2, . . . , n + 1) (4)

holds for any of operations 1–4. However this is not true in the case of shrinking. If
function f is bounded from below onRn and only a finite number of shrink iterations

occur, then each sequence
{
f

(k)
i

}
converges to some f ∞

i for i = 1, . . . , n + 1 (see

Lemma 3.3 of [23]).
The original Nelder-Mead paper [35] was published in 1965 and since then it has

been cited over 31000 times (see Google Scholar). However only a few results are
known on the convergence.

In 1998 McKinnon [29] constructed a strictly convex function f : R2 → R with
continuous derivatives for which the Nelder-Mead simplex algorithm converges to a
nonstationary point.

Also in 1998 Lagarias, Reeds, Wright and Wright [23] proved convergence for
one and two variable strictly convex functions. For n = 2, they summarized the main
results as follows (see p. 114 of [23]):

– The function values at all simplex vertices in the standard Nelder-Mead algo-
rithm converge to the same value.

– The simplices in the standard Nelder-Mead algorithm have diameters converging
to zero.

In 1999 Kelley [19, 20] gave a sufficient decrease condition for the average of the
object function values (evaluated at the vertices) and proved that if this condition is
satisfied during the process, then any accumulation point of the simplices is a critical
point of f .

In 2006 Han and Neumann [12] investigated the convergence and the effect of
dimensionality on the Nelder–Mead method when it is applied to f (x) = xT x (x ∈
R

n). They also showed that the Nelder-Mead method deteriorates as n increases.
In 2012 Lagarias, Poonen, Wright [22] significantly improved the results of the

earlier paper [23] for the restricted Nelder-Mead method, where expansion steps are
not allowed. Let F be the class of twice-continuously differentiable functions R2 →
R with bounded level sets and everywhere positive definite Hessian. They proved
that for any f ∈ F and any nondegenerate initial simplex S(0), the restricted Nelder-
Mead algorithm converges to the unique minimizer of f .

Numerical Algorithms (2022) 90:1043–1072 1045



Wright [43, 44] raised several questions concerning the Nelder-Mead method such
as the following:

(a) Do the function values at all vertices necessarily converge to the same value?
(b) Do all vertices of the simplices converge to the same point?
(c) Why is it sometimes so effective (compared to other direct search methods) in

obtaining a rapid improvement in f ?
(d) One failure mode is known (McKinnon [29]) — but are there other failure

modes?
(e) Why, despite its apparent simplicity, should the Nelder-Mead method be

difficult to analyze mathematically?

Although questions (a) and (b) were positively answered for one- and two-
dimensional strictly convex functions by Lagarias et al. [22, 23] no general answer
is known as yet.

Our purpose is to analyze and prove the convergence of the simplex sequence
generated by the method. The matrix formulation of the Nelder-Mead simplex algo-
rithm, which is introduced in Section 2 represents the kth simplex as a product of
transformation matrices and so the convergence of the simplex sequence is related
to the convergence of infinite matrix products. Hence the spectra of occurring matri-
ces which is necessary for the convergence of the simplex sequence is investigated in
Section 3. Section 4 discusses several examples of possible convergence behavior or
failure, and specifies the type of convergence we prove later. The main convergence
theorem is proved in Section 5 under Assumption (A) of Section 5. The assumption is
proved for 1 ≤ n ≤ 8 in Section 6. Related numerical data is given in the Appendix.

The results and examples may answer some of the questions raised by Wright [43,
44]. Actually Examples 4 and 5 answer questions (a) and (b) negatively. Examples
of Section 4 answer question (d) positively. The main convergence theorem is related
to questions (b) and (a). The connection of the Nelder-Mead method with infinite
products of matrices may shed some light on question (e).

This paper is an improvement of paper [10] where the main convergence result was
proved under Assumption (A) and a second assumption on the spectra of transforma-
tion matrices. The two assumptions were numerically checked only for n = 1, 2, 3.
Here we prove the convergence without the second assumption which follows from
Theorem 3 of Section 3. The removal of Assumption (A) is unlikely for its connection
to an undecidable problem. This will be discussed at the end of Section 5.

2 Amatrix form of the Nelder-Meadmethod and consequences

Assume that simplex S(k) =
[
x

(k)
1 , x

(k)
2 , . . . , x

(k)
n+1

]
is such that condition (3) holds.

If the incoming vertex v is of the form

v = 1 + α

n

n∑

i=1

x
(k)
i − αx

(k)
n+1
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for some α ∈
{
1, 2, 1

2 , − 1
2

}
, we can define the transformation matrix

T (α) =
[

In
1+α

n
e

0 −α

] (
e = [1, 1, . . . , 1]T

)
.

Since S(k)T (α) =
[
x

(k)
1 , . . . , x

(k)
n , x (α)

]
, we have to reorder the matrix columns

according to the insertion rule (2). Define the permutation matrix

Pj = [
e1, . . . , ej−1, en+1, ej , . . . , en

] ∈ R
(n+1)×(n+1) (j = 1, . . . , n + 1) .

Then S(k)T (α) Pj is the new simplex S(k+1). The following cases are possible

Operation New simplex

1. Reflection S(k+1) = S(k)T (1) Pj (j = 2, . . . , n)
2a) Expansion(v = x

(k)
e ) S(k+1) = S(k)T (2) P1

2b) Expansion(v = x
(k)
r ) S(k+1) = S(k)T (1) P1

3. Outside contraction S(k+1) = S(k)T
(
1
2

)
Pj (j = 1, . . . , n + 1)

4. Inside contraction S(k+1) = S(k)T
(
− 1

2

)
Pj (j = 1, . . . , n + 1)

Denote by Pn+1 the set of all possible permutation matrices of order n + 1. In the
case of shrinking the new simplex is

S(k+1) = S(k)TshrP (P ∈ Pn+1) ,

where

Tshr = 1

2
In+1 + 1

2
e1e

T

and the permutation matrix P ∈ Pn+1 is defined by the ordering condition (3).
Hence for k ≥ 1, the kth simplex of the Nelder-Mead method is

S(k) = S(k−1)TkP
(k) = S(0)Bk, (5)

where

Bk =
k∏

i=1

TiP
(i)

(
TiP

(i) ∈ T
)

(6)

and

T =
{
T (α) Pj : α ∈

{
−1

2
,
1

2

}
, j = 1, . . . , n + 1

}

∪ {TshrP : P ∈ Pn+1} ∪ {T (1) Pj : j = 1, . . . , n
} ∪ {T (2) P1} (7)

Note that T contains 3n+3+(n + 1)! matrices, all transformation matrices T P ∈ T
are nonsingular and their column sums are 1.

Such matrices have the following properties.

Lemma 1 (i) If A ∈ R
n×n is a matrix whose column sums are 1, then A has an

eigenvalue λ = 1 and a corresponding left eigenvector x = eT . (ii) If A, B ∈ R
n×n
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are two matrices whose column sums are 1, then C = AB also has this property. (iii)
If A ∈ R

n×n is a matrix whose column sums are 1, then ‖A‖ ≥ 1 in any induced
matrix norm.

Proof (i) By definition eT A = [∑n
i=1 ai1, . . . ,

∑n
i=1 ain

] = 1 · eT . (ii) eT A = A

and eT B = eT imply eT AB = eT B = eT . (iii) ρ (A) ≥ 1 and ‖A‖ ≥ ρ (A) imply
‖A‖ ≥ 1.

A matrix A is called left stochastic, if aij ≥ 0 for all i, j and the column sums are
1. A matrix is called stochastic, if aij ≥ 0 for all i, j and both the column sums and
the row sums are 1. All matrices TshrP (P ∈ Pn+1) and T (α) (−1 ≤ α ≤ 0) are left
stochastic matrices.

A simplex S = [
x1, . . . , xn+1

]
is said to be nondegenerate if the matrix

M = [
x1 − xn+1, x2 − xn+1, . . . , xn − xn+1

]

is nonsingular. Then S must be affinely independent, which is equivalent to (see,

e.g., [15, 31]) that vectors

[
1
x1

]
, . . . ,

[
1

xn+1

]
are linearly independent. Hence

rank

([
eT

S

])
= n + 1.1 We always assume that the initial simplex S(0) is nonde-

generate. Since eT Bk = eT and

[
eT

S(k)

]
=
[

eT

S(0)

]
Bk is nonsingular, S(k) is also

nondegenerate.
Although S(k) ∈ R

n×(n+1) we can relate the convergence of
{
S(k)

}
and {Bk} as

follows.

Lemma 2 If
{
B(k)

}
is bounded, then

{
S(k)

}
converge to some S∞ if and only if {Bk}

converge to some B.

Proof If S(k) → S∞ (whatever S∞ is) and Bk → B, then S(0)Bk → S(0)B = S∞.
Assume that S(k) → S∞ and {Bk} is not convergent. Since {Bk} is bounded it must
have at least one accumulation point, say B∗ and a subsequence

{
Bij

} ⊂ {Bk} such
that Bij → B∗ and S(ij ) → S(0)B∗ = S∞. Assume that there exists a second
accumulation point B∗∗ 
= B∗ and a subsequence

{
Bkj

} ⊂ {Bk} such that Bkj
→

B∗∗. It follows that
[

eT

S(ij )

]
→
[

eT

S(0)

]
B∗ =

[
eT

S(0)

]
B∗∗ ←

[
eT

S(kj )

]
.

