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Abstract
We propose a new numerical method for semi-infinite optimization problems whose
objective function is a nonsmooth function. Existing numerical methods for solving
semi-infinite programming (SIP) problems make strong assumptions on the struc-
ture of the objective function, e.g., differentiability, or are not guaranteed to furnish
a feasible point on finite termination. In this paper, we propose a feasible proximal
bundle method with convexification for solving this class of problems. The main
idea is to derive upper bounding problems for the SIP by replacing the infinite num-
ber of constraints with a finite number of convex relaxation constraints, introduce
improvement functions for the upper bounding problems, construct cutting plane
models of the improvement functions, and reformulate the cutting plane models as
quadratic programming problems and solve them. The convex relaxation constraints
are constructed with ideas from the αBB method of global optimization. Under mild
conditions, we showed that every accumulation point of the iterative sequence is
an ε-stationary point of the original SIP problem. Under slightly stronger assump-
tions, every accumulation point of the iterative sequence is a local solution of the
original SIP problem. Preliminary computational results on solving nonconvex, non-
smooth constrained optimization problems and semi-infinite optimization problems
are reported to demonstrate the good performance of the new algorithms.
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1 Introduction

In this paper, we consider the following nonsmooth, nonconvex optimization problem{
min
x∈X

f (x)

s.t. g(x, t) ≤ 0, t ∈ T ,
(1)

where f : Rn → R is locally Lipschitz but potentially nonsmooth and nonconvex,
g : Rn × T → R is twice continuously differentiable on X × T . In addition, T is
a fixed, nonempty compact subset of Rp and X is a convex compact subset of Rn.
This problem is called the semi-infinite programming (SIP) problem. For simplicity
of notation, we consider the semi-infinite problem with one semi-infinite constraint
and a one-dimensional index set T = [a, b] , that is p = 1. However, the algorithm
proposed in this paper might be helpful to deal with more general cases.

SIP has recently drawn a lot of attention due to its application in many different
fields, including portfolio problem, robot trajectory planning, vibrating membrane
problem, minimal cost control of air pollution, and optimization over probability
measures (see [11, 15, 22]).

There exist a wide range of numerical methods for SIP problems. Traditional
methods for SIP like discretization, exchange, and reduction-based [14, 21, 32, 39,
44] solve a sequence of finitely nonlinear programming subproblems, that is, sub-
problems with finitely many constraints chosen from the original constraints. In
particular, in the reduction-based methods, the finite subset of constraints is gener-
ated from finding implicitly all the local maxima t (x) of g(x, ·) on T for each x ∈ X.
Based on this reduction principle, a number of nonsmooth approaches have been pre-
sented [10, 24, 31]. These traditional methods suffer from the major drawback that
they generally do not provide a feasible point in a finite number of iterations.

A breakthrough for SIP was achieved by Bhattacharjee et al. [4], who replaced
the semi-infinite constraint by an overestimation obtained via interval extensions and
presented a convergent upper bounding approach to SIP. It is the first algorithm with
feasible iterates for SIP, to our knowledge. Based on this upper bounding approach,
a number of algorithms for finding the global solution of SIP problems have been
presented [5, 8, 27, 29, 30]. Under the assumptions that the functions f and g(·, t) are
continuously differentiable on X for each t ∈ T , g(x, ·) is continuous on T for each
x ∈ X, there exist SIP Slater points arbitrarily close to all global minima, and the
resulting finite nonlinear programs (NLPs) are solved to local optimality; the method
using interval extensions with feasible iterates generates an ε-optimal estimate of
the global solution of the SIP on finite termination [5]. The main drawback of this
method is the rapid increase in the size of the lower and upper bounding problems
as nodes of increasing depth are visited by the branch-and-bound procedure. Other
methods to generate the global solution of the SIP problems were proposed by Mitsos
and coworkers [8, 27, 30]. The upper bounding problems of these methods are not
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generated by interval extensions, but rather by a restriction of the constraints right-
hand side by a negative value (< −εg , for some εg > 0). For fixed point x, these
methods use three subproblems, including the lower bounding problem, the upper
bounding problem, and the lower level problem. Under the assumptions that f is
continuous on X, g is continuous on X × T , there exists an εf -optimal SIP Slater
point, and the resulting finite NLPs are solved to global optimality, the algorithms
terminate finitely with a feasible point and solve the SIP approximately to global
optimality. We point out that the authors in [8, 27, 29, 30] consider global solution of
all subproblems, which is computationally expensive.

In contrast to these methods, the adaptive convexification method discussed in [9]
does not focus on the global solution of the SIP problem, but global solutions of
the lower level problem. The authors construct convex relaxations of the lower level
problem using the αBB method [1, 2] of global optimization, replace the convex
lower level problems with their Karush-Kuhn-Tucker (KKT) conditions, and solve
the resulting mathematical programs with complementarity constraints. Under the
assumptions that f : Rn → R and g : Rn ×R

p → R
m are twice continuously differ-

entiable, the algorithm generates a feasible point and reaches a ε-stationary point of
the original SIP problem on finite termination. Such method requires slightly stronger
assumption on the constraints, but can give tighter bounds than interval extensions.
Based on the method discussed in [9], a number of convexification algorithms have
been presented [36, 38, 41]. We point out that the method discussed in [41] relies on
constructing concave relaxations of the lower level problem and solving the resulting
approximate problems with finitely many constraints.

Bundle methods are among the most efficient methods for solving nonsmooth
optimization problems. See [18, 20, 25, 35] for a more detailed discussion and com-
parison of some bundle methods for nonsmooth convex constrained optimization.
When the objective function is nonconvex, the recent results [12, 13] make assump-
tions on the structure of the objective function and propose a redistributed bundle
method for unconstrained nonsmooth, nonconvex optimization problems. Based on
this redistributed method, many nonconvex bundle approaches have been suggested.
The authors [24, 43] propose proximal bundle methods for constrained nonsmooth,
nonconvex optimization problems, where the objective and constraint functions are
lower-C2. Lv et al. [23] propose an inexact proximal bundle method for constrained
nonsmooth, nonconvex optimization problems, where the objective and constraint
functions are lower-C1. Hoseini and Nobakhtian [16, 17] propose bundle methods
for constrained nonsmooth nonconvex optimization problems, where the objective
and constraint functions are regular. The methods presented in [23, 24, 31] can be
used to solve the SIP problem, but the calculation of the lower level problem in these
methods is costly since the lower level problem needs to be solved within a given
fixed accuracy at each point. Moreover on finite termination, these methods are not
guaranteed to furnish a feasible point.

In this paper, our aim is to design a feasible algorithm for nonsmooth, nonconvex
SIP that combines some of the ideas of the proximal bundle methods and of the con-
vexification methods. The main idea is to generate upper bounding problems for the
SIP by replacing the lower level problem with its concave relaxations using the αBB
method, and solve the upper bounding problems by a new feasible proximal bundle
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method. The relaxed lower level problem is a finite nonsmooth problem. Under cer-
tain assumptions given in Theorem 6 below, it can be shown that every accumulation
point of the iterative sequence is an ε-stationary point of the original SIP problem.
Under slightly stronger assumptions given in Theorem 7 below, every accumulation
point of the iterative sequence is a local solution of the original SIP problem. These
assumptions appeared in nonsmooth, nonconvex bundle methods cited above. Com-
pared to the related works [23, 24, 31], our algorithm starts with a coarse subset of
T and is advantageous to save computational time on constraint calculations. More-
over, we adopt an aggregation technique to control the size of subproblems flexibly.
In particular, our algorithm can obtain a feasible point in finite iterations. Compared
to [9, 36, 38, 41], the assumptions made on the structure of the objective function in
this paper are weaker. We point out that the subproblems of our algorithm are solved
by existing QP solver and do not depend on the number of the constraints of the
upper bounding problem, whereas the subproblems of algorithm from [9, 36, 38, 41]
are solved by the existing NLP solver and depend on the number of the constraints
of the upper bounding problem. Thus, our algorithm is, naturally, significantly less
time-consuming when the number of subintervals/nodes increases. The results of
numerical experiment also show the good performance of the new method.

The remainder of this paper is organized as follows. The main concepts used
throughout the paper are described in the next section, where we also state the meth-
ods to construct upper bounding functions of the constraints. Section 3 presents our
feasible proximal bundle algorithm with convexification. Convergence of the proxi-
mal bundle method with convexification is addressed in Section 4. Section 5 presents
some numerical results and Section 6 gives conclusions.

Our notation is fairly standard. The Euclidean inner product of two vectors x, y ∈
R

n is denoted by 〈x, y〉 := xT y, and the associated norm by ‖ · ‖. The positive-part
function is denoted by x+ := max{x, 0}. For a set X ∈ R

n, convX denotes its convex
hull. The closed ball with center x ∈ R

n and radius r > 0 is denoted by B(x; r).
That is, B(x; r) := {y ∈ R

n | ‖y − x‖ ≤ r}.

2 Preliminaries

In this section, we first recall some concepts and results related to nonsmooth anal-
ysis. Next, we give the necessary condition of the optimization measure. Then, we
introduce the convexification method to construct the concave relaxation of the lower
level problem.

2.1 Background

Definition 1 (Lipschitz continuity) A function f : Rn → R is Lipschitz continuous
on a set X ⊂ R

n if there exists L > 0 such that

|f (y) − f (z)| ≤ L‖y − z‖ for all y, z ∈ X.

Then, L is called a Lipschitz constant for f on X.
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Definition 2 The directional derivative of f at x in the direction d ∈ R
n is defined

by

f ′(x; d) := lim
h→0

f (x + hd) − f (x)

h
.

Let f : Rn → R be a locally Lipschitz continuous function at a point x ∈ R
n. Then,

the generalized directional derivative (Clarke) of f at x in the direction of d ∈ R
n is

defined by

f ◦(x; d) := lim sup
y → x

h ↓ 0

f (y + hd) − f (y)

h
.

Definition 3 A function f : Rn → R is called regular at x ∈ R
n if it is locally Lip-

schitz continuous at x and for all d ∈ R
n the classical directional derivative f ′(x; d)

exists and we have f ′(x; d) = f ◦(x; d).

Definition 4 A function f : R
n → R is called semismooth at x ∈ R

n if f is
Lipschitz on a ball about x and for each d ∈ R

n and for any sequences {hk} ⊂ R
+,

{θk} ⊂ R
n and {ξk} ⊂ R

n such that {hk} ↓ 0, {θk/hk} → 0 ∈ R
n and ξk ∈

∂f (x + hkd + θk), the sequence {〈ξk, d〉} has exactly one accumulation point.

Definition 5 A locally Lipschitz function f : O → R, where O is an open subset of
R

n, is called lower-C1 (lower-C2) on O, if on some neighborhood V of each x0 ∈ O

there is a representation f (x) = maxω∈Ω fω(x) in which the functions fω are of
class (twice) continuously differentiable on V and the index set Ω is a compact space
such that fω(x) and ∇fω(x) (∇2fω(x)) depend continuously not just on x ∈ V but
jointly on (ω, x) ∈ Ω × V .

Definition 6 Let f : Rn → R be a locally Lipschitz continuous function at a point
x ∈ R

n. Then, the subdifferential of f at x is defined by

∂f (x) := {ξ ∈ R
n | f ◦(x; d) ≥ ξT d for all d ∈ R

n}.
Each element ξ ∈ ∂f (x) is called a subgradient of f at x. If f : Rn → R is a convex
function, then the subdifferential of f at x ∈ R

n is defined by

∂f (x) := { ξ | f (y) ≥ f (x) + 〈ξ, y − x〉 for all y ∈ R
n }.

Theorem 1 [3, Theorem 3.3] Let f : R
n → R be a locally Lipschitz continuous

function at x ∈ R
n with a Lipschitz constant L. Then, the subdifferential ∂f (x) is a

nonempty, convex, and compact set such that

∂f (x) ⊆ B(0; L).

