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Abstract
In this paper, we investigate the weak convergence rate of Euler-Maruyama’s approx-
imation for stochastic differential equations with low regular drifts. Explicit weak
convergence rates are presented if drifts satisfy an integrability condition including
discontinuous functions which can be non-piecewise continuous or in some fractional
Sobolev space.

Keywords Low regular coefficients · Weak convergence rate · Euler-Maruyama’s
approximation
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1 Introduction

Stochastic differential equations (SDEs for short) with singular coefficients have
been extensively studied recently (see [12, 25–28] and references therein). Mean-
while, in order for one to understand the numerical approximation of SDEs with
irregular coefficients, numerical schemes have been established. The strong and weak
convergence rates of Euler-Maruyama’s (abbreviated as EM’s) scheme for irregular
SDEs were obtained (see [2, 3, 6, 7, 11, 13, 14, 16, 17, 19, 20, 23] for instance).
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[5, 8–10, 15, 18, 22] investigated Lp-approximation of solutions to SDEs with a
discontinuous drift and obtained the corresponding Lp-error rates under differen-
tial assumptions on coefficients. More precisely, [9] investigated the Lp-error rate at
least 1/2 with p ∈ [1, ∞) for the scalar SDEs with a piecewise Lipschitz drift and
a Lipschitz diffusion coefficient that is non-zero at discontinuity points of the drift
coefficient, this result has been extended to the case of scalar jump-diffusion SDEs
in [22]. Based on the assumptions in [8–10, 22] showed the Lp-error rate at least
3/4 under additional piecewise smoothness assumptions on the coefficients, where
they employed a novel technique by studying equations with coupled noise, and also
showed that the Lp-error rate 3

4 cannot be improved in general. Under the condi-
tion of the Sobolev-Slobodeckij-type regularity of order κ ∈ (0, 1), [18] obtained the
L2-error rate min{3/4, (1 + κ)/2} − ε (for arbitrarily small ε > 0) of the equidis-
tant EM’s scheme for scalar SDEs with irregular drift and additive noise by using
an explicit Zvonkin-type transformation and the Girsanov transformation. By using a
suitable non-equidistant discretization, [18] also yields the strong convergence order
of 1+κ

2 − ε for the corresponding EM’s scheme.
In this paper, we shall investigate the weak error of EM’s scheme for the following

SDE on R
d

dXt = b(Xt )dt + σdWt, X0 = x ∈ R
d , (1.1)

where (Wt )t≥0 is a d-dimensional Brownian motion with respect to a complete fil-
tration probability space (�, (Ft )t≥0, F ,P). The associated EM’s scheme reads as
follows: for any δ ∈ (0, 1),

dX
(δ)
t = b(X

(δ)
tδ

)dt + σdWt, X
(δ)
0 = x, (1.2)

where tδ = [t/δ]δ and [t/δ] denotes the integer part of t/δ. The weak error is con-
cerned with the convergence of the distribution of the EM’s scheme. Precisely, it is
concerned with the approximation of Ef (Xt ) by Ef (X

(δ)
t ) for a given function f .

The weak error has been obtained for some SDEs with discontinuous drifts in [7, 11,
21]. It is worth noting that the test function f in these references is assumed to be
Hölder continuous. When the test function f was relaxed to be just measurable and
bounded, the result of weak convergence rate of EM’s scheme was obtained in [1]
for SDEs with smooth coefficients. Recently, [4, 23] investigated the weak conver-
gence rate of EM’s scheme for SDEs with irregular coefficients by using Girsanov’s
transformation, and [3] used an integrability condition to obtain strong convergence
rates for multidimensional SDEs with the aid of the Krylov estimate and the heat ker-
nel estimate of Gaussian type process established by the parametrix method in [16].
Inspired by [3] and [4, 23], we shall give a note on the weak error for (1.1) with b

satisfying an integrability condition (see (H2) below) which is similar to (A2’) in [3],
and the given function f being only bounded and measurable on R

d . We say that
functions satisfying (H2) have the Gauss-Besov regularity (see comments after (A2’)
of [3]). Discontinuous functions can also satisfy some kind of Sobolev-Slobodeckij-
type regularity which subjects to the Gauss-Besov regularity indicated by (H2), see
examples in Section 2.2 or [3, Example 4.3]. Thus, we say the drift term b is “low reg-
ular” instead of irregular here. Moreover, (H2) also allows that the drift term satisfies
a sub-linear growth condition (see (H1) below).
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The remainder of this paper is organized as follows: The main result is presented
in Section 2. All the proofs are given in Section 3.

2 Main result and examples

2.1 Assumption andmain result

Let |·| be the Euclidean norm, 〈·, ·〉 be the Euclidean product. ‖·‖ denotes the operator
norm. We denote ‖f ‖∞ = supx∈Rd |f (x)| for any bounded and measurable function
f on R

d . Throughout this paper, we assume that the coefficients of (1.1) satisfy the
following assumptions:

(H1) b : Rd → R
d is measurable and σ is an invertible d × d-matrix. There exist

β ∈ [0, 1) and nonnegative constants L1, L2 such that

|b(x)| ≤ L1 + L2|x|β, x ∈ R
d .