Since

[
eT

S(0)

]
is nonsingular, we obtain that B∗ = B∗∗, which is contradiction. It

follows that {Bk} converges.

1It is assumed through the whole paper that the sizes of e and the unit vectors ei are compatible with the
operation and/or partition.
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If {Bk} is not bounded, then as Examples 1 and 2 of Section 4 show that we can
have a convergence of the function values f

(k)
i to limit values that are not related to

any extrema of the function f .
Hence we study the convergence of

{
S(k)

}
through the convergence of {Bk} or the

convergence of the right infinite product B = ∏∞
i=1 TiP

(i) (TiP
(i) ∈ T ).

We use the following results and definitions from the theory of infinite matrix
products (see, e.g., Hartfiel [13]). A right infinite product is an expression
A1A2 · · · AkAk+1 · · · . A set Σ of n × n matrices has the right convergence property
(RCP), if all possible right infinite products

∏∞
i=1 Ai (Ai ∈ Σ) converge.

It is easy to show (see, e.g., Hartfiel [13] p. 103) that if Σ is an RCP set,
A1, . . . , Ak ∈ Σ and λ is an eigenvalue of A1A2 · · · Ak , then |λ| < 1 or λ = 1 and
this eigenvalue is simple. Hence each matrix of Σ must satisfy this condition.

If Σ is an RCP set, then there is a vector norm ‖·‖ such that ‖A‖ ≤ 1 for all
A ∈ Σ (see, e.g., [13]).

In any induced matrix norm
∥∥TiP

(i)
∥∥ ≥ 1 holds for every TiP

(i) ∈ T and
‖T (2)‖ > 1. Hence T as a whole is not an RCP set. However the eigenvalue-
eigenvector structure of the transformation matrices makes it possible to identify a
subset of T , which might have the RCP property. The next section investigates the
structure of the matrices TiP

(i) ∈ T . Using these results we show several examples
of possible convergence behavior or failure in Section 4. We also specify here the
type of convergence we study in the rest of the paper. In Section 5 we identify a sub-
set of T , which might have the RCP property. Using this subset we give a sufficient
condition under which the simplex sequences

{
S(k)

}
converge in the specified sense.

There are many problems that may complicate the analysis of the Nelder-
Mead method. Here we mention the following. The Nelder-Mead algorithm is a
nonstationary iteration (see, e.g., Young [45]) of the form

S(k) = S(k−1)TkP
(k) (TkP

(k) ∈ T , k = 0, 1, . . . ),

where the matrices TkP
(k) are not contractive (

∥∥TkP
(k)
∥∥ ≥ 1). Operations 1–4 and

the insertion rule (2) guarantee only improvement in the worst vertex (f (k+1)
n+1 ≤

f
(k)
n+1). In the case of shrinking there is no guaranteed improvement at all. It is also

notable that the selection of TkP
(k) at iteration k depends only on the positions of

f
(k)
r , f (k)

e , f (k)
oc and f

(k)
ic relative to the ordering (3) of f

(k)
i ’s. Example 3 of Section 4

shows that given an initial simplex S(0), the Nelder-Mead algorithm may generate
the same sequence

{
S(k)

}
for different functions such that limk→∞ S(k) has different

meanings for the different functions.
Finally, we note that matrix T (α) appears in Lagarias et al. [23] (p. 149) but it is

not exploited subsequently.

3 The spectra of the transformationmatrices

In this section we study the spectra of the transformation matrices T (α) Pj and
TshrP so that we could find a subset of T , which has the RCP property. We then
study the asymptotic behavior of the eigenvalues for n → ∞ which is important for
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the dimensionality effects. Han, Neumann and Xu [11] and Han and Neumann [12]
obtained similar results. The similarities and connections will be discussed at the end
of the section.

We use the following result from Rahman and Schmeisser [38], which is one of the
several Schur-Cohn type theorems or criteria (for others, see Marden [30], Henrici
[14], Sheil-Small [39], Barnett [3]).

Definition 1 Given a polynomial p (z) = a0 + a1z + · · · + anz
n of degree n, we

associate with it the polynomial

p∗ (z) := znp (1/z) = an + an−1z + · · · + a0z
n.

If p (z) ≡ σp∗ (z), where |σ | = 1, then p is said to be self-inversive.

Theorem 1 (Cohn’s rules [38], Thm. 11.5.3) Let p (z) = ∑n
i=0 aiz

i be a polynomial
of degree n. Denote by r and s the number of zeros of p inside the unit circle and
on it, respectively. For polynomial pj the corresponding numbers are respectively
denoted by rj and sj . Then the following rules hold.

Rule 1 If |a0| > |an|, then p1 (z) := a0p (z) − anp
∗ (z) is not identically zero, and

we have degp1 < degp, r1 = r , and s1 = s.
Rule 2 If |a0| < |an|, then p1 (z) := [

anp (z) − a0p
∗ (z)

]
/z is of degree n − 1,

r1 = r − 1, and s1 = s.
Rule 3 If there is an index k ≤ n/2 such that

a0 = σan, a1 = σan−1, . . . , ak−1 = σan−k+1, ak 
= σan−k (|σ | = 1) ,

then define b := (an−k − σak) /an,

g (z) :=
(

zk + 2b

|b|
)

p (z) , g1 (z) := g (0) g (z) − g∗ (0) g∗ (z) ,

and

p1 (z) := 1

z

[
g∗
1 (0) g1 (z) − g1 (0) g∗

1 (z)
]
,

which yields that p1 is of degree n − 1, r1 = r − 1, and s1 = s.
Rule 4 If p is self-inversive, then p1 (z) := np (z) − zp′ (z) is not identically zero,

and we have degp1 < degp and r1 = r; furthermore, s = n − 2r .

We also use the classical Eneström-Kakeya theorem, which can be found in sev-
eral sources (see, e.g., Rahman, Schmeisser [38], Corollary 8.3.5, Sheil-Small [39],
Marden [30]).

Theorem 2 (Eneström-Kakeya [8, 18]) A polynomial p (z) = ∑n
i=0 aiz

i with
positive coefficients has all its zeros in the annulus

R1 ≤ |z| ≤ R2,

where R1 = min0≤i≤n−1 ai/ai+1 and R2 = max0≤i≤n−1 ai/ai+1.
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Matrices T (α) and Tshr have a simple eigenvalue-eigenvector structure. When
they are multiplied by a permutation matrix other than In+1, this may change. For
example, if n = 2, T (1) is an involution, while T (1) P2 (reflection) is a 6-involutory
matrix (for such matrices, see Trench [41]).

Theorem 3 The characteristic polynomial of matrix T (α) Pj (1 ≤ j ≤ n + 1) is

pn+1 (λ) = (1 − λ)j−1 pn+2−j (λ) , (8)

where

pn+2−j (λ) = λn+2−j − c

n+1−j∑

i=1

λi + α

(
c = 1 + α

n

)
. (9)

(i) If j = 1, then pn+1 (λ) has at least one eigenvalue λ = 1.
(ii) If α = 1, pn+1 (λ) has at least two eigenvalues λ = 1.
(iii) If α > −1 and j ≥ 2, there are exactly j − 1 eigenvalues λ = 1.
(iv) For |α| < 1 and j = 1, pn+1 (λ) has exactly one zero λ1 = 1, while the

remaining n roots are in the open unit disk.
(v) If |α| < 1 and 2 ≤ j ≤ n+1, then all zeros of pn+2−j (λ) are in the open unit

disk.
(vi) If α = 1 and 1 ≤ j ≤ n+1, then all zeros of pn+2−j (λ) are on the unit circle.
(vii) If α > 1 and j = 1, then pn+1 (λ) has a second zero in the interval(

1, 1 + 1+α
n

)
and all its zeros are in the annulus 1 ≤ |λ| ≤ 1 + α.

Proof For 1 ≤ j ≤ n + 1,

T (α) Pj =
[

Ij−1 ceeT
1

0 An+2−j

]
, (10)

where

An+2−j =

⎡

⎢⎢⎢⎢⎢⎢
⎣

c 1 0 · · · 0
c 0

. . .
. . .

...
...

...
. . .

. . . 0
c 0 · · · 0 1

−α 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Since An+2−j is a companion matrix (for this form, see, e.g., [16]), its characteristic
polynomial is

pn+2−j (λ) = λn+2−j − c

n+1−j∑

i=1

λi + α (1 ≤ j ≤ n + 1)

and the characteristic polynomial of T (α) Pj is

det
(
T (α) Pj − λIn+1

) = (1 − λ)j−1 pn+2−j (λ) .

