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Abstract
In this paper, an adaptive modified weak Galerkin (AMWG) method is considered
to solve second-order elliptic problem. Under the assumption of a penalty parameter,
by showing reliability of error estimator, comparison of solutions and reduction of
error estimator, the sum of the energy error and the scaled error estimator, between
two consecutive adaptive loops, is proved to be a contraction, namely, the adap-
tive algorithm is convergent. Numerical experiments are implemented to support the
theoretical results.
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1 Introduction

In this paper, we consider to solve the following second-order elliptic problem

− ∇ · (A∇u) = f in Ω, (1)

u = 0 on ∂Ω, (2)

where Ω is a bounded polygonal or polyhedral domain in Rd(d = 2, 3) with bound-
ary ∂Ω . The domain is partitioned into m non-overlapping sub-domains Ωi, 1 �
i � m. Let T0 be an original partition of Ω and consistent with the partition
Ω̄ = ∏m

i=1 Ωi . For each τ ∈ T0, assume that A(x) is a constant on τ satisfying
α0 � A(x) � β0, x ∈ Ω , where α0 and β0 are positive constants. The variational
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formulation of (1) and (2) is to find u ∈ H 1
0 (Ω) such that

(A∇u,∇v) = (f, v), v ∈ H 1
0 (Ω). (3)

Weak Galerkin (WG) methods are proposed recently to solve partial differential
equations, which adopt weak differential operators to approximate classical differen-
tial operators, e.g., gradient, divergence and curl. WG methods were first introduced
by Wang and Ye [30, 31] to solve second-order elliptic problems. Then, the WG
methods have successfully applied to solve many problems, for example, second-
order elliptic interface problems [18], parabolic equations [10, 15, 38], Helmholtz
equation [9, 20, 23], Biharmonic equations [19, 21, 29], Stokes equations [32, 33],
Maxwell equations [22, 26], Reaction-diffusion problems [1], Navier-Stokes equa-
tions [13, 17], Darcy-Stokes equations [6], Darcy equations [16]. Later, a modified
weak Galerkin (MWG) method was put forward by Wang, Malluwawadu, Gao and
McMillan [34] for elliptic problem. Comparing with WG methods, MWG methods
contain less unknowns, while the accuracy stays the same. Then, MWG method has
also found its way to other problems, such as the parabolic problems [11], Sobolev
equation [12], Signorini and obstacle problems [37], Stokes problem [27].

The solution of (3) may contain singularity. We can resolve the singularity by
refining the mesh uniformly. However, the uniform refinement increase the compu-
tational workload dramatically since the number of unknowns grows dramatically. In
this paper, we consider to use local mesh refinement to resolve the singularity, which
puts denser grids in where the function changes dramatically. In other words, uniform
refinement will need more computational labor to get the same accuracy. Adaptive
finite element method (AFEM) is a local mesh refinement, which can optimize the
relation between accuracy and computational labor. The theoretical study of adaptive
conforming finite element method is relatively mature, see [24, 28] and the references
therein. However, in most of the existing work of adaptive weak Galerkin methods
for second-order elliptic problem are limited to the design and analyze the posteriori
error estimators. For example, Chen, Wang and Ye [5] first defined an error estima-
tor and proved a posteriori error estimation by applying Helmholtz decomposition of
L2 function. Li, Mu and Ye [14] gave a simplified posteriori error indicator which
could be applicable to polygonal meshes, mixed meshes and other general meshes
with hanging points. Zhang and Chen [40] designed an error indicator and proved
the upper and lower bound estimates in discrete H 1 norm. Zhang, Li, Li and Zhang
[39] proposed a posteriori error estimate for elliptic problem with mixed boundary
conditions, and so on. For MWG methods, Zhang and Lin [41] presented the pos-
teriori error estimate for second-order elliptic problem. There are only few research
results for the convergence of the adaptive WG or MWG method. Xie and Zhong
[36] first prove the convergence of an adaptive weak Galerkin method for the model
problem (1)-(2), in which the combination of polynomial spaces in [30] is consid-
ered. Recently, Xie, Cao, Chen and Zhong [35] proved not only the convergence but
also quasi-optimality for an adaptive MWG method, however, they only considered
the lowest order. Comparing with the existing work [35, 36], we use much simpler
finite element spaces introduced in [34] but the more complicated bilinear of discrete
variational problem, we also design and analyze more simpler a posteriori error esti-
mates but need the more complex proofs for corresponding convergence, because the
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penalty term include the negative power of the local mesh size and the jump term in
our bilinear form, especially, the errors in our convergent result are only related to
the “energy norm”, but the errors are related to the L2 norm and data oscillation are
also included in the convergent result of [36].

The main purpose of this paper is to construct simpler a posterior error estimation
and provide the convergence of an adaptive modified weak Galerkin (AMWG) algo-
rithm for any order. It is worth mentioned that our error estimator is also simpler than
the one in [41], where the jump term is a component of error estimator. In this paper,
we not only drop this jump term from our error estimator, but also prove that the jump
term can be controlled by error estimator and present the corresponding reliability
of error estimator. Furthermore, noting that the usual orthogonality property in the
conforming finite element does not hold true for the MWG methods. To conquer this
difficulty, we are going to follow the theoretical analysis of adaptive interior penalty
discontinuous Galerkin method in [3]. Meanwhile, it is not straightforward to extend
such convergence analysis in [3] to adaptive MWG methods, because the gradient
operator is approximated by weak form as distribution instead of classical differential
operator in MWGmethods. Here, we consider to use the difference between classical
gradient operator and weak gradient operator.

