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Abstract
In this work, we utilize the generalized AOR (GAOR) and CG (GCG) methods for
constructing iteration methods to solve the block two-by-two linear systems which
arise from the solution of the complex symmetric linear systems of equations. In
order to compare the GAOR and GCG methods with some existing methods, we
present some numerical examples to illustrate the performance of these methods.
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1 Introduction

This paper is devoted to study of the numerical solution of linear systems of the form

Au = b, with A = W + iT , (1.1)

where A ∈ C
n×n is complex symmetric matrix, W ∈ R

n×n and T ∈ R
n×n are large

and sparse symmetric positive definite matrices which imply that the complex sym-
metric matrix A is nonsingular. The right-hand side vector b ∈ C

n is given and i =√−1 denotes the imaginary unit. The linear systems (1.1) are widely used in sciences
and engineering including diffuse optical tomography [1], electrical power system
modeling [2], quantum mechanics [3], and molecular scattering [4]; see, e.g., [5–8]
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and references therein for more details concerning the applications of this kind of
linear systems.

To numerically approximate the solution of the complex symmetric linear sys-
tems (1.1), several iteration methods have been considered by many authors over the
years. A number of efficient techniques based on the extension of Krylov subspace
methods have been developed in the literature for solving (1.1), such as the conju-
gate orthogonal conjugate gradient (COCG) method [9], the quasi-minimal residual
(QMR) method [10], the conjugate A-orthogonal conjugate residual (COCR) method
[11], and the symmetric complex bi-conjugate gradient (SCBiCG) method [12, 13].

On the basis of the Hermitian and skew-Hermitian splitting (HSS) of the coef-
ficient matrix, Bai et al. [14] established the HSS iteration method for solving the
non-Hermitian positive definite linear systems. Any non-Hermitian matrix A can be
decomposed into its Hermitian and skew-Hermitian parts as A = H + S where

H = 1

2
(A + A∗), S = 1

2
(A − A∗). (1.2)

The symbolA∗(orAT ) denotes the complex conjugate transpose ofA ∈ C
n×n(orA ∈

R
n×n). The construction of the HSS iteration method is based on matrix splitting

(1.2) similar in spirit to the classical alternating direction implicit (ADI) method. It
is immediate to see that W and iT are the Hermitian and skew-Hermitian parts of
the complex symmetric matrix A, respectively. Then, the HSS method produces the
approximate solutions of (1.1) with the following iteration scheme:

The HSS iteration method: Let α be a positive constant and I be the identity
matrix. Given an initial guess u(0). For k = 0, 1, 2, . . . , until u(k) converges,
compute {

(αI + W)u(k+ 1
2 ) = (αI − iT )u(k) + b,

(αI + iT )u(k+1) = (αI − W)u(k+ 1
2 ) + b.

(1.3)

At each iteration step of the HSS method, we need to solve the shifted skew-
Hermitian linear subsystem with coefficient matrix αI + iT , which may be prob-
lematic behavior in the actual implementations of this method. To avoid solving the
shifted skew-Hermitian subsystem of linear equations, Bai et al. [15] introduced a
modified HSS (MHSS) method which is much more efficient than the HSS method.
To accelerate the convergence rate of the MHSS iteration method, Bai et al. [16]
proposed a preconditioned variant of the MHSS (PMHSS) method. The PMHSS
iteration scheme is given as follows:

The PMHSS iteration method: Let α be a positive constant and V ∈ R
n×n

be a symmetric positive definite matrix. Given an initial guess u(0). For k =
0, 1, 2, . . . , until u(k) converges, compute{

(αV + W)u(k+ 1
2 ) = (αV − iT )u(k) + b,

(αV + T )u(k+1) = (αV + iW)u(k+ 1
2 ) − ib.

(1.4)

We comment here that if the matrix V is equal to the identity matrix, then the
PMHSS method reduces to MHSS method. To improve the computational effi-
ciency of the MHSS and PMHSS methods, more practical iteration schemes for the
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complex symmetric linear systems (1.1) have been derived recently. By introducing
another parameter in the PMHSS scheme, the generalized PMHSS (GMPHSS) iter-
ation method was developed in [17] which is a kind of useful variant of the AHSS
iteration method initially proposed and discussed in [18] and later in [19]; see also
[20]. In addition, by applying the lopsided technique studied in [21], Li et al. [22]
proposed the lopsided PMHSS (LPMHSS) iteration method. There are also other
variants of the MHSS-like methods; see, e.g., [23–25]. Subsequently, more and more
other iteration methods have been presented in the literature such as the skew-normal
splitting (SNS) method [26], the Hermitian normal splitting (HNS) method [27], the
scale-splitting (SCSP) iteration method [28], the double-step scale splitting (DSS)
iteration method [29], and the combination of real part and imaginary part (CRI) iter-
ation method [30]. Here, we should realize that one class of important and effective
iteration methods, called the quasi-HSS (QHSS) iteration methods, was designed and
analyzed recently in [31] also based on the HSS-like iteration methods. However, if
we use these iteration methods for finding the solution of linear systems (1.1), we face
complex arithmetic. To avoid complex arithmetic, the problem (1.1) can be recast in
real formulation. Let u = x+ iy and b = p+ iq, where the vectors x, y, p, q are all
in Rn. Then, the complex linear systems (1.1) can be expressed as two-by-two block
structure