Note that pn+2−j (1) = j−1
n

(α + 1). If j = 1, pn+1 (1) = 0, that is λ1 = 1, which
proves (i). Since p′

n+1 (λ) = 1−α
2 (n + 1), there is a second zero λ2 = 1 if α = 1
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(Claim (ii)). If α > −1 and j ≥ 2, pn+2−j (1) = (j − 1) c > 0 proving (iii). For
proving (iv) and (v) we shall consider real polynomials of the form

p (λ) = α − c

m−1∑

i=1

λi + λm

(
c = 1 + α

n

)
,

where 2 ≤ m ≤ n + 1. Since p∗ (λ) = 1 − c
∑m−1

i=1 λi + αλm and |α| < 1, we can
apply Rule 2 of Theorem 1:

p1 (λ) = [
1p (λ) − αp∗ (λ)

]
/z =

(
1 − α2

)
λm−1 + c (α − 1)

m−2∑

i=0

λi .

Dividing p1 (λ) by c (1 − α) > 0, one obtains

p1 (λ) = nλm−1 −
m−2∑

i=0

λi = nλm−1 −
m−2∑

i=1

λi − 1.

For |λ| ≥ 1,

|p1 (λ)| = |λ|m−1

∣∣∣∣∣
n −

m−1∑

i=1

1

λi

∣∣∣∣∣
≥ |λ|m−1

(

n −
m−1∑

i=1

1

|λ|i
)

≥ |λ|m−1 (n − m + 1) .

If m ≤ n (j ≥ 2), then p1 (λ) has no root outside the open unit disk, r1 = m − 1,
s1 = 0. Hence p (λ) = 0 has m zeros inside the open unit disk. If m = n + 1, then
p1 (λ) = nλn −∑n−1

i=1 λi − 1. For |λ| > 1, |p1 (λ)| > 0, and p1 (1) = 0. We must
prove that there is no other root on the unit circle, that is s1 = 1. If n = 2, then
p1 (λ) = 2λ2 − λ − 1 = 0 with the solution λ1 = 1 and λ2 = − 1

2 . Hence r1 = 1 and
s1 = 1. It follows that r = 2 and s = s1 = 1. It is easy to check that

p1 (λ) = nλn −
n−1∑

i=1

λi − 1 = (λ − 1)

(
n−1∑

i=0

(i + 1) λi

)

= (λ − 1) q (λ) .

Polynomial q (λ) has positive real coefficients ai = i + 1 (i = 0, 1, . . . , n − 1),

R1 = 1

2
≤ ai

ai+1
= i + 1

i + 2
≤ n − 1

n
= R2 < 1,

and the Eneström-Kakeya theorem implies that q (λ) has all its zeros in the annulus
1
2 ≤ |λ| ≤ n−1

n
< 1. Hence r1 = n − 1, s1 = 1, and so r = n and s = 1.

Assume now that α = 1 and 1 ≤ j ≤ n. Using the notation � = n+2−j we have

p (λ) = 1 − 2

n

�−1∑

i=1

λi + λ�

(
c = 2

n

)
,

which is self-inversive (see Definition 1). Thus we apply Rule 4 of Cohn (see
Theorem 1):

p1 (λ) = �p (λ) − λp′ (λ) = � − 2

n

�−1∑

i=1

(� − i) λ�.
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If |λ| < 1, then

|p1 (λ)| ≥ � − 2

n

�−1∑

i=1

(� − i) |λ|i > � − 2

n

�−1∑

i=1

(� − i) = 1

n
� (n − � + 1) .

Hence p1 (λ) has no zero inside the unit disk, r1 = 0 = r and the zeros of p (λ)

on the unit circle are s = �. Claim (vi) also follows from a result of Lakatos and
Losonczi [24].

Since for j = 1 and any α, pn+1 (λ) = (λ − 1)
∑n

i=0 (−α + ic) λi , we inves-
tigate q (λ) = ∑n

i=0 (−α + ic) λi with q (0) = −α. By definition q∗ (λ) =∑n
i=0 (−α + (n − i) c) λi and q∗ (0) = −α + nc = 1. Since α > 1, we can apply

Rule 1 of Theorem 1:

q1 (λ) =
n−1∑

i=0

(
α2 − 1

)(
1 − i

n

)
λi .

The coefficients of q1 (λ) are positive and

1 ≤ ai

ai+1
= n − i

n − i − 1
≤ 2.

The Eneström-Kakeya theorem implies that the zeros of q1 (λ) are in the annulus
1 ≤ |λ| ≤ 2. Hence q1 (λ) has no zero inside the unit disk, r1 = 0 = r , q and q1 have
the same number of zeros inside the unit disk. Cauchy’s classical estimate yields the
annulus 1 ≤ |λ| ≤ 1+α for the zeros of pn+1 (λ), if α > 1+α

n
= c, which is satisfied

for n ≥ 2. Note that q (1) = 1−α
2 (n + 1) < 0 for α > 1. Assume that λ 
= 1. Then

q (λ) = λ
(
c + α − α

λ

)+ λn+1 (λ − 1 − c)

(λ − 1)2

and

q (1 + c) = c + α + 1

c
> 0.

Hence there must be a real zero in the interval (1, 1 + c).

For the eigenvalues of TshrP (P ∈ Pn+1), we need the following result.

Theorem 4 (Langville and Meyer [26, 27]). If the spectrum of the stochastic matrix
P is {1, λ2, . . . , λ3}, then the spectrum of

W = αP + (1 − α) evT

is {1, αλ2, αλ3, . . . , αλn}, where vT is a probability vector.2

Since the eigenvalues of W and WT coincide, the same result holds for the
transposed matrix

WT = αP T + (1 − α) veT

as well.

2Vector v is such that vi ≥ 0 and eT v = 1.
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Corollary 1 The spectrum of

TshrP = 1

2
P + 1

2
e1e

T (P ∈ Pn+1)

is
{
1, 1

2λ2,
1
2λ3, . . . ,

1
2λn+1

}
. Since the eigenvalues of a permutation matrix P are

on the unit circle |λ| = 1, we have |λi (TshrP )| = 1
2 for i = 2, . . . , n + 1.

Remark 1 The eigenvalues λ = 1 of T (α) Pj (|α| < 1) and TshrP (P ∈ Pn+1) are

simple and so
{[

T (α) Pj

]k} and
{
[TshrP ]k

}
are convergent. For α > 1, ρ (T (α) P1)

> 1, and so
{
[T (α) P1]k

}
is unbounded. For α = 1, T (1) P1 has at least a double

eigenvalue λ = 1, and since it is a companion matrix, its Jordan form has at least a
2 × 2 block belonging to λ = 1. Hence

{
[T (1) P1]k

}
is also unbounded (see, e.g.,

[16, 32, 36]).

For the asymptotic behavior of the eigenvalues of T (α) Pj , note that for j =
n+ 1− � with fixed � and n → ∞, the matrix T (α) Pj has n− � eigenvalues λ = 1,
while the remaining �+1 eigenvalues (the zeros of p�+1 (λ) = λ�+1−c

∑�
i=1 λi +α)

are converging to the zeros of the polynomial p (λ) = λ�+1 + α.
For a more precise result, we use a less known result of E. Landau [25] (see also

[1, 30] or [33]).

Theorem 5 (E. Landau [25]). Consider the polynomial p (z) = a0+a1z+· · ·+anz
n

(a0an 
= 0). If z is a zero of p (z) and t is any positive real number, then

|z| ≥ g (t) := |a0| t
|a0| + max1≤i≤n |ai | t i . (11)

Landau’ theorem yields the following characterizations of the eigenvalues of
T (α) Pj when n → ∞.

Lemma 3 Assume that |α| < 1 and consider the eigenvalues of T (α) Pj for fixed
j and n → ∞. Then T (α) Pj has either one eigenvalue λ = 1 (j = 1) or j − 1
eigenvalues λ = 1 (j ≥ 2), while the absolute values of the remaining n + 2 − j

eigenvalues (the zeros of pn+2−j (λ)) are converging to 1.

Proof In our case p (λ) = λ� − c
∑�−1

i=1 λi + α and

max
1≤i≤n

|ai | t i = max
1≤i≤�−1

{
ct i , t�

}
.

Assume that n ≥ 2. Then 0 < c < 1. For 0 < t < 1, ct > cti (i ≥ 2) and ct = t�

for t = �−1
√

c < 1. If t1 = �−1
√

c and � = n + 1− j with j fixed, then for the quantity
g (t) given by Theorem 5,

g (t1) =
|α| n+1−j

√
1+α

n

|α| + 1+α
n

n+1−j

√
1+α

n

→ 1 (n → ∞)
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holds.

Lemma 4 Assume that α > 1 and consider the eigenvalues of T (α) P1 for n → ∞.
Then the absolute values of the eigenvalues of T (α) P1 (the zeros of pn+1 (λ)) are
converging to 1.

Proof Since for α > 1, the zeros of pn+1 (λ) = λn+1 − c
∑n

i=1 λi + α are in the
annulus 1 ≤ |z| ≤ 1 + α, the zeros of the reciprocal equation p∗

n+1 (λ) = 1 −
c
∑n

i=1 λi +αλn+1 are in the annulus 1
1+α

≤ |z| ≤ 1. The Landau theorem (Theorem
5) implies that for the zeros of p∗

n+1 (λ), we have the lower estimate

|z| ≥ t

1 + max1≤i≤n

{
ct i , αtn+1

} .

