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Abstract
In this paper, we consider a boundary value problem (BVP) for a fourth-order non-
linear integro-differential equation. By reducing the problem to an operator equation,
we establish the existence and uniqueness of the solution and construct a numeri-
cal method for solving it. We prove that the method is of second-order accuracy and
obtain an estimate for the total error. Some examples demonstrate the validity of the
obtained theoretical results and the efficiency of the numerical method.

Keywords Fourth-order nonlinear integro-differential equation · Existence and
uniqueness of solution · Iterative method · Total error

1 Introduction

Integro-differential equations are the mathematical models of many phenomena of
physics, biology, hydromechanics, chemistry, etc. In general, it is impossible to
find the exact solutions of the problems involving these equations, especially when
they are nonlinear. Therefore, many analytical approximate methods and numerical
methods have been developed for these equations (see, e.g., [1, 2, 11–18]).

Below, we mention some works concerning the solution methods for integro-
differential equations. First, it is worthy to mention the recent work of Tahernezhad
and Jalilian in 2020 [15]. In this work the authors consider the second-order linear
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problem

u′′(x) + p(x)u′(x) + q(x)u(x) = f (x) +
∫ b

a

k(x, t)u(t)dt, a < x < b,

u(a) = α, u(b) = β,

where p(x), q(x), k(x, t) are sufficiently smooth functions.
Using non-polynomial spline functions, namely, the exponential spline functions,

the authors constructed the numerical solution of the problem and proved that the
error of the approximate solution is O(h2), where h is the grid size on [a, b]. Before
[15] there are interesting works of Chen et al. [2, 3], where the authors used a
multiscale Galerkin method for constructing a approximate solution of the above
second-order problem, for which the computed convergence rate is two.

Besides the researches evolving the second-order integro-differential equations,
recently many authors have been interested in fourth-order integro-differential equa-
tions due to their wide applications. We first mention the work of Singh and Wazwaz
[13]. In this work the authors developed a technique based on the Adomian decom-
position method with the Green’s function for constructing a series solution of the
nonlinear Voltera equation associated with the Dirichlet boundary conditions

y(4)(x) = g(x) +
∫ x

0
k(x, t)f (y(t))dt, 0 < x < b, (1)

y(0) = α1, y′(0) = α2, y(b) = α3, y′(b) = α4. (2)

Under some conditions it was proved that the series solution converges as a geometric
progression.

For the linear Fredholm IDE [1]

y(4)(x) + αy′′(x) + βy(x) −
∫ b

a

K(x, t)y(t)dt = f (x), a < x < b,

with the Navier boundary conditions, the difference method and the trapezium rule
are used to design the corresponding linear system of algebraic equations. A new
variant called the Modified Arithmetic Mean iterative method is proposed for solving
the latter system, but the error estimate of the method is not obtained.
The boundary value problem for the nonlinear IDE

y(4)(x) − εy′′(x) − 2

π

( ∫ π

0
|y′(t)|2dt

)
y′′(x) = p(x), 0 < x < π,

y(0) = 0, y(π) = 0, y′′(0) = 0, y′′(π) = 0

was considered in [10, 18], where the authors constructed approximate solutions by
the iterative and spectral methods, respectively. Recently, Dang and Nguyen [6] stud-
ied the existence and uniqueness of solution and constructed iterative method for
finding the solution for the IDE

u(4)(x) − M
(∫ L

0
|u′(t)|2dt

)
u′′(x) = f (x, u, u′, u′′, u′′′), 0 < x < L,

u(0) = 0, u(L) = 0, u′′(0) = 0, u′′(L) = 0,
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where M is a continuous non-negative function.
Very recently, Wang [17] considered the problem

y(4)(x) = f (x, y(x),

∫ 1

0
k(x, t)y(t)dt), 0 < x < 1,

y(0) = 0, y(1) = 0, y ′′(0) = 0, y′′(1) = 0. (3)

This problem can be seen as a generalization of the linear fourth-order problem

u(4)(x) + Mu(x) − N

∫ 1

0
k(x, t)u(t)dt) = p(x), 0 < x < 1,

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0,

where M, N are constants, p ∈ C[0, 1]. The latter problem arises from the models
for suspension bridges [19, 20], quantum theory [21].