The remainder of the paper is structured as follows. In Section 2, the modi-
fied weak Galerkin method and some notations and preliminaries are introduced. In
Section 3, an adaptive modified weak Galerkin (AMWG) method for solving (3) is
imported and each procedure of AMWG is described. In Section 4, the convergence
of AMWG is obtained by showing the reliability of error estimator, the comparison
of solutions and the reduction of error estimator. At last, numerical experiments are
presented in Section 5 to support theoretical results.

2 Amodified weak Galerkin method

In this section, we first define the modified weak gradient operator. Then, we
introduce the MWG method for (3). At last, we present some preliminaries.

For any domain D ⊂ R
d , d = 2, 3, we denote (·, ·)D and ‖ · ‖D the L2-inner

product and L2-norm, respectively. We also use the standard definition for Sobolev
space H 1(D) and their associated norms for ‖ · ‖1,D . Especially,

H 1
0 (D) = {v ∈ H 1(D) : v|∂D = 0}.

2.1 Modified weak gradient

Given a shape-regular triangulation T for Ω , we define MWG finite element spaces
as follows:

V(T ) = {v : v|τ ∈ Pl(τ ), ∀ τ ∈ T } ,

V0(T ) = {
v ∈ V(T ) : v|e = 0, ∀ e ∈ ∂Ω

}
, (4)

where Pl(τ ) denotes the set of polynomials on τ with the degree no more than l

(l � 1).
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Let ET be the set of all the edges (or faces) and E0
T be the set of all the interior

edges (or faces), respectively. For any e ∈ E0
T , we assume that e is the common edge

(or face) of τ1, τ2 ∈ T , n1 and n2 are the unit normal vectors on e for τ1 and τ2,
respectively. For a scalar function φ and a vector function w, its average and jump on
e are defined as

{{φ}}e = (φ|τ1 + φ|τ2)/2, [[φ]]e = φ|τ1n1 + φ|τ2n2,

{{w}}e = (w|τ1 + w|τ2)/2, [[w]]e = w|τ1 · n1 + w|τ2 · n2,

where φ|τi
and w|τi

denote the value of φ and w on τi, i = 1, 2, respectively.
For any e ∈ ∂Ω , denote n the unit normal vector on e, we also define

{{φ}}e = φ, [[φ]]e = φn,

{{w}}e = w, [[w]]e = w · n.

Next we define the modified weak gradient operator used in the MWG methods.

Definition 1 (Definition 1.1 in [34]) Given a partition T of Ω , let v be a piecewise
smooth function on Ω . For all τ ∈ T , the discrete gradient of v on τ is the unique
element ∇w,τ v in [Pl−1(τ )]d such that

(∇w,τ v, q)τ := −(v, ∇ · q)τ + 〈{{v}} , q · n〉∂τ , ∀q ∈ [
Pl−1(τ )

]d . (5)

For simplicity of notation, when no ambiguity arises, we shall abbreviate the notation
∇w,τ as ∇w.

Using Green formula, we will get the relationship between the weak gradient and
classical gradient as follows

(∇w,τ v, q)τ = (∇v, q)τ + 〈{{v}} − v, q · n〉∂τ , ∀q ∈ [
Pl−1(τ )

]d
, (6)

whence, choosing v ∈ H 1
0 (Ω) ∩ V(T ) in (6) which implies that ∇w,τ v = ∇v.

Otherwise, we can derive next property.

Lemma 1 (Lemma 2.1 in [41]) For vT ∈ V(T ), it holds

‖∇wvT − ∇vT ‖2T �
∑

e∈ET
h−1

τ ‖ [[vT ]] ‖2e,

where ‖ · ‖T = ∑
τ∈T ‖ · ‖τ .

Next, we will introduce the MWG method for solving (3).

2.2 TheMWG discretization

The MWG formula for solving (3) is to find uT ∈ V0(T ) such that

aT (uT , vT ) = (f, vT ), ∀ vT ∈ V0(T ), (7)
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where for wT , vT ∈ V(T ), the bilinear form is defined as

aT (wT , vT ) := (A∇wwT , ∇wvT )T +
∑

e∈ET
μh−1

τ 〈[[wT ]]e , [[vT ]]e〉e. (8)

Here, (·, ·)T = ∑
τ∈T (·, ·)τ and μ is a positive penalty parameter.

Next lemma showing that the bilinear form defined in (8) is symmetric positive
definite on V0(T ).

Lemma 2 The bilinear forms aT (·, ·) is symmetric positive definite on V0(T ).

Proof We only need to prove that aT (·, ·) is positive. In fact, if aT (vT , vT ) = 0, for
some vT ∈ V0(T ), then in view of (8), we get

∇wvT |τ = 0 for ∀τ ∈ T , [[vT ]]e = 0 for ∀e ∈ ET .
According to Lemma 1, we obtain ∇vT |τ = ∇wvT |τ , then combine with ∇wvT |τ =
0. As a result, vT is a piece constant on T . Furthermore, [[vT ]]e = 0 implies that vT
is continuous across ∀e ∈ E0

T and vT |∂Ω = 0. Then we arrive at vT = 0.