Since 0 < c < 1, ct > cti (1 ≤ i ≤ n) for 0 < t < 1 and ct = αtn+1 for t = n

√
c
α
. If

t1 = n

√
c
α
, then for the quantity g (t) given by Theorem 5,

g (t1) =
n

√
1+α
nα

1 + 1+α
n

n

√
1+α
nα

→ 1 (n → ∞)

holds.

Han and Neumann [12] investigated the Nelder-Mead method when it generates a
sequence of simplices in Rn such that

S(k) =
[
0, v(k+n−1), . . . , v(k+1), v(k)

]

and
f (0) < f

(
v(k+n−1)

)
< · · · < f

(
v(k)

)

for k ≥ k0. They expressed the next incoming vertex v(k+n) in a difference equation
form

v(k+n) = 1 + τk

n

n−1∑

i=1

v(k+i) − τkv
(k)

(
τk = 1,

1

2
, −1

2

)
,

which has the characteristic equation p (μ) = μn + 1+τk

n

∑n−1
i=1 μn−i − τk = 0.

Introducing Mk = [
v(k+n−1), . . . , v(k+1), v(k)

]
they expressed Mk+1 in the form

Mk+1 = MkAk , where

Ak =
[ 1+τk

n
e In−1

−τk 0

]
∈ R

n×n.

The characteristic polynomial of Ak coincides with p (μ) and Ak is close to
T (α) P1 ∈ R

(n+1)×(n+1). Han, Neumann and Xu [11] investigated the zeros of p (μ)

in the form of the two parameter polynomial

p̂n (λ) = b − a

n−1∑

i=1

λi + λn (a, b ∈ C) (12)
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of degree n using a different version of the Schur-Cohn criterion (see Marden [30])
and a different technique. Theorems 4.1, 4.2 and 5.1 of [11] are those results that
can be related to this paper.

Theorem 6 (Han-Neumann-Xu [11], Theorem 4.1) Suppose that a, b ∈ R and a 
=
0.

(i) Assume that |b| < 1. The polynomial (12) has one root in the interior of the
unit disk and the remaining roots on the unit circle if b+1

a
= −1.

(ii) Assume that |b| < 1. The polynomial (12) has one root on the unit circle and
the remaining roots in the interior of the unit disk, If b+1

a
= n − 1.

(iii) Assume that |b| > 1. The polynomial (12) has one root in the exterior of the
unit disk and the remaining roots on the unit circle if b+1

a
= −1.

(iv) Assume that |b| > 1. The polynomial (12) has one root on the unit circle and
the remaining roots in the exterior of the unit disk if b+1

a
= n − 1.

Theorem 7 (Han-Neumann-Xu [11], Theorem 4.2) Consider the polynomial (12). If
b = 1 and 0 ≤ a ≤ 2

n−1 , then all roots of the polynomial (12) are on the unit circle.

Denote by λOC (n) any root of the polynomial (12) with the coefficients a = 3
2n ,

b = 1
2 (outside contraction for α = 1

2 ). Similarly, denote by λIC (n) any root of
the polynomial (12) with the coefficients a = 1

2n , b = − 1
2 (inside contraction for

α = − 1
2 ).

Theorem 8 (Han-Neumann-Xu [11], Theorem 5.1) For the values λOC (n) and
λIC (n),

lim
n→∞ |λOC (n)| = 1

and
lim

n→∞ |λIC (n)| = 1.

In this paper we investigated a set of polynomials of the form

p� (λ) = α − c

�−1∑

i=1

λi + λ� (c = 1 + α

n
), (13)

where the parameters are α and � (2 ≤ � ≤ n + 1). In our case b = α, a = 1+α
n

implying that (b + 1) /a = n for 2 ≤ � ≤ n + 1 (see Theorem 3).
Theorem 4.1 of [11] assumes that either (b + 1) /a = −1 or (b + 1) /a = n − 1.

In the latter case we can write that p̂� (λ) = b − 1+b
�−1

∑�−1
i=1 λi + λn. For b = α and

� = n + 1 (j = 1) the polynomial p̂� (λ) coincides with (13). Hence case (iv) of
Theorem 3 also follows from case (ii) of Theorem 4.1 of [11]. In turn, case (iv) of
Theorem 4.1 of [11] follows from case (vii) of Theorem 3. For � 
= n + 1, the two
theorems are clearly different.

In addition, we note that case (vi) of Theorem 3 also follows from Theorem 4.2 of
[11] and Lemma 3 implies Theorem 5.1 of [11] for α = ± 1

2 .
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4 Examples of convergence behavior

Following McKinnon [29] and Han and Neumann [12] we investigate simple behav-
ior patterns of the simplex sequences

{
S(k)

}
generated by the Nelder-Mead method.

If the simplex sequence
{
S(k)

}
generated by the Nelder-Mead algorithm is con-

vergent, that is limk→∞ S(k) = S∞ for some S∞ ∈ R
n×(n+1), then f

(
x

(k)
i

)
→

f (S∞ei) (i = 1, 2, . . . , n + 1) provided that f is continuous at the points S∞ei

(i = 1, 2, . . . , n + 1). Note that if for some vector x̂, x
(k)
j → x̂ (k → ∞,

j = 1, 2, . . . , n + 1), then S(k) → x̂eT , which is a rank-one matrix of special form.
We show examples where the incoming vertex v satisfies

f
(k)
1 ≤ · · · ≤ f

(k)
j−1 ≤ f (v) ≤ f

(k)
j < f

(k)
j+1 ≤ · · · ≤ f

(k)
n+1 (k ≥ 0)

with a fixed index j and the type of v (reflection, expansion, outside contraction, or
inside contraction point) is the same for k ≥ 0.3 Hence S(k) = S(0)

[
T (α) Pj

]k for
k ≥ 0. Using the examples we can specify the type of convergence which is studied
in the rest of the paper.

Assume that |α| < 1 and S(0) =
[
S

(0)
j−1, S

(0)
n+2−j

]
(S(0)

j−1 ∈ R
n×(j−1)). It follows

from Theorem 3 (formula (10)) that

lim
k→∞ S(k) = lim

k→∞ S(0) [T (α) Pj

]k =
[
S

(0)
j−1, S

(0)
j−1cee

T
1

(
In+2−j − An+2−j

)−1
]
.

If rank
(
S

(0)
j−1

)
≥ 2, then limk→∞ S(k) cannot be of the form x̂eT for some vector x̂,

diam
(
S(k)

)
� 0, and f

(k)
i ’s do not converge to the same limit. For j = 1, 2, we can

write T (α) Pj in the form

T (α) Pj = F

[
1 0T

bj Cj

]
F−1

(
F =

[
1 −eT

0 In

])
.

For |α| < 1, Theorem 3 implies that ρ (C) < 1 and so

[
T (α) Pj

]k →
[
1 − eT

(
I − Cj

)−1
bj(

I − Cj

)−1
bj

]

eT = B.

Hence limk→∞ S(k) = S(0)B = weT for some vector w. For j = 1, b1 
= 0, while
for j = 2, bj = 0. In the latter case S(0)B = x

(0)
1 eT .

Next we show five examples for different behavior patterns of
{
S(k)

}
. Exam-

ples 1, 2, 3 and 5 are two dimensional, while Example 4 is n-dimensional. Let
J = {1, 2, . . . , n + 1}.

In Example 1 the incoming vertex is x
(k)
e for k ≥ 0, f has no finite minimum,

f
(k)
i → 0 (k → ∞, i ∈ J ) and diam

(
S(k)

) → ∞. In Example 2 the incoming vertex

(as expansion point) is x
(k)
r for k ≥ 0, diam

(
S(k)

)
is constant,

{
S(k)

}
is unbounded

and three functions are given so that f (k)
i → −∞ (i ∈ J ) or f

(k)
i → 0 (i ∈ J ) holds.

3Here we adopt the notations defined in Section 1.
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In Example 3 the incoming vertex is x
(k)
ic for k ≥ 0, x

(k)
i → x

(0)
1 (i = 1, 2, 3)

and three functions are given so that x
(0)
1 is not a stationary point of f or it is a

minimum point of f . In the n-dimensional Example 4 the incoming vertex is x
(k)
ic

which replaces x
(k)
n+1 for k ≥ 0. Hence x

(k)
i = x

(0)
i (i = 1, . . . , n), x(k)

n+1 → x
(0)
c and

diam
(
S(k)

)
� 0. For n 
= 3, limk x

(k)
n+1 = x

(0)
c is not a stationary point of the three

given functions f .
In Example 5 the incoming vertex is x

(k)
ic which replaces x

(k)
3 for k ≥ 0, x

(k)
3 →

x
(0)
c , diam

(
S(k)

)
� 0. Two functions are given such that limk x

(k)
3 = x

(0)
c is not a

stationary point for the first function, while it is a saddle point for the second function.

Example 1 The expansion point x(k)
e is the incoming vertex infinitely many times if

f (k)
e < f (k)

r < f
(k)
1 ≤ f

(k)
2 ≤ f

(k)
3 (k ≥ 0) . (14)

In this case S(k) = S(0)Bk where Bk = [T (2) P1]k is not bounded. Select

S(0) =
[ 5

6 − 7
66

√
33 1

3 − 1
11

√
33 1

3 − 1
33

√
33

7
66

√
33 + 5

6
1
11

√
33 + 1

3
1
33

√
33 + 1

3

]
=
[

a c e

b d f

]
.