Using the monotone method and a maximum principle, Wang constructed the
sequences of functions, which converge to the extremal solutions of the problem (3).

Motivated by the above facts, in this paper we consider an extension of the above
problem, namely, the problem

u(4)(x) = f (x, u(x), u′(x),

∫ 1

0
k(x, t)u(t)dt),

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0, (4)

where the function f (x, u, v, z) and k(x, t) are assumed to be continuous. The pres-
ence of an extra u′ in the right hand side function does not allow to use the argument
in [17] to study the existence of solutions of the problem. Here, using the method
developed in our previous papers [4–9] we establish the existence and uniqueness of
the solution and propose an iterative method at both continuous and discrete levels
for finding the solution. The second-order convergence of the method is proved. The
theoretical results are illustrated by some examples.

2 Existence results

Using the methodology in [4–9] we introduce the operator A defined in the space of
continuous functions C[0, 1] by the formula

(Aϕ)(x) = f (x, u(x), u′(x),

∫ 1

0
k(x, t)u(t)dt), (5)

where u(x) is the solution of the boundary value problem

u′′′′ = ϕ(x), 0 < x < 1,

u(0) = u′′(0) = u(1) = u′′(1) = 0. (6)

It is easy to verify the following lemma.
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Lemma 1 If the function ϕ is a fixed point of the operator A, i.e., ϕ is the solution
of the operator equation

Aϕ = ϕ, (7)

where A is defined by (5)–(6) then the function u(x) determined from the BVP (6) is
a solution of the BVP (4). Conversely, if the function u(x) is the solution of the BVP
(4) then the function

ϕ(x) = f (x, u(x), u′(x),

∫ 1

0
k(x, t)u(t)dt)

satisfies the operator (7).

Due to the above lemma we shall study the original BVP (4) via the operator (7).
Before doing this we notice that the BVP (6) has a unique solution representable in
the form

u(x) =
∫ 1

0
G0(x, s)ϕ(s)ds, 0 < t < 1, (8)

where

G0(x, s) = 1

6

{
s(x − 1)(x2 − x + s2), 0 ≤ s ≤ x ≤ 1

x(s − 1)(s2 − s + x2), 0 ≤ x ≤ s ≤ 1
(9)

is the Green’s function of the operator u′′′′(t) = 0 associated with the homogeneous
boundary conditions u(0) = u′′(0) = u(1) = u′′(1) = 0.
Differentiating both sides of (8) gives

u′(x) = ∫ 1
0 G1(x, s)ϕ(s)ds, (10)

where

G1(x, s) = 1

6

{
s(3x2 − 6x + s2 + 2), 0 ≤ s ≤ x ≤ 1,

(s − 1)(3x2 − 2s + s2), 0 ≤ x ≤ s ≤ 1.
(11)

Set

M0 = max
0≤x≤1

∫ 1

0
|G0(x, s)|ds,

M1 = max
0≤x≤1

∫ 1

0
|G1(x, s)|ds,

M2 = max
0≤x≤1

∫ 1

0
|k(x, s)|ds (12)

It is easy to obtain

M0 = 5

384
, M1 = 1

24
. (13)

Now for any positive number M , we define the domain

DM = {(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤ M0M,

|v| ≤ M1M, |z| ≤ M0M2M}. (14)
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As usual, we denote by B[0, M] the closed ball centered at 0 with radius M in the
space C[0, 1], i.e.,

B[0, M] = {u ∈ C[0, 1] | ‖u‖ ≤ M},
where ‖u‖ = max0≤x≤1 |u(x)|.

