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Abstract
Moment-based methods are used to generate the three-term recurrence relation for
polynomials orthogonal with respect to the Prudnikov, the generalized Prudnikov,
and Prudnikov-type weight functions and their symmetric extensions. All procedures
developed are implemented, and made available, in MATLAB software.
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1 Introduction

Let

ρν(x) = 2 xν/2Kν(2
√

x), x > 0, ν ∈ R,

where Kν is the second-kind modified Bessel function of order ν ([6, §10.25]). Prud-
nikov polynomials [11, §3] are polynomials orthogonal with respect to the weight
function

wν(x) = ρν(x), 0 < x < ∞, ν ≥ 0. (1.1)
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A. P. Prudnikov (1927–1999) advocated their study in [7, Problem 2] and dealt
with the case ν = 0 in [ibid., Problem 1]. S. Yakubovich, in [11], considered also
generalized Prudnikov polynomials orthogonal with respect to the weight function

wα
ν (x) = xαρν(x), 0 < x < ∞, α > −1, (1.2)

as well as Prudnikov-type polynomials, in [10, §2] of type 1, orthogonal with respect
to

w+
ν (x) = e−xρν(x), 0 < x < ∞, ν > −1, (1.3)

and in [10, §3] of type 2, orthogonal with respect to

w−
ν (x) = x−1e−1/xρν(x), 0 < x < ∞, ν ∈ R. (1.4)

Symmetric extensions of all these polynomials will also be considered, where x

in the weight function is replaced by |x|, and the support interval is extended to the
whole real line.

Multiple orthogonal polynomials relative to the pair xαρν(x), xαρν+1(x) of
weight functions are studied in [8]; see also [2] and [12, §IIA].

Weight functions involving modified Bessel functions Kν(x) (rather than
Kν(2

√
x)) have been used previously in connection with wave functions for nonlocal

potentials [5]; see also [3, Exercise 2.32], [4, §2.1.3], [9, §2.1.3].
The object of this note is to develop the respective orthogonal polynomials and

their symmetric extensions, in particular, to obtain the three-term recurrence relations
they satisfy and to provide related MATLAB software. The approach used in all
cases is the classical Chebyshev algorithm, computing the recurrence coefficients
from the moments of the weight function. Because of the underlying ill-conditioning,
high-precision computation is required.

2 Moments

The nth-order moment of the generalized Prudnikov weight function is

μν,α
n =

∫ ∞

0
xnwα

ν (x)dx = �(n+α +ν +1)�(n+α +1), ν ≥ 0, α > −1, (2.1)

as follows from [11, Eq. (2.4)] where μ is replaced by n+α. For the first Prudnikov-
type weight function, the moment of order n is

μ+
n =

∫ ∞

0
xnw+

ν (x) dx =
∫ ∞

0
xne−xρν(x) dx = 2

∫ ∞

0
xn+ν/2e−xKν(2

√
x) dx,

ν > −1.

Using Mathematica 12.3, one finds (cf. also [10, Eq. (1.8)])

μ+
n = n!�(n + ν + 1)U(n + ν + 1, ν + 1, 1),
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where U(a, b, x) is the confluent hypergeometric function (also known as Tri-
comi’s function) or, in terms of generalized hypergeometric functions, U(a, b, x) =
x−a

2F0(a, a − b + 1; −; −x−1) [6, §13.6(vi)]. Thus,

μ+
n = n!�(n + ν + 1) 2F0(n + ν + 1, n + 1; −; −1). (2.2)

For the second Prudnikov-type weight function, the moments have been given in
[10, Eq. (1.9)], though involving (in the last line of the equation) the gamma function
at a nonpositive integer, that is, plus or minus infinity depending from which side that
integer is approached. We have, however,

μ−
n =

∫ ∞

0
xnw−

ν (x)dx = 2
∫ ∞

0
xn+ν/2−1e−1/xKν(2

√
x)dx, ν ∈ R. (2.3)

Here, the second integral can be expressed in terms of the Meijer G-function, see
[6, §16.17], for which we use here the MATLAB notation on the right of

G
m,n
p,q

⎛
⎝z; a1, a2, . . . , ap

b1, b2, . . . , bq

⎞
⎠

= meijerG ( [a1, . . . , an], [an+1, . . . , ap], [b1, . . . , bm], [bm+1, . . . , bq ], z)
0 ≤ n ≤ p, 0 ≤ m ≤ q.

(The content between brackets may be empty. For example, if p = 0, the first two
arguments of meijerG are empty, or only the second one if p = n.)