(H2) There exist p0 ≥ 2, α > 0 and φ ∈ C((0, +∞); (0, +∞)) which is non-
increasing on (0, l) and

∫ l

0φ2(s)ds < ∞ for some l > 0 such that

sup
z∈Rd

∫

Rd×Rd

|b(y) − b(x)|p0
e− |x−z|2

s
− |y−x|2

r

s
d
2 r

d
2

dxdy ≤ (φ(s)rα)p0 , s > 0, r ∈ [0, 1].

It is clear that (1.2) also has a unique strong solution. The index α in (H2) is used to
characterize the order of the continuity and the function φ is used to characterize the
type of the continuity. From examples in the next subsection, it is clear that functions
sharing the same order of continuity can have different types of continuity.

We now formulate the main result.

Theorem 2.1 Assume (H1)–(H2). Then, for any T > 0 and any bounded measurable
function f on Rd , there exists a constant CT,p0,σ,x > 0 such that

|Ef (Xt ) − Ef (X
(δ)
t )| ≤ CT,p0,σ,x‖f ‖∞δα, t ∈ [0, T ], (2.1)

where p0 is defined in (H2). If the growth condition in (H1) is replaced by |b(x)| ≤
L1 + L2|x|, then (2.1) also holds for T , L2, p0 and σ satisfying

T L2‖σ−1‖‖σ‖
√

2(p0 + 1)(p0 + 3)

p0 − 1
< 1. (2.2)

Remark 2.1 By [28, Theorem 1.1], (1.1) has a unique strong solution under (H1).
It is also clear that (1.2) has a unique pathwise solution. For the bounded and
irregular b, there are many results on strong and weak error of EM’s scheme (see,
e.g., [3, 7, 11, 18] and references therein), and the weak error cannot be derived
from the strong error directly if f is just a bounded and measurable function. We
would like to highlight that authors in [18] has obtained the rate of strong conver-
gence for one-dimensional SDEs if b is in L1(R) and bounded, and satisfies the
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Sobolev-Slobodeckij-type regularity. This result is better than the present one in The-
orem 2.1. However, results in [18] relied on an Zvonkin-type transformation which
can be given explicitly in one dimension, and some favorable properties are lost in
high dimensions. Here, only Girsanov’s transformation is used, while we allow that
the SDE is multi-dimensional and that the drift satisfies a sub-linear growth condi-
tion. Moreover, we obtain the same convergence rate when b has linear growth, as
long as (2.2) holds. Our assumption (H2) also includes the Sobolev-Slobodeckij-type
regularity, see Example 2.4 in the next subsection. To obtain higher convergence rate
as in [18], it seems that we need to make a deep investigation on the Zvonkin-type
transformation.

In the assumption (H2), if α is a decreasing function of p0, then we can choose
p0 = 2 and obtain the highest convergence rate in (2.1), see Example 2.3.

Remark 2.2 In [3], the strong convergence and the convergence rate are investigated
with the drift satisfying an integrability condition and boundedness. Here we obtain
the weak convergence rate of EM’s scheme, where the drift does not need to be
bounded and the test function f in (2.1) is only bounded and measurable. Moreover,
the convergence rate is better than the rate obtained in [3, Theorem 1.3].

From examples in the next subsection, one can see that the drift could be discon-
tinuous. This means that we have extended the results in [1] where the coefficients
must be smooth. However, our result is not optimal in the smooth case since the
classical order of the weak error is α = 1 for SDEs with smooth coefficients in [1].

Remark 2.3 In [19, 21], authors considered the weak convergence rate of the EM’s
scheme for (1.1) with the drift b is of sub-linear growth and b = bH + bA, where
bH is α-Hölder for some α ∈ (0, 1) and bA belongs to a class A which does not
contain any nontrivial Hölder continuous functions. The order of the convergence
rate obtained in [21] is α

2 ∧ 1
4 , even if bA ≡ 0. However, the order of the convergence

rate in Theorem 2.1 comes from the continuity order α in (H2), and it can be greater
than 1

4 .
The class A in [19, 21] is given by A-approximation. In contrast to the A-

approximation, our condition (H2) is more explicit. Moreover, for any time indepen-
dent function ζ in the class A of [19], it satisfies (H2) with p0 = 2, α = 1

4 and

φ(s) = s− 1
4
√

1 + √
s. In fact, according to [19, Definition 2.1], ζ is bounded and

there exists a sequence {ζn}n≥1 such that ζn ∈ C1(Rd) is uniformly bounded and
converges to ζ locally in L1(Rd), and there exists K > 0 such that

sup
n≥1, a∈Rd

∫

Rd

‖∇ζn(x + a)‖ e− |x|2
s

s(d−1)/2
dx ≤ K(1 + √

s). (2.3)

Noting that

sup
x≥0

(xγ ′
e−γ x2

) =
( γ ′

2 e γ

)γ ′/2
, γ ′, γ > 0, (2.4)
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we then obtain from (2.3) and (2.4) that