From Lemma 2, we can define a mesh dependent norm on V0(T ) as |‖vT ‖|2
A,T :=

aT (vT , vT ) for any vT ∈ V0(T ). Furthermore, according to Lemma 2 and Lax-
Milgram theorem, we can prove that the discrete problem (7) is well-posed.

In next subseciton, we introduce some preliminaries which will be used in the
error estimates.

2.3 Some preliminaries

Noting that the orthogonality is false for modified weak Galerkin approximation.
Hence, we intend to establish the partial orthogonality by using the similar arguments
in [5].

Lemma 3 (Partial orthogonality) Assume that u ∈ H 1
0 (Ω) and uT ∈ V0(T ) are the

solutions of (3) and (7), respectively. We have

(A(∇u − ∇wuT ),∇vc
T )T = 0, ∀ vc

T ∈ Vc(T ), (9)

where Vc(T ) = V(T ) ∩ H 1
0 (Ω).

Proof For any vc
T ∈ Vc(T ), noting that ∇vc

T = ∇wvc
T , setting v = vc

T in (3), and
applying the fact

[[
vc
T

]]
e

= 0 for any e ∈ ET and (7), we obtain

(A∇u − A∇wuT , ∇vc
T )T

= (A∇u,∇vc
T )T − (A∇wuT , ∇wvc

T )T

= (f, vc
T ) − (A∇wuT , ∇wvc

T )T −
∑

e∈ET
μh−1

e

(
[[uT ]] ,

[[
vc
T

]])
e

= (f, vc
T ) − (f, vc

T ) = 0.
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In the following, we will use the next orthogonal decomposition of V(T ). Let
V⊥(T ) be the orthogonal complement of Vc(T ) in V(T ) with respect to aT (·, ·)
defined in (8), namely

V(T ) = Vc(T ) ⊕ V⊥(T ). (10)
Meanwhile, we also need to present a local operator I c

T onto Vc(T ).

Lemma 4 (Lemma 6.6 in [3]) There exists an interpolation operator I c
T : V(T ) →

Vc(T ) and a constant CI depending only on the shape regularity of T , such that for
all τ ∈ T the following inequalities hold:

‖vT − I c
T vT ‖τ � CIh‖∇vT ‖Ωτ , ∀vT ∈ H 1

0 (Ω), (11)

and for |a| = 0, 1,

‖Da(vT − I c
T vT )‖2τ � CI

∑

e∈ET ∩Ωτ

h1−2|a|
τ ‖ [[vT ]] ‖2e, ∀vT ∈ V(T ), (12)

where Ωτ = {τ ′ ∈ T | τ ∩ τ ′ �= ∅}.

3 An adaptivemodified weak Galerkin method

In this section, we introduce an adaptive modified weak Galerkin (AMWG) method
and discuss each procedure of AMWG method.

In the SOLVE step, by solving the problem (7) we will get the discrete solu-
tion uT = SOLVE(T , f ), where f ∈ L2(Ω) is a given function and the T is a
conforming triangulation.
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In this step, we assume that the discrete linear system associated with (7) can be
solved exactly.

In the ESTIMATE step, we need to define an efficient and reliable error estima-
tors. For two elements τ1, τ2 ∈ T , let τ1, τ2 share e as a common edge (or face),
denote by Ωe = τ1 ∪ τ2 the macro-element associated with e. Similarly, for an ele-
ment τ , we denote Ωτ = {τ ′ ∈ T |τ ∩ τ ′ �= ∅}. Let Aτ = A|τ , Amax

e = maxτ∈Ωe Aτ .
The local error indicator η(vT , τ ) for any vT ∈ V0(T ) and any τ ∈ T is defined as

η2T (vT , τ ) = h2τA
−1
τ ‖R(vT )‖2τ +

∑

e∈∂τ

hτ

∫

e

(Amax
e )−1J 2

e (A∇wvT )ds, (14)

where

R(vT ) = f + ∇ · (A∇wvT ) , Je(A∇wvT ) =
{
[[A∇wvT ]]e , if e ∈ E0

T ,

0, otherwise.

We also define the corresponding error estimator forM ⊂ T as

ηT (vT ,M) =
∑

τ∈M
η2T (vT , τ ),

when M = T , we get the definition of the global estimator ηT (vT , T ). In order to
save notation, we will simplify ηT (vT , T ) as η(vT , T ).

In the MARK step, we will obtain a set of marked elements Mk by making use
of the error indicators {η(uT , τ )}τ∈T on T obtained in the ESTIMATE step and
Dörfler marking strategy [7].

In the REFINE step, we choose bisection methods (see [2, 24]) and refine all the
marked elementsMk at least, thereby generating Tk+1 from Tk , and satisfies that the
operator defined in Lemma 4 is valid on V(Tk+1). Here, we should remark that Tk+1
allow hanging node. More details are referred to the adaptive DG methods (e.g., §3.4
of [3]).