A z =
(

W −T

T W

)(
x

y

)
=

(
p

q

)
= f, (1.5)

which can be solved in real arithmetics by HSS method or some Krylov subspace
methods such as GMRES method.

For the block two-by-two linear systems (1.5), some efficient iteration methods
have been investigated. For example, Bai et al. [32] developed the PMHSS iteration
method for solving the block two-by-two linear systems (1.5) and applied it to solve
distributed control problems. The block PMHSS iteration scheme is algorithmically
described as follows:
The block PMHSS iteration method: Let (x(0); y(0)) ∈ R

2n be an initial
guess. Using the following iteration scheme, for k = 0, 1, 2, . . . , compute{
(x(k+1); y(k+1))

}
until

{
(x(k); y(k))

}
converges:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
αV + W 0

0 αV + W

) (
x(k+ 1

2 )

y(k+ 1
2 )

)
=

(
αV T

−T αV

)(
x(k)

y(k)

)
+

(
p

q

)
,(

αV + T 0

0 αV + T

)(
x(k+1)

y(k+1)

)
=

(
αV −W

W αV

) (
x(k+ 1

2 )

y(k+ 1
2 )

)
+

(
q

−p

)
,

(1.6)

where α is a given positive constant and V ∈ R
n×n is a prescribed symmetric positive

definite matrix.
In 2005, Bai et al. [20] first introduced the generalized successive overrelaxation

(GSOR) method to find the solution of the augmented linear systems and discussed
the optimal iteration parameters. Recently, Salkuyeh et al. [33] applied the GSOR
method to the linear systems (1.5) and derived the GSOR iteration method for solving
the complex linear systems which is defined in the following:
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The GSOR iteration method: Let α be a positive constant and (x(0); y(0)) ∈ R
2n

be an initial guess. For k = 0, 1, 2, . . . , until the sequence of iterates
{
(x(k); y(k))

}
converges, compute

{
Wx(k+1) = (1 − α)Wx(k) + αTy(k) + αp,

Wy(k+1) = −αT x(k+1) + (1 − α)Wy(k) + αq.
(1.7)

It is worth mentioning that the iteration scheme in (1.7) is a straightforward applica-
tion of the GSOR iteration method for the saddle-point linear systems. Inspired by
the ideas of the upper and lower triangular (ULT) iteration method and the parameter-
ized ULT (PULT) iteration method in [34, 35], Li et al. [36] designed the symmetric
block triangular splitting (SBTS) iteration method for solving (1.5). The SBTS itera-
tion method can be described as follows:
The SBTS iteration method: Let α be a positive constant and (x(0); y(0)) ∈ R

2n

be an initial guess. For k = 0, 1, 2, . . . , until the sequence of iterates
{
(x(k); y(k))

}
converges, compute the next iteration according to the following procedures

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wx(k+ 1
2 ) = Ty(k) + p,

αWy(k+ 1
2 ) = (α − 1)Wy(k) − T x(k+ 1

2 ) + q,

αWy(k+1) = (α − 1)Wy(k+ 1
2 ) − T x(k+ 1

2 ) + q,

Wx(k+1) = Ty(k+1) + p.

(1.8)

By following the idea of the shift-splitting iterative and preconditioning methods
[37], Zeng et al. have proposed the generalized shift-splitting iteration method for
solving linear systems (1.5) in [38]. For more iteration methods and additional
references, we refer to [39, 40].