Theorem 2 [3, Theorem 3.23] Let fi : Rn → R be locally Lipschitz continuous at
x for all i = 1, ..., m. Then, the function

f (x) = max{fi(x) | i = 1, ..., m}
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is locally Lipschitz continuous at x and

∂f (x) ⊆ conv{∂fi(x) | i ∈ I(x)}, (2)

where
I(x) := {i ∈ {1, ..., m} | fi(x) = f (x)}.

In addition, if fi is regular at x for all i = 1, ..., m, then f is also regular at x and
equality holds in (2).

Now, we introduce the indicator function IX of a set X ⊂ R
n as follows:

IX(x) =
{

0 if x ∈ X,

∞ if x /∈ X.

The indicator function IX of a set X ⊂ R
n is convex if and only if X is convex. Let

the point x belong to X, then

∂IX(x) = NX(x) := {v ∈ R
n | 〈v, y − x〉 ≤ 0, for all y ∈ X}.

From [26, Proposition 4] and [3, Theorem 3.13], we have the following:

Theorem 3 If f : X → R is continuously differentiable then f is semismooth and
regular on X.

From [37, Proposition 2.4] and [7, Theorem 2], we have the following:

Proposition 1 Given an open set O containing X. The following statements are
equivalent:

1. f is semismooth and regular on O.
2. For all x ∈ O, for all ε > 0, there exists ρ > 0 such that for all y ∈ B(x; ρ)

and ξ ∈ ∂f (y)

f (z) − f (y) ≥ 〈ξ , z − y〉 − ε‖z − y‖, z ∈ B(x; ρ).

3. f is lower-C1 on O.

Now we return to our basic problem (1), and give the following assumption.

Assumption 1 The Slater constraint qualification holds for problem (1), i.e., there
exists x̂ ∈ R

n such that g(x̂, t) < 0 for all t ∈ T .

Assumption 1 was used in [41]. In this paper, we always assume that the Slater
constraint qualification holds.

2.2 Necessary conditions

To solve problem (1), we introduce the improvement function

H(y, x) := max {f (y) − f (x) , G(y)} , y ∈ R
n, (3)
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where
G(y) = max

t∈T
g(y, t).

Now, the subdifferential of G at a point x is defined by [6]

∂G(x) = conv {∇xg(x, t) | t ∈ A(x)} , (4)

where A(x) = {t ∈ T | G(x) = g(x, t)}.

Definition 7 [42](EMFCQ) A feasible point x is said to satisfy the extended
Mangasarian-Fromovitz constraint qualification for SIP problem (1) if there exists a
feasible direction d of X at x such that

∇xg(x, t)T d < 0, for all t ∈ Tact (x), (5)

where Tact (x) = {t ∈ T | g(x, t) = 0}.

Theorem 4 Let x∗ be a local minimizer of (1). Then the following statements hold:

(a) 0 ∈ ∂H(x∗, x∗) + ∂IX(x∗).
(b) There exist nonnegative multipliers λi , i = 0, ..., n + 1, and indices ti ∈

A(x∗), i = 1, ..., n + 1 such that
∑n+1

i=0 λi = 1, λig(x∗, ti) = 0, i = 1, ..., n + 1
and

0 ∈ λ0∂f (x∗) +
n+1∑
i=1

λi∇xg(x∗, ti) + ∂IX(x∗).

(c) If EMFCQ holds at x∗ for problem (1), then there exist nonnegative multipliers
λi and indices ti ∈ Tact (x

∗), i = 1, ..., n + 1 such that

0 ∈ ∂f (x∗) +
n+1∑
i=1

λi∇xg(x∗, ti) + ∂IX(x∗).

Proof (a) Let F be the feasible region of the problem (1), namely, F = {x ∈
X | G(x) ≤ 0}. Since x∗ ∈ R

n is a local optimum of the problem (1), then
G(x∗) ≤ 0 and there exists a neighborhood U of x∗ such that f (x∗) ≤ f (x)

for all x ∈ U ∩ F . Then, for all x ∈ U ∩ F ⊆ X

H(x, x∗) = max{f (x) − f (x∗) , G(x)} ≥ f (x) − f (x∗) ≥ 0 = H(x∗, x∗).
This means that x∗ is a local minimum of H(·, x∗) on X, which implies 0 ∈
∂H(x∗, x∗) + ∂IX(x∗).

(b) If G(x∗) < 0, we have ∂H(x∗, x∗) ⊆ ∂f (x∗). Then, the assertion of the the-
orem is proved by choosing λ0 = 1 and λi = 0 for i = 1, ..., n + 1. If
G(x∗) = 0, we have ∂H(x∗, x∗) ⊆ conv{∂f (x∗) ∪ ∂G(x∗)}, where ∂G(x∗) =
conv{∇g(x∗, ti), ti ∈ A(x∗)}. Then due to the definition of convex hull and the
Caratheodory’s Theorem, there exist λi ≥ 0, i = 0, 1, . . . , n + 1, such that

0 ∈ λ0∂f (x∗) +
n+1∑
i=1

λi∇xg(x∗, ti) + ∂IX(x∗).
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(c) Suppose that λ0 = 0, then we deduce that G(x∗) = 0 and A(x∗) = Tact (x
∗).

Moreover, −∑n+1
i=1 λi∇xg(x∗, ti) ∈ ∂IX(x∗). For any feasible direction d of X

at x∗, we have 〈
−

n+1∑
i=1

λi∇xg(x∗, ti), d
〉

≤ 0, ti ∈ Tact (x
∗),

which is an contradiction with (5). Thus, λ0 is strictly positive, and the result
item (c) holds by setting λi = λi/λ0.

Definition 8 x∗ is called an ε-KKT point of (1) if there exist some multipliers λi ,
i = 1, ..., n + 1 such that

0 ∈ ∂f (x∗) +
n+1∑
i=1

λi∇xg(x∗, ti) + ∂IX(x∗), ti ∈ T ε
act (x

∗),

where T ε
act (x

∗) = {t ∈ T | g(x∗, t) ∈ [−ε, 0]}.

2.3 The concave relaxation of the lower level problem

In this subsection, we consider the following lower level problem

Q(x) : max
t∈T

g(x, t).

We note that the lower level problem is actually a concave optimization problem for
all x ∈ X if g(x, ·) is convex on T for these x ∈ X.

For N ∈ N, let a = t0 < t1 < ... < tN = b define a subdivision E of T :

E := {tu | u ∈ U ′ = {0, 1, ..., N}}.
Then, we have

max
t∈T

g(x, t) = max
u∈U

max
t∈Tu

g(x, t),

where U = {1, 2, ..., N} and Tu = [tu−1, tu]. Tu is called a subinterval of T and
satisfies

T =
⋃
u∈U

Tu.

The length of the subinterval Tu is defined by |Tu| = |tu − tu−1| and the length of the
subdivision E is defined by |E| = maxu∈U |Tu|.

Following the approach of [41], for all u ∈ U , we generate the upper bound
function gu of g on Tu,

gu(x, t) = g(x, t) + αu

2
(t − tu−1 + tu

2
)2, ∀ x ∈ X.

In this case, the function gu is twice continuously differentiable with respect to t and
the second-order derivative with respect to t of gu is

∇2
t gu(x, t) = ∇2

t g(x, t) + αu.
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It follows that gu(x, t) is convex with respect to t on Tu if the parameter αu satisfies

αu ≥ max
(x,t)∈X×Tu

{
−∇2

t g(x, t)
}

.

On the other hand, we require to construct an upper bound function of g. Thus,

αu ≥ max

{
0 , max

(x,t)∈X×Tu

{
−∇2

t g(x, t)
}}

, ∀ u ∈ U . (6)

Lemma 1 [41] Let f be a convex function and C = convS, where S is an arbitrary
set of points. Then

sup{f (x) | x ∈ C} = sup{f (x) | x ∈ S},
where the first supremum is attained only when the second supremum is attained.

We know from Lemma 1 that the maximum of gu(x, t)(∀ u ∈ U) must be attained
on the boundary of Tu, that is,

max
t∈Tu

gu(x, t) = max
t∈{tu−1,tu}gu(x, t) = max {g(x, tu−1), g(x, tu)}

+αu

8
(tu − tu−1)

2, ∀ x ∈ X.

Then, we have

max
t∈{tu−1,tu}g(x, t) ≤ max

t∈Tu

g(x, t) ≤ max
t∈{tu−1,tu}gu(x, t), ∀ x ∈ X.

The convex upper bound function G(·, α, E) of G on X is defined by

G(x, α, E) = max
u∈U

max
t∈Tu

gu(x, t).

It can be rewritten as

G(x, α, E) = max
tu∈E

{g(x, tu) + h(tu, αu)} , (7)

where

h(tu, αu) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αu+1

8
(tu+1 − tu)

2, if u = 0,

max
{αu

8
(tu − tu−1)

2 ,
αu+1

8
(tu+1 − tu)

2
}

, if 0 < u < N,

αu

8
(tu − tu−1)

2, if u = N,

(8)

where the parameter αu satisfies (6). We define

Ā(x, α, E) = {tu ∈ E | G(x, α, E) = g(x, tu) + h(tu, αu)}, (9)

and
D(E, α) = max

u∈U

αu

8
(tu − tu−1)

2. (10)

Then, we can obtain that

G(x) ≤ G(x, α, E) ≤ G(x) + D(E, α). (11)
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Now the upper bounding problem of the original problem is defined by{
min
x∈X

f (x)

s.t. G(x, α, E) ≤ 0.
(12)

Using the improvement function mentioned in the preceding section, we define
H(·, x, α, E) : Rn → R as follows:

H(y, x, α, E) := max { f (y) − f (x) , G(y, α, E) } ,

where α and E vary along the iterations.

Lemma 2 [41] If EMFCQ holds for all feasible points of the original problem (1),
then the MFCQ holds for all feasible points of the approximation problem (12) when
|E| is sufficiently small.

Theorem 5 Suppose that f : X → R and g : X × T → R are locally Lipschitz
continuous, then the following statements hold:

1. If x∗ is a local minimizer of (12), then 0 ∈ ∂H(x∗, x∗, α, E) + ∂IX(x∗).
2. If 0 ∈ ∂H(x∗, x∗, α, E) + ∂IX(x∗) and G(x∗, α, E) ≤ 0, then there exist

nonnegative multipliers λi , i = 0, ..., n + 1, and indices ti ∈ Ā(x∗, α, E), i =
1, ..., n+ 1, such that

∑n+1
i=0 λi = 1, λi(g(x∗, ti)+h(ti , αi)) = 0, i = 1, ..., n+ 1,

and

0 ∈ λ0∂f (x∗) +
n+1∑
i=1

λi∇xg(x∗, ti) + ∂IX(x∗).

If, in addition, MFCQ holds at x∗ for problem (12), then there exist nonnegative
multipliers λi and indices ti ∈ T̄act (x

∗, α, E), i = 1, ..., n + 1, such that

0 ∈ ∂f (x∗) +
n+1∑
i=1

λi∇xg(x∗, ti) + ∂IX(x∗),

where T̄act (x
∗, α, E) = {tu ∈ E | g(x∗, tu) + h(tu, αu) = 0}. If, in addition,

D(E, α) ≤ ε, then x∗ is an ε-KKT point of the problem (1).

Proof The proof of this theorem is analogous to Theorem 4; we only require to show
that x∗ is an ε-KKT point of the original problem if D(E, α) ≤ ε. It suffices to prove
that if ti ∈ T̄act (x

∗, α, E), i = 1, ..., n + 1, then ti ∈ T ε
act (x

∗), i = 1, ..., n + 1,
provided that condition D(E, α) ≤ ε holds. For each ti ∈ T̄act (x

∗, α, E), we have

g(x∗, ti) + αī

8
|Tī |2 = 0,

where

ī =
⎧⎨
⎩ i if

αi

8
|Ti |2 ≥ αi+1

8
|Ti+1|2,

i + 1 otherwise,
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where T0 = 0 and TN+1 = 0. It implies that g(x∗, ti) ≤ 0 and

g(x∗, ti) = −αī

8
|Tī |2 ≥ −D(E, α) ≥ −ε.