The rows of S(0) are the left eigenvectors of T (2) P1 corresponding to λ2 = 1
4

√
33+

1
4 and λ3 = 1

4 − 1
4

√
33, respectively. Hence if condition (14) holds, then

S(k) =
[

λka λkc λke

μkb μkd μkf

]
,

x(k)
r =

[
λk (a + c − e)

μk (b + d − f )

]
, x(k)

e =
[ 1

2λ
k (3a + 3c − 4e)

1
2μ

k (3b + 3d − 4f )

]
.

Let f (x, y) = (
1 + x2 + y2

)−1
. Since |a| > |c| > |e| and |b| > |d| > |f |, condi-

tion f
(k)
1 < f

(k)
2 < f

(k)
3 clearly holds. Inequalities f

(k)
r < f

(k)
1 and f

(r)
e < f

(k)
r hold

if and only if

λ2k (a + c − e)2 + μ2k (b + d − f )2 > λ2ka2 + μ2kb2

and

λ2k
(3a + 3c − 4e)2

4
+μ2k (3b + 3d − 4f )2

4
> λ2k (a + c − e)2+μ2k (b + d − f )2

hold, respectively. The last two inequalities can be verified by direct calculation.
Hence (14) holds and for k → ∞, diam

(
S(k)

) → ∞ and f
(k)
i → 0 for i = 1, 2, 3.

Example 2 The expansion point x(k)
r is the incoming vertex infinitely many times if

f (k)
r < f

(k)
1 ≤ f

(k)
2 ≤ f

(k)
3 ∧ f (k)

r ≤ f (k)
e (k ≥ 0) . (15)

In this case S(k) = S(0)Bk where Bk = [T (1) P1]k . Since T (1) P1 has a 2×2 Jordan
block belonging to λ = 1, Bk is not bounded. Define

S(0) =
[
1 0 −1
2 −2 2

]
.
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If condition (15) holds, then

S(k) =
[

k + 1 k k − 1
(−1)k 2 (−1)k+1 2 (−1)k 2

]

and

x(k)
r =

[
k + 2

(−1)k+1 2

]
, x(k)

e =
[

k + 7
2

(−1)k+1 4

]
.

Note that
{
S(k)

}
is unbounded, while diam

(
S(k)

)
is constant. It is easy to verify that

condition (15) holds for the functions f1 (x, y) = 1
2 − 1

2x + 1
4 |y| + 1

4 ||y| − 2|,
f2 (x, y) = 1

1+x2
+ 1

12y
2 − 1

3 and f3 (x, y) = sin(|y|−1.9)
1+x2

. In case of f1, f
(k)
i → −∞

(k → ∞, i = 1, 2, 3). For f2 and f3, f
(k)
i → 0 (i = 1, 2, 3). Note that inf f1 = −∞,

(0, 0) is a saddle point of f2, inf f2 = − 1
3 , and −1 ≤ f3 ≤ 1.

Examples 1 and 2 show that the assumption on the boundedness of {Bk} is
justified.

McKinnon [29] proved the convergence behavior (17) of Example 3 for the convex
function

fM (x, y) =
{

θϕ |x|τ + y + y2, if x ≤ 0
θxτ + y + y2, if x ≥ 0

(θ = 6, τ = 2, ϕ = 60)

with initial simplex

S(0) =
[
0 1+√

33
8 1

0 1−√
33

8 1

]

=
[
0 a 1
0 b 1

]
, (16)

where the common limit point [0, 0]T of the simplex vertices is not a stationary
point of fM . Using simplex S(0) of (16) we show other functions that generate the
same simplex sequence, while the limit point [0, 0]T is either a stationary point or a
nonstationary point depending on the particular function.

Example 3 The inside contraction point x
(k)
ic is the incoming vertex infinitely many

times, if
f

(k)
1 ≤ f

(k)
ic < f

(k)
2 < f

(k)
3 ≤ f (k)

r (k ≥ 0) (17)
If such a case occurs, then it is generally true that

S(k) = S(0)
[
T

(
−1

2

)
P2

]k

→ S(0)e1e
T =

[
x

(0)
1 , x

(0)
1 , x

(0)
1

]
,

no matter what x
(0)
1 is. The rows of S(0) are the left eigenvectors of T

(
− 1

2

)
P2

belonging to eigenvalues λ = 1+√
33

8 andμ = 1−√
33

8 , respectively. If (17) holds, then

S(k) =
[
0 λka λk

0 μkb μk

]
, x(k)

r =
[

(a − 1) λk

(b − 1) μk

]
, x

(k)
ic =

⎡

⎣

(
1
4a + 1

2

)
λk

(
1
4b + 1

2

)
μk

⎤

⎦ .

Let f (x, y) = g (x) + h (y). The values of a, b, λ and μ imply that λ > |μ| and the
arguments x and y at the points x

(k)
i , x(k)

r and x
(k)
ic will be in the range x ∈ [−1, 1] and

Numerical Algorithms (2022) 90:1043–1072 1059



y ∈ Iy =
[
−
(
1
8

√
33 + 7

8

)
,
(
1
8

√
33 + 7

8

)]
, respectively. Select g (x) and h (y) such

that g (x) = max (αx, −βx), α, β > 0 and |h (y)| ≤ γ |y| for y ∈ Iy . The inequality

g (x) − γ |y| ≤ f (x, y) ≤ g (x) + γ |y| implies that for α >
(
7
8

√
33 + 41

8

)
γ and

β >
(
1
2

√
33 + 7

2

)
α +

(
11
8

√
33 + 69

8

)
γ , condition (17) holds. Hence for functions

f4 (x, y) = max (7x, −53x) + 1
2 sin (y) (γ = 1

2 ), f5 (x, y) = max (13x,−100x) +
0.1y3 (γ = 1) and f6 (x, y) = max (13x, −100x) + 1

4y
2 (γ = 1), condition (17)

holds. The point (0, 0) is not a stationary point for f4 and f5, while it is a minimum
point for f6.

Note that for all three functions, we have the same limit point, and the simplex
sequence depends on the initial simplex and the relative function value distribution.

Han and Neumann [12] investigated the behavior pattern

0 = f
(k)
1 < f (v) < f

(k)
2 < · · · < f

(k)
n+1 (k ≥ k0) . (18)

where the incoming point v is either x
(k)
oc or x

(k)
ic . Hence

S(k+1) = S(k)T (αk) P2

(
αk ∈

{
−1

2
,
1

2

})
. (19)

Under this assumption they proved the convergence x
(k)
i → 0 (k → ∞) for f (x) =

xT x (x ∈ R
n). For n = 2, they gave an initial simplex S(0) for which condition (18)

with αk ≡ 1
2 is fulfilled.

Lagarias et al. ([23], Lemma 5.1) investigated a somewhat similar but more
complicated case where the best vertex x

(k)
1 is constant for all k.

Example 4 Assume that x(k)
ic is the incoming vertex infinitely many times such that

f
(k)
1 ≤ f

(k)
2 ≤ · · · ≤ f (k)

n ≤ f
(k)
ic < f

(k)
n+1 ≤ f (k)

r (k ≥ 0) (20)

and n ≥ 2. In this case

S(k) = S(0)
[
T

(
−1

2

)]k

→ S(0)
[

In
1
n
e

0 0

]
=
[

x
(0)
1 , . . . , x(0)

n ,
1

n

n∑

i=0

x
(0)
i

]

.

We select

S(0) =
[

In−1,n
1
n
e

0 1

] (
In−1,n = [

δij

]n−1,n
i,j=1

)
,

whose rows are the left eigenvectors of T
(
− 1

2

)
. If (20) holds, then

S(k) =
[

In−1,n
1
n
e

0 1
2k

]
, x(k)

r =
[ 1

n
e

− 1
2k

]
, x

(k)
ic =

[ 1
n
e
1

2k+1

]
.

Assume that f (x) =
[∏n−1

i=1 g (xi)
]
h (xn), where g (x) , h (x) > 0 for x ≥ 0,

h (−x) ≥ h (x) for x > 0, and h (x) is strictly monotone increasing for x ≥ 0

and strictly monotone decreasing for x < 0. If g (1) < g (0) < g
(
1
n

)
holds,
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then it follows that function values f
(k)
i = g (0)n−2 g (1) h (0) (i = 1, . . . , n − 2),

f
(k)
n = g (0)n−1 h (0), f

(k)
ic = g

(
1
n

)n−1
h
(

1
2k+1

)
, f

(k)
n+1 = g

(
1
n

)n−1
h
(

1
2k

)
and

f
(k)
r = g

(
1
n

)n−1
h
(
− 1

2k

)
satisfy inequality (20). Since x

(k)
n+1 →

[
1
n
eT , 0

]T
, we

have f
(k)
n+1 →

[
g
(
1
n

)]n−1
h (0). For g, we may select g (x) = e

−
(
x− 1

3

)2

, which

has a global maximum at x = 1
3 , while h has a minimum at y = 0. Hence f

has a saddle point
[
1
3e

T , 0
]T

, which is different from limk→∞ x
(k)
n+1 if n 
= 3.