A classical accelerated overrelaxation (AOR) method introduced by Hadjidimos
(1978) [41] is a simple iteration method to solve the linear systems of equations,
which is used in scientific computing and engineering applications. For instance, it
has been used to solve augmented linear system or generalized saddle-point problems
[42, 43]. In this paper, we employ the generalized AOR (GAOR) iteration method
as a special case of PIU method in [44] and an extension of GSOR method in [20]
to find the solution of the block two-by-two linear systems (1.5). We also consider
the use of the generalized coujugate gradient (GCG) method of Concus and Golub
[45] and Widlund [46] for problems of the form (1.5). Indeed, the ideas of the GAOR
and the GCG methods are utilized to construct iteration schemes for solving the real
equivalent linear systems in the next section. The remainder of this paper is orga-
nized as follows. In Section 3, some numerical experiments are tested to show the
performance of these two methods. Section 4 is devoted to some brief conclusions.
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2 The GAOR and GCGmethods for block two-by-two linear systems

This section consists of two parts. In Section 2.1, the generalized AOR (GAOR)
method for solving (1.5) is studied and its convergence properties are stated. The sec-
ond subsection is concerned with the generalized coujugate gradient (GCG) method
and it is applied to solve the linear systems (1.5).

2.1 The GAORmethod

We consider the following splitting of the coefficient matrix A in (1.5)

A =
(

W −T

T W

)
= D − L − U , (2.1)

where

D =
(

W 0
0 W + Q

)
, L =

(
0 0

−T 0

)
, U =

(
0 T

0 Q

)
, (2.2)

in which Q ∈ R
n×n is given symmetric positive definite matrix. Let z(k) =

(x(k); y(k)) be the kth approximation solution, then the following iteration scheme
can be constructed

(D − rL )z(k+1) = [(1 − ω)D + (ω − r)L + ωU ]z(k) + ωf . (2.3)

It is not difficult to see that (2.3) can be reformulated as follows

z(k+1) = Gz(k) + ω(D − rL )−1f, (2.4)

where

G =
(

(1 − ω)I ωW−1T

� �

)
, (2.5)

in which � = ω(r − 1)(W + Q)−1T , � = −rω(W + Q)−1T W−1T + (W +
Q)−1[Q + (1 − ω)W ] and ω, r are two positive parameters. Simple computations
show that the iteration scheme (2.4) can be recast as follows:

The GAOR iteration method: Let ω and r be positive constants and (x(0); y(0)) ∈
R
2n be an initial guess. For k = 0, 1, 2, . . . , until the iteration sequence{
(x(k); y(k))

}
converges, compute{

x(k+1) = (1 − ω)x(k) + ωW−1(T y(k) + p),

y(k+1) = y(k) + (W + Q)−1[T ((r − ω)x(k) − rx(k)) − ωWy(k) + ωq].
(2.6)

The GAOR method involves two parameters ω, r and one preconditioning matrix Q.
The iteration method (2.6) reduces to that of (1.7) when r = ω and Q = 0. It is
expected that by the proper choices of the parameters and preconditioning matrix, the
GAORmethod has faster convergence rate. As was said above, the GAORmethod is a
special case of PIU method [44] and a generalized inexact accelerated overrelaxation
(GIAOR) method [20] (by replacing P = W and Q := W + Q).
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In the following discussion, we just state the convergence properties of the GAOR
iteration method. The sketch of the proof of theorems can be found in [20]; we omit
the details here.

Theorem 1 Let W, Q and T be symmetric positive definite matrices. Assume that
λ is an eigenvalue of the iteration matrix G and z = (x; y) is the corresponding
eigenvector. If r = 1, then λ = 1 − ω is an eigenvalue of G at least with multiplicity
of n and the other eigenvalues satisfy

λ = (β + γ ) − ω(β + rα)

β + γ
, (2.7)

where

α := yT T W−1Ty

yT y
, β := yT Wy

yT y
, γ := yT Qy

yT y
.

Corollary 1 Let the conditions of Theorem 1 be satisfied. Then, the GAOR iteration
method (2.4) is convergent if

0 < ω < min
{
2,

2(β + γ )

β + rα

}
. (2.8)

In the following theorem, the case r �= 1 for the GAOR iteration method is
considered.

Theorem 2 Let W, Q and T be symmetric positive definite matrices. Assume that
λ is an eigenvalue of the iteration matrix G and z = (x; y) is the corresponding
eigenvector. Then λ satisfies the following quadratic equation

λ2 − 2(γ + β − ωβ) − ω(γ + αr)

β + γ
λ + (1 − ω)(β − ωβ + γ ) + ωα(ω − r)

β + γ
= 0.