It follows that ti ∈ T ε
act (x

∗), i = 1, ..., n+1, if the condition D(E, α) ≤ ε holds.

3 The numerical approach

Let k be the current iteration index and xk be the stability center (or serious iter-
ate) at iteration k, where iterations generate a sequence of trial points {yj }j∈J ora

k
,

with J ora
k ⊆ {0, 1, ..., k}. In particular, xk ∈ {yj }j∈J ora

k
. Let Ek = {tu | u ∈

U ′
k = {0, 1, ..., Nk}} be the current subdivision of T and αk be the corresponding

convexification parameter.
Following the redistributed proximal approach [12, 13], we generate the aug-

mented functions of f and G(·, αk, Ek) defined by

f k(·) := f (·) + ηk
1

2 ‖ · −xk‖2,

gk(·) := G(·, αk, Ek) + ηk
2

2 ‖ · −xk‖2.

The idea is to utilize the augmented functions in the model construction. We can first
construct a convex piecewise linear approximation defined by

Ĥk(y) := max
j∈J ora

k

{
f k(yj ) +

〈
ξ

j
f + ηk

1(y
j − xk), y − yj

〉
− f (xk),

gk(yj ) +
〈
ξ

k,j
g + ηk

2(y
j − xk), y − yj

〉}
,

where ξ
j
f ∈ ∂f (yj ) and ξ

k,j
g ∈ ∂ G(yj , αk, Ek). It can be rewritten in an equivalent

form

Ĥk(y) = G+(xk, αk, Ek)+ max
j∈J ora

k

{
−c

f
k,j + 〈sk,j

f , y − xk〉, −c
g
k,j + 〈sk,j

g , y − xk〉
}

.

(13)
where

s
k,j
f := ξ

j
f + ηk

1 Δ
j
k and c

f
k,j := e

f
k,j + ηk

1 b
j
k + G+(xk, αk, Ek),

s
k,j
g := ξ

k,j
g + ηk

2 Δ
j
k and c

g
k,j := e

g
k,j + ηk

2 b
j
k + G+(xk, αk, Ek)−G(xk, αk, Ek),

(14)
with

e
f
k,j := f (xk) − f (yj ) − 〈ξj

f , xk − yj 〉,
e
g
k,j := G(xk, αk, Ek) − G(yj , αk, Ek) − 〈ξk,j

g , xk − yj 〉,
b

j
k := 1

2
‖yj − xk‖2, Δ

j
k := yj − xk .

(15)
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Any choice for the parameters ηk
1, ηk

2 that keeps c
f
k,j , c

g
k,j in (13) nonnegative is

acceptable. In our method, we take

ηk
1 = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
j ∈ J ora

k

yj �= xk

⎧⎨
⎩− e

f
k,j

b
j
k

⎫⎬
⎭ , 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ γ, ηk
2 = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
j ∈ J ora

k

yj �= xk

{
− e

g
k,j

b
j
k

}
, 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ γ,

(16)
where γ is a small positive parameter. In particular, since xk ∈ {yj }j∈J ora

k
, we obtain that

Ĥk(x
k) = G+(xk, αk, Ek) = H(xk, xk, αk, Ek). (17)

Then, we seek for the new point yk+1 as a solution of⎧⎨
⎩min Ĥk(y) + 1

2
μk‖y − xk‖2

s.t. y ∈ X,

(18)

where μk > 0 is a proximal parameter.
The following lemma introduces the characterization of the solution of the (18).

Lemma 3 Let yk+1 be the unique solution to (18) and assume μk > 0. Then, we have that

yk+1 = xk − 1

μk

(Sk+1 + vk+1), where Sk+1 ∈ ∂Ĥk(y
k+1), vk+1 ∈ ∂IX(yk+1). (19)

Lemma 3 implies that
〈vk+1, yk+1 − xk〉≥0. (20)

The linearization error of Ĥk(·) is defined by

Ck+1 := Ĥk(x
k) − Ĥk(y

k+1) − 〈Sk+1, xk − yk+1〉 ≥ 0. (21)

Since the piecewise linear model Ĥk is convex, we can construct a convex linear approximation
of Ĥk by

Ĥk(y) ≥ Ĥk(y
k+1) + 〈Sk+1, y − yk+1〉 = G+(xk, αk, Ek) + 〈Sk+1, y − xk〉 − Ck+1.

Hence, the cutting plane model can be redefined in the form

Ĥk(y) = G+(xk, αk, Ek) + max

{
max

j∈J
agg
k

{−Cj + 〈Sj , y − xk〉} ,

max
j∈J ora

k

{
−c

f
k,j + 〈sk,j

f , y − xk〉, −c
g
k,j + 〈sk,j

g , y − xk〉
}}

,

(22)

where J ora
k ⊆ {0, 1, ..., k} and J

agg
k ⊆ {1, ..., k}. Then, (18) can be stated as a quadratic

programming problem in R
1 × X:

compute (r, y) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

arg min r + μk

2
‖y − xk‖2

s.t. G+(xk, αk, Ek) − c
f
k,j + 〈sk,j

f , y − xk〉 ≤ r, j ∈ J ora
k ,

G+(xk, αk, Ek) − c
g
k,j + 〈sk,j

g , y − xk〉 ≤ r, j ∈ J ora
k ,

G+(xk, αk, Ek) − Cj + 〈 Sj , y − xk〉 ≤ r, j ∈ J
agg
k .

(23)

Numerical Algorithms (2022) 90:387–422398



From the KKT conditions for (23), one easily obtains a representation for Sk+1 and Ck+1

(defined by (19) and (21)):

Sk+1 =
∑

j∈J ora
k

(
λ

j

1,k+1s
k,j
f + λ

j

2,k+1s
k,j
g

)
+
∑

j∈J
agg
k

λ
j

3,k+1S
j ,

Ck+1 =
∑

j∈J ora
k

(
λ

j

1,k+1c
f
k,j + λ

j

2,k+1c
g
k,j

)
+
∑

j∈J
agg
k

λ
j

3,k+1C
j ,

(24)

and (λ1,k+1, λ2,k+1, λ3,k+1) is a solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
1

2

∥∥∥∥∥∥∥
∑

j∈J ora
k

(
λ

j

1,k+1s
k,j
f + λ

j

2,k+1s
k,j
g

)
+
∑

j∈J
agg
k

λ
j

3,k+1S
j

∥∥∥∥∥∥∥
2

+ μk

⎛
⎜⎝ ∑

j∈J ora
k

(
λ

j

1,k+1c
f
k,j + λ

j

2,k+1c
g
k,j

)
+
∑

j∈J
agg
k

λ
j

3,k+1C
j

⎞
⎟⎠

s.t.
∑

j∈J ora
k

(
λ

j

1,k+1 + λ
j

2,k+1

)
+
∑

j∈J
agg
k

λ
j

3,k+1 = 1,

λ
j

1,k+1, λ
j

2,k+1 ≥ 0 for all j ∈ J ora
k and λ

j

3,k+1 ≥ 0 for all j ∈ J
agg
k .

(25)

To measure the quality of the candidate, the nominal decrease δk+1 is defined by:

δk+1 := Ck+1 + 1

μk

‖Sk+1 + vk+1‖2 ≥ 0. (26)

According to (20), (21), and Lemma 3, we can obtain that

δk+1 = H(xk, xk, αk, Ek) − Ĥk(y
k+1) − 〈vk+1, yk+1 − xk〉

≤ H(xk, xk, αk, Ek) − Ĥk(y
k+1).

(27)

We now present the criterion that determines whether a new stability center is generated:

max
{

f (yk+1) − f (xk) , G(yk+1, αk, Ek)
}

− G+(xk, αk, Ek) ≤ −mδk+1, (28)

where m is a positive descent parameter. If (28) holds, the trial point yk+1 brings a sufficient
descent for the objective or constraint function. Then, the stability center will be moved to
yk+1, i.e., xk+1 := yk+1. This case is called a serious step (or descent step). Otherwise, the
trial point yk+1 is used to enrich the model and the stability center is not changed. This case is
called a null step.

In the following, we introduce a subdivision strategy to refine the current subdivision and
construct a refined approximation of the lower level problem by the following procedure.

Refinement procedure

1. For a given subset Tu = [tu−1, tu], let αu be the corresponding convexification parameter.
2. Define

EαBB(Tu) =
{
tu,i | tu,i = tu−1 + i

2s + 1
(tu − tu−1), i = 1, ..., 2s, s ∈ N

}
. (29)

3. Put Tu,i = [tu,i−1, tu,i ], i = 1, ..., 2s + 1, where tu,0 = tu−1 and tu,2s+1 = tu.
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4. Determine the corresponding convexification parameters αu,i , i = 1, ..., 2s + 1, such that
αu,i ≤ αu and

αu,i ≥ max

{
0, max

(x,t)∈X×Tu,i

{
−∇2

t g(x, t)
}}

. (30)

Remark 1 Note that the computation of αu,i involves a global optimization problem. How-
ever, we can use an upper bound for the right-hand side in (30). In particular, we can choose
αu,i = αu. Therefore, the computation of the globally optimal value of the lower level problem
maxt∈T {g(x, t)} uses more computation efforts than the computation of αu,i .

Now, we show that our refinement procedure brings a sufficient descent for the new constraint
function.

Lemma 4 Assume that Tu,i = [tu,i−1, tu,i ] and αu,i , i = 1, ..., 2s + 1, are obtained by taking
the refinement procedure on subset Tu = [tu−1, tu]. Then, we have

g(x, t) ≤ g1,i (x, t) ≤ g2(x, t), for all t ∈ [tu,i−1, tu,i ], i = 1, ..., 2s + 1,

where

g1,i (x, t) = g(x, t) + αu,i

2

(
t − tu,i−1 + tu,i

2

)2

,

g2(x, t) = g(x, t) + αu

2

(
t − tu−1 + tu

2

)2

.

Proof The first inequality can be obtained directly by the definitions of g1,i , i = 1, ..., 2s + 1.
We set ψi(t) = αu,i

2 (t − tu,i−1+tu,i

2 )2 − αu

2 (t − tu−1+tu
2 )2. Then, we only need to prove that

ψi(t) ≤ 0 for any i = 1, ..., 2s + 1. We note that |t − tu,i−1+tu,i

2 | ≤ tu−tu−1
2(2s+1)

≤ tu−1+tu
2 − t for

all t ∈ [tu,i−1, tu,i ], i = 1, ..., s. Then, for any i ≤ s, we have

∇tψi(t) = αu,i

(
t − tu,i−1 + tu,i

2

)
− αu

(
t − tu−1 + tu

2

)

= αu,i

(
t − tu,i−1 + tu,i

2

)
+ αu

(
tu−1 + tu

2
− t

)
≥ 0.

Therefore, we conclude that ψi(t) is nondecreasing on [tu,i−1, tu,i ], i = 1, ..., s. It implies
that ψi(t) ≤ ψi(tu,i ) for all t ∈ [tu,i−1, tu,i ], i = 1, ..., s. For any i ≤ s, we have

ψi(tu,i ) = αu,i

2

(
tu,i − tu,i−1

2

)2

− αu

2

(
tu,i − tu−1 + tu

2

)2

≤ αu,i

2

((
tu,i − tu,i−1

2

)2

−
(

tu,i − tu−1 + tu

2

)2
)

= αu,i

2

((
tu,i − tu,i−1

2

)2

−
(

tu − tu−1

2(2s + 1)

)2
)

≤ 0.
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Then, we have ψi(t) ≤ 0 for any [tu,i−1, tu,i ], i = 1, ..., s. Similarly, we can prove that
ψi(t) ≤ 0 for any [tu,i−1, tu,i ], i = s + 2, ..., 2s + 1. For i = s + 1, we have

ψi(t) = αu,i

2

(
t − tu,i−1 + tu,i

2

)2

− αu

2

(
t − tu−1 + tu

2

)2

=
(αu,i

2
− αu

2

)(
t − tu−1 + tu

2

)2

≤ 0.