∫

Rd×Rd

|ζ(x) − ζ(y)|2 e− |x−z|2
s

− |x−y|2
r

(sr)
d
2

dxdy

≤ ‖ζ‖∞ lim
n→+∞

∫

Rd×Rd

|ζn(x) − ζn(y)| e
− |x−z|2

s
− |x−y|2

r

(sr)
d
2

dxdy

= ‖ζ‖∞ lim
n→+∞

∫ 1

0

∫

Rd×Rd

‖∇y−xζn(x + θ(y − x))‖ e− |x−z|2
s

− |x−y|2
r

(sr)
d
2

dxdydθ

≤ ‖ζ‖∞ lim
n→+∞

∫ 1

0

⎛

⎝
∫

Rd

⎛

⎝
∫

Rd

‖∇ζn(x + θh + z)‖ e− |x|2
s

sd/2
dx

⎞

⎠ |h|e −|h|2
r

r
d
2

dh

⎞

⎠ dθ

≤ ‖ζ‖∞
∫

Rd

Ks− 1
2 (1 + √

s)
|h|e −|h|2

r

r
d
2

dh

≤ C‖ζ‖∞s− 1
2 (1 + √

s)r
1
2 ,

where the constant C is independent of z. The class A used in [21] allows functions
in A can be just exponentially bounded. However, they assume that the drift is only
sublinear growth. There is no example showing that the class A used in [21] can
contain functions which are more irregular than functions in A of [19].

2.2 Illustrative examples

In this subsection, we shall provide several examples to illustrate the condition (H2)
and the order of the convergence rate. Firstly, we give some comments on (H2).
According to the proof of Theorem 2.1, X

(δ)
t and Xt are weak solutions of the

equation Yt = X0 + σWt in suitable probability spaces. By using the Girsanov
transformation, the error between X

(δ)
t and Xt mainly comes from the following term

∣
∣
∣

∫ T

0
〈σ−1(b(Ys) − b(Ysδ )), dWs〉

∣
∣
∣.

Since Yt is a Gaussian process, (H2) is convenient to estimate the above stochastic
integral, see (3.20) and the proof of Lemma 3.3 for more details. Comparing with the
definition of Besov space (see [24, (1.13)]), we call the set that consists of functions
satisfying (H2) the Gauss-Besov class. The exponential terms in the integrand of (H2)
allow that b can grow to infinity as |x| increases.

Example 2.2 If b is the Hölder continuous with exponent β, i.e.,

|b(y) − b(x)| ≤ L|x − y|β,

then (H2) holds with α = β
2 and a constant function φ(s). It is clear that b has

sublinear growth if β < 1. Then, for any T > 0, (2.1) holds with α = β
2 .
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Proof By the Hölder continuity and (2.4), the assertion follows from the following
inequality

sup
z∈Rd

∫

Rd×Rd

|b(y) − b(x)|p0
e− |x−z|2

s
− |y−x|2

r

s
d
2 r

d
2

dxdy

≤ Lp0 sup
z∈Rd

∫

Rd×Rd

|y − x|βp0
e− |x−z|2

s
− |y−x|2

r

s
d
2 r

d
2

dxdy

≤ Lp0
1

s
d
2 r

d
2

(
βp0r

e

) βp0
2

sup
z∈Rd

∫

Rd×Rd

e− |x−z|2
s e− |y−x|2

2r dxdy

≤ CLp0

(
βp0r

e

) βp0
2

.

The following example shows that (H2) can hold even if the drift term b is not
piecewise continuous.

Example 2.3 Let A be the Smith-Volterra-Cantor set on [0, 1], which is constructed

in the following way. The first step, we let I1,1 =
(

3
8 , 5

8

)
, J1,1 =

[
0, 3

8

]
, J1,2 =

[ 5
8 , 1] and remove the open interval I1,1 from [0, 1]. The second step, we remove

the middle 1
42 open intervals, denoting by I2,1 and I2,2, from J1,1 and J1,2 respec-

tively, i.e., I2,1 =
(

5
32 , 7

32

)
, I2,2 =

(
25
32 , 27

32

)
. The intervals left are denoted by

J2,1, J2,2, J2,3, J2,4, i.e.,

J2,1 =
[

0,
5

32

]

, J2,2 =
[

7

32
,

3

8

]

, J2,3 =
[

5

8
,

25

32

]

, J2,4 =
[

27

32
, 1

]

.

For the nth step, we remove the middle 1
4n open intervals In,1, · · · , In,2n−1

from Jn−1,1, · · · , Jn−1,2n−1 respectively, and the intervals left are denoted by
Jn,1, · · · , Jn,2n . Let

A =
∞⋂

n=1

⎛

⎝
2n
⋃

k=1

Jn,k

⎞

⎠ .

Then, A is a nowhere dense set and the Lebesgue measure of A is 1/2. Define

All of the endpoints of the intervals Īn,j are the discontinuous points of b, which is
dense in A. For any interval I ⊂ [0, 1] such that I ∩ A �= ∅, it always contains the
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discontinuous points of b. However, any interval I ⊂ [0, 1] such that I ∩ A = ∅,
it is a subset of some In,j . Hence, b is not a piecewise continuous function. In the
following, we shall show that b satisfies condition (H2) with p0 = 2 and α = 1

4 and

φ(s) = Cs− 1
4 .

Proof For u > 0 and any interval (a1, a2) (it is similar for [a1, a2]),

For u < 0, we obtain that

Hence, it follows from Jensen’s inequality that
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Combining this with (2.4), we obtain that

sup
z∈R

∫

R×R

|b(y) − b(x)|2 e− |x−z|2
s e− |y−x|2

r

s
1
2 r

1
2

dxdy

≤ 1

s
1
2 r

1
2

∫

R

e− |u|2
r

∫

R

|b(x + u) − b(x)|2dxdu

≤ 4

s
1
2 r

1
2

∫

R

e− |u|2
r |u|du =

(
Cs− 1

4 r
1
4

)2
.