(2.9)

Theorem 3 Let W, Q, and T be symmetric positive definite matrices. Then, the
GAOR method is convergent if the following condition holds

(ω2 − 2ω)β + ω2α − ωγ

ωα
< r <

(ω2

2 − 2ω + 2)β + ω2

2 α + (2 − ω)γ

ωα
. (2.10)

To implement all the methods mentioned in previous section efficiently, there is
an important issue of how to choose the iteration parameters. The selection of the
optimal value of iteration parameter that minimizes the spectral radius of the iteration
matrix of the GSOR and SBTS methods depends on the eigenvalues μmax and μmin

of S = W−1T , which is not an easy task to be obtained when the size of S =
W−1T is large enough. Hence, good estimates of the eigenvalues are required for the
methods to be efficient. Besides, how to find the optimal parameters and the most
efficient preconditioning matrix for the GAOR method are difficult and we leave
this as a topic for further research. In the next subsection, we give a brief overview
of generalized CG (GCG) iteration method and use this method to solve the linear
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systems of (1.5). The GCGmethod has the advantage that no priori information about
the spectral radius of iteration matrix is needed for estimating parameters.

2.2 The GCGmethod

Concus and Golub [45] and Widlund [46] proposed the GCG iteration method for
solving the systems of linear equations Ax = b, where A is an n × n real matrix
and has positive definite symmetric part, i.e., M = 1

2 (A + AT ) is positive definite.
The matrix M is taken into account as a preconditioner for an associated conjugate
gradient method. This method is quite interesting and valuable if the system Mv = g

can be solved with less computational effort than the original system Ax = b and this
limits its range of applicability. In this case, we can write A in the following form:

A = M − N, (2.11)

where

M = 1

2
(A + AT ), N = 1

2
(AT − A).

Concus and Golub [45] and Widlund [46] considered the following generalized CG
procedure

x(k+1) = x(k−1) + ωk+1(v
(k) + x(k) − x(k−1)), (2.12)

where v(k) = M−1(b − Ax(k)) and

ωk+1 =
⎧⎨
⎩
1 if k = 0;[
1 + (Mv(k),v(k))

(Mv(k−1),v(k−1))ωk

]−1
if k �= 0.

Therefore, the implementation of the GCG method for the splitting (2.11) is
summarized as follows:

The GCG iteration method:

1. Let x(0) be given and set x(−1) = 0.
2. For k = 0, 1, . . . , until “convergence” do

2.1. Solve Mv(k) = b − Ax(k);
2.2. Compute ρk = (Mv(k), v(k));

2.3. ωk+1 =
{
1 if k = 0;
[1 + ρk

ρk−1ωk
]−1 if k �= 0;

2.4. Compute x(k+1) = x(k−1) + ωk+1(v
(k) + x(k) − x(k−1)).

From the GCG algorithm, we can see that the cost per iteration is one matrix
multiply (by A), one solve of system of the form Mv = g and 2n multiplies. The
GCG procedure converges to the true solution of (1.5) in a finite number of iterates
in the absence of rounding errors. The reader is referred to the papers [46, 47] for
further details about this method.

Now the GCG method is extended to a block version for solving linear systems
(1.5). We consider the following splitting of the coefficient matrix A of (1.5)

A = M − N , (2.13)
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where

M = 1

2
(A + A T ) =

(
W 0
0 W

)
, N = 1

2
(A T − A ) =

(
0 T

−T 0

)
,

in which M and N are the symmetric and negetive skew-symmetric part of A ,
respectively. It is clear that M is positive definite. Hence, the GCG method can be
applied to the linear systems (1.5). Based on the splitting (2.13) and the idea of the
GCG method, the following iteration scheme can be constructed to solve (1.5):

The GCG iteration method for real block linear systems:

1. Let x(0), y(0) be given and set x(−1) = y(−1) = 0.
2. For k = 0, 1, . . . , until “convergence” do

2.1. Solve M v(k) =
(

p

q

)
− A

(
x(k)

y(k)

)
≡ r(k);

2.2. Compute ρk = (M v(k), v(k));

2.3. ωk+1 =
{
1 if k = 0;
[1 + ρk

ρk−1ωk
]−1 if k �= 0;

2.4. Compute

(
x(k+1)

y(k+1)

)
=

(
x(k−1)

y(k−1)

)
+ ωk+1

(
v(k) +

(
x(k)

y(k)

)
−

(
x(k−1)

y(k−1)

))
.

From the above algorithm, it is seen that the GCG method requires extra inner
product per iteration step and needs to compute the initial residual vector at the
starting of algorithm. However, the computational cost of the inner product ωk+1
may be increased. The GCG method is attractive by effectively solving an equation
M v(k) = r(k) at each iteration and this subsystem of linear equations can be solved
directly by some direct method, e.g., the Cholesky factorization of the coefficient
matrix.