Theorem 1 (Existence and uniqueness) Suppose that the function k(x, t) is contin-
uous in the square [0, 1] × [0, 1] and there exist numbers M > 0, L0, L1, L2 ≥ 0
such that:

(i) The function f (x, u, v, z) is continuous in the domain DM and
|f (x, u, v, z)| ≤ M , ∀(x, u, v, z) ∈ DM .

(ii) |f (x2, u2, v2, z2) − f (x1, u1, v1, z1)| ≤ L0|u2 − u1| + L1|v2 − v1| + L2|z2 −
z1|, ∀(xi, ui, vi, zi) ∈ DM, i = 1, 2.

(iii) q = L0M0 + L1M1 + L2M0M2 < 1.

Then the problem (4) has a unique solution u ∈ C4[0, 1] satisfying |u(x)| ≤ M0M,

|u′(x)| ≤ M1M for any 0 ≤ x ≤ 1.

Proof Under the assumptions of the theorem we shall prove that the operator A is a
contraction mapping in the closed ball B[O, M]. Then the operator (7) has a unique
solution u ∈ C(4)[0, 1] and this implies the existence and uniqueness of solution of
the BVP (4).

Indeed, take ϕ ∈ B[O, M]. Then the problem (6) has a unique solution of the form
(8). From there and (12) we obtain |u(x)| ≤ M0‖ϕ‖ for all x ∈ [0, 1]. Analogously,
we have ‖u′(x)‖ ≤ M1‖ϕ‖ for all x ∈ [0, 1]. Denote by K the integral operator
defined by

(Ku)(x) =
∫ 1

0
k(x, t)u(t)dt .

Then from the last equation in (12) we have the estimate |(Ku)(x)| ≤ M0M2‖ϕ‖,
x ∈ [0, 1]. Thus, if ϕ ∈ B[O, M], i.e., ‖ϕ‖ ≤ M then for any x ∈ [0, 1] we have

|u(x)| ≤ M0M, |u′(x)| ≤ M1M, |(Ku)(x)| ≤ M0M2M .

Therefore, (x, u(x), u′(x), (Ku)(x)) ∈ DM . By the assumption (i) there is

|f (x, u(x), u′(x), (Ku)(x))| ≤ M ∀x ∈ [0, 1].
Hence, |(Aϕ)(x)| ≤ M, ∀x ∈ [0, 1] and ‖Aϕ‖ ≤ M . It means thatAmaps B[O, M]
into itself.

Next, take ϕ1, ϕ2 ∈ B[O, M]. Using the assumption (ii) and (iii) it is easy to
obtain

‖Aϕ2 − Aϕ1‖ ≤ (L0M0 + L1M1 + L2M0M2)‖ϕ2 − ϕ1‖ = q‖ϕ2 − ϕ1‖.
Since q < 1 the operator A is a contraction in B[O, M]. This completes the proof of
the theorem.
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Now, in order to study positive solutions of the BVP (4) we introduce the domain

D+
M = {(x, u, v, z) | 0 ≤ x ≤ 1, 0 ≤ u ≤ M0M,

|v| ≤ M1M, |z| ≤ M0M2M}. (15)

and denote

SM = {ϕ ∈ C[0, 1], 0 ≤ ϕ(x) ≤ M}.

Theorem 2 (Positivity of solution) Suppose that the function k(x, t) is continuous in
the square [0, 1] × [0, 1] and there exist numbers M > 0, L0, L1, L2 ≥ 0 such that:

(i) The function f (x, u, v, z) is continuous in the domain D+
M and 0 ≤

f (x, u, v, z) ≤ M, ∀(x, u, v, z) ∈ D+
M and f (x, 0, 0, 0) �≡ 0.

(ii) |f (x2, u2, v2, z2)−f (x1, u1, v1, z1)| ≤ L0|u2−u1|+L1|v2−v1|+L2|z2−z1|,
∀(xi, ui, vi, zi) ∈ D+

M, i = 1, 2.
(iii) q = L0M0 + L1M1 + L2M0M2 < 1.