A general class of functions that satisfies (H2) is the fractional Sobolev space
Wβ,p(Rd), showing as follows.

Example 2.4 If there exist β > 0 and p ∈ [2, ∞)∩ (d,+∞) such that the Gagliardo
seminorm of b is finite, i.e.,

[b]Wβ,p :=
(∫

Rd×Rd

|b(x) − b(y)|p
|x − y|d+βp

dxdy

) 1
p

< ∞,

then (H2) holds for p0 = p with α = β
2 and φ(s) = C1s

− d
2 [b]p

Wβ,p . Hence, if b

satisfies (H1) and [b]Wβ,p < ∞ with p ∈ [2, ∞) ∩ (d,+∞), then (2.1) holds.

Proof Indeed, by Hölder’s inequality and (2.4), it follows that

1

(rs)
d
2

∫

Rd×Rd

|b(y) − b(x)|p e− |x−z|2
s

− |y−x|2
r dxdy

= 1

(rs)
d
2

∫

Rd×Rd

|b(x) − b(y)|p
|x − y|d+βp

e− |x−z|2
s

− |y−x|2
r |x − y|d+βpdxdy

≤ C1s
− d

2 r
βp
2

∫

Rd×Rd

|b(x) − b(y)|p
|x − y|d+βp

e− |x−z|2
s

− |y−x|2
2r dxdy

≤ C1s
− d

2 r
βp
2 [b]p

Wβ,p .

3 Proof of Theorem 2.1

The key point for proving the main result is to construct a reference SDE. By using
Girsanov’s theorem, the reference SDE provides new representations of (1.1) and its
EM’s approximation SDE (1.2) under another probability measures.

We denote by Yt = x + σWt the reference SDE of (1.1). Then, Yt is a time
homogenous Markov process with heat kernel w.r.t. the Lebesgue measure as follows:

pt (x, y) =
exp

{
− 〈(σσ ∗)−1(y−x),(y−x)〉

2t

}

√
(2tπ)d det(σσ ∗)

, x, y ∈ R
d . (3.1)

To prove Theorem 2.1, we give three auxiliary lemmas.
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The first lemma is on the exponential estimate of |b(Yt )|. Here, we use the
condition (H1’), which is weaker than (H1).

(H1’) There exist β ∈ [0, 1), nonnegative constants L1, L2 and F ≥ 0 with F ∈
Lp1(Rd) for some p1 > d such that

|b(x)| ≤ L1 + L2|x|β + F(x). (3.2)

Lemma 3.1 Assume (H1’) holds. Then, for all T , λ > 0, it holds that

E exp
{
λ

∫ T

0
|σ−1b(Ys)|2ds

}
< ∞. (3.3)

Proof Note that for any ε > 0

L1 + L2|x|β ≤ L1 + (1 − β)L
1

1−β

2

(
β

ε

) β
1−β + ε|x| =: L(ε) + ε|x|, (3.4)

and for any a, b, c, ε1, ε2 > 0

(a + b + c)2 ≤
(

2 + 1

ε1

)

a2 + (1 + ε1 + ε2)b
2 +

(

2 + 1

ε2

)

c2.

Combining these with (3.2) and the Hölder inequality, we have that

E exp
{
λ

∫ T

0
|σ−1b(Ys)|2ds

}

≤ E exp
{
λ

∫ T

0
‖σ−1‖2 (L(ε) + ε|Ys | + F(Ys))

2 ds
}

≤ E exp
{
λ

∫ T

0
‖σ−1‖2 ((L(ε) + ε|x|) + ε|Ys − x| + F(Ys))

2 ds
}

≤ E exp
{
λ

∫ T

0
‖σ−1‖2

( (
2 + ε−1

1

)
(L(ε) + ε|x|)2

+(1 + ε1 + ε2)ε
2|Ys − x|2 + (2 + ε−1

2 )F 2(Ys)
)

ds
}

≤ exp{λT ‖σ−1‖2(L(ε) + ε|x|)2
(

2 + ε−1
1

)
}

×
(

E exp

{

λ(1 + ε1 + ε2)
2ε2‖σ−1‖2

∫ T

0
|Ys − x|2ds

}) 1
1+ε1+ε2

×
(

E exp

{
λ(2 + ε−1

2 )(1+ ε1 + ε2)

ε1 + ε2
‖σ−1‖2

∫ T

0
F 2(Ys)ds

}) ε1+ε2
1+ε1+ε2

.(3.5)
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Let

I1,T = E exp

{

λ(1 + ε1 + ε2)
2ε2‖σ−1‖2

∫ T

0
|Ys − x|2ds

}

,

I2,T = E exp

{
λ(2 + ε−1

2 )(1 + ε1 + ε2)

ε1 + ε2
‖σ−1‖2

∫ T

0
F 2(Ys)ds

}

.