In this paper, we denote C(T0) the set of the triangulation T which is conforming
and refined from T0 and assume that T1 � T2 means T2 is a refinement of T1.

4 Convergence of the AMWGmethod

In this section, we first verify the reliability of error estimator. Then we provide the
comparison of solutions and the reduction of the error estimator. At last, we prove
the convergence of Algorithm 1.

4.1 Reliability

For any v ∈ H 1
0 (Ω) and any vT ∈ V(T ), we define the following error

|‖v − vT ‖|2T = ‖A1/2(∇v − ∇wvT )‖2T +
∑

e∈ET
μh−1

τ ‖ [[vT ]]e ‖2e . (15)
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Remark 1 Here we use [[vT ]]e instead of [[v − vT ]]e, since [[v]]e = 0 for v ∈
H 1

0 (Ω).

In this subsection, we are going to prove the upper bound of error |‖u − uT ‖|T ,
where u ∈ H 1

0 (Ω) and uT ∈ V0(T ) are the solution of (3) and (7), respectively.
The next lemma shows that the second term of |‖u − uT ‖|T can be controlled by

the error estimator.

Lemma 5 Let uT ∈ V0(T ) be the solution of (7), we have
∑

e∈ET
μh−1

τ ‖ [[uT ]] ‖2e � μ−1η2T (uT , T ), (16)

where the constant depends on the shape regularity of T and the constant β0 for the
upper bound of A(x).

Proof Noticing that I c
T uT ∈ Vc(T ) with interpolation I c

T given by Lemma 4, then
using (7) and the definition of weak gradient of (5), we have
∑

e∈ET
μh−1

τ ‖ [[uT ]]e ‖2e

=
∑

e∈ET
μh−1

τ 〈[[uT ]]e ,
[[

uT − I c
T uT

]]
e
〉e

= (f, uT − I c
T uT )T − (A∇wuT , ∇w(uT − I c

T uT ))T
= (f, uT − I c

T uT )T + (∇ · (A∇wuT ), uT − I c
T uT )T

−
∑

τ∈T
〈{{uT − I c

T uT
}}

e
, (A∇wuT ) · n〉∂τ

= (f + ∇ · (A∇wuT ), uT − I c
T uT )T −

∑

e∈ET
〈{{uT − I c

T uT
}}

e
, [[A∇wuT ]]e〉e,

making using of Cauchy-Schwarz inequality, trace inequality, Lemma 4 and the
definition of error estimator, we arrive at

∑

e∈ET

μh−1
τ ‖ [[uT ]]e ‖2e �

(
∑

τ∈T
h2τ A−1

τ ‖R(uT )‖2τ
)1/2 (

∑

τ∈T
h−2

τ Aτ ‖uT − I c
T uT ‖2τ

)1/2

+
⎛

⎝
∑

e∈ET

h−1
τ Amax

e ‖ {{
uT −I c

T uT
}} ‖2e

⎞

⎠

1/2⎛

⎝
∑

e∈ET

hτ (Amax
e )−1‖Je(A∇wuT )‖2e

⎞

⎠

1/2

� η(uT ,T ) ·
(

∑

τ∈T
h−2

τ ‖uT − I c
T uT ‖2τ

)1/2

� η(uT ,T ) ·
⎛

⎝
∑

e∈ET

h−1
τ ‖ [[uT ]]e ‖2e

⎞

⎠

1/2

,
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which implies
⎛

⎝
∑

e∈ET
μh−1

τ ‖ [[uT ]]e ‖2e
⎞

⎠

1/2

� 1√
μ

η(uT , T ).

Finally, the lemma can be proved by squaring both sides of the above equation.

For the first term of |‖u − uT ‖|T , we need to take care of the nonconforming
component u⊥

T of discrete solution uT as follows.

Lemma 6 Let uT ∈ V0(T ) be the solution of (7), then for uT = uc
T + u⊥

T with
uc
T ∈ Vc(T ) and u⊥

T ∈ V⊥(T ). There holds that

|‖u⊥
T ‖|2A,T � μ−1η2T (uT , T ), (17)

where the constant depends on the shape regularity of T and the constant β0.

Proof Applying the definition of |‖·‖|A,T and (8), then for any wc
T ∈ Vc(T ), we get

|‖u⊥
T ‖|2A,T = aT (u⊥

T , u⊥
T )

= inf
wc
T ∈Vc(T )

aT (uT − wc
T , uT − wc

T )

= inf
wc∈Vc(T )

(A(∇wuT − ∇wc
T ),∇wuT − ∇wc

T )T

+
∑

e∈ET
μh−1

τ ‖ [[uT ]]e ‖2e . (18)

Noting that A is piecewise constant and applying triangle inequality, Lemma 1 and
Lemma 4 yield

(A(∇wuT − ∇I c
T uT ),∇wuT − ∇I c

T uT )T

� ‖∇wuT − ∇I c
T uT ‖2T

� ‖∇wuT − ∇uT ‖2T + ‖∇uT − ∇I c
T uT ‖2T

�
∑

e∈ET
h−1

τ ‖ [[uT ]]e ‖2e . (19)

Choosing wc
T = I c

T uT in (18) and submitting (19) into (18), we have

|‖u⊥
T ‖|2A,T �

∑

e∈ET
h−1

τ ‖ [[uT ]]e ‖2e +
∑

e∈ET
μh−1

τ ‖ [[uT ]]e ‖2e � 1

μ
η2T (uT , T ),

in the last step, we use Lemma 5.