Then the problem (4) has a unique positive solution u ∈ C4[0, 1] satisfying 0 ≤
u(x) ≤ M0M, |u′(x)| ≤ M1M for any 0 ≤ x ≤ 1.

Proof Similarly to the proof of Theorem 1, where instead ofDM and B[O; M] there
stand D+

M and SM , we conclude that the problem has a non-negative solution. Due to
the condition f (x, 0, 0, 0) �≡ 0, this solution must be positive.

3 Numerical method

In this section we suppose that all the conditions of Theorem 1 are satisfied. Then the
problem (4) has a unique solution. For finding this solution consider the following
iterative method:

1. Given

ϕ0(x) = f (x, 0, 0, 0). (16)

2. Knowing ϕm(x) (m = 0, 1, ...) compute

um(x) =
∫ 1

0
G0(x, t)ϕm(t)dt,

vm(x) =
∫ 1

0
G1(x, t)ϕm(t)dt,

zm(x) =
∫ 1

0
k(x, t)um(t)dt . (17)

3. Update

ϕm+1(x) = f (x, um(x), vm(x), zm(x)). (18)

This iterative method indeed is the successive iterative method for finding the fixed
point of operator A. Therefore, it converges with the rate of geometric progression
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and there holds the estimate

‖ϕm − ϕ‖ ≤ qm

1 − q
‖ϕ1 − ϕ0‖ = pmd,

where ϕ is the fixed point of the operator A and

pm = qm

1−q
, d = ‖ϕ1 − ϕ0‖. (19)

This estimate implies the following result of the convergence of the iterative
method (16)–(18).

Theorem 3 Under the conditions of Theorem 1 the iterative method (16)–(18)
converges and for the approximate solution uk(t) there hold estimates

‖um − u‖ ≤ M0pmd, ‖u′
m − u′‖ ≤ M1pmd,

where u is the exact solution of the problem (4), pm and d are defined by (19).

To numerically realize the above iterative method we construct a correspond-
ing discrete iterative method. For this purpose cover the interval [0, 1] by the
uniform grid ω̄h = {xi = ih, h = 1/N, i = 0, 1, ..., N} and denote by
Φm(x), Um(x), Vm(x), Zm(x) the grid functions, which are defined on the grid ω̄h

and approximate the functions ϕm(x), um(x), vm(x), zm(x) on this grid.
Consider now the following discrete iterative method:

1. Given
Φ0(xi) = f (xi, 0, 0, 0), i = 0, ..., N . (20)

2. Knowing Φm(xi), m = 0, 1, ...; i = 0, ..., N, compute approximately the
definite integrals (17) by the trapezium formulas

Um(xi) =
N∑

j=0

hρjG0(xi, xj )Φm(xj ),

Vm(xi) =
N∑

j=0

hρjG1(xi, xj )Φm(xj ),

Zm(xi) =
N∑

j=0

hρjk(xi, xj )Um(xj ), i = 0, ..., N, (21)

where ρj is the weight of the trapezium formula, namely

ρj =
{
1/2, j = 0, N

1, j = 1, 2, ..., N − 1.

3. Update
Φm+1(xi) = f (xi, Um(xi), Vm(xi), Zm(xi)). (22)

In order to get the error estimates for the approximate solution for u(t) and its
derivatives on the grid we need some following auxiliary results.
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Proposition 1 Assume that the function f (t, u, v, z) has all continuous partial
derivatives up to second order in the domainDM and the kernel function k(x, t) also
has all continuous partial derivatives up to second order in the square [0, 1]× [0, 1].
Then for the functions ϕm(x), um(x), vm(x), zm(x), m = 0, 1, ..., constructed by
the iterative method (16)–(18) we have ϕm(x) ∈ C2[0, 1], um(x) ∈ C6[0, 1],
vm(x) ∈ C5[0, 1], zm(x) ∈ C2[0, 1].