Since F ∈ Lp1(Rd), for any 0 ≤ S ≤ T and q satisfying d
p1

+ 1
q

< 1, we obtain that
(see, e.g., [12])

E

[∫ T

S

F 2(Ys)ds

∣
∣
∣FS

]

≤ (T − S)
1
q ‖F‖Lp1 . (3.6)

This yields the following Khasminskii’s estimate (see, e.g., [27, Lemma 3.5]): for
any C > 0

E exp

{

C

∫ T

0
F 2(Ys)ds

}

< ∞. (3.7)

Thus, for any λ, ε1, ε2 > 0, one has

I2,T < ∞. (3.8)

For I1,T . Since ε, ε1 and ε2 are arbitrary, for any T > 0, we can choose them
sufficiently small such that

1 − 2T 2(1 + ε1 + ε2)
2λε2‖σ−1‖2‖σ‖2 =: λ̂ > 0.

This, together with the Jensen inequality and the heat kernel (3.1), yields that

I1,T = E exp

{

λ(1 + ε1 + ε2)
2ε2‖σ−1‖2

∫ T

0
|Ys − x|2ds

}

≤ 1

T

∫ T

0
E exp

{
T λ(1 + ε1 + ε2)

2ε2‖σ−1‖2|Ys − x|2
}

ds

=
∫ T

0

∫

Rd

exp
{
T λ(1 + ε1 + ε2)

2ε2‖σ−1‖2|y|2 − |σ−1y|2
2s

}

T
√

(2sπ)d det(σσ ∗)
dyds

≤
∫ T

0

∫

Rd

exp
{
−(

1−2sT λ(1+ε1+ε2)
2ε2‖σ−1‖2‖σ‖2

2s
)|σ−1y|2

}

T
√

(2sπ)d det(σσ ∗)
dyds

≤
∫ T

0

∫

Rd

exp
{
−( λ̂

2s
)|σ−1y|2

}

T
√

(2sπ)d det(σσ ∗)
dyds

= λ̂− d
2 < ∞. (3.9)

Plugging (3.9) and (3.8) into (3.5), then (3.3) follows.

The following lemma deals with the exponential estimate of |b(Ytδ )|, where
{Ytδ }t∈[0,T ] denotes the solution to the discrete-time EM’s scheme. The Krylov esti-
mate (3.6) fails for Ysδ (see [3, Remark 2.5] or [23]). Hence, we use (H1) in Lemma
3.2 instead of (H1’).
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Lemma 3.2 Assume (H1). Then, for all T > 0, λ > 0, we have

sup
0<δ<1∧T

E exp
{
λ

∫ T

0
|σ−1b(Ysδ )|2ds

}
< ∞. (3.10)

Proof Splitting the interval [0, T ] and applying (3.4), it follows from the elementary
inequality that

E exp
{
λ

∫ T

0
|σ−1b(Ysδ )|2ds

}

= E

{
exp

{
λ

∫ δ

0
|σ−1b(Ysδ )|2ds

}
exp

{
λ

∫ T

δ

|σ−1b(Ysδ )|2ds
}}

≤ exp
{
λδ‖σ−1‖2(L(ε) + εx)2

}
E exp

{
λ

∫ T

δ

‖σ−1‖2|L(ε) + εx + ε(Ysδ − x)|2ds
}

≤ exp{λδ‖σ−1‖2(L(ε) + εx)2} exp{λ(T − δ)‖σ−1‖2(L(ε) + ε|x|)2
(

1 + ε−1
1

)
}

×E exp

{

λ(1 + ε1)ε
2‖σ−1‖2

∫ T

δ

|Ysδ − x|2ds

}

≤ exp{λT ‖σ−1‖2(L(ε) + εx)2
(

1 + ε−1
1

)
}

×E exp

{

λ(1 + ε1)ε
2‖σ−1‖2

∫ T

δ

|Ysδ − x|2ds

}

. (3.11)

For any T , λ > 0, we choose ε and ε1 sufficiently small such that

1 − 2T 2λ(1 + ε1)ε
2‖σ−1‖2‖σ‖2 =: λ̆ > 0.

This, together with the Jensen inequality and (3.1), yields that

E exp

{

λ(1 + ε1)ε
2‖σ−1‖2

∫ T

δ

|Ysδ − x|2ds

}

≤ 1

T − δ

∫ T

δ

E exp{(T − δ)λ(1 + ε1)ε
2‖σ−1‖2|Ysδ − x|2}ds

≤
∫ T

δ

∫

Rd

exp{(T − δ)λ(1 + ε1)ε
2‖σ−1‖2|y|2 − 〈(σσ ∗)−1y,y〉

2sδ
}

(T − δ)
√

(2πsδ)d det (σσ ∗)
dyds

≤
∫ T

δ

∫

Rd

exp{(T − δ)λ(1 + ε1)ε
2‖σ−1‖2‖σ‖2|σ−1y|2 − |σ−1y|2

2sδ
}

(T − δ)
√

(2πsδ)d det (σσ ∗)
dyds

≤
∫ T

δ

∫

Rd

exp{− (1−2(T −δ)2λ(1+ε1)ε
2‖σ−1‖2‖σ‖2)

2sδ
|σ−1y|2}

(T − δ)
√

(2πsδ)d det (σσ ∗)
dyds

≤
∫ T

δ

∫

Rd

exp{− (1−2T 2λ(1+ε1)ε
2‖σ−1‖2‖σ‖2)