The proof is complete.

Now, we present the algorithm in full detail.

Algorithm 1 (Feasible proximal bundle method with convexification for SIP problems)
Data. m ∈ (0, 1), tol1 ≥ 0, tol2 > 0, tol3 ≥ 0, μmax > μmin > 0, μ0 ∈ [μmin, μmax], η0

1 ≥ 0,
η0

2 ≥ 0, γ > 0, s > 0, in max > 0, X̃ ⊂ R. Set k = 0, N0 = 2s + 1, and

E0 =
{
tu | tu = a + u

N0
(b − a), u = 0, 1, ..., N0

}
⊂ T .

Determine the parameter α0 with (6) on E0.

Step 0 (Initialization) Solve the problem⎧⎨
⎩

min
(x,z)∈X×X̃

z

s.t. G(x, α0, E0) − z ≤ 0.
(31)

and from the solution x̃ compute G(x̃, α0, E0). Set y0 = x̃, G(y0, α0, E0) = G(x̃, α0, E0).
If z > 0, set iz = 1, J ora

1 = {0}, and go to Step 7. Otherwise, compute f (y0), ξ0
f ∈

∂f (y0), ξ
0,0
g ∈ ∂G(y0, α0, E0) and set x0 = y0, f (x0) = f (y0), G(x0, α0, E0) =

G(y0, α0, E0). Define the associated e
f

0,0, e
g

0,0, b0
0, Δ0

0 by (15). Set iz = 0, ix = 0, in = 0,

J ora
0 = {0}, J

agg

0 = ∅ and go to Step 1.

Step 1 (Quadratic programming subproblem) Given the model Ĥk defined by (14) and (22),
compute Sk+1, Ck+1, yk+1, (λ1,k+1, λ2,k+1, λ3,k+1) by solving the subproblem (23) and its
dual (25).

Step 2 (Stopping test) Compute δk+1 by (26). If δk+1 ≤ tol1 and D(Ek, αk) ≤ tol2, STOP.

Step 3 (Bundle management) Set

J ora
k+1 ⊆ J ora

k and J ora
k+1 ⊇ { k + 1 },

J
agg

k+1 ⊆ J
agg
k and J

agg

k+1 ⊇ { k + 1 }.

Step 4 (Descent test) Compute

f (yk+1), G(yk+1, αk, Ek), ξk+1
f ∈ ∂f (yk+1), ξk,k+1

g ∈ ∂G(yk+1, αk, Ek).

Define the associated e
f

k,k+1, e
g

k,k+1, bk+1
k , and Δk+1

k by (15). If the descent condition (28)
holds, then set in = 0 and go to Step 6. Otherwise, set in = in + 1 and go to Step 5.
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Step 5 (Null step update) Choose μk+1 ∈ [μk, μmax] and set(
xk+1, f (xk+1)

)
=
(
xk, f (xk)

)
,(

e
f

k+1,j , b
j

k+1, Δ
j

k+1

)
=
(
e
f
k,j , b

j
k , Δ

j
k

)
, for all j ∈ J ora

k+1.

If in > in max and D(Ek, αk) > tol2, then go to Step 7. Otherwise, set(
Ek+1, αk+1, G(xk+1, αk+1, Ek+1)

) = (Ek, αk, G(xk, αk, Ek)
)
,(

ξ
k+1,j
g , e

g

k+1,j

)
=
(
ξ

k,j
g , e

g
k,j

)
, for all j ∈ J ora

k+1.

and go to Step 8.

Step 6 (Serious step update) Choose μk+1 ∈ [μmin, μmax] and set

ix = k + 1, xk+1 = yk+1, f (xk+1) = f (yk+1), J
agg

k+1 = ∅.

For all j ∈ J ora
l+1 , we set

e
f

k+1,j = e
f
k,j + f (xk+1) − f (xk) − 〈ξj

f , xk+1 − xk〉,
b

j

k+1 = b
j
k + ‖xk+1 − xk‖2/2 − 〈Δj

k, xk+1 − xk〉,
Δ

j

k+1 = Δ
j
k − xk+1 + xk .

If D(Ek, αk) > tol2, go to Step 7. Otherwise, set

Ek+1 = Ek, αk+1 = αk, G(xk+1, αk+1, Ek+1) = G(yk+1, αk, Ek).

For all j ∈ J ora
k+1, we set ξ

k+1,j
g = ξ

k,j
g and

e
g

k+1,j = e
g
k,j + G(xk+1, αk+1, Ek+1) − G(xk, αk, Ek) − 〈ξk,j

g , xk+1 − xk〉.
Then, go to Step 8.

Step 7 (Subdivision update) Select the index set Wk as follows:

Wk ⊇
{
u | G(yj , αk, Ek) = g(yj , tu) + h(tu, αu) and h(tu, αu) > tol2,

for all j ∈ J ora
k+1, tu ∈ Ek

}
,

and
Wk ⊆

{
u | h(tu, αu) > tol2, for all tu ∈ Ek

}
.

Take the Refinement procedure on subsets Tū, u ∈ Wk , where ū is defined by

ū =
⎧⎨
⎩

u if
αu

8
|Tu|2 ≥ αu+1

8
|Tu+1|2,

u + 1 otherwise,

where T0 = 0 and TNk+1 = 0. Put

Ek+1 = { tu | u = 0, ..., Nk+1} := Ek
⋃{

EαBB(Tū) | u ∈ Wk

}
,

αk+1 = {αu | u = 1, ..., Nk+1} := αk
⋃

{
αū,i : u ∈ Wk, i = 1, ..., 2s + 1

} \ {αū : u ∈ Wk} .

If iz = 1, set E0 = Ek+1, α0 = αk+1, k = 0 and go to Step 0. Otherwise, for all j ∈ J ora
k+1,

compute G(yj , αk+1, Ek+1), ξ
k+1,j
g ∈ ∂G(yj , αk+1, Ek+1) and define the associated e

g

k+1,j

by (15). Then, go to Step 8.
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Step 8 (Parameter update) Compute the parameters ηk+1
1 and ηk+1

2 by (16). Set k = k + 1 and
go to Step 1.

Remark 2 Under Assumption 1, there exist E, α, and a point x such that

G(x, α, E) ≤ 0 as D(E, α) → 0.

Therefore, Algorithm 1 cannot pass infinitely many times through step 0, i.e., Algorithm 1
generates a feasible initial point x0 such that G(x0, α0, E0) ≤ z ≤ 0 at step 0. According to
(28), if the descent test is satisfied, then it holds that G(xk+1, αk, Ek) ≤ G+(xk, αk, Ek) −
mδk+1 ≤ G+(xk, αk, Ek). By Lemma 4, we have G(xk+1, αk+1, Ek+1) ≤ G+(xk, αk, Ek).
If xk is infeasible, then we can obtain that G(x0, α0, E0) > 0, which contradicts the fact that
G(x0, α0, E0) ≤ z ≤ 0. Therefore, if a serious step is declared, then the following conditions
hold:

f (xk+1) − f (xk) ≤ −mδk+1 and G(xk+1, αk+1, Ek+1) ≤ 0.

Lemma 5 Algorithm 1 cannot pass infinitely many times through step 7, i.e., there exist
kE, Ē, ᾱ such that

Ek = Ē, αk = ᾱ, D(Ē, ᾱ) ≤ tol2 for all k ≥ kE .

4 Convergence

Firstly, we define the index set of serious step as follows:

Ks := {k | yk is a serious step, i.e., xk = yk}.
We start with the following lemma.

Lemma 6 Assume that f is bounded below on X and Algorithm 1 generates an infinite
number of serious steps. Then Ck → 0 and Sk + vk → 0 as k → ∞ in Ks .

Proof We first show that ∑
k∈Ks

δk < +∞. (32)

Making use of (28) and Remark 2, we conclude that, for all k ∈ Ks ,

mδk ≤ f (xk−1) − f (xk).

Thus, the sequence {f (xk)} is nonincreasing and bounded below on X. Let f̄ = inf{f (x) | x ∈
X}. Therefore, we obtain that∑

k∈Ks

δk ≤ 1

m

(
f (x0) − f̄

)
< +∞.

Now, we obtain that {δk}k∈Ks
→ 0. Making use of (26), we conclude that

Ck ≤ δk and
1

μk−1
‖Sk + vk‖2 ≤ δk .

It immediately follows that Ck → 0 and Sk + vk → 0 as k → ∞ in Ks (a consequence of
μk−1 ∈ [μmin, μmax]).
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Let Ψk(y
k+1) denote the objective function optimal value of the subproblem (18), i.e.,

Ψk(y
k+1) = Ĥk(y

k+1) + μk

2 ‖yk+1 − xk‖2.

Lemma 7 Assume that Algorithm 1 takes a finite number of serious steps and k̄ is the last
serious iteration, i.e., for all k ≥ k̄ we have xk = xk̄ . Then we can obtain that

H(xk, xk, αk, Ek) ≥ Ψk(y
k+1) ≥ Ψk−1(y

k) + μk−1

2
‖yk+1 − yk‖2, for all k > max{k̄, kE}.

Proof In what follows, we consider k > max{k̄, kE}. Using Lemma 3 and the convexity of
Ĥk , we obtain that

H(xk, xk, αk, Ek) = Ĥk(x
k)

≥ Ĥk(y
k+1) + 〈Sk+1, xk − yk+1〉

≥ Ĥk(y
k+1) + 〈Sk+1, xk − yk+1〉 + 〈vk+1, xk − yk+1〉

≥ Ĥk(y
k+1) + μk

2
‖yk+1 − xk‖2

= Ψk(y
k+1),

where the first equality is by (17), the second inequality is due to (20). Since k ∈ J
agg
k , (21)

and (22) imply that

Ĥk(y
k+1) ≥ G+(xk, αk, Ek) − Ck + 〈Sk, yk+1 − xk〉

= Ĥk−1(y
k) + 〈Sk, yk+1 − yk〉.

Moreover,

Ψk(y
k+1) = Ĥk(y

k+1) + μk

2
‖yk+1 − xk‖2

≥ Ĥk−1(y
k) + 〈Sk, yk+1 − yk〉 + μk−1

2
‖yk+1 − xk‖2

≥ Ĥk−1(y
k) + 〈Sk, yk+1 − yk〉 + 〈vk, yk+1 − yk〉 + μk−1

2
‖yk+1 − xk‖2

≥ Ĥk−1(y
k) − μk−1〈yk − xk, yk+1 − yk〉 + μk−1

2
‖yk − xk + yk+1 − yk‖2

= Ĥk−1(y
k) + μk−1

2
‖yk − xk‖2 + μk−1

2
‖yk+1 − yk‖2

= Ψk−1(y
k) + μk−1

2
‖yk+1 − yk‖2,

where the second inequality is by the fact that 〈vk, yk+1 − yk〉 ≤ 0.

Lemma 8 Assume that Algorithm 1 takes a finite number of serious steps. Suppose that {ηk
1}

and {ηk
2} are bounded above. Then, Ck → 0 and Sk + vk → 0 as k → ∞.

Proof Let k̄ be the last serious iteration. In what follows, we consider k > {k̄, kE}. By the
definition (22) of Ĥk and the fact k ∈ J ora

k , we obtain that

Ĥk(y
k+1) ≥ G+(xk, αk, Ek) +

{
−c

f
k,k + 〈sk,k

f , yk+1 − xk〉,−c
g
k,k + 〈sk,k

g , yk+1 − xk〉
}

.
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It can be rewritten as

Ĥk(y
k+1) ≥ max

{
f k(yk) +

〈
ξk
f + ηk

1(y
k − xk), yk+1 − yk

〉
− f (xk),

gk(yk) +
〈
ξ

k,k
g + ηk

2(y
k − xk), yk+1 − yk

〉}
≥ max

{〈
ξk
f + ηk

1(y
k − xk), yk+1 − yk

〉
+ f (yk) − f (xk),〈

ξ
k,k
g + ηk

2(y
k − xk), yk+1 − yk

〉
+ G(yk, αk, Ek)

}
.