Proof We prove the proposition by induction. For k = 0, by the assumption on
the function f we have ϕ0(t) ∈ C2[0, 1] since ϕ0(x) = f (x, 0, 0, 0). Taking into
account

u0(x) =
∫ 1

0
G0(x, t)ϕ0(t)dt

we deduce that the function u0(x) is the solution of the BVP

u
(4)
0 (x) = ϕ0(x), x ∈ (0, 1),

u0(0) = u0(1) = u′′
0(0) = u′′

0(1) = 0.

Therefore, u0(x) ∈ C6[0, 1]. It implies that v0(x) ∈ C5[0, 1] because v0(x) = u′
0(x).

Since by assumptions k(x, t) has all continuous derivatives up to second order, the
function z0(x) = ∫ 1

0 k(x, t)u0(t)dt belongs to C2[0, 1].
Now suppose ϕm(x) ∈ C2[0, 1], um(x) ∈ C6[0, 1], vm(x) ∈ C5[0, 1], zm(x) ∈

C2[0, 1]. Then, because ϕm+1(x) = f (x, um(x), vm(x), zm(x)) and the functions
f by the assumption has continuous derivative in all variables up to order 2, it fol-
lows that ϕm+1(x) ∈ C2[0, 1]. Repeating the same argument as for ϕ0(x) above we
obtain that um+1(x) ∈ C6[0, 1], vm+1(x) ∈ C5[0, 1], zm+1(x) ∈ C2[0, 1] Thus, the
proposition is proved.

Proposition 2 For any function ϕ(x) ∈ C2[0, 1] there holds the estimate
∫ 1

0
Gn(xi, t)ϕ(t)dt =

N∑
j=0

hρjGn(xi, tj )ϕ(tj ) + O(h2) (n = 0, 1). (23)

Proof The above estimate is obvious in view of the error estimate of the compound
trapezium formula because the functions Gn(xi, t) (n = 0, 1) are continuous at tj
and are polynomials in the intervals [0, tj ] and [tj , 1].

Proposition 3 Under the assumptions of Proposition 1, for any m = 0, 1, ... there
hold the estimates

‖Φm − ϕm‖ = O(h2), ‖Um − um‖ = O(h2), (24)

‖Vm − vm‖ = O(h2), ‖Zm − zm‖ = O(h2). (25)

where ‖.‖ = ‖.‖ω̄h
is the max-norm of function on the grid ω̄h.
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Proof We prove the proposition by induction. Form = 0 we have immediately ‖Φ0−
ϕ0‖ = 0. Next, by the first equation in (17) and Proposition 2 we have

u0(xi) =
∫ 1

0
G0(xi, t)ϕ0(t)dt =

N∑
j=0

hρjG0(xi, tj )ϕ0(tj ) + O(h2) (26)

for any i = 0, ..., N . On the other hand, in view of the first equation in (21) we have

U0(xi) =
N∑

j=0

hρjG0(xi, tj )Φ0(tj ). (27)

Therefore, |U0(ti) − u0(ti)| = O(h2) because Φ0(tj ) = ϕ0(tj ) = f (tj , 0, 0, 0).
Consequently, ‖U0 − u0‖ = O(h2).
Similarly, we have

‖V0 − v0‖ = O(h2). (28)

Next, by the trapezium formula we have

z0(xi) =
∫ 1

0
k(xi, t)u0(t)dt =

N∑
j=0

hρjk(xi, tj )u0(tj ) + O(h2),

while by the third equation in (21) we have

Z0(xi) =
N∑

j=0

hρjk(xi, tj )U0(tj ), i = 0, ..., N .