However for n = 2, limk→∞ x
(k)
3 = xsaddle. We can select any of the functions

f7 (x) = e
−∑n−1

i=1

(
xi− 1

3

)2

(1 + |xn|), f8 (x) = e
−∑n−1

i=1

(
xi− 1

3

)2

(1 + sin (|xn|)) and

f9 (x) = e
−∑n−1

i=1

(
xi− 1

3

)2

sin
(
1 + x2

n

)
. Note that 0 < f7 (x) ≤ 1 + |xn| and f7 has

no finite minimum. Functions f8 and f9 have an infinite number of global maximum
and minimum points. Also note that diam

(
S(k)

)
� 0.

For n = 2, there are plenty of similar cases.

Lemma 5 Assume that S(0) =
[
x

(0)
1 , x

(0)
2 , x

(0)
3

]
is such that f

(0)
1 ≤ f

(0)
2 < f

(0)
3

and define ϕ (t) = (1 + t) x
(0)
c − tx

(0)
3 If, in addition, f is such that (a) f (ϕ (t))

is continuous on [−1, 1]; (b) f (ϕ (t)) ≥ f (ϕ (−t)) for t ∈ [0, 1]; (c) f (ϕ (t)) is
strictly monotone decreasing on [−1, 0]; (d) f (ϕ (t)) > f (ϕ (0)) = f

(0)
c ≥ f

(0)
2

(t ∈ [−1, 1], t 
= 0), then

f
(k)
1 ≤ f

(k)
2 ≤ f

(k)
ic < f

(k)
3 ≤ f (k)

r (21)

holds for all k = 0, 1, 2, . . ., x(k)
3 → x

(0)
c , and f

(k)
3 → f

(0)
c .

Proof Assume that for some −1 ≤ t < 0, x3 = ϕ (t) and f
(0)
1 ≤ f

(0)
2 < f (ϕ (t)).

Then xr = ϕ (−t), xic = ϕ
(

t
2

)
, and (b) and (c) imply that

f (xr) = f (ϕ (−t)) ≥ f (ϕ (t)) = f (x3) > f

(
ϕ

(
t

2

))
= f (xic) .

Condition (d) implies that f (0)
1 ≤ f

(0)
2 < f

(
ϕ
(

t
2

))
.

Example 5 Consider function f (x, y) = 1
4 (x + |x|) + 1

2 |x − |x|| + g (y), where

g (y) =
{
0.2 sin (10πy − 5π) , if 0.5 ≤ y ≤ 0.7
0, otherwise

.

Select x
(0)
1 = [0, 0.5]T , x

(0)
2 = [0, 0.7]T , x

(0)
3 = [0.5, 0.6]T . Then by Lemma 5

x
(k)
3 → x

(0)
ic = [0, 0.6]T , which is not a stationary point. Assume now that f (x, y) =

g (x) − h (y), where g and h are continuous real functions, g (x) > 0 for x 
= 0,
g (0) = 0, g (x) is strictly monotone increasing for x ≥ 0, g (x) is strictly monotone
decreasing for x < 0, g (−x) ≥ g (x) (x ≥ 0), h (y) ≥ 0 for y 
= 0, h (0) = 0 and
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h (−y) ≥ h (y) for y ≥ 0. Select x(0)
1 = [0, −a]T , x(0)

2 = [0, a]T and x
(0)
3 = [b, 0]T

with a, b > 0. Lemma 5 implies that x(i)
3 converges to the saddle point x(0)

c = [0, 0]T .

The examples show that for different functions the Nelder-Mead algorithm may
generate the same simplex sequence whose limit vertices may be different from or
equal to a stationary point of the function. They also show that in case of convergence
the simplex vertices x

(k)
j either converge to the same vector x̂ or converge to different

vectors as shown by Examples 4 and 5.
Assume that the simplex vertices x

(k)
j (j = 1, 2, . . . , n + 1) converge to the same

vector x̂ as k → ∞ and f is continuous at x̂. Then

lim
k→∞ S(k) = [̂x, . . . , x̂] = x̂eT (22)

and f
(k)
i → f (̂x) (i = 1, . . . , n + 1). Assume that Bk → B = weT . Then S(k) =

S(0)Bk → S(0)weT = x̂eT and

diam
(
S(k)

)
= max

i,j

∥∥∥S(k)
(
ei − ej

)∥∥∥ ≤ max
i,j

∥∥∥S(0)
∥∥∥
∥∥Bk

(
ei − ej

)∥∥ → 0. (23)

Since B
(
ei − ej

) = 0, Bk

(
ei − ej

) = (Bk − B)
(
ei − ej

)
, we also have the speed

estimate

diam
(
S(k)

)
≤ √

2
∥∥∥S(0)

∥∥∥ ‖Bk − B‖ . (24)

Note that properties f
(k)
i → f̂ (i = 1, . . . , n + 1) and diam

(
S(k)

) → 0 (k → ∞)
were proved directly for strictly convex two-dimensional functions by Lagarias et al.
[23] without relating the results to the stationary point of f . Except for Kelley [20],
[19] and Lagarias et al. [22] no general result is known as yet on the convergence to
a stationary point of the target function f .

Upon the basis of the preceding arguments we restrict our study to the convergence
S(k) → x̂eT , which implies f

(k)
i →f (̂x) (i =1, . . . , n+1) and the speed estimate (24).

5 The convergence of the Nelder-Meadmethod

The convergence result will be proved in several steps. First using a fixed similarity
we transform the matrices TiP

(i) ∈ T to a common lower block triangular form and
identify a subset of T that might have the RCP property. Next we prove a lemma
on the convergence of the product of lower block triangular matrices. Finally, under
Assumption (A) we prove the convergence in Section 5.3

5.1 A common similarity transformation

Since eT is a left eigenvector of each TiP
(i) ∈ T , there exists a common similarity

transformation that makes them block lower triangular (for a more general case, see
Theorem 6.10 of Hartfiel [13]).
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Lemma 6 For all TiP
(i) ∈ T , matrix F−1TiP

(i)F has the form

F−1TiP
(i)F =

[
1 0
bi Ci

] (
F =

[
1 −eT

0 In

])
, (25)

where bi ∈ R
n and Ci ∈ R

n×n are defined by TiP
(i).

Proof For j > 1 we can write

T (α) Pj =
[
1 ceT

j−1
0 W

] (
W ∈ R

n×n
)
,

and so

F−1T (α) PjF =
[
1 −eT + ceT

j−1 + eT W

0 W

]
.

Since eT Wej−1 = (n − 1) c−α = 1−c, eT W = [1, . . . , 1 − c, 1, . . . , 1], we obtain
the form

F−1T (α) PjF =
[
1 0
0 W

]
.

For j = 1,

T (α) P1 =
[

c eT
1

z W

] (
W ∈ R

n×n
)

with z = [c, . . . , c, −α]T . Hence

F−1T (α) P1F =
[

c + eT z −ceT + eT
1 − eT zeT + eT W

z −zeT + W

]
.

Since eT W = [0, 1, . . . , 1], eT z = 1 − c, c + eT z = 1,

−ceT + eT
1 − eT zeT + eT W = −ceT + eT

1 − (1 − c) eT + eT W = 0.

The final result is

F−1T (α) P1F =
[
1 0
z −zeT + W

]
.

For T (α) Pj (j > 1), b = 0, and for T (α) P1, ‖b‖2 = (
(n − 1) c2 + α2

) 1
2 .

Note that TshrP = 1
2P + 1

2e1e
T and P = [

ei1 , . . . , ein+1

]
. If i1 = 1, then

TshrP =
[
1 1

2e
T

0 W1

]

where W1 is an n × n permutation matrix multiplied by 1
2 . Hence eT W1 = 1

2e
T and

F−1TshrPF =
[
1 − 1

2e
T + eT W1

0 W1

]
=
[
1 0
0 W1

]
.

If i1 > 1 and TshrP ej = e1, then

TshrP =
[

1
2

1
2e

T + 1
2e

T
j−1

1
2ei1−1 W2

]

,
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where W2ej−1 = 0, eT W2ei = 1
2 (i 
= j − 1) and eT W2 = 1

2

(
eT − eT

j−1

)
. Since

eT ei1−1 = 1,

F−1TshrPF =
[

1
2 + 1

2e
T ei1−1

1
2e

T
j−1 − 1

2e
T ei1−1e

T + eT W2
1
2ei1−1 − 1

2ei1−1e
T + W2

]

=
[

1 0
1
2ei1−1 − 1

2ei1−1e
T + W2

]

If i1 = 1, then the first column entries of F−1TshrPF are 0 except for entry (1, 1).
If i1 ≥ 2, then entry (i1, 1) is 1

2 , while the remaining entries are 0 (� 
= 1, i1). Hence
‖b‖2 ≤ 1

2 . The entries of submatrix C are only 0, 1
2 and − 1

2 . In column j , there
can be at most two nonzero elements. Note that ρ (Ci) = 1

2 and ‖Ci‖1 ≤ 1 for
TiP

(i) = TshrP (P ∈ Pn+1).