Since {yk} ∈ X, the functions f and g are Lipschitz continuous on X and X × T respectively
and X is compact, Theorem 1 implies that {ξk

f } and {ξk,k
g } are bounded on that set. Therefore

by the boundedness of {ηk
1} and {ηk

2}, we get {ξk
f + ηk

1(y
k − xk)} and {ξk,k

g + ηk
2(y

k − xk)} are
bounded. We set

L′ = max
{
‖ξk

f + ηk
1(y

k − xk)‖, ‖ξk,k
g + ηk

2(y
k − xk)‖

}
.

Then, we can obtain

Ĥk(y
k+1) ≥ max

{
f (yk) − f (xk) , G(yk, αk, Ek)

}
− L′‖yk+1 − yk‖.

According to (27) and (28), we can obtain that

δk+1 ≤ H(xk, xk, αk, Ek) − Ĥk(y
k+1)

≤ G+(xk, αk, Ek) − max
{
f (yk) − f (xk) , G(yk, αk, Ek)

}
+ L′‖yk+1 − yk‖

≤ mδk + L′‖yk+1 − yk‖,
where the third inequality holds by k > k̄. Combining this relation with (26) yields

0 ≤ δk+1 ≤ mδk + L′‖yk+1 − yk‖. (33)

According to Lemma 7, we infer that

{yk+1 − yk} → 0, as k → ∞,

which implies limk→∞ δk = 0 [33, Lemma 3, p. 45]. Making use of (26), we conclude that

Ck ≤ δk and
1

μk−1
‖Sk + vk‖2 ≤ δk .

It immediately follows that Ck → 0 and Sk + vk → 0 as k → ∞.

Let

η
1,j

min = max{0, −e
f
k,j

b
j
k

} + γ, η
2,j

min = max{0, −e
g
k,j

b
j
k

} + γ, ∀ j ∈ {0, ..., 1},

ηi
max = max

j∈{0,...,k} η
j
i , i ∈ {1, 2}, JC

k = {j ∈ J ora
k | λj

1,k+1 = λ
j

2,k+1 = 0}.

Lemma 9 Let xk (k ≥ kE) be the current stability center. Suppose that {ηk
1} and {ηk

2} are

bounded above, then there exist λ̂1,k+1, λ̂2,k+1 ∈ R
k+1 and Ĵk with⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ĵk ⊆ {0, 1, ..., k},
λ̂

j

1,k+1, λ̂
j

2,k+1 ≥ 0, λ̂
j

1,k+1 + λ̂
j

2,k+1 > 0, for all j ∈ Ĵk,∑
j∈Ĵk

(λ̂
j

1,k+1 + λ̂
j

2,k+1) = 1,

(34)
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such that

Sk+1 =
∑
j∈Ĵk

(
λ̂

j

1,k+1

(
ξ

j
f + η̂

j

1Δ
j
k

)
+ λ̂

j

2,k+1

(
ξ

k,j
g + η̂

j

2Δ
j
k

))
, (35)

and

Ck+1 =
∑
j∈Ĵk

(
λ̂

j

1,k+1

(
e
f
k,j + η̂

j

1b
j
k + G+(xk, ᾱ, Ē)

)

+ λ̂
j

2,k+1

(
e
g
k,j + η̂

j

2b
j
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
,

(36)

where η̂
j
i ∈ [ηi,j

min, η
i
max], i ∈ {1, 2}.

Proof In what follows, we consider k ≥ kE . If k ∈ Ks or k = kE , then we have J
agg
k = ∅ and

Sk+1 =
∑

j∈J ora
k

(
λ

j

1,k+1

(
ξ

j
f + ηk

1Δ
j
k

)
+ λ

j

2,k+1

(
ξ

k,j
g + ηk

2Δ
j
k

))
,

Ck+1 =
∑

j∈J ora
k

(
λ

j

1,k+1

(
e
f
k,j + ηk

1b
j
k + G+(xk, ᾱ, Ē)

)

+ λ
j

2,k+1

(
e
g
k,j + ηk

2b
j
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
,

where λ
j

1,k+1, λ
j

2,k+1 ≥ 0 for all j ∈ J ora
k and

∑
j∈J ora

k
(λ

j

1,k+1 +λ
j

2,k+1) = 1. Then, the result

holds by setting Ĵk = J ora
k \ JC

k , λ̂
j

1,k+1 = λ
j

1,k+1, λ̂
j

2,k+1 = λ
j

2,k+1, η̂
j

1 = ηk
1 and η̂

j

2 = ηk
2.

If k /∈ Ks and k > kE , then there exists k̃ ∈ {kE + 1, ..., k − 1} such that xk = xk̃ and

J
agg

k̃
= ∅. It holds that Δ

j

k̃
= Δ

j
k , b

j

k̃
= b

j
k , ξ

k̃,j
g = ξ

k,j
g for all j ∈ J ora

k and G(xk̃, ᾱ, Ē) =
G(xk, ᾱ, Ē) . Hence,

Sk̃+1 =
∑

j∈J ora

k̃

(
λ

j

1,k̃+1

(
ξ

j
f + ηk̃

1Δ
j
k

)
+ λ

j

2,k̃+1

(
ξ

k,j
g + ηk̃

2Δ
j
k

))
,

Ck̃+1 =
∑

j∈J ora

k̃

(
λ

j

1,k̃+1

(
e
f
k,j + ηk̃

1b
j
k + G+(xk, ᾱ, Ē)

)
+

λ
j

2,k̃+1

(
e
g
k,j + ηk̃

2b
j
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
,

where
∑

j∈J ora

k̃

(
λ

j

1,k̃+1
+ λ

j

2,k̃+1

)
= 1. Since J

agg

k̃
= ∅, then J

agg

k̃+1
= k̃ + 1. Hence,

Sk̃+2 =
∑

j∈J ora

k̃+1

(
λ

j

1,k̃+2
s
k̃+1,j
f + λ

j

2,k̃+2
s
k̃+1,j
g

)
+
∑

j∈J
agg

k̃+1

λ
j

3,k̃+2
· Sj

=
∑

j∈J ora

k̃+1

(
λ

j

1,k̃+2

(
ξ

j
f + ηk̃+1

1 Δ
j
k

)
+ λ

j

2,k̃+2

(
ξ

k,j
g + ηk̃+1

2 Δ
j
k

))

+
∑

j∈J ora

k̃

(
λ

j

1,k̃+1
λk+1

3,k̃+2

(
ξ

j
f + ηk̃

1Δ
j
k

)
+ λ

j

2,k̃+1
λk+1

3,k̃+2

(
ξ

k̃,j
g + ηk̃

2Δ
j
k

))
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and

Ck̃+2 =
∑

j∈J ora

k̃+1

(
λ

j

1,k̃+2
c
f

k̃+1,j
+ λ

j

2,k̃+2
c
g

k̃+1,j

)
+
∑

j∈J
agg

k̃+1

λ
j

3,k̃+2
· Cj

=
∑

j∈J ora

k̃+1

(
λ

j

1,k̃+2

(
e
f
k,j + ηk̃+1

1 b
j
k + G+(xk, ᾱ, Ē)

)

+ λ
j

2,k̃+2

(
e
g
k,j + ηk̃+1

2 b
j
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
+
∑

j∈J ora

k̃

(
λ

j

1,k̃+1
λk̃+1

3,k̃+2

(
e
f
k,j + ηk̃

1b
j
k + G+(xk, ᾱ, Ē)

)

+ λ
j

2,k̃+1
λk̃+1

3,k̃+2

(
e
g
k,j + ηk̃

2b
j
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
.

It is easily seen that∑
j∈J ora

k̃+1

(
λ

j

1,k̃+2
+ λ

j

2,k̃+2

)
+
∑

j∈J ora

k̃

(
λ

j

1,k̃+1
λk̃+1

3,k̃+2
+ λ

j

2,k̃+1
λk̃+1

3,k̃+2

)
= 1.

We set

Ĵ
k̃+1 =

⎧⎨
⎩

J ora

k̃+1
\ JC

k̃+1
, if λk̃+1

3,k̃+2
= 0,

(J ora

k̃+1
\ JC

k̃+1
) ∪ (J ora

k̃
\ JC

k̃
), if λk̃+1

3,k̃+2
�= 0.

For any j ∈ Ĵ
k̃+1 and i ∈ {1, 2}, we set⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ̂
j

i,k̃+2
= λ

j

i,k̃+1
λk̃+1

3,k̃+2
and η̂

j
i = ηk̃

i , if j ∈ J ora

k̃
\ J ora

k̃+1
,

λ̂
j

i,k̃+2
= λ

j

i,k̃+2
and η̂

j
i = ηk̃+1

i , if j ∈ J ora

k̃+1
\ J ora

k̃
,

λ̂
j

i,k̃+2
= λ

j

i,k̃+2
+ λ

j

i,k̃+1
λk̃+1

3,k̃+2
and η̂

j
i = η̈

j
i , if j ∈ J ora

k̃
∩ J ora

k̃+1
,

where

η̈
j
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ηk̃
i + ηk̃+1

i

2
, if λ̂

j

i,k̃+2
= 0,

λ
j

i,k̃+2
ηk̃+1

i + λ
j

i,k̃+1
λk̃+1

3,k̃+2
ηk̃

i

λ̂
j

i,k̃+2

, if λ̂
j

i,k̃+2
> 0.

Combining these, we have

η
i,j

min ≤ η̂
j
i ≤ ηi

max, ∀ i = {1, 2}, j ∈ Ĵ
k̃+1,

and

Sk̃+2 =
∑

j∈Ĵ
k̃+1

(
λ̂

j

1,k̃+2

(
ξ

j
f + η̂

j

1Δ
j
k

)
+ λ̂

j

2,k̃+2

(
ξ

k̃+1,j
g + η̂

j

2Δ
j
k

))
,

Ck̃+2 =
∑

j∈Ĵ
k̃+1

(
λ̂

j

1,k̃+2

(
e
f
k,j + η̂

j

1b
j
k + G+(xk, ᾱ, Ē)

)

+ λ̂
j

2,k̃+2

(
e
g
k,j + η̂

j

2b
j
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
.

By the same argument, we can obtain that there exist λ̂1,k+1, λ̂2,k+1 ∈ R
k+1 and Ĵk satisfying

(34) such that (35) and (36) hold.
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From Theorems 2 and 3, we can obtain that G(·, αk, Ek) is regular on X. The authors [17]
state that the following lemma holds. We give the proof since the cutting plane model and
the bundle update are different from [17]. In addition, the proof of [17] does not consider the
aggregate information of the cutting plane model.

Lemma 10 Assume that f is regular on X. Suppose that {ηk
1} and {ηk

2} are bounded above.

Let xk (k ≥ kE) be the current stability center and η̄ = maxj∈{0,1,...,k}{ηj

1 , η
j

2}. The upper
envelope model is defined as

Φ(y, xk, αk, Ek) = G+(xk, αk, Ek)+
sup
i=1,2

{
mi

y+,ξi ,η
| y+ ∈ B(xk; R), ξ1 ∈ ∂f (y+), ξ2 ∈ ∂G(y+, αk, Ek), η ∈ [γ, η̄]

}
,

where
mi

y+,ξi ,η
:= −γ

2
‖y+ − xk‖2 + 〈ξi + η(y+ − xk), y − xk〉, i = 1, 2. (37)

B(xk; R) is a fixed ball large enough to contain all possible trial steps during the iteration k.
Then, the following statements hold.

1. Φ(·, xk, αk, Ek) is a convex function and Ĥk(·) ≤ Φ(·, xk, αk, Ek).
2. Φ(xk, xk, αk, Ek) = G+(xk, αk, Ek).
3. ∂Φ(xk, xk, αk, Ek) ⊆ ∂H(xk, xk, αk, Ek).