3 Numerical experiments

In this section, we discuss the numerical performance of the iteration methods
described in the previous sections for solving systems of linear (1.5). Numerical
results of the well-known GMRES method with l = 30 as the restart and the
preconditioned GMRES(30) methods are also given. In the tables, the number of
iteration steps, the elapsed CPU time in seconds and the relative residual error
are denoted by IT, CPU and RES, respectively. For solving all linear subsystems
involved in these iteration methods, we use the Cholesky factorization of the coeffi-
cient matrices. In all of the following experiments, the iteration is terminated when
||f − A z(k)||2/||f ||2 < 10−6 or if the number of iteration steps exceed 3000. The
starting vector is equal to z(0) = (x(0); y(0)) = (0 ; 0). We comment that all the
numerical experiments are implemented on a 64-bit 1.80 GHz core i7 processor and
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12.00GB RAM using MATLAB version R2017a. The following examples are taken
from [15, 22].

Example 1 Consider the complex symmetric linear systems of (1.1) as follows

[(
K + 3 − √

3

τ
I
)

+ i
(
K + 3 + √

3

τ
I
)]

u = b, (3.1)

where τ is the time step-size and K is the five-point centered difference matrix
approximating the negative Laplacian operator with homogeneous Dirichlet bound-
ary conditions on a uniform mesh in the unit square [0, 1]× [0, 1] with the mesh-size
h = 1

m+1 . The matrixK ∈ R
n×n has the tensor product formK = Im⊗Vm+Vm⊗Im

with Vm = h−2tridiag(−1, 2, −1) ∈ R
m×m. Hence, K is a block tridiagonal matrix

with n = m2. In our tests, we take

W = K + 3 − √
3

τ
I, T = K + 3 + √

3

τ
I,

and the vector b is given with its jth entry:

bj = (1 − i)j

τ (j + 1)2
, j = 1, 2, . . . , n.

Furthermore, the linear system (3.1) is normalized by multiplying both sides with h2

and we set τ = h.

Example 2 Consider the following complex systems[
(−ω2M + K) + i(ωCV + CH )

]
u = b, (3.2)

where M and K are inertia and stiffness matrices, CV and CH are viscous and hys-
teretic damping matrices, respectively, and ω is a driving circular frequency constant.
In this example, we take M = I, CV = 10I and CH = μK with μ = 0.02 being a
damping coefficient. The matrix K is defined analogously to Example 1. We also set
ω = π and the right-hand side vector b is taken to be b = (1 + i)A1 with 1 being
the vector of all entries equal to one. In addition, the complex linear system (3.2) is
normalized by multiplying both sides with h2.

Example 3 Consider the linear systems of (1.1) with

T = I ⊗ V + V ⊗ I, W = 10(I ⊗ Vc + Vc ⊗ I ) + 9(e1e
T
m + emeT

1 ) ⊗ I, (3.3)

where V = tridiag(−1, 2, −1) ∈ R
m×m, Vc = V − e1e

T
m − emeT

1 ∈ R
m×m, e1 and

em are the first and the last unit vectors in R
m, respectively. We take the right-hand

side vector b to be b = (1 + i)A1 with 1 being the vector of all entries equal to one.
Here, T and W correspond to the five-point centered difference matrices approximat-
ing the negative Laplacian operator with homogeneous Dirichlet boundary conditions
and periodic boundary conditions, respectively, on a uniform mesh in the unit square
[0, 1] × [0, 1] with the mesh size h = 1

m+1 .
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Example 4 We consider the following complex Helmholtz equation

− �u + σ1u + iσ2u = g, (3.4)

where σ1 and σ2 are real coefficient functions and u satisfies Dirichlet boundary
conditions in D = [0, 1] × [0, 1]. By discretizing the problem with finite differences
on a m × m grid with mesh size h = 1

m+1 , we obtain a system of linear equations

[(K + σ1I ) + iσ2I ]u = b, (3.5)

where K is the five-point centered difference matrix approximating the negative
Laplacian operator −�. For this problem, K is defined the same as in Example 1.
We also take the right-hand side vector b = (1+ i)A1, with 1 being the vector of all
entries equal to one and normalized the system by multiplying both sides with h2. In
actual computations, we set σ1 = σ2 = 100.