2sδ
|σ−1y|2}

(T − δ)
√

(2πsδ)d det (σσ ∗)
dyds

= λ̆− d
2 < ∞. (3.12)

Combining this with (3.11), we have that (3.10) holds.
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Remark 3.1 According to the proofs of Lemmas 3.1 and 3.2 (see especially (3.9),
(3.12), and the definitions of λ̂ and λ̆), we have that ε = O(T −1) as T → +∞. Then,

the constant T L2(ε) in (3.5) and (3.11) is of the order (1 − β)2(L
2

1+β

2 T )
1+β
1−β . Hence,

for larger L
2

1+β

2 T , the closer β to 1, the greater upper bound of (3.3) and (3.10).
Lemmas 3.1 and 3.2 serve to use the Novikov condition in the proof of Theorem

2.1. For the case that β < 1, the constant λ in both lemmas can be arbitrary. For the
case that β = 1, with ε = L2 and L(ε) = L1 in (3.4), according to (3.9) and (3.12),
one can see from the definitions of λ̂ and λ̆ that (3.3) and (3.10) hold for λ > 0 and
T > 0 satisfying the following condition

2T 2λL2
2‖σ−1‖2‖σ‖2 < 1, (3.13)

and sufficiently small ε1 and ε2.

Lemma 3.3 Assume (H2). Then, there exists a constant Cσ > 0 depending on σ only
such that for all 0 < s ≤ t ≤ T we have

E|b(Yt ) − b(Ys)|p0 ≤ Cσ (φ(2s‖σ‖2)(2(t − s)‖σ‖2)α)p0 . (3.14)

Proof By the definition of reference SDE, it is easy to see that

E|b(Yt ) − b(Ys)|p0 = E|b(x + σWt) − b(x + σWs)|p0 .

Noting that Wt − Ws and Ws are mutually independent, we obtain from (3.1) and
(H2) that

E|b(x + σWt ) − b(x + σWs)|p0

=
∫

Rd

∫

Rd

|b(x + y) − b(x + z)|p0pt−s (x + z, x + y)ps(x, x + z)dydz

=
∫

Rd

∫

Rd

|b(x + y) − b(x + z)|p0
e− 〈(σσ∗)−1(y−z),(y−z)〉

2(t−s)

√
(2π(t − s))d det(σσ ∗)

e− 〈(σσ∗)−1z,z〉
2s

√
(2πs)d det(σσ ∗)

dydz

≤ ‖σ‖2d

πd det(σσ ∗)

∫

Rd

∫

Rd

|b(x + y) − b(x + z)|p0
e
− |y−z|2

2‖σ‖2(t−s) e
− |z|2

2‖σ‖2s

(2(t − s)‖σ‖2)d/2(2s‖σ‖2)d/2
dydz

= ‖σ‖2d

πd det(σσ ∗)

∫

Rd

∫

Rd

|b(u) − b(v)|p0
e
− |u−v|2

2‖σ‖2(t−s) e
− |v−x|2

2‖σ‖2s

(2(t − s)‖σ‖2)d/2(2s‖σ‖2)d/2
dudv

≤ sup
x∈Rd

‖σ‖2d

πd det(σσ ∗)

∫

Rd

∫

Rd

|b(u) − b(v)|p0
e
− |u−v|2

2‖σ‖2(t−s) e
− |v−x|2

2‖σ‖2s

(2(t − s)‖σ‖2)d/2(2s‖σ‖2)d/2
dudv

≤ ‖σ‖2d

πd det(σσ ∗)
(φ(2s‖σ‖2)(2(t − s)‖σ‖2)α)p0 ,

which implies that (3.14) holds by taking Cσ = ‖σ‖2d

πd det(σσ ∗) .

Now, we are in position to finish the Proof of Theorem 2.1.
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Proof of Theorem 2.1 Let

Ŵt = Wt −
∫ t

0
σ−1b(Ys)ds, W̃t = Wt −

∫ t

0
σ−1b(Ysδ )ds,

R1,T = exp
{ ∫ T

0
〈σ−1b(Ys), dWs〉 − 1

2

∫ T

0
|σ−1b(Ys)|2ds

}
,

R2,T = exp
{ ∫ T

0
〈σ−1b(Ysδ ), dWs〉 − 1

2

∫ T

0

∣
∣σ−1b(Ysδ )

∣
∣2ds

}
.

The proof is divided into two steps:
Step (i), we shall prove that the assertion holds under (H1) and (H2).
We first show that {Ŵt }t∈[0,T ] is a Brownian motion under Q1 := R1,T P, and

{W̃t }t∈[0,T ] is a Brownian motion under Q2 := R2,T P. In view of Lemma 3.1, the
Girsanov theorem implies that {R1,t }t∈[0,T ] is a martingale and {Ŵt }t∈[0,T ] is a Brow-
nian motion under Q1. Similarly, it follows from Lemma 3.2 and Novikov’s condition
that {W̃t }t∈[0,T ] is a Brownian motion under Q2.

Then, we can reformulate Yt = x + σWt as follows:

Yt = x +
∫ t

0
b(Ys)ds + σŴt ,

which means that (Yt , Ŵt ) under Q1 is a weak solution of (1.1). Hence, Yt under Q1
has the same law as Xt under P due to the pathwise uniqueness of the solutions to
(1.1) (see Remark 2.1). Similarly, reformulating Yt = x + σWt as follows:

Yt = x +
∫ t

0
b(Ysδ )ds + σW̃t . (3.15)

Then, (Yt , W̃t ) under Q2 is also a weak solution of (1.2). Hence Yt under Q2 has the
same law as X

(δ)
t under P due to the pathwise uniqueness of solutions to the (1.2).