Proof We only show that Ĥk(·) ≤ Φ(·, xk, αk, Ek). For the remainder of the proofs, we refer
the reader to [17].

Using (14) together with (15), for j ∈ J ora
k we obtain that

−c
f
k,j + 〈sk,j

f , y − xk〉 ≤ −γ b
j
k + 〈ξj

f + ηk
1(y

j − xk), y − xk〉 = m1
yj ,ξ

j
f ,ηk

1

,

−c
g
k,j + 〈sk,j

g , y − xk〉 ≤ −γ b
j
k + 〈ξk,j

g + ηk
2(y

j − xk), y − xk〉 = m2
yj ,ξ

k,j
g ,ηk

2

.

On the other hand, from Lemma 9, we can obtain that for j ∈ J
agg
k there exist λ̂1,j , λ̂2,j ∈

R
j , and Ĵj−1 satisfying (34) such that

Sj =
∑

l∈Ĵj−1

(
λ̂l

1,j

(
ξ l
f + η̂l

1Δ
l
k

)
+ λ̂l

2,j

(
ξk,l
g + η̂l

2Δ
l
k

))
,

Cj =
∑

l∈Ĵj−1

(
λ̂l

1,j

(
e
f
k,l + η̂l

1b
l
k + G+(xk, ᾱ, Ē)

)

+ λ̂l
2,j

(
e
g
k,l + η̂l

2b
l
k + G+(xk, ᾱ, Ē) − G(xk, ᾱ, Ē)

))
,

where η̂l
i ≥ η

i,l
min, i = 1, 2. According to (16) and the definition of η

i,l
min, we can obtain that

e
f
k,l + η̂l

1b
l
k ≥ γ bl

k, e
g
k,l + η̂l

2b
l
k ≥ γ bl

k .
Hence,

−Cj + 〈Sj , y − xk〉
≤

∑
l∈Ĵj−1

(
λ̂l

1,j

(
−γ bl

k + 〈ξ l
f + η̂l

1Δ
l
k, y − xk〉

)

+ λ̂l
2,j

(
−γ bl

k + 〈ξk,l
g + η̂l

2Δ
l
k, y − xk〉

))
≤ max{−γ bl

k + 〈ξ l
f + η̂l

1Δ
l
k, y − xk〉, −γ bl

k + 〈ξk,l
g + η̂l

2Δ
l
k, y − xk〉}

≤ sup
η∈[γ,η̄]

{m1
yj ,ξ

j
f ,η

, m2
yj ,ξ

k,j
g ,η

}.
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By the definition (22) of Ĥk(·), we can obtain that Ĥk(·) ≤ Φ(·, xk, αk, Ek).

Theorem 6 Assume that f is bounded below and regular on X. Suppose that {ηk
1} and {ηk

2}
are bounded above. Consider the stopping parameter tol1 = 0 and suppose there is no
termination. Then, the following mutually exclusive situations hold:

(i) Algorithm 1 generates an infinite sequence of serious steps. Let x̄ be the accumulation
point of {xk}, then 0 ∈ ∂H(x̄, x̄, ᾱ, Ē) + ∂IX(x̄).

(ii) Algorithm 1 generates a finite sequence of serious steps. Let x̄ be the last stability center,
then 0 ∈ ∂H(x̄, x̄, ᾱ, Ē) + ∂IX(x̄).

In addition, if MFCQ holds at x̄ for problem (12) with E = Ē, then x̄ is a tol2-KKT point of
the problem (1).

Proof In what follows, we consider k ≥ kE . From Theorem 1 and Lemma 9, we can obtain
that {Sk} is bounded; thus, we can assume that Sk+1 → S̄. Hence, vk+1 → −S̄ as k → ∞.
Using (21) together with Lemma 10, we can obtain that

Φ(y, xk, ᾱ, Ē) ≥ Ĥk(y)

≥ Ĥk(y
k+1) + 〈Sk+1, y − yk+1〉

= G+(xk, ᾱ, Ē) − Ck+1 + 〈Sk+1, y − xk〉.
By (19) and the convexity of IX , IX(y) ≥ IX(yk+1) + 〈vk+1, y − yk+1〉. As a result, it holds
that

Φ(y, xk, ᾱ, Ē)+IX(y) ≥ G+(xk, ᾱ, Ē)−Ck+1 +〈Sk+1 +vk+1, y−xk〉+〈vk+1, xk −yk+1〉.
(38)

(i) First, note that {xk} is in the compact set X, so it has an accumulation point, say for some
infinite set K ⊆ Ks , xk → x̄ as K � k → ∞. For all k + 1 ∈ K , we have xk − yk+1 =

1
μk

(Sk+1 +vk+1). By Lemma 6, Ck+1 → 0, Sk+1 +vk+1 → 0, xk −yk+1 → 0, xk → x̄

as K � k + 1 → ∞. Passing onto the limit in (38) as K � k + 1 → ∞, we obtain that

Φ(y, x̄, ᾱ, Ē) + IX(y) ≥ G+(x̄, ᾱ, Ē) + 〈0, y − x̄〉 = Φ(x̄, x̄, ᾱ, Ē) + 〈0, y − x̄〉.
Using the convexity of Φ(·, x̄, ᾱ, Ē) + IX(·), we have 0 ∈ ∂Φ(x̄, x̄, ᾱ, Ē) + ∂IX(x̄).
According to Lemma 10, we can conclude that 0 ∈ ∂H(x̄, x̄, ᾱ, Ē) + ∂IX(x̄).

(ii) Let k̄ be the last serious iteration, i.e., xk = x̄ for all k ≥ k̄. For k ≥ k̄, we have that
x̄ −yk+1 = xk −yk+1 = 1

μk
(Sk+1 +vk+1). By Lemma 8, Ck+1 → 0, Sk+1 +vk+1 → 0,

yk+1 − xk → 0 as k → ∞. Passing onto the limit in (38) as k → ∞, we obtain that

Φ(y, x̄, ᾱ, Ē) + IX(y) ≥ G+(x̄, ᾱ, Ē) + 〈0, y − x̄〉 = Φ(x̄, x̄, ᾱ, Ē) + 〈0, y − x̄〉.
By the same discussion, we deduce that 0 ∈ ∂H(x̄, x̄, ᾱ, Ē) + ∂IX(x̄).

From Theorem 5 and Remark 2, we obtain that x̄ is a tol2-KKT point of the original
problem (1). The proof is complete.

Theorem 7 Assume that f is bounded below and regular on X. Suppose that {ηk
1} and {ηk

2}
are bounded above. Consider the stopping parameter tol1 = 0 and suppose that algorithm
loops forever. If f is semismooth, then for any accumulation point x̄ of the sequence {xk}, for
each ε > 0 there exists ρ > 0 such that

max
{
f (y) − f (x̄) , G(y, ᾱ, Ē)

} ≥ −ε‖y − x̄‖, for all y ∈ X ∩ B(x̄; ρ).
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If, in addition, the set Xρ,ε,tol2 = {y ∈ X∩B(x̄; ρ) : G(y) < −(ρε + tol2)} is not empty, then
f (y) ≥ f (x̄) − ε‖y − x̄‖ for all y ∈ Xρ,ε,tol2 .

Proof Let λ̂j = λ̂
j

1,k+1 + λ̂
j

2,k+1, then we can obtain that

Ck+1 ≥ γ
∑
j∈Ĵk

λ̂j b
j
k ≥ γ

∑
j∈Ĵk

(λ̂j )2b
j
k = γ

2

∑
j∈Ĵk

(
λ̂j‖yj − xk‖

)2
. (39)

Equation (39) together with Lemma 6 and 8 implies that ‖yj − xk‖ → 0 for all j ∈ Ĵk .
Moreover, ‖yj − x̄‖ ≤ ‖yj − xk‖ + ‖xk − x̄‖ → 0 for all j ∈ Ĵk . From Proposition 1 and
Theorem 3, we can obtain that to fix any ε > 0 there exist ρ > 0, λ̂1,k+1, λ̂2,k+1 ∈ R

k+1 and
Ĵk satisfying (34) such that yj ∈ B(x̄; ρ), for all j ∈ Ĵk and

f (y) ≥ f (yj ) + 〈ξj
f , y − yj 〉 − ε‖y − yj‖, y ∈ X ∩ B(x̄; ρ),

G(y, ᾱ, Ē) ≥ G(yj , ᾱ, Ē) + 〈ξk,j
g , y − yj 〉 − ε‖y − yj‖, y ∈ X ∩ B(x̄; ρ).

Using (35) together with (36), for j ∈ Ĵk we see that

max
{
f (y) − f (xk) , G(y, ᾱ, Ē)

}
≥
∑
j∈Ĵk

(
λ̂

j

1,k+1

(
f (y) − f (xk)

)
+ λ̂

j

2,k+1G(y, ᾱ, Ē)
)

≥
∑
j∈Ĵk

(
λ̂

j

1,k+1

(
f (yj ) + 〈ξj

f , y − yj 〉 − ε‖y − yj‖ − f (xk)
)

+ λ̂
j

2,k+1

(
G(yj , ᾱ, Ē) + 〈ξk,j

g , y − yj 〉 − ε‖y − yj‖
))

=
∑
j∈Ĵk

(
−ελ̂j‖y − yj‖ + λ̂

j

1,k+1

(
−e

f
k,j + 〈ξj

f , y − xk〉
)

+λ̂
j

2,k+1

(
−e

g
k,j + 〈ξk,j

g , y − xk〉 + G(xk, ᾱ, Ē)
))

≥ −Ck+1 + G+(xk, ᾱ, Ē) + 〈Sk+1, y − xk〉 −
〈∑

j∈Ĵk

η̂j (yj − xk), y − xk

〉

−ε
∑
j∈Ĵk

λ̂j‖y − yj‖

≥ −Ck+1 + 〈Sk+1, y − xk〉 −
〈∑

j∈Ĵk

η̂j (yj − xk), y − xk

〉

−ε
∑
j∈Ĵk

λ̂j
(
‖y − xk‖ + ‖yj − xk‖

)
.

From Theorem 1 and Lemma 9, we can obtain that {Sk} is bounded; thus, we can assume that
Sk+1 → S̄. By noting Lemma 6 and Lemma 8, and passing to the limit as k → ∞, we obtain
that

max
{
f (y) − f (x̄) , G(y, ᾱ, Ē)

} ≥ 〈S̄, y − x̄〉 − ε‖y − x̄‖.

As already seen, Sk+1 + vk+1 → 0 implies that −S̄ ∈ ∂IX(x̄), thus 〈−S̄, y − x̄〉 ≤ 0. Hence

max
{
f (y) − f (x̄) , G(y, ᾱ, Ē)

} ≥ −ε‖y − x̄‖.
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By (11), we have G(y, ᾱ, Ē) ≤ G(y)+D(Ē, ᾱ) ≤ G(y)+ tol2. Since also y ∈ B(x̄; ρ), then
f (y) ≥ f (x̄) − ε‖y − x̄‖ for all y ∈ Xρ,ε,tol2 = {y ∈ X ∩ B(x̄; ρ) : G(y) < −(ρε + tol2)}.
The proof is complete.

5 Computational results

From Section 2.3, we find that the SIP can be rewritten as a finite constrained optimization
problem when the lower level problem is a concave optimization problem. Hence, we consider
the nonconvex nonsmooth constrained optimization problems and the nonconvex nonsmooth
SIP problems.

In this section, we report some numerical results to verify the practical efficiency of our
approach. We consider two classes of test problems and those test problems are introduced in
Appendix 1.
Solvers. For comparison purposes, we use the following solvers:

– PBM-inexact, the Proximal Bundle Method from [23].
– ICPBM, the Infeasible Constrained Proximal Bundle Method from [17].
– SolvOpt, the pubic software for local nonlinear optimization problems. The code is

available at https://imsc.uni-graz.at/kuntsevich/solvopt/index.html.
– ASA, the Adaptive Subdivision Algorithm from [41].
– fseminf, Matlab Optimization Toolbox for finding minimum of semi-infinitely constrained

multivariable nonlinear function.