According to [33, 36], the optimal parameters for the GSOR and SBTS methods
are selected based on the following formulas

αGSOR = 2

1 + √
1 + μ2

max

, αSBT S = γ ± √
γ 2 − 2γ

2
, (3.6)

where γ = 2 + μ2
max + μ2

min, and μmax, μmin are the largest and the smallest
eignvalues of S = W−1T . In our implementations, the eigenvalues μmax and μmin

are obtained by means of the power and inverse power methods, respectively. The
parameter of PMHSS iteration method is chosen experimentally which minimizes the

Table 1 Choice of parameters α for tested methods

Example Method Grid

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

PMHSS 1.4 1.4 1.4 1.4 1.4 1.4

No. 1 GSOR 0.552 0.497 0.459 0.437 0.424 0.418

SBTS 0.531 0.524 0.520 0.518 0.517 0.516

PMHSS 0.9 0.9 0.9 0.9 0.9 0.9

No. 2 GSOR 0.455 0.457 0.457 0.457 0.457 0.457

SBTS 0.5217 0.5219 0.5219 0.5219 0.5219 0.5219

PMHSS 0.5 0.5 0.5 0.5 0.5 0.5

No. 3 GSOR 0.908 0.776 0.566 0.354 0.199 0.105

SBTS 0.700 0.610 0.539 0.511 0.503 0.503

PMHSS 0.7 0.9 1 1 1 1

No. 4 GSOR 0.868 0.869 0.869 0.869 0.869 0.869

SBTS 0.662 0.662 0.662 0.663 0.663 0.663
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number of iteration steps. The optimal parameters of the PMHSS, GSOR, and SBTS
iteration methods are listed in Table 1 for different values of m. The selection of
the optimal parameters in the GAOR method that minimize the rate of convergence
is a difficult task. In the GAOR iteration method, the parameters ω and r can be
determined by trial and error on a small example and then used with good results on
larger problems. In our computations, we take ω = 0.6, r = 0.9 in Examples 1 and
2, ω = 0.3, r = 0.4 in Example 3 and ω = 1, r = 0.95 in Example 4. Moreover,
in the block PMHSS and GAOR methods, the preconditioning matrices V and Q are
chosen as W and tW + T , respectively. Here, t is a given real positive constant. It is
clear that matrix tW + T is symmetric positive definite and in actual computations,
we set t = 0.01.

In Tables 2, 3, 4 and 5, the numerical results are presented for Examples 1–4.
According to the exprerimental results for all examples, the GAOR method outper-
forms the PMHSS, GSOR, and SBTS methods in terms of IT, CPU time, and RES,
especially when the size of problem increases (except for Example 3 that the itera-
tion number for grids m = 16, 32, 64 with the estimation parameters are more than
those of the other iteration methods). From the reported results in Tables 2–5, we can
conclude that the iteration steps of the GAOR iteration method almost remain stable.
Therefore, the GAOR iteration method is almost independent of the problem size.
From the above results, we can observe that if suitable preconditioning matrix Q and
numbers ω, r are chosen, the GAOR iteration method is comparable to the mentioned
methods. A dash (–) in Tabel 4 means that the method not only has many iterations
but also takes a long time, so no result is obtained.

We also give the numerical results for the GMRES(30), the PMHSS, GSOR, and
GAOR preconditioned GMRES(30) (PGMRES(30)) methods and the GCG itera-