Now, combining Lemma 3, orthogonal decomposition (10), Lemmas 4 and 6, we
can estimate the first term of |‖u − uT ‖|T .
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Lemma 7 Let u ∈ H 1
0 (Ω) and uT ∈ V0(T ) be the solutions of (3) and (7),

respectively, we have

‖A1/2(∇u − ∇wuT )‖2T � η2(uT , T ), (20)

where the constant depends on the shape regularity of T , the constant β0 and the
parameter μ−1.

Proof According to space decomposition (10), we get uT = uc
T + u⊥

T with uc
T ∈

Vc(T ) and u⊥
T ∈ V⊥(T ), hence we get

u − uT = u − uc
T − u⊥

T = w − u⊥
T , (21)

where w = u − uc
T ∈ H 1

0 (Ω). Using the decomposition (21) and the partial
orthogonality (9), we get

(A(∇u − ∇wuT ),∇u − ∇wuT )T
= (A(∇u − ∇wuT ),∇u − ∇uT )T + (A(∇u − ∇wuT ),∇uT − ∇wuT )T
= (A(∇u − ∇wuT ),∇w)T − (A(∇u − ∇wuT ),∇u⊥

T )T
+(A(∇u − ∇wuT ),∇uT − ∇wuT )T

= I1 + I2 + I3, (22)

where

I1 = (A(∇u − ∇wuT ),∇w))T ,

I2 = −(A(∇u − ∇wuT ),∇u⊥
T )T ,

I3 = (A(∇u − ∇wuT ),∇uT − ∇wuT )T .

First, we estimate the term I1. Let wc
T ∈ Vc(T ) be an interpolation of w satisfying

(e.g., [8, 25])

A1/2
τ ‖w − wc

T ‖0,τ � hτ‖A1/2∇w‖Ωτ , (23)

(Amax
e )1/2‖w − wc

T ‖0,e � h
1/2
e ‖A1/2∇w‖Ωe . (24)

Using (9), Green formulas, (3), Cauchy-Schwarz inequality, (23) and (24), we arrive
at

I1 = (A(∇u − ∇wuT ),∇w)T
= (A(∇u − ∇wuT ),∇w − ∇wc

T )T

= (f + ∇ · (A∇wuT ), w − wc
T )T +

∑

τ∈T
〈(A∇wuT ) · n, w − wc

T 〉∂τ

= (f + ∇ · (A∇wuT ), w − wc
T )T +

∑

e∈ET
〈[[A∇wuT ]]e , w − wc

T 〉e

�
∑

τ∈T
‖R(uT )‖0,τ‖w − wc

T ‖0,τ +
∑

e∈ET
‖Je(A∇wuT )‖0,e‖w − wc

T ‖0,e

� η(uT , T )‖A1/2∇w‖T . (25)
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Using (21), the triangle inequality, uT − ∇uc
T = ∇u⊥

T , Lemmas 1, 6 and 5, we get

‖A1/2∇w‖T = ‖A1/2(∇u − ∇uc
T )‖T

= ‖A1/2(∇u − ∇wuc
T )‖T

� ‖A1/2(∇u − ∇wuT )‖T + ‖A1/2∇wu⊥
T ‖T

� ‖A1/2(∇u − ∇wuT )‖T + |‖∇u⊥
T ‖|A,T

� ‖A1/2(∇u − ∇wuT )‖T + η(uT , T ). (26)

Substituting (26) into (25), we arrive at

I1 � ‖A1/2(∇u − ∇wuT )‖T η(uT , T ) + η2(uT , T ). (27)

Now we shall estimate the second term I2. Noting that u⊥
T − uT − uc

T , using the
partial orthogonality (9) for I c

T uT − uc
T ∈ Vc(T ), Cauchy-Schwarz inequality and

Lemma 4 yields

I2 = −(A(∇u − ∇wuT ),∇u⊥
T )T

= (A(∇u − ∇wuT ),∇uc
T − ∇uT )T

= (A(∇u − ∇wuT ),∇uc
T − ∇I c

T uT )T + (A(∇u − ∇wuT ),∇I c
T uT − ∇uT )T

� ‖A1/2(∇u − ∇wuT )‖T ‖∇I c
T uT − ∇uT ‖T

� ‖A1/2(∇u − ∇wuT )‖T
⎛

⎝
∑

e∈ET
h−1

τ ‖ [[uT ]]e ‖2e
⎞

⎠

1/2

� ‖A1/2(∇u − ∇wuT )‖T η(uT , T ), (28)

where the constant depends on the shape regularity of T and the constant β0.
For the last term I3, using Cauchy-Schwarz inequality, Lemmas 1 and 5, we get

I3 = (A(∇u − ∇wuT ),∇uT − ∇wuT )T
� ‖A1/2(∇u − ∇wuT )‖T ‖∇uT − ∇wuT ‖T

� ‖A1/2(∇u − ∇wuT )‖T
⎛

⎝
∑

e∈ET
h−1

τ ‖ [[uT ]]e ‖2e
⎞

⎠

1/2

� ‖A1/2(∇u − ∇wuT )‖T η(uT , T ). (29)

Substituting (27), (28) and (29) in (22) and applying Young inequality, we arrive at

‖A1/2(∇u − ∇wuT )‖2T � η2(uT , T ).