Note that matrices Ci and their norms play the key role in the convergence proof.
Accordingly we divide the set T in two disjoint sets

W1 =
{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}
∪ {TshrP : P ∈ Pn+1} (26)

and

W2 = {
T (2) P1, T (1) Pj : j = 1, . . . , n

}

∪
{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 3, . . . , n + 1

}
. (27)

The matrices of W1 correspond to the inside and outside contraction operations,
when the incoming vertices are inserted in the first or the second position of the order-
ing (3) or they correspond to any shrinking operation. The matrices ofW2 correspond
to the remaining operations of T . Theorem 3 and Corollary 1 imply that

ρ (Ci) < 1
(
TiP

(i) ∈ W1

)
(28)

and
ρ (Ci) ≥ 1

(
TiP

(i) ∈ W2

)
. (29)

Note that for each matrix TiP
(i) ∈ W1, an induced matrix norm ‖·‖ exists such that

ρ (Ci) ≤ ‖Ci‖ < 1. However for any TiP
(i) ∈ W2 and any induced matrix norm

‖·‖, only 1 ≤ ρ (Ci) ≤ ‖Ci‖ holds. Since max
{
ρ (Ci) : TiP

(i) ∈ W1
}

< 1, set W1
might be an RCP set if we find a proper induced norm for which ‖Ci‖ ≤ 1 for all
TiP

(i) ∈ W1. In fact we make a stronger restriction in the form of Assumption (A).

5.2 A lemma on the convergence of lower block triangular matrices

For i ≥ 1, let

Ai =
[
1 0
bi Ci

]
∈ R

(n+1)×(n+1) (
Ci ∈ R

n×n
)
. (30)
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Lemma 7 Assume that
∥∥∥
∏k

j=1 Cj

∥∥∥ ≤ ck ,
∑∞

k=1 ck is convergent (< ∞) and ‖bk‖ ≤
γ for all k. Then Lk = ∏k

j=1 Aj converges and

lim
k→∞ Lk =

[
1 0
x̃ 0

]
(31)

for some x̃.

Proof It is easy to see that

Lk =
k∏

j=1

Aj =
[

1 0
∑k

i=1

(∏i−1
j=1 Cj

)
bi

∏k
j=1 Cj

]

=
[
1 0
xk

∏k
j=1 Cj

]
. (32)

If
∑∞

k=1 ck is convergent, then ck → 0. Hence
∏k

j=1 Cj → 0 as k → ∞. Since

sk = ∑k
j=1 cj is convergent, for any ε > 0 there is a number k0 = k0 (ε) such that

for m > k ≥ k0, |sm − sk| < ε. Thus for m > k ≥ k0, we obtain

‖xm − xk‖ ≤
m∑

i=k+1

∥∥∥∥∥∥

i−1∏

j=1

Cj

∥∥∥∥∥∥
‖bi‖ ≤ γ

m∑

i=k+1

ci−1 ≤ γ ε.

Hence xk → x̃ for some x̃.

If
∥∥Cj

∥∥ ≤ q < 1 for j ≥ 1, then
∥∥∥
∏k

j=1 Cj

∥∥∥ ≤ qk and the series
∑∞

i=1 qi is
convergent.

5.3 The convergence theorem

Formula (25) implies that Bk = ∏k
i=1 TiP

(i) = FLkF
−1, where

Lk =
k∏

i=1

[
1 0
bi Ci

]
, (33)

and Bk is convergent if and only if Lk is convergent. The convergence of the Nelder-
Mead algorithm will be proved under the following key condition.

Assumption (A): There is an induced matrix norm ‖A‖ϑ such that if TiP
(i) ∈

W1, then ‖Ci‖ϑ < 1.
If Assumption (A) holds, there exist constants 0 < q < 1 ≤ Q such that ‖Ci‖ϑ ≤

q < 1 (TiP
(i) ∈ W1) and 1 ≤ ‖Ci‖ϑ ≤ Q (TiP

(i) ∈ W2). Also there is a constant
γ > 0 such that for every TiP

(i) ∈ W1 ∪ W2, ‖bi‖ϑ ≤ γ .
Under Assumption (A) the matrix set C = {Ci : TiP

(i) ∈ W1
}
is an RCP set and

all infinite products
∏∞

i=1 C(i) (C(i) ∈ C) converge to the zero matrix. By Lemma
7 the sequences Bk = ∏k

i=1 TiP
(i) and S(k) = S(0)Bk (TiP

(i) ∈ W1) are also
convergent. Hence if Assumption (A) holds, then W1 is an RCP set. We show in
Section 6 and the Appendix that Assumption (A) holds at least for 1 ≤ n ≤ 8. Note
again that matrices ofW1 correspond to the inside and outside contraction operations,
when the incoming vertices are inserted in the first or the second position of the
ordering (3) or they correspond to any shrinking operation.
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Theorem 9 Suppose that Assumption (A) is satisfied and S(0) is nondegenerate. Let
t1 (k) be the number of operations TiP

(i) that belong to W1, and t2 (k) be the num-
ber of those operations TiP

(i) that belong to W2 during the first k iterations of the
Nelder-Mead method. Also assume that for κ ∈ N, q1−κ ≤ Q ≤ q−κ and for
μ ∈ (0, 1), t1 (k) ≥ μk + κt2 (k) holds (k ≥ k0). Then the Nelder-Mead algorithm
converges in the sense that

lim
k→∞ x

(k)
j = x̂ (j = 1, . . . , n + 1) (34)

for some vector x̂ with a convergence speed proportional to O
(
qμk

)
. If f is

continuous at x̂, then

lim
k→∞ f

(
x

(k)
j

)
= f (̂x) (j = 1, . . . , n + 1) (35)

holds as well.

Proof We first investigate the product (33). By assumption t1 (k) is the number of
those Ci’s that satisfies ‖Ci‖ ≤ q < 1 (1 ≤ i ≤ k) and t2 (k) is the number of
those Ci’s that satisfies 1 ≤ ‖Ci‖ ≤ Q (1 ≤ i ≤ k). Clearly, 0 ≤ ti (k) ≤ k and
t1 (k) + t2 (k) = k. Then

∥∥∥∥∥∥

k∏

j=1

Cj

∥∥∥∥∥∥
ϑ

≤ qt1(k)Qt2(k) ≤ qt1(k)−κt2(k) ≤ qμk = ck

and
∑∞

i=1 ck is clearly convergent. Hence it follows from Lemma 7 that

lim
k→∞ Lk =

[
1 0
x̃ 0

]
= L̃

for some vector x̃. Since

‖x̃ − xk‖ =
∥∥∥
∥∥∥

∞∑

i=k+1

⎛

⎝
i−1∏

j=1

Cj

⎞

⎠ bi

∥∥∥∥∥∥
ϑ

≤ γ

∞∑

i=k

qμi ≤ Γ1q
μk,

∥∥Lk − L̃
∥∥

ϑ
≤ Γ2q

μk

holds with a suitable constant Γ2 > 0. Hence

Bk → F

[
1 0
x̃ 0

]
F−1 =

[
1 − eT x̃

x̃

]
eT = weT = B (36)

and
‖Bk − B‖ϑ ≤ Γ2cond (F ) qμk . (37)

Corollary 2 diam
(
S(k)

) → 0 (k → ∞) with a speed of O
(
qμk

)
.

For higher dimension, we can expect slower convergence, since Lemma 3 implies
that q must approach 1.
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Except for Lagarias et al. [23] we do not know that what kind of steps can follow
each others when the Nelder-Mead method applied to a function. Under Assumption
(A), if the Nelder-Mead steps are taken only from W1, then the algorithm converges
in the sense of Theorem 9. Thus the convergence of the Han-Neumann case (18)–(19)
also follows. In general the method also takes steps from W2. If it occurs in a finite
number of occasions, that is t2 (k) ≤ k0, then t1 (k) ≥ k − k0 and we can set μ = 1
in the theorem. If not, we must assume that the elements from W1 counterbalance
the effect of those from W2. This is provided by the simple assumption t1 (k) ≥
μk + κt2 (k).

The difficulty of Theorem 9 is to find a suitable norm ‖·‖ϑ for which Assumption
(A) holds. The reason for this is the following.

If all infinite products from a matrix set Σ converge, that is Σ is an RCP set, then
Σ is also product bounded (see, e.g., [13]). A set Σ of n × n matrices is product
bounded if there is a constant β > 0 such that ‖A1 · · · Ak‖ ≤ β for all k and all
A1, . . . , Ak ∈ Σ . A matrix set Σ is product bounded if and only if there exists a
multiplicative matrix norm ‖·‖ such that ‖A‖ ≤ 1 for all A ∈ Σ (see, e.g., [4, 13]).

If W1 is an RCP set, then it is also product bounded. Blondel and Tsitsiklis [5]
proved that the product boundedness of a finite matrix set Σ is algorithmically unde-
cidable and it remains undecidable even in the special case, when Σ consists of only
two matrices. Since product boundedness is a weaker property than the RCP, and
yet it is algorithmically undecidable, it seems difficult to decide the RCP property in
general. In Section 6 we present a technique that circumvents this problem forW1 at
least for n ≤ 8.