From these equivalence relations, we obtain that for any bounded and measurable
function f on R

d

|Ef (Xt ) − Ef (X
(δ)
t )| = |EQ1f (Yt ) − EQ2f (Yt )|

= E|(R1,T − R2,T )f (Yt )| ≤ ‖f ‖∞E|R1,T − R2,T |.
Using the inequality | ex − ey | ≤ (ex ∨ ey)|x − y|, Hölder’s inequality and
Minkowski’s inequality, we derive from definitions of R1,T and R2,T that

E|R1,T − R2,T |
≤ E

{
(R1,T ∨ R2,T )

∣
∣
∣

∫ T

0
〈σ−1(b(Ys) − b(Ysδ )), dWs〉

+1

2

∫ T

0

(
|σ−1b(Ysδ )|2 − |σ−1b(Ys)|2

)
ds

∣
∣
∣
}
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≤ E

[
(R1,T ∨ R2,T )

∣
∣
∣

∫ T

0
〈σ−1(b(Ys) − b(Ysδ )), dWs〉

∣
∣
∣
]

+1

2
E

[
(R1,T ∨ R2,T )

∣
∣
∣

∫ T

0

(
|σ−1b(Ysδ )|2 − |σ−1b(Ys)|2

)
ds

∣
∣
∣
]

≤
(
E(R1,T ∨ R2,T )

p0
p0−1

) p0−1
p0
(
E

∣
∣
∣

∫ T

0
〈σ−1(b(Ys) − b(Ysδ )), dWs〉

∣
∣
∣
p0
) 1

p0

+1

2

(
E(R1,T ∨ R2,T )

p0+1
p0−1

) p0−1
p0+1

(
E

∣
∣
∣

∫ T

0

(|σ−1b(Ysδ )|2 − |σ−1b(Ys)|2
)
ds

∣
∣
∣

p0+1
2
) 2

p0+1

≤
(
E(R1,T ∨ R2,T )

p0
p0−1

) p0−1
p0
(
E

∣
∣
∣

∫ T

0
〈σ−1(b(Ys) − b(Ysδ )), dWs〉

∣
∣
∣
p0
) 1

p0

+1

2

(
E(R1,T ∨ R2,T )

p0+1
p0−1

) p0−1
p0+1

∫ T

0

(
E
∣
∣|σ−1b(Ysδ )|2 − |σ−1b(Ys)|2

∣
∣

p0+1
2
) 2

p0+1
ds

=:
(
E(R1,T ∨ R2,T )

p0
p0−1

) p0−1
p0 G1,T + 1

2

(
E(R1,T ∨ R2,T )

p0+1
p0−1

) p0−1
p0+1

G2,T . (3.16)

Let

Mt =
∫ t

0
〈σ−1b(Ys), dWs〉 and M̂t (q) = e2qMt−2q2〈M·〉t , q > 0.

By Lemma 3.1, for any q > 1, M̂t (q) is an exponential martingale. Then, the Hölder
inequality implies that

ER

p0
p0−1

1,T = E exp

{
p0

p0 − 1

∫ T

0
〈σ−1b(Ys), dWs〉

− p0

2(p0 − 1)

∫ T

0
|σ−1b(Ys)|2ds

}

≤
(

EM̂T (
p0

p0 − 1
)

)1/2 (

E exp

{
p0(p0 + 1)

(p0 − 1)2

∫ T

0
|σ−1b(Ys)|2ds

})1/2

=
(

E exp

{
p0(p0 + 1)

(p0 − 1)2

∫ T

0
|σ−1b(Ys)|2ds

})1/2

and

ER

p0+1
p0−1

1,T ≤
(

EM̂T (
p0 + 1

p0 − 1
)

)1/2 (

E exp

{
(p0 + 3)(p0 + 1)

(p0 − 1)2

∫ T

0
|σ−1b(Ys)|2ds

})1/2

=
(

E exp

{
(p0 + 3)(p0 + 1)

(p0 − 1)2

∫ T

0
|σ−1b(Ys)|2ds

})1/2

.

Then, it follows from Lemma 3.1 again that

E

(

R

p0+1
p0−1

1,T + R

p0
p0−1

1,T

)

< ∞. (3.17)

Similarly, we can prove by using Hölder’s inequality and Lemma 3.2 that

E

(

R

p0+1
p0−1

2,T + R

p0
p0−1

2,T

)

< ∞. (3.18)
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Since φ ∈ C((0, +∞), (0, +∞)), there is C > 0 depending on l, T , σ such that

φ2(r) ≤ Cφ2(s), l ≤ s ≤ r ≤ 2‖σ‖2T .