According to Lemmas 7 and 5, we can derive the reliability of error estimator.

Theorem 1 (Upper bound) Let u ∈ H 1
0 (Ω) and uT ∈ V0(T ) be the solutions of (3)

and (7), respectively. There exists a positive constant CUB depending on the shape
regularity of T and μ−1, such that

|‖u − uT ‖|2T � CUBη2T (uT , T ), (30)

799Numerical Algorithms (2022) 90:789–808



Proof By (15), we know

|‖u − uT ‖|2T = ‖A1/2(∇u − ∇wuT )‖2T +
∑

e∈ET
μh−1

τ ‖ [[uT ]]e ‖2e,

then combining with Lemmas 7 and 5, we get the desired result.

4.2 Comparison of solutions

In this subsection, we prove the comparison of solutions. The idea roots in [3].

Lemma 8 (Comparison of solutions) Let u ∈ H 1
0 (Ω) be the solution of (3), uT ∈

V0(T ) and uT∗ ∈ V0(T∗) be the corresponding discrete solutions of (7) separately,
where T , T∗ ∈ C(T0) satisfying T � T∗. Then for any ε ∈ (0, 1), there holds

|‖u − uT∗‖|2T∗ � (1 + ε)|‖u − uT ‖|2T − 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗

+Cεμ
−1

(
η2(uT , T ) + η2(uT∗ , T∗)

)
,

where the constant Cε is independent of μ and the mesh size.

Proof By (15), we have

|‖u − uT∗‖|2T∗ = ‖A1/2(∇u − ∇w,τ∗uT∗)‖2T∗ +
∑

e∗∈ET∗

μh−1
τ∗ ‖ [[

uT∗
]]

e∗ ‖2e∗ . (31)

According to the decomposition (10), we write uT = uc
T + u⊥

T with uc
T ∈ Vc(T )

and u⊥
T ∈ V⊥(T ), uT∗ = uc

T∗ + u⊥
T∗ with uc

T∗ ∈ Vc(T∗) and u⊥
T∗ ∈ V⊥(T∗). Then

noting that ∇w,τ∗u
c
T∗ = ∇uc

T∗ , ∇w,τ u
c
T = ∇uc

T and uc
T ∈ V c(T ) ⊂ V c(T∗), in

combination with Lemma 3, we have

‖A1/2(∇u − ∇w,τ∗uT∗)‖2T∗
= ‖A1/2(∇u − ∇w,τ∗uT∗ + ∇w,τ∗u

c
T∗ − ∇w,τ u

c
T )‖2T∗

−2(A(∇u − ∇w,τ∗uT∗),∇w,τ∗u
c
T∗ − ∇w,τ u

c
T )T∗

−‖A1/2(∇w,τ∗u
c
T∗ − ∇w,τ u

c
T )‖2T∗

= ‖A1/2(∇u − ∇w,τ∗uT∗ + ∇w,τ∗u
c
T∗ − ∇w,τ u

c
T )‖2T∗

−‖A1/2(∇w,τ∗u
c
T∗ − ∇w,τ u

c
T )‖2T∗ . (32)

For the first part of the right-hand side in (32), using ∇w,τ∗uT∗ − ∇w,τ∗u
c
T∗ =

∇w,τ∗u
⊥
T∗ and ∇w,τ u

c
T = ∇w,τ uT − ∇w,τ u

⊥
T , we have

‖A1/2(∇u − ∇w,τ∗uT∗ + ∇w,τ∗u
c
T∗ − ∇w,τ u

c
T )‖2T∗

= ‖A1/2(∇u − ∇w,τ uT + ∇w,τ u
⊥
T − ∇w,τ∗u

⊥
T∗)‖2T∗

= ‖A1/2(∇u − ∇w,τ uT )‖2T + 2(A(∇u − ∇w,τ uT ),∇w,τ u
⊥
T − ∇w,τ∗u

⊥
T∗)T∗

+‖A1/2(∇w,τ u
⊥
T − ∇w,τ∗u

⊥
T∗)‖2T∗ . (33)
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For the second part of the right-hand side in (32), noting that uc
T∗ = uT∗ − u⊥

T∗ and

uc
T = uT − u⊥

T , then using the reversed triangle inequality yields

‖A1/2(∇w,τ∗u
c
T∗ − ∇w,τ u

c
T )‖2T∗

= ‖A1/2(∇w,τ∗uT∗ − ∇w,τ∗u
⊥
T∗) − A1/2(∇w,τ uT − ∇w,τ u

⊥
T )‖2T∗

� 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗ − ‖A1/2(∇w,τ∗u

⊥
T∗ − ∇w,τ u

⊥
T )‖2T∗ . (34)

Substituting (33) and (34) in (32) and employing Young inequality 2ab � εa2+C′
εb