Table 2 Numerical results for Example 1

Method m 16 32 64 128 256 512

IT 21 21 21 21 21 21

PMHSS CPU 0.0024 0.0143 0.0861 0.9483 6.3743 48.4967

RES 7.8411e-07 8.1006e-07 8.2302e-07 8.314e-07 8.3772e-07 8.4202e-07

IT 23 26 26 29 26 27

GSOR CPU 0.00096 0.0052 0.0341 0.4485 2.6122 21.3205

RES 5.5868e-07 5.7229e-07 7.2335e-07 6.7005e-07 8.4357e-07 8.1531e-07

IT 22 31 39 45 48 52

SBTS CPU 0.0015 0.01 0.0953 1.3802 9.5569 82.0648

RES 8.1751e-07 8.8435e-07 9.6064e-07 8.3404e-07 9.2557e-07 8.0831e-07

IT 18 18 18 18 19 19

GAOR CPU 0.00079 0.0034 0.0286 0.3171 1.9561 14.9379

RES 3.2286e-07 5.1142e-07 7.0632e-07 8.5241e-07 3.4763e-07 5.0741e-07

679Numerical Algorithms (2022) 90:669–685



Table 3 Numerical results for Example 2

Method m 16 32 64 128 256 512

IT 34 37 38 38 38 38

PMHSS CPU 0.0037 0.0276 0.1493 1.6453 11.392 88.0628

RES 7.9625e-07 7.025e-07 7.2213e-07 8.2914e-07 8.6555e-07 8.7629e-07

IT 26 28 25 23 23 23

GSOR CPU 0.0009 0.005 0.033 0.3782 2.413 18.2146

RES 7.525e-07 7.1347e-07 5.9843e-07 9.9998e-07 8.8207e-07 8.6732e-07

IT 78 77 77 77 77 77

SBTS CPU 0.005 0.0248 0.1798 2.3079 15.5466 120.7689

RES 8.6203e-07 9.5208e-07 9.5976e-07 9.6362e-07 9.6455e-07 9.6476e-07

IT 19 17 17 16 16 16

GAOR CPU 0.0007 0.0034 0.0272 0.2699 1.63 12.6371

RES 4.778e-07 9.5444e-07 4.7654e-07 8.2619e-07 7.7446e-07 7.6478e-07

tion method in Tables 6, 7, 8 and 9. As seen, the GMRES(30) method converges
slowly or even fails to converge without preconditioning. A good preconditioner
can be improved the convergence rate of this method. The PMHSS and GAOR
preconditioners are defined by

PPMHSS = α + 1

2α

(
I −I

I I

) (
αW + T 0

0 αW + T

)
, PGAOR =

(
W 0
rT W + Q

)
.

(3.7)
In all cases, we see that the use of these three preconditioners leads to better perfor-
mance and reduced the number of iteration of the GMRES(30). In Table 8, dagger
symbol (†) means that no convergence has been obtained. From Tables 6–9, we

Table 4 Numerical results for Example 3

Method m 16 32 64 128 256 512

IT 30 30 30 31 34 36

PMHSS CPU 0.0045 0.0297 0.2307 2.2294 18.2848 162.4137

RES 7.9808e-07 7.7843e-07 7.6963e-07 7.143e-07 7.8033e-07 9.5409e-07

IT 7 11 20 44 71 131

GSOR CPU 0.0005 0.0044 0.0501 1.1889 12.7732 183.3644

RES 4.7156e-07 4.4784e-07 4.5276e-07 9.5091e-07 8.0566e-07 8.6007e-07

IT 8 16 43 152 555 –

SBTS CPU 0.0011 0.0095 0.2058 7.3294 197.8019 –

RES 5.8114e-07 9.0157e-07 8.6624e-07 9.207e-07 9.8231e-07 –

IT 44 46 45 43 43 43

GAOR CPU 0.0023 0.0142 0.1268 1.1384 7.8505 61.0846

RES 9.8519e-07 7.7518e-07 9.9824e-07 9.287e-07 9.5037e-07 7.1059e-07
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Table 5 Numerical results for Example 4

Method m 16 32 64 128 256 512

IT 30 36 39 40 40 40

PMHSS CPU 0.0026 0.0190 0.1531 1.798 12.1975 93.8366

RES 7.1117e-07 8.4304e-07 8.0381e-07 8.0746e-07 9.0815e-07 9.4086e-07

IT 9 9 8 8 7 7

GSOR CPU 0.0003 0.0017 0.0104 0.1146 0.7274 5.6961

RES 2.7578e-07 2.1774e-07 5.7026e-07 2.2682e-07 8.262e-07 6.8742e-07

IT 10 10 10 10 10 10

SBTS CPU 0.0006 0.0030 0.0247 0.2973 1.9744 15.805

RES 7.3355e-07 8.9664e-07 9.9912e-07 9.3415e-07 9.3674e-07 9.371e-07

IT 8 8 7 7 6 5

GAOR CPU 0.0002 0.0016 0.0107 0.1020 0.6085 4.0305

RES 1.9245e-07 9.9945e-08 4.1871e-07 1.5403e-07 4.6042e-07 6.2429e-07

Table 6 Numerical results of GMRES(30), PGMRES(30), and GCG methods for Example 1

Method m 16 32 64 128 256 512

GMRES(30) IT 8(24) 18(30) 42(19) 85(12) 139(11) 214(29)

CPU 0.0252 0.0519 0.6687 3.5144 37.4451 299.143

PMHSS-GMRES(30) IT 1(8) 1(10) 1(11) 1(11) 1(11) 1(11)

CPU 0.0053 0.014 0.0778 0.4233 2.2343 11.4347

GSOR-GMRES(30) IT 1(12) 1(14) 1(16) 1(18) 1(20) 1(21)

CPU 0.008 0.0283 0.1206 0.7909 4.2298 20.9036

GAOR-GMRES(30) IT 1(9) 1(10) 1(11) 1(12) 1(12) 1(13)

CPU 0.0059 0.0151 0.0780 0.4680 2.4283 13.6663

GCG IT 16 20 24 28 30 32

CPU 0.0024 0.0061 0.0407 0.399 3.2813 25.8069

Table 7 Numerical results of GMRES(30), PGMRES(30), and GCG methods for Example 2

Method m 16 32 64 128 256 512

GMRES(30) IT 3(18) 9(5) 49(17) 130(19) 285(6) 894(20)