Combining this with that φ is non-increasing on (0, l) and
∫ l

0φ2(s)ds < ∞, which

yields
∫ 2‖σ‖2T

0 φ2(s)ds < ∞, we then obtain that

[T/δ]∑

k=1

φ2(2kδ‖σ‖2)δ ≤
[T/δ]∑

k=1

∫ (kδ)∧ l

2‖σ‖2

((k−1)δ)∧ l

2‖σ‖2

φ2(2‖σ‖2r)dr + C

∫ T

l

2‖σ‖2

φ2(2‖σ‖2r)dr

=
∫ l

2‖σ‖2

0
φ2(2‖σ‖2r)dr + C

∫ T

l

2‖σ‖2

φ2(2‖σ‖2r)dr

= 1 ∨ C

2‖σ‖2

∫ 2‖σ‖2T

0
φ2(s)ds < ∞. (3.19)

This, together with the B-D-G inequality and Lemma 3.3, yields that for p0 ≥ 2

G1,T =
(
E

∣
∣
∣

∫ T

0
〈σ−1(b(Ys) − b(Ysδ )), dWs〉

∣
∣
∣
p0
)1/p0

≤
(

p0

p0 − 1

) p0
2
(

p0(p0 − 1)

2

) 1
2 ‖σ−1‖

(∫ T

0

(
E|b(Ys) − b(Ysδ )|p0

) 2
p0 ds

) 1
2

≤ δα 2α‖σ‖ 2d
p0

+2α‖σ−1‖
(
πd det(σσ ∗)

) 1
p0

(
p0

p0 − 1

) p0
2
(

p0(p0 − 1)

2

) 1
2 ( ∫ T

0
φ2(2sδ‖σ‖2)ds

) 1
2

≤ δα

√
1 ∨ C2α− 1

2 ‖σ‖ 2d
p0

+2α−1‖σ−1‖
(
πd det(σσ ∗)

) 1
p0

(
p0

p0 − 1

) p0
2
(

p0(p0 − 1)

2

) 1
2 ( ∫ 2‖σ‖2T

0
φ2(s)ds

) 1
2

= CT,p0,σ,α,φδα . (3.20)

Noting that for any p ≥ 1, one has

E|Yt |p ≤ 2p−1
(
|x|p + (

√
t‖σ‖)pE|W1|p

)
, (3.21)

we derive from (3.4) and (3.19) that

(

E|b(Ys) + b(Ysδ )|
p0(p0+1)

p0−1

) p0−1
p0(p0+1)

≤
(

E
(
2L(ε) + ε(|Ys | + |Ysδ |)

) p0(p0+1)

p0−1

) p0−1
p0(p0+1)

≤ 2

⎧
⎨

⎩
L(ε) + 2

p2
0+1

p0(p0+1) ε

⎛

⎝|x| + √
T ‖σ‖

(

E|W1|
p0(p0+1)

p0−1

) p0−1
p0(p0+1)

⎞

⎠

⎫
⎬

⎭

=: CT,p0,σ,L(ε),ε,x .

745Numerical Algorithms (2022) 90:731–747



Combining this with Lemma 3.3, (3.19) and Hölder’s inequality, we obtain

G2,T = 1

2

∫ T

0

(

E

∣
∣
∣|σ−1b(Ysδ )|2 − |σ−1b(Ys)|2

∣
∣
∣

p0+1
2

) 2
p0+1

ds

≤ ‖σ−1‖2

2

∫ T

0

(
E|b(Ys) − b(Ysδ )|

p0+1
2 |b(Ys) + b(Ysδ )|

p0+1
2

) 2
p0+1

ds

≤ ‖σ−1‖2

2

∫ T

0

(
E|b(Ys) − b(Ysδ )|p0

) 1
p0

(

E|b(Ys) + b(Ysδ )|
p0(p0+1)

p0−1

) p0−1
p0(p0+1)

ds

≤ ‖σ−1‖2

2
CT,p0,σ,L(ε),ε,x

∫ T

0

(
E|b(Ys) − b(Ysδ )|p0

) 1
p0 ds

≤ CT,p0,σ,L(ε),ε,φ,xδ
α, (3.22)

where

CT,p0,σ,L(ε),ε,φ,x = 1 ∨ C2α−2‖σ‖ 2d
p0

+2α−2‖σ−1‖2CT,p0,σ,L(ε),ε,x

(πd det(σσ ∗))
1

p0

∫ 2‖σ‖2T

0
φ(s)ds.

The desired assertion (2.1) is proved by substituting (3.17), (3.18), (3.20) and
(3.22) into (3.16). Therefore, the conclusion holds under (H1) and (H2).

Step (ii), we prove that if b satisfies the linear growth condition, then the
conclusion (2.1) holds for T satisfying (2.2).

By Remark 3.1, we have that the conclusions of Lemmas 3.1 and 3.2 hold for any
λ, T satisfying (3.13). By (2.2) and (p0+3)(p0+1)

(p0−1)2 >
p0(p0+1)

(p0−1)2 > 1
2 , we can choose

λ = (p0+3)(p0+1)

(p0−1)2 in Lemmas 3.1 and 3.2. Then, by checking step (i), we arrive at
(3.16). Moreover, (3.17) and (3.18) hold by the same argument together with the
stopping time technique. Then, we can conclude the second conclusion from (3.20)
and (3.22). The proof is therefore complete.

Remark 3.2 According to the proof of this theorem, the key point for that f in (2.1)
can only be bounded and measurable is that the distributions of X

(δ)
t and Xt come

from the same process Yt = x + σWt . This fails for the multiplicative noise case.
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