Therefore,

∣∣∣Z0(xi) − z0(xi)

∣∣∣ =
∣∣∣

N∑
j=0

hρjk(xi, tj )(U0(tj ) − u0(tj ))

∣∣∣ + O(h2)

≤
N∑

j=0

hρj |k(xi, tj )||U0(tj ) − u0(tj )| + O(h2)

≤ Ch2
N∑

j=0

hρj |k(xi, tj )| + O(h2)

≤ CC1h
2

N∑
j=0

hρj + O(h2) = O(h2)

because |U0(tj )−u0(tj )| ≤ Ch2, |k(xi, tj )| ≤ C1, where C, C1 are some constants.
Now suppose that (24) and (25) are valid for m ≥ 0. We shall show that these

estimates are valid for m + 1. By the Lipschitz condition of the function f and the
estimates (24) and (25) it is easy to obtain the estimate

‖Φm+1 − ϕm+1‖ = O(h2).
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Now from the first equation in (17) by Proposition 2 we have

um+1(xi) =
∫ 1

0
G0(xi, t)ϕm+1(t)dt =

N∑
j=0

hρjG0(xi, xj )ϕm+1(xj ) + O(h2).

On the other hand by the first formula in (21) we have

Um+1(xi) =
N∑

j=0

hρjG0(xi, xj )Φm+1(xj ).

From this equality and the above estimates we obtain the estimate

‖Um+1 − um+1‖ = O(h2).

Similarly, we obtain

‖Vm+1 − vm+1‖ = O(h2), ‖Zm+1 − zk+1‖ = O(h2).

Thus, by induction we have proved the proposition.

Now combining Proposition 3 and Theorem 3 results in the following theorem.

Theorem 4 Assume that all the conditions of Theorem 1 and Proposition 1 are sat-
isfied. Then, for the approximate solution of the problem (4) obtained by the discrete
iterative method on the uniform grid with grid size h there hold the estimates

‖Um − u‖ ≤ M0pmd + O(h2), ‖Vm − u′‖ ≤ M2pmd + O(h2). (29)

Proof The first above estimate is easily obtained if representing

Um(ti) − u(ti) = (um(ti) − u(ti)) + (Um(ti) − um(ti))

and using the first estimate in Theorem 3 and the second estimate in (24). The
remaining estimate is obtained in the same way. Thus, the theorem is proved.

4 Examples

Example 1 Consider the problem (4) with

k(x, t) = ex sin(πt), (x, t) ∈ [0, 1] × [0, 1],
f (x, u(x), u′(x),

∫ 1

0
k(x, t)u(t)dt) = u2(x)

∫ 1

0
k(x, t)u(t)dt + u(x)u′(x)

−1

2
ex sin2(πx) + π4 sin(πx) − π

2
sin(2πx).

In this case

f (x, u, v, z) = u2z + uv − 1

2
ex sin2(πx) + π4 sin(πx) − π

2
sin(2πx)
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and M2 = 2e

π
. It is possible to verify that the function u = sin(πx) is the exact

solution of the problem. In the domain DM defined by

DM = {(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤ M0M, |u′| ≤ M1M, |z| ≤ M0M2M}
we have

|f (x, u, v, z)| ≤ M3
0M2M

3 + M0M1M
2 + π4 + π

2
+ e

2
.

It is possible to verify that for M = 113 all the conditions of Theorem 1 are satisfied
with L0 = 12.2010, L1 = 1.4714, L2 = 2.1649, q = 0.2690. Therefore, the prob-
lem has a unique solution u(x) satisfying the estimates |u(x)| ≤ 1.4714, |u′(x)| ≤
4.7083. These theoretical estimates are somewhat greater than the exact estimates
|u(x)| ≤ 1, |u′(x)| ≤ π .

Below we report the numerical results by the discrete iterative method (20)–(22)
for the problem. In Tables 1 and 2 we use the notation Error = ‖Um − u‖, where u

is the exact solution of the problem.
It is interesting to notice that if taking the stopping criterion ‖Φm − Φm−1‖ ≤

10−10 instead of ‖Um − u‖ ≤ h2 then we obtain better accuracy of the approximate
solution with more iterations. See Table 2.