6 The convergence in low dimensions

Here we show that Assumption (A) holds for n = 1, 2, . . . , 8, which implies that
Theorem 9 also holds for n = 1, 2, . . . , 8. Case n = 1 is simple, but for cases
n = 2, . . . , 8, we have to construct induced matrix norms that satisfy (A).

6.1 Convergence for n = 1

In this case

W1 =
{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}

and

W2 = {T (1) P2, T (2) P2, T (1) P1} .
Lemma 6 implies

F−1BkF =
k∏

i=1

[
1 0
bi ci

]
,

where |ci | = 1
2 = q (TiP

(i) ∈ W1) and 1 ≤ |ci | ≤ 2 = Q (TiP
(i) ∈ W2). Here the

norm ‖·‖w = |·| and the convergence Theorem 9 holds with κ = 1.
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6.2 Convergence for 2 ≤ n ≤ 8

Using the result of Stein [40], Householder [17] proved that for each matrix A ∈
R

m×m with ρ (A) < 1, there is a matrix R such that
∥∥RAR−1

∥∥
2 < 1. A related result

is given by Deutsch [7].
Here we need a matrix S such that ‖Ci‖w = ∥∥S−1CiS

∥∥
2 < 1 holds for all matrices

TiP
(i) ∈ W1. A simultaneous diagonalization of these matrices clearly would do

it. However the matrices of W1 are not pairwise commuting and so they are not
simultaneously diagonalizable (see, e.g., [9, 34, 37]). Hence we tried to solve the
optimization problem

min
S

max

{∥∥∥S−1CiS

∥∥∥
2

: TiP
(i) ∈

{
T

(
1

2

)
Pj , T

(
−1

2

)
Pj : j = 1, 2

}}
. (38)

using the standard matrix routines of Matlab R2013b and the ‘fminsearch’ (Nelder-
Mead) algorithm starting from several initial points. All numerical computations
were done on a PC with Intel i7-8700 CPU @ 3.20GHz and Windows 10 operat-
ing system. The numerical results are presented in this section and the Appendix are
given in Matlab’s short format (scaled fixed point format with 5 digits).

Since the number of possible (n + 1) × (n + 1) matrices TiP
(i) is N = 3n + 3 +

(n + 1)! we only present the following computed quantities

ρ1 = max
{
ρ (Ci) : TiP

i ∈ W1

}
, ν1 = max

{
‖Ci‖2 : TiP

(i) ∈ W1

}
,

ρ2 = max
{
ρ (Ci) : TiP

(i) ∈ W2

}
, ν2 = max

{
‖Ci‖2 : TiP

(i) ∈ W2

}
,

q = max
{∥∥∥S−1CiS

∥∥∥
2

: TiP
(i) ∈ W1

}
, Q = max

{∥∥∥S−1CiS

∥∥∥
2

: TiP
(i) ∈ W2

}
.

The computed matrices S will be presented in the Appendix for 2 ≤ n ≤ 8.

TiP
i ∈ W1 TiP

(i) ∈ W2

n ρ1 ν1 q ρ2 ν2 Q κ

2 0.8431 1.2892 0.8431 1.6861 3.1787 2.6568 6
3 0.9275 1.2622 0.9275 1.5214 3.8378 2.7437 14
4 0.9587 1.2271 0.9590 1.4201 4.3635 2.7298 24
5 0.9735 1.2171 0.9735 1.3517 4.8195 2.7560 38
6 0.9815 1.3155 0.9836 1.3024 5.2301 3.0442 68
7 0.9864 1.4075 0.9885 1.2652 5.6075 3.0901 98
8 0.9896 1.4939 0.9913 1.2361 5.9592 3.1962 133

The data of the table implies that Assumption (A) holds and so Theorem 9 implies
the convergence of the Nelder-Mead method for n = 2, . . . , 8. Note that ρ1 and ρ2
approach 1 as indicated by Lemmas 3 and 4.
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If we exclude the expansion operations (T (2) P1, T (1) P1), we have smaller κ

values as shown in the table below

n 2 3 4 5 6 7 8

q 0.8431 0.9275 0.9590 0.9735 0.9836 0.9885 0.9913
Q′ 1.3520 1.3918 1.3858 1.3889 1.5442 1.5545 1.6144
κ ′ 2 5 8 13 27 39 56

Consequently we have a faster convergence speed, although the estimated speed
still slows down for increasing n.

7 Summary

We analyzed the Nelder-Mead algorithm in the iterative form

S(k) = S(k−1)TkP
(k) = S(0)

k∏

i=1

TiP
(i),

where TiP
(i) ∈ T is the matrix of the executed inner step at iteration i. Since the con-

vergence of the sequence
{
S(k)

}
clearly depends on the convergence of the infinite

matrix products
∏∞

i=1 TiP
(i), we used techniques from the theory of infinite matrix

products [13]. First, we investigated the spectra of the matrices TiP
(i), then using a

simultaneous similarity reduction on T to block lower triangular matrices we proved
a convergence result (Theorem 9) for the simplex sequence

{
S(k)

}
to rank-one matri-

ces of the form x̂eT for some vector x̂. This implies the convergence f
(k)
i → f (̂x).

The examples of Section 4 support the study of this type of convergence. The main
idea of the convergence theorem is to identify a subset W1 of operations T that has
the RCP property. This property follows from Assumption (A) which is proved for
1 ≤ n ≤ 8̇ using numerical optimization. It is not yet known if this bound can be
increased in the same way or not. Theorem 9 has a deficiency that x̂ is not related
to any stationary point of f (for a similar result, see also Lagarias et al. [23]). The
results of Kelley [20], Lagarias et al. [22] and also the examples of Section 4 indicate
that new techniques are to be developed for such results.

Appendix

Here we present the similarity transformation matrices S (the approximate solutions
of optimization problem (38)) for n = 2, . . . , 8. The results are given in Matlab’s
short format (scaled fixed point format with 5 digits).

1. n = 2 [
1.9750 −0.8063

−0.0000 1.6126

]
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2. n = 3 ⎡

⎣
−0.6128 1.5599 0.3998
1.4872 −0.0621 0.4384

−0.6508 −0.8054 0.7748

⎤

⎦

3. n = 4 ⎡

⎢⎢
⎣

0.5931 0.6016 0.8564 0.0438
0.2918 −0.7842 0.0464 −0.7280
0.3339 0.4243 −0.8902 −0.0357
0.0252 −0.4527 −0.0132 0.8120

⎤

⎥⎥
⎦

4. n = 5 ⎡

⎢⎢⎢⎢
⎣

−2.9412 0.6476 −1.0913 −1.3439 −0.0418
−0.1282 0.0171 0.1649 2.9236 −1.5885
0.3674 1.3641 2.3126 −0.9888 −0.4276
0.0280 −2.6337 0.7949 −0.4218 −0.0538
0.0278 0.3617 −0.0620 0.8253 2.4192

⎤

⎥⎥⎥⎥
⎦

5. n = 6
⎡

⎢⎢⎢⎢⎢⎢
⎣

0.3119 1.0592 −0.1946 −0.5866 −0.3932 0.0921
0.4206 0.3139 0.5872 0.6986 0.3377 0.3883
0.2407 −0.3890 0.6421 −0.6398 0.1694 −0.4387
0.2614 −0.5562 −0.0797 0.3364 −0.8387 −0.0254
0.2237 −0.4478 −0.6062 −0.2513 0.4292 0.4870

−0.0146 0.0967 −0.4087 0.3929 0.3054 −0.7185

⎤

⎥⎥⎥⎥⎥⎥
⎦

6. n = 7
⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−0.3626 −0.8852 0.2800 −0.5387 0.2400 −0.4203 −0.0043
−0.0908 −0.5032 −0.4429 0.8128 −0.1211 0.1963 0.4403
−0.3671 0.2001 −0.7056 −0.5943 −0.2162 0.4116 −0.1651
−0.3000 0.4885 −0.1812 0.3925 0.6319 −0.4248 −0.3131
−0.2462 0.4991 0.3233 −0.0929 −0.4733 −0.3885 0.5635
−0.0391 0.1224 0.5386 0.0662 0.3831 0.7052 0.1888
0.0088 −0.1091 0.2667 0.1922 −0.5099 0.0707 −0.6996

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

7. n = 8
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−0.1239 −0.2497 −0.9519 −0.0070 0.5374 0.3386 0.1665 −0.4338
−0.2209 0.3785 −0.5796 0.4922 −0.1801 −0.4578 0.1531 0.4066
−0.2539 0.6514 −0.0050 −0.1626 −0.4501 0.4870 −0.3204 −0.2528
−0.2075 0.4321 0.4152 −0.4207 0.3413 −0.4255 0.4287 −0.2011
−0.2447 −0.0032 0.4940 0.2731 0.5119 0.4115 −0.1839 0.4731
−0.2273 −0.4122 0.4021 0.4897 −0.1784 −0.2661 −0.1448 −0.5271
−0.1404 −0.4743 0.1264 −0.2262 −0.4800 0.2640 0.5346 0.2787
−0.0623 −0.3054 −0.1097 −0.5037 −0.0189 −0.3532 −0.5928 0.2230

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦
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