Solvers ICPBM and SolvOpt are designed for nonsmooth nonconvex constrained problems;
these methods are only applicable to Problems 1–8. Solvers ASA and fseminf are designed
for semi-infinite programming problems; these methods are only applicable to Problems 9–23.
All solvers were implemented in MATLAB R2018a (Windows 10 64-bit). The experiments
were performed on a PC with Intel Core i5, 2.4 GHz. We solve the quadratic subproblems
using quadprog, which is available in the Matlab Optimization Toolbox. For solving the NLP
subproblems, ASA and Algorithm 1 use fmincon of Matlab Optimization Toolbox.
Parameters. Parameters of Algorithm 1 are set as follows: tol1 = 10−6, tol2 = 10−6, s =
2, γ = 2, in max = 100. We choose the descent parameter as follows:

m =

⎧⎪⎨
⎪⎩

0.01, if n ≤ 20

0.25, if 20 < n ≤ 200

0.55, if n > 200.

The proximal parameter is only updated at serious steps. We set μ0 = 5 and

μk+1 := max (μmin, min (μ̄k+1, μmax)) ,

where

μ̄k+1 := ‖Sk+1 − Sk‖2

〈Sk+1 − Sk, yk+1 − yk〉 ,

μmin = 1, μmax = 105.

In ICPBM, the stopping tolerance tol has been set to 10−6. For all the other parameters,
we have used the default values suggested by the respective codes [17]. Furthermore, in the
parameters selection of PBM-inexact and ASA we have used the default values [23, 41]. In
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Table 1 Summary of numerical results with PBM-inexact, ICPBM, and SolvOpt

P Solvers f ∗ g∗ NF Time

1 Algorithm 1 0.0858 −1.3148E−06 60 0.0938

PBM-inexact 0.0858 −1.5580E−06 44 0.0794

ICPBM 0.0858 −1.2481E−06 48 0.0969

SolvOpt 0.0858 1.0000E−08 612 0.0338

2 Algorithm 1 1.9522 −0.3542 40 0.0578

PBM-inexact 1.9522 −0.3571 48 0.0731

ICPBM 1.9522 −0.3574 44 0.0781

SolvOpt 1.9522 −0.3537 140 0.0141

3 Algorithm 1 0.6164 −2.6861 46 0.0641

PBM-inexact 0.6165 −2.6900 286 2.5147

ICPBM 0.6164 −2.6847 210 0.8938

SolvOpt 0.6164 −2.6860 266 0.0219

4 Algorithm 1 2.0000 −1.0670E−06 50 0.0719

PBM-inexact 2.0000 −1.1611E−06 56 0.0913

ICPBM 2.0000 −1.5383E−06 52 0.1078

SolvOpt 2.0000 −3.4893E−07 282 0.0200

5 Algorithm 1 2.2500 −1.0539E−06 164 0.2203

PBM-inexact 2.2500 −1.1364E−06 158 0.4903

ICPBM 2.2500 1.1914E−06 84 0.2219

SolvOpt 2.2500 −3.1385E−09 306 0.0178

6 Algorithm 1 1.1095E−08 −1.7304E−06 52 0.0922

PBM-inexact 7.2299E−07 −1.1266E−04 58 0.0991

ICPBM 1.5165E−07 −1.4008E−06 60 0.1219

SolvOpt 1.2568E−13 2.5665E−11 808 0.0516

7 (n=20) Algorithm 1 7.3914 −1.5779E−06 86 0.1672

PBM-inexact 7.3914 −1.2867E−06 260 1.6594

ICPBM 7.3915 −1.3064E−06 338 1.4578

SolvOpt 7.3919 −3.2938E−09 12,024 0.4176

7 (n=50) Algorithm 1 21.3548 −8.8956E−07 168 0.3328

PBM-ineaxct 21.3548 −1.3349E−06 498 10.8950

ICPBM 21.3548 −1.3313E−06 558 2.5906

SolvOpt 21.3587 −8.5937E−09 72,294 2.5394

7 (n=100) Algorithm 1 45.3797 −8.4573E−07 378 0.6344

PBM-inexact 45.3798 −1.0473E−06 730 39.6781

ICPBM 45.3798 −1.2934E−06 854 4.2422

SolvOpt 46.3036 −5.8039E−08 302,652 44.0375

7 (n=200) Algorithm 1 94.1840 −1.1525E−06 534 0.9438

PBM-inexact 94.1840 −1.1954E−06 1122 180.6016

ICPBM 94.1841 −1.3034E−06 1298 7.0609
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Table 1 (continued)

P Solvers f ∗ g∗ NF time

SolvOpt 96.7131 −5.2519E−08 472,148 80.6516

8 (n=10) Algorithm 1 18.2390 −1.0595E−06 686 0.7938

PBM-inexact 18.2390 −9.8375E−07 262 1.9313

ICPBM 18.2390 −1.1261E−06 208 0.9578

SolvOpt 18.2390 −2.7993E−08 2014 0.0766

8 (n=50) Algorithm 1 189.7162 −9.6575E−07 180 0.3313

PBM-inexact 189.7162 −1.1590E−06 318 3.2272

ICPBM 189.7162 −1.1826E−06 526 2.5344

SolvOpt 189.7166 −6.6921E−07 19,800 0.6784

8 (n=100) Algorithm 1 413.0583 −8.8474E−07 154 0.3000

PBM-inexact 413.0583 −1.1991E−06 160 0.6594

ICPBM 413.0584 −1.1658E−06 608 3.1328

SolvOpt 413.0635 −1.2452E−06 34,130 4.9025

8 (n=200) Algorithm 1 862.5086 −9.9902E−07 158 0.3391

PBM-inexact 862.5086 −1.1208E−06 166 0.7459

ICPBM 862.5087 −1.1677E−06 654 3.5688

SolvOpt 862.5118 −9.7218E−06 83,802 14.5703

8 (n=500) Algorithm 1 2213.7389 −1.0158E−06 156 0.7750

PBM-inexact 2213.7389 −1.0260E−06 172 1.2391

ICPBM 2213.7389 −1.1241E−06 694 4.9156

SolvOpt 2213.8271 −4.6555E−06 82,590 64.3891

8 (n=1000) Algorithm 1 4466.9124 −7.0467E−07 160 1.9719

PBM-inexact 4466.9124 −1.1771E−06 174 2.8219

ICPBM 4466.9124 −1.1522E−06 704 12.2547

SolvOpt 4467.0549 −1.0938E−05 134,142 347.2688

ASA, the maximum number of iterations is fixed to 10,000. In fseminf, the initial sampling
interval is set as follows: ⎧⎪⎨

⎪⎩
a : b − a

103
: b, p = 1,

ai : bi − ai

102
: bi, i = 1, 2, p = 2.

The stopping criterions of fseminf are set as follows:

T OLFun = 10−6, T OLCon = 10−6, T OLX = 10−6.

Results. We have summarized the results of our numerical experiments in Tables 1 and 2,
where we have used the following notations:

– P is the number of problems,
– NF is the number of function evaluations,
– NT is the number of nodes in the final subdivision,
– t ime is the CPU time in seconds,
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Table 2 Summary of numerical results with PBM-inexact, ASA, and fseminf

P Solvers f ∗ G∗ NF NT time

9 Algorithm 1 0.1945 −2.1740E−06 62 90 0.0875

PBM-inexact 0.1945 −3.4578E−06 28 – 0.0447

ASA 0.1945 −5.8076E−08 – 48 0.3016

fseminf 0.1945 −2.1805E−13 – – 0.0354

10 Algorithm 1 4.3012 −1.2546E−06 140 206 0.2094

PBM-inexact 4.3012 −1.6448E−06 104 – 0.2178

ASA 4.3012 −1.5595E−07 – 56 0.2750

fseminf 4.3010 2.1838E−04 – – 0.1505

11 Algorithm 1 0.6351 −4.1253E−06 166 586 0.2188

PBM-inexact 0.6351 −1.5555E−06 94 – 0.2059

ASA 0.6351 −1.0454E−07 – 66 0.3519

fseminf 0.6350 5.4727E−05 – – 0.0500

12 Algorithm 1 5.3347 −2.5102E−06 59 46 0.1406

PBM-inexact 5.3347 −7.9148E−07 60 – 2.5641

ASA 5.3347 −4.3557E−07 – 22 0.1775

fseminf 5.1722 0.4332 – – 0.1641

13 Algorithm 1 1.6701E−06 −1.6700E−06 75 130 0.1609

PBM-inexact 2.1311E−06 −2.1310E−06 62 – 0.1103

ASA Fail Fail – Fail Fail

fseminf 6.7670E−07 −7.3619E−09 – – 0.0911

14 Algorithm 1 2.4172E−06 −2.4148E−06 63 1804 0.1094

PBM-inexact 5.7657E−06 −5.7656E−06 76 – 4.7275

ASA Fail Fail – Fail Fail

fseminf 0 −6.7463E−12 – – 0.1339

15 Algorithm 1 0.4207 −3.1679E−06 52 900 0.0828

PBM-inexact 0.4207 −5.3241E−06 34 – 0.0863

ASA 0.4207 −5.2269E−08 – 324 0.2891

fseminf 0.2787 0.2841 – – 0.1583

16 Algorithm 1 −3.6922 −0.8149 213 484 0.2672

PBM-inexact −3.6922 −0.8152 294 – 2.4753

ASA Fail Fail – Fail Fail

fseminf −3.6914 −0.8289 – – 0.1906

17 Algorithm 1 50.3875 −1.2187E−06 638 1444 1.2734

PBM-inexact 50.3875 −3.0114E−06 444 – 5.6722

ASA 50.3875 −2.6130E−09 – 784 7.7278

fseminf 1.8800E+05 5.4906E+04 – – 0.0620

18 Algorithm 1 7.9221 −1.1413E−06 152 1444 0.2281

PBM-inexact 7.9221 −3.0445E−06 110 – 0.2594

ASA Fail Fail – Fail Fail

fseminf 7.9238 5.8671E−09 – – 0.3349
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Table 2 (continued)

P Solvers f ∗ G∗ NF NT time

19 Algorithm 1 0.2305 −2.6835E−06 172 5580 0.2031

PBM-inexact 0.2305 −5.6445E−06 228 – 1.4281

ASA Fail Fail – Fail Fail

fseminf 0.2187 0.0247 – – 0.2625

20 Algorithm 1 13.3125 −1.4231E−06 194 1444 0.3453

PBM-inexact 13.3125 −3.2437E−06 134 – 0.3563

ASA 13.3125 −4.1815E−07 − 256 0.1875

fseminf 4.9898E+04 5.4906E+04 – – 0.0833

21 Algorithm 1 0.2079 −2.6777E−06 68 3132 0.1250

PBM-inexact 0.2079 −5.3948E−06 168 – 0.8125

ASA Fail Fail – Fail Fail

fseminf 0.1018 0.3082 – – 0.0969

22 Algorithm 1 13.3125 −1.4231E−06 194 1444 0.2641

PBM-inexact 13.3125 −3.2437E−06 134 – 0.3353

ASA 13.3125 −4.1815E−07 − 256 0.1891

fseminf 4.9898E+04 5.4906E+04 – – 0.0609

23 Algorithm 1 0.6106 −1.8779E−06 72 2116 0.1141

PBM-inexact 0.6106 −6.8263E−06 44 – 0.1375

ASA 0.6106 −6.4529E−10 − 1024 0.5359

fseminf 0.2227 0.5955 − – 0.6224

– f ∗ is the objective function value when the algorithm terminates,
– g∗ is the constraint function value when the algorithm terminates for constrained

optimization problems,
– G∗ measures the feasibility of x∗ when the algorithm terminates for SIP problems, i.e.,

G∗ = max
t∈Ē

g(x∗, t),

where x∗ is the obtained solution of the problem when the algorithm terminates and

Ē =

⎧⎪⎨
⎪⎩

a : b − a

106
: b, p = 1,

ai : bi − ai

104
: bi, i = 1, 2, p = 2.