CPU 0.0081 0.024 0.7570 5.4378 80.122 1288.1007

PMHSS-GMRES(30) IT 1(13) 1(14) 1(14) 1(14) 1(14) 1(14)

CPU 0.0057 0.022 0.1009 0.5389 2.7444 14.8162

GSOR-GMRES(30) IT 1(8) 1(8) 1(8) 1(8) 1(8) 1(8)

CPU 0.0035 0.0119 0.0552 0.3021 1.5162 7.8608

GAOR-GMRES(30) IT 1(6) 1(6) 1(6) 1(6) 1(6) 1(6)

CPU 0.0027 0.0094 0.0425 0.2357 1.1942 5.9924

GCG IT 10 9 9 9 8 8

CPU 0.0006 0.0024 0.0137 0.1383 0.8307 6.4152
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Table 8 Numerical results of GMRES(30), PGMRES(30), and GCG methods for Example 3

Method m 16 32 64 128 256 512

GMRES(30) IT 159(12) 370(4) 1217(6) † † †

CPU 0.2352 1.0953 18.8767 † † †

PMHSS-GMRES(30) IT 1(12) 1(14) 1(15) 1(15) 1(15) 1(16)

CPU 0.0055 0.0271 0.1474 0.6990 3.1238 17.6173

GSOR-GMRES(30) IT 1(12) 1(14) 1(16) 1(20) 1(23) 1(26)

CPU 0.0066 0.0267 0.1541 0.8102 4.9566 28.576

GAOR-GMRES(30) IT 1(12) 1(14) 1(18) 1(22) 1(26) 1(27)

CPU 0.0051 0.0268 0.1818 0.9636 5.4925 30.0014

GCG IT 8 10 12 15 22 34

CPU 0.0005 0.004 0.0426 0.3666 3.8141 47.2333

observe that the iteration steps of the PMHSS preconditined GMRES(30) are stable,
while the IT of the GSOR and GAOR preconditioned GMRES(30) are growing with
the increase of m for Examples 1 and 3. We can also see that the GCG method con-
verges to the true solution of (1.5) in acceptable iterations and the results for this
method show that the IT and CPU timings are clearly much better than GMRES(30),
especially for larger problems. In comparison with PGMRES(30) methods, the GCG
method requires few iterations and computational costs for some of these examples.
In general, with problem size increases, the IT of the GCG method remains almost
constant or grows slowly. This shows the advantage of the GCG method in the solu-
tion of linear systems (1.5). Hence, the GCGmethod can be competitive and effective
for solving some of these kinds of problems. We stress that it is possible that the
GAOR and GCG methods are not competitive for all test problems considered here
and they may turn out to be useful on some other problems.

Table 9 Numerical results of GMRES(30), PGMRES(30), and GCG methods for Example 4

Method m 16 32 64 128 256 512

GMRES(30) IT 2(3) 3(23) 6(23) 15(11) 30(19) 90(22)

CPU 0.0027 0.0112 0.0877 0.5330 7.2855 111.8883

PMHSS-GMRES(30) IT 1(15) 1(15) 1(16) 1(16) 1(16) 1(16)

CPU 0.0065 0.0221 0.1243 0.6573 3.1068 16.2519

GSOR-GMRES(30) IT 1(7) 1(7) 1(7) 1(7) 1(7) 1(7)

CPU 0.0029 0.0104 0.0682 0.3165 1.3604 6.8777

GAOR-GMRES(30) IT 1(6) 1(6) 1(6) 1(6) 1(6) 1(6)

CPU 0.0025 0.0092 0.0427 0.2411 1.17 5.9263

GCG IT 11 11 10 10 9 9

CPU 0.0013 0.0027 0.0147 0.1480 0.9195 7.5259
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4 Conclusions

In this paper, we have revisited the use of the GAOR and GCG methods for solv-
ing the real equivalent formulation of complex linear systems (1.1). We reported
some numerical experiments to compare the performance of the GAOR and GCG
with recently proposed iteration methods in the literature. The numerical experiments
show that the GAOR method may be better than PMHSS, GSOR and SBTS methods
if we choose the suitable value of parametrs and preconditioning matrix. Further-
more, the GAOR iteration method was applied as a preconditioner to accelerate the
convergence rate of GMRES(30). We also employed the generalization of the CG
(GCG) method for solving the linear systems of (1.5). As seen, the GCG method
works fine when the systems of the form Mv = g are esay to solve. Our experiments
indicate that the GCG method can outperform in practice. It appears that the methods
described here, possibly with some modification, may be applicable in at least some
of these kind of problems and exploring these would be an interesting area for future
research.
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