2

with arbitrary constant ε > 0, we have

‖A1/2(∇u − ∇w,τ∗uT∗)‖2T∗
� ‖A1/2(∇u − ∇w,τ uT )‖2T + 2(A(∇u − ∇w,τ uT ),∇w,τ u

⊥
T − ∇w,τ∗u

⊥
T∗)T∗

+‖A1/2(∇w,τ u
⊥
T − ∇w,τ∗u

⊥
T∗)‖2T∗

−1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗ + ‖A1/2(∇w,τ∗u

⊥
T∗ − ∇w,τ u

⊥
T )‖2T∗

� (1 + ε)‖A1/2(∇u − ∇w,τ uT )‖2T − 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗

+(2 + C′
ε)‖A1/2(∇w,τ u

⊥
T − ∇w,τ∗u

⊥
T∗)‖2T∗

� (1 + ε)‖A1/2(∇u − ∇w,τ uT )‖2T − 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗

+(4 + 2C′
ε)‖A1/2∇w,τ u

⊥
T ‖2T + (4 + 2C′

ε)‖A1/2∇w,τ∗u
⊥
T∗‖2T∗ , (35)

where any constant ε ∈ (0, 1).
Substituting (35) with (31), noting that uT∗ = uc

T∗ + u⊥
T∗ , u

c
T∗ ∈ V c(T∗) and using

Lemma 6, we obtain

|‖u − uT∗‖|2T∗

� (1 + ε)‖A1/2(∇u − ∇w,τ uT )‖2T − 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗

+(4 + 2C′
ε)‖A1/2∇w,τ u

⊥
T ‖2T + (4 + 2C′

ε)‖A1/2∇w,τ∗u
⊥
T∗‖2T∗

+
∑

e∗∈ET∗

μh−1
τ∗ ‖

[[
u⊥
T∗

]]

e∗
‖2e∗

� (1 + ε)‖A1/2(∇u − ∇w,τ uT )‖2T − 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗

+(4 + 2C′
ε)|‖u⊥

T ‖|2A,T + (4 + 2C′
ε)|‖u⊥

T∗‖|2A,T∗

� (1 + ε)|‖u − uT ‖|2T − 1

2
‖A1/2(∇w,τ∗uT∗ − ∇w,τ uT )‖2T∗

+(4 + 2C′
ε)μ

−1
(
η2(uT , T ) + η2(uT∗ , T∗)

)
,

Assuming Cε = 4 + 2C′
ε in above inequality, we get the desired result.
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4.3 Reduction of error estimator

Here we skip the proof of the reduction of the error indicator, since the corresponding
techniques are quite standard and can be found, e.g., in [4].

Lemma 9 LetRTk→Tk+1 be the set of refined elements from Tk to Tk+1, then for any
ζ > 0, there exists a constant λ ∈ (0, 1) satisfying

η2(uk+1, Tk+1) � (1 + ζ )
(
η2(uk, Tk) − λη2Tk

(uk,RTk→Tk+1)
)

+Cη(1 + ζ−1)‖A1/2(∇w,τk+1uk+1 − ∇w,τk
uk)‖2Tk+1

, (36)

where the constant Cη depends on the shape regularity of Tk+1 and the constant β0.

4.4 Convergence of the AMWGmethod

Now we are in a position to prove the convergence of the Algorithm 1.

Theorem 2 Given a marking parameter θ ∈ (0, 1) and an initial mesh T0. Let u ∈
H 1

0 (Ω) be the solution of (3), {Tk, uk, η(uk, Tk)}k≥0 be a sequence of meshes, MWG
solutions and error estimators produced by Algorithm 1, then there exists a constant
μA > 0, when μ > μA, such that

|‖u − uk+1‖|2Tk+1
+ δη2(uk+1, Tk+1) � α

(
|‖u − uk‖|2Tk

+ δη2(uk, Tk)
)

, (37)

where the constants α ∈ (0, 1) and δ > 0 only depend on θ ∈ (0, 1), the shape
regularity T0, the degree of polynomial l and the constant β0.

Proof By Lemmas 8 and 9, we have

|‖u − uk+1‖|2Tk+1
+ (δ̃ − Cεμ

−1)η2(uk+1, Tk+1)

� (1 + ε)|‖u−uk‖|2Tk
+

(

Cη(1+ζ−1)δ̃ − 1

2

)

‖A1/2(∇w,τk+1uk+1−∇w,τk
uk)‖2Tk+1

+(1 + ζ )δ̃
(
η2(uk, Tk) − λη2Tk

(uk,RTk→Tk+1)
)

+ Cεμ
−1η2(uk, Tk).

Let δ̃ satisfy Cη(1 + ζ−1)δ̃ = 1

2
, then

|‖u − uk+1‖|2Tk+1
+ (δ̃ − Cεμ

−1)η2(uk+1,Tk+1)

� (1 + ε)|‖u − uk‖|2Tk
+ (1 + ζ )δ̃(1 − λθ2)η2(uk,Tk) + Cεμ

−1η2(uk,Tk)

� (1 + ε)|‖u − uk‖|2Tk
− δ̃(1 + ζ )λθ2

2
η2(uk,Tk)

+
(

(1 + ζ )δ̃ − δ̃(1 + ζ )λθ2

2
+ Cεμ

−1

)

η2(uk,Tk)

� (1 + ε)|‖u − uk‖|2Tk
− ζλθ2

4Cη

η2(uk,Tk) +
(

(1 + ζ )δ̃ − δ̃(1 + ζ )λθ2

2
+ Cεμ

−1

)

η2(uk,Tk).
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Using the Lemma 1, we have

|‖u − uk+1‖|2Tk+1
+ δ̃(1 − Cε

μδ̃
)η2(uk+1, Tk+1)

� (1 + ε − ζλθ2

4CηCUB

)|‖u − uk‖|2Tk
+ δ̃

(

(1 + ζ )(1 − λθ2

2
) + Cε

μδ̃

)

η2(uk, Tk).