The results presented in Table 1 show that the new solver Algorithm 1 is more reliable
to find an optimal solution to each problem than the other solvers. The solvers Algorithm 1
and PBM-inexact reach the same optimal value in most problems, only in some of the prob-
lems (Problem 3, 7 (n=100)) Algorithm 1 reaches lower objective value. Despite being more
unreliable than Algorithm 1, the solver PBM-inexact has also quite a good performance and
yields feasible points in all problems. In some of the problems (Problem 7 (n=20,100,200), 8
(n=100,200)) Algorithm 1 reaches a lower objective value than the solver ICPBM. The solver
SolvOpt fails to find the optimal value in Problems 7 and 8 (n≥20).

Figure 1 depicts the performance plot comparing the solvers Algorithm 1, PBM-inexact,
ICPBM and SolvOpt on Problems 1–8. It can be observed that Algorithm 1 performs much
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Fig. 1 Performance plot for Algorithm 1, PBM-inexact, ICPBM and SolvOpt

better in terms of CPU time, compared to the other solvers. The solver SolvOpt is the faster
one for n ≤10. However, it uses more computational efforts than the other solvers in Problems
7 and 8 (n >10).

All in all, we can conclude that the new solver Algorithm 1 is really efficient to solve the
nonconvex, nonsmooth constrained optimization problems.

The results presented in Table 2 show that the solver Algorithm 1 is efficient to find an opti-
mal solution to each SIP problem. The solvers Algorithm 1 and PBM-inexact find a feasible
point to each SIP problem. The solver ASA fails to find the optimal solution approximately in
40% of the cases while fseminf fails in 80% of the cases. From Table 2, it observes that Algo-
rithm 1 requires a lot more nodes than ASA. However, Algorithm 1 is much faster than ASA.
This is expected because of the subproblems of ASA use more computational efforts than the
subproblems of Algorithm 1 and the subproblems of our method do not depend on the number
of the nodes in the subdivision.

Figure 2 depicts the performance plot comparing the solvers Algorithm 1, PBM-inexact,
ASA, and fseminf on Problems 9–23. Algorithm 1 performs much better in terms of CPU time,
compared to the solvers PBM-inexact and ASA. The solver fseminf is the faster one in some
cases. However, it cannot find the optimal value in most problems.

Fig. 2 Performance plot for Algorithm 1, PBM-inexact, ASA, and fseminf
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All in all, we can conclude that Algorithm 1 is really efficient to solve the nonconvex,
nonsmooth SIP problems.

6 Conclusions

In this paper, we design a feasible proximal bundle method with convexification for SIP prob-
lems. We consider SIP problems that involve nonsmooth, nonconvex functions and present
upper bounding problem. The upper bounding problem is constructed based on a concave
relaxation of the lower level problem which results in a restriction of the SIP. The relaxed lower
level problem is a finite nonsmooth problem and constructed with ideas from the αBB method
of global optimization. Then, we introduce an improvement function of the upper bounding
problem, construct a cutting plane model of the improvement function, and reformulate the
cutting plane model as a quadratic programming problem and solve it. In contrast to the tra-
ditional bundle method, the cutting plane model involves new parameters E, α which vary
along the iterations. If D(E, α) → 0, the upper bounding problems converge to the original
SIP problem. We perform an initialization to generate a feasible initial point of our proximal
bundle method. Under our refinement procedure and descent condition, we can obtain that
each iteration point is feasible. The reasonable convergence properties of the our algorithms
are obtained under mild assumptions. The presented results of numerical experiments confirm
that Algorithm 1 is efficient for solving nonsmooth, nonconvex SIP problems. The feasibility
of Algorithm 1 is demonstrated through theoretical analysis and numerical experiments.

Appendix 1: Test problems

Problem 1 [23, 40] Dimension: n=2,
f (x) = 8|x2

1 − x2| + (1 − x1)
2,

g(x) = max
{√

2x1, 2x2

}
− 1,

X = [−2, 2]2, x0 = (1, 1)T .

Problem 2 [34] Dimension: n=2,
f (x) = max

{
x2

1 + x4
2 , (2 − x1)

2 + (2 − x2)
2, 2 exp(x2 − x1)

}
,

g(x) = max
{−x4

1 − 2x2
2 − 1, 2x3

1 − x2
2 − 2.5

}
,

X = [−4, 4]2, x0 = (2, 2)T .

Problem 3 [34] Dimension: n=2,
f (x)=max

{
x2

1 + x2
2 + x1x2, −x2

1 − x2
2 − x1x2, sin x1,− sin x1, cos x2, − cos x2

}
,

g(x) = max
{−x4

1 − 2x2
2 − 1, 2x3

1 − x2
2 − 2.5

}
,

X = [−4, 4]2, x0 = (3, 1)T .

Problem 4 [34] Dimension: n=2,
f (x) = max

{
x4

1 + x2
2 , (2 − x1)

2 + (2 − x2)
2, 2 exp(x2 − x1)

}
,

g(x) = max
{
x2

1 − x2
2 , −2x3

1 − x2
2

}
,

X = [−4, 4]2, x0 = (0, 1)T .
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Problem 5 [34] Dimension: n=2,
f (x) = max

{
x2

1 + x2
2 , (2 − x1)

2 + (2 − x2)
2, 2 exp(x2 − x1)

}
,

g(x) = max
{
x1 + x2 − 2, −x2

1 − x2
2 + 2.25

}
,

X = [−4, 4]2, x0 = (2.1, 1.9)T .

Problem 6 [34] Dimension: n=2,
f (x) = max

{
10(x2 − x2

1), 10(x2
1 − x2), 1 − x1, x1 − 1

}
,

g(x) = max
{
100x2

1 + x2
2 − 101, 80x2

1 − x2
2 − 79

}
,

X = [−4, 4]2, x0 = (−1.2, 1)T .

Problem 7 [19] Dimension: n=20, 50, 100, 200,

f (x) = max
{∑n−1

i=1 (x2
i + (xi+1 − 1)2 + xi+1 − 1) ,∑n−1

i=1 (−x2
i − (xi+1 − 1)2 + xi+1 + 1)

}
,

g(x) =∑n−1
i=1 (x2

i + x2
i+1 + xixi+1 − 2xi − 2xi+1 + 1.0),

X = [−10, 10]n, x0 = ones(n, 1).

Problem 8 [19, 40] Dimension: n=10, 50, 100, 200, 500, 1000,
f (x) =∑n−1

i=1 (−xi + 2(x2
i + x2

i+1 − 1) + 1.75|x2
i + x2

i+1 − 1|),
g(x) =∑n−2

i=1 ((3 − 2xi+1)xi+1 − xi − 2xi+2 + 2.5),
X = [−10, 10]n, x0 = ones(n, 1).

Problem 9 [41] Dimension: n = 2, p = 1,
f (x) = 1

3x2
1 + x2

2 + 1
2x1,

g(x, t) = (1 − x2
1 t2)2 − x1t

2 − x2
2 + x2,

X = [−2, 2]2, T = [0, 1], x0 = (−1, −1)T .

Problem 10 [28] Dimension: n = 3, p = 1,
f (x) = exp(x1) + exp(x2) + exp(x3),
g(x, t) = 1/(1 + t2) − x1 − x2t − x3t

2,
X = [−2, 2]3, T = [0, 1], x0 = (1, 1, 1)T .

Problem 11 [28] Dimension: n = 3, p = 1,
f (x) = x1 + x2/2 + x3/3,
g(x, t) = exp(t − 1) − x1 − x2t − x3t

2,
X = [−2, 2]3, T = [0, 1], x0 = (1, 1, 1)T .

Problem 12 [41] Dimension: n = 3, p = 1,
f (x) = x2

1 + x2
2 + x2

3 ,
g(x, t) = x1 + x2 exp(x3t) + exp(2t) − 2 sin(4t),
X = [−4, 2]3, T = [0, 1], x0 = (1, 1, 1)T .

Problem 13 [31, 32] Dimension: n = 3, p = 2,
f (x) = |x1| + |x2| + |x3|,
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g(x, t) = x1 + x2 exp(x3t) − exp(2x1t) + sin(4t),
X = [−1, 1]3, T = [0, 1], x0 = ones(3, 1).

Problem 14 [31, 32] Dimension: n = 3, p = 2,
f (x) = |x1| + |x2| + |x3|,
g(x, t) = x1 + x2 exp(x3t1) − exp(2t2) + sin(4t1),
X = [−1, 1]3, T = [0, 1]2, x0 = ones(3, 1).

Problem 15 [31, 32] Dimension: n = 4, p = 2,
f (x) = 1/2(|x1| + |x2| + |x3| + |x4|),
g(x, t) = sin(t1t2) − x1 − x2t1 − x3t2 − x4t1t2,
X = [−4, 4]6, T = [0, 1]2, x0 = ones(4, 1).

Problem 16 Dimension: n = 6, p = 2,
f (x) =∑n−1

i=1 (−xi + 2(x2
i + x2

i+1 − 1) + 1.75|x2
i + x2

i+1 − 1|),
g(x, t) = sin(t1t2) − x1 − x2t1 − x3t2 − x4t

2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 17 Dimension: n = 6, p = 2,
f (x) =∑n−1

i=1 (−xi + 2(x2
i + x2

i+1 − 1) + 1.75|x2
i + x2

i+1 − 1|),
g(x, t) = (1 + t2

1 + t2
2 )2 − x1 − x2t1 − x3t2 − x4t

2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 18 Dimension: n = 6, p = 2,

f (x) =∑n−1
i=1 max

{
x2
i + (xi+1 − 1)2 + xi+1 − 1, −x2

i − (xi+1 − 1)2 + xi+1 + 1
}
,

g(x, t) = exp(t2
1 + t2

2 ) − x1 − x2t1 − x3t2 − x4t
2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 19 Dimension: n = 6, p = 2,

f (x) =∑n−1
i=1 max

{
x2
i + (xi+1 − 1)2 + xi+1 − 1, −x2

i − (xi+1 − 1)2 + xi+1 + 1
}
,

g(x, t) = sin(t1t2) − x1 − x2t1 − x3t2 − x4t
2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 20 Dimension: n = 6, p = 2,

f (x) =∑n−1
i=1 max

{
x2
i + (xi+1 − 1)2 + xi+1 − 1, −x2

i − (xi+1 − 1)2 + xi+1 + 1
}
,

g(x, t) = (1 + t2
1 + t2

2 )2 − x1 − x2t1 − x3t2 − x4t
2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 21 Dimension: n = 6, p = 2,

f (x)=max
{∑n−1

i=1 (x2
i + (xi+1 − 1)2 + xi+1 − 1) ,∑n−1

i=1 (−x2
i − (xi+1 − 1)2 + xi+1 + 1)

}
,

g(x, t) = sin(t1t2) − x1 − x2t1 − x3t2 − x4t
2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).
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Problem 22 Dimension: n = 6, p = 2,

f (x) = max

{
n−1∑
i=1

(x2
i + (xi+1 − 1)2 + xi+1 − 1) ,

n−1∑
i=1

(−x2
i − (xi+1 − 1)2 + xi+1 + 1)

}
,

g(x, t) = (1 + t2
1 + t2

2 )2 − x1 − x2t1 − x3t2 − x4t
2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 23 Dimension: n = 6, p = 2,
f (x) = max1≤i≤n

{
h(−∑n

i=1 xi), h(xi)
}
, where h(y) = ln(|y| + 1), ∀y ∈ R,

g(x, t) = sin(t1t2) − x1 − x2t1 − x3t2 − x4t
2
1 − x5t1t2 − x6t

2
2 ,

X = [−4, 4]6, T = [0, 1]2, x0 = ones(6, 1).
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