From Table 2 we see that the accuracy of the approximate solution is near O(h4)

although by the proved theory it is only O(h2).

Example 2 (Example 4.2 in [17]) Consider the nonlinear fourth-order BVP

u(4)(x) = sin(πx)[(2 − u2(x))
∫ 1
0 tu(t)dt + 1], x ∈ (0, 1)

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) = 0.
(30)

This is the problem (4) with

k(x, t) = sin(πx)t, (x, t) ∈ [0, 1] × [0, 1],
f (x, u(x), u′(x),

∫ 1
0 k(x, t)u(t)dt) = (2 − u2(x))

∫ 1
0 sin(πx)tu(t)dt + sin(πx).

Table 1 The convergence in Example 1 for the stopping criterion ‖Um − u‖ ≤ h2

N h2 m Error

50 4.0000e-04 2 1.4305e-04

100 1.0000e-04 3 2.8588e-06

150 4.4444e-05 3 2.8599e-06

200 2.5000e-05 3 2.8602e-06

300 1.1111e-05 3 2.8603e-06

400 6.2500e-06 3 2.8603e-06

500 4.0000e-06 3 2.8603e-06

800 1.5625e-06 4 5.7485e-08

1000 1.0000e-06 4 5.7486e-08
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Table 2 The convergence in Example 1 for the stopping criterion ‖Φm − Φm−1‖ ≤ 10−10

N h2 m Error

50 4.0000e-04 7 2.2152e-08

100 1.0000e-04 7 1.3831e-09

150 4.4444e-05 7 2.7279e-10

200 2.5000e-05 7 8.5995e-11

300 1.1111e-05 7 1.6618e-11

400 6.2500e-06 7 4.9447e-12

500 4.0000e-06 7 1.7567e-12

800 1.5625e-06 7 1.4588e-13

1000 1.0000e-06 7 3.3318e-13

So, f (x, u, v, z) = (2 − u2)z + sin(πx).
It is easy to see that M2 = max0≤x≤1

∫ 1
0 |k(x, t)|dt = 1

2 . Since M0 and M1 are given
by (13) we define

DM = {(x, u, v, z) | 0 ≤ x ≤ 1, |u| ≤ 5
384M, |v| ≤ 1

24M, |z| ≤ 5
768M}. (31)

It is possible to verify that forM = 1.1 all the assumptions of Theorem 1 are satisfied
with L0 = 2.0515e − 04, L1 = 0, L2 = 2, q = 0.0130. Therefore, the problem (30)
has a unique solution satisfying |u(x)| ≤ 0.0143, |u′(x)| ≤ 0.0458.

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 1 The graph of the approximate solution in Example 2
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It is worth emphasizing that in [17] by the monotone method the author could only
prove the convergence of the iterative sequences to extremal solutions of the problem
but not the existence and uniqueness of solution.

Using the discrete iterative method (20)–(22) on the grid with grid step h = 0.01
and the stopping criterion ‖Φm −Φm−1‖ ≤ 10−10 we found an approximate solution
after 7 iterations. The graph of this approximate solution is depicted in Fig. 1.

5 Conclusion

In this paper we have established the existence and uniqueness of the solution for
a fourth-order nonlinear integro-differential equation with the Navier boundary con-
ditions and proposed an iterative method at both continuous and discrete levels for
finding the solution. The second order of accuracy of the discrete method has been
proved. Some examples, where the exact solution is known and is not known, demon-
strate the validity of the obtained theoretical results and the efficiency of the iterative
method. It should be emphasized that for the example of Wang in [17] we have
established the existence and uniqueness of solution and found it numerically but
Wang could prove only the convergence of the iterative sequences constructed by the
monotone method to extremal solutions.

The method used in this paper with appropriate modifications can be applied to
nonlinear integro-differential equations of any order with other boundary conditions
and more complicated nonlinear terms. This is the direction of our research in the
future.
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