Supposing μ1 satisfy

1 − λ2θ4

4
+ Cε

μ1δ̃
� 1 − Cε

μ1δ̃
.

Let ζ = λθ2

2
, ε = ζλθ2

8CηCUB

, μA = max{0, μ1}, we have

|‖u − uk+1‖|2Tk+1
+ δ̃(1 − Cε

μδ̃
)η2(uk+1,Tk+1)

� (1 − ζλθ2

8CηCUB

)|‖u − uk‖|2Tk
+ δ̃

(

1 − λ2θ4

4
+ Cε

μδ̃

)

η2(uk,Tk)

� (1 − ζλθ2

8CηCUB

)|‖u − uk‖|2Tk
+ δ̃(1 − Cε

μδ̃
)

(

1 − λ2θ4

4
+ Cε

μδ̃

)(

1 − Cε

μδ̃

)−1

η2(uk,Tk)

� α

(

|‖u − uk‖|2Tk
+ δ̃(1 − Cε

μδ̃
)η2(uk,Tk)

)

,

where α = max

{

(1 − ζλθ2

8CηCUB

),

(

1 − λ2θ4

4
+ Cε

μδ̃

)(

1 − Cε

μδ̃

)−1
}

. At last, let

δ = δ̃

(

1 − Cε

μδ̃

)

, we will get (37).

Remark 2 The restrictions μ > μA for μ can be removed, If we choose l = 1 in
MWG spaces (4), more details are referred to [35].

By recursion, the following decay of the energy error plus the error estimator can
be obtained.

Corollary 1 Under the hypotheses of Theorem 2, then we get

|‖u − uk‖|2Tk
+ δη2(uk, Tk) � C0α

k,

where the constants α, δ are given in Theorem 2, andC0 = |‖u−u0‖|2T0+δη20(u0, T0).
Thus the algorithm AMWG will terminate in finite steps.

5 Numerical experiments

In this section, numerical experiments are given to verify the convergence of the
Algorithm 1.
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Initial mesh Mesh on 6 level

Fig. 1 The initial mesh (left); adaptively refined mesh after k = 6 iterations(right) for Example 1

Example 1 In this example, we choose the domainΩ = (0, 1)×(0, 1) and coefficient
A = I, the exact solution of (3) is

u(x, y) = (x − x2)(y − y2) arctan(100(
√

(x − 9/8)2 + (y + 1/2)2 − 1)).

In the variational problem (7), we choose the penalty parameter μ = 1.

The left one of Fig. 1 shows the initial mesh T0 for Example 1 and the right one
of Fig. 1 shows the refined mesh after k = 6 iterations for the Example 1. Figure 2
shows the performance of the ln #Tk − ln |‖∇u − ∇wuk‖|Tk

with different marking

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

Degrees of Freedom

E
rr

or

Adaptive refinement (θ=0.1)
Adaptive refinement (θ=0.3)
Adaptive refinement (θ=0.5)
a line with slope −1/2

Fig. 2 Quasi-optimality of the adaptive mesh refinements with marking parameters θ = 0.1, 0.3, 0.5
(right)
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Initial mesh Mesh on 8 level

Fig. 3 The initial mesh(left); adaptively refined mesh after k = 8 iterations(right) for Example 2

parameters θ = 0.1, 0.3 and 0.5, where #Tk and uk represent the number of elements
and the corresponding solution, respectively, gotten from the Algorithm 1.

Example 2 In this example, we choose the L-shape domain Ω = (−1, 1)2/([0, 1) ×
(−1, 0]) and coefficient A = I, the exact solution of (3) is u(x, y) = r2/3 sin( 2θ3 ). In
the variational problem (7), we choose the penalty parameter μ = 1.

The left one of Fig. 3 shows the initial mesh for Example 2 and the right one of
Fig. 3 shows the refined mesh for the Example 2 after k = 8 iterative steps; Fig. 4
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Fig. 4 Quasi-optimality of the adaptive mesh refinements with marking parameters θ = 0.1, 0.3, 0.5
(right)

805Numerical Algorithms (2022) 90:789–808



shows the performance of the ln #Tk − ln |‖∇u − ∇wuk‖|Tk
with different marking

parameters θ = 0.1, 0.3 and 0.5.
From above two numerical experiments, we can see that the Algorithm 1 is con-

vergent. Furthermore, the right ones in Figs. 1 and 3 show that the meshes of the
Algorithm 1 are locally refined and there are more grids around the edge singularity.
From Figs. 2 and 4, we can also get the following quasi-optimality after several steps,

|‖∇u − ∇wuk‖|Tk
� C(#Tk)

−1/2.
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