To begin with, the term on the far right of (2.3) can be written as a Mellin transform
of the function f (x) = 2 e−1/xKν(2

√
x),

μ−
n = (M f )(s) =

∫ ∞

0
xs−1 f (x)dx, s = n + ν/2. (2.4)

Using the Mathematica 12.3 command
MellinTransform[2 BesselK[v,2Sqrt[x]]Exp[-1/x],x,s]
yields

(M f )(s) = 22s−2

π3/2
meijerG ( [1/2, 1, (2 − 2s − ν)/4, (4 − 2s − ν)/4,

(2 − 2s + ν)/4, (4 − 2s + ν)/4], [ ], [ ], [ ], 64). (2.5)

Letting

a1 = 1, a2 = 1 − s − ν/2, a3 = 1 − s + ν/2 and p = n = 3, q = m = 0,

the right-hand side of (2.5) is

2p+1−n−a1−a2−a3

πn−p/2
meijerG ( [ a1/2, (a1 + 1)/2, a2/2, (a2 + 1)/2, a3/2, (a3 + 1)/2],
[ ], [ ], [ ], 4p),
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which, by [6, Eq. 16.19.4] and s = n + ν/2, equals

meijerG ( [a1, a2, a3], [ ], [ ], [ ], 1) = meijerG ( [1, 1 − (n + ν), 1 − n], [ ], [ ], [ ], 1).

Thus, simplifying by employing [6, Eq. 16.19.1], we get

μ−
n = meijerG ( [ ], [ ], [0, n + ν, n], [ ], 1). (2.6)

The moments of the symmetric extension of all the weight functions above are
twice the moments stated, if n is even, and zero if n is odd.

If, in the integral of (2.4), we make the change of variable x �→ x2, we can write
equivalently

μ−
n = 2(M g)(2n + ν), (2.7)

where g(x) = f (x2) = 2e−1/x2
Kν(2x). As observed by one of the referees, the

Mellin transform M g can be found in formula 3.14.3.13 on p. 211 of [1], where
a = 1 and b = 2, giving

μ−
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 �(n)�(n + ν) 0F2(1 − n − ν, 1 − n; −1)

+ 1
2 �(−ν)�(−n − ν) 0F2(1 + ν, n + 1 + ν; −1)

+ 1
2 �(ν)�(−n) 0F2(1 − ν, n + 1; −1).

(2.8)

This formula not only is rather more complicated than (2.6), but, more importantly,
also suffers from serious numerical problems when n = 0, 1, 2, . . . , as is the case
here. Indeed, as each of these n is approached, either from above or from below, the
first and third term become infinitely large, but with opposite signs. For n = 0, this
is so because of the appearance of �(n) and �(−n) in the respective terms, and for
n > 0 because of the appearance of 0F2(1 − n − ν, 1 − n; −1) and of �(−n). For
these reasons, we prefer (2.6).

3 Orthogonal polynomials and recurrence coefficients

It is well known that (monic) orthogonal polynomials πk relative to a positive weight
function w(x) on some finite or infinite interval [a, b] satisfy a three-term recurrence
relation

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k = 0, 1, 2, . . . ,

π−1 = 0, π0 = 1, (3.1)

where the coefficients αk are real and βk > 0. Conventionally, β0 is taken to be β0 =∫ b

a
w(x)dx. For any computational work with orthogonal polynomials, knowledge of

this recurrence relation, that is, of its recurrence coefficients, is indispensable.
There is MATLAB software available that generates to any given accuracy the

first N recurrence coefficients αk , βk , k = 0, 1, 2, . . . , N − 1, and places them
into the first, respectively second, column of an N × 2 array ab; see, e.g., [3, §1].
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The procedure used here is the Chebyshev algorithm, generating the first N recur-
rence coefficients from the first 2N moments of the weight function. Given the
ill-conditioned nature of this proposition, it is important to know how many work-
ing digits are required to obtain all N coefficients βk (and thus, presumably, also
all αk 	= 0) to a given relative accuracy. For the three weight functions of Prud-
nikov type, this is answered by the MATLAB routines dig gprudnikov.m,
dig prudnikov type.m, and for the respective symmetric extensions by
dig gprudnikov symm.m, dig prudnikov type symm.m. These routines
not only provide the desired number dig of working digits, but also the respec-
tive array ab of recurrence coefficients to the accuracy requested. Once this
number dig of required working digits is known, the array ab can be gen-
erated directly by the routines sr gprudnikov.m, sr prudnikov type.m,
sr gprudnikov symm.m, sr prudnikov type symm.m.

For all MATLAB routines needed, visit
https://www.cs.purdue.edu/archives/2002/wxg/codes/

PRUD.html.

3.1 Generalized Prudnikov polynomials

Our target precision for the recurrence coefficients, in this and the next two subsec-
tions, is 15-digit accuracy. For generalized Prudnikov polynomials with parameter α,
the results of the routine dig gprudnikov.m are shown in Table 1 for selected
values of ν and for α = ±1/2. (Other values of α > −1, including α = 0, in the
range from −.9 to 10.6, have led to basically the same results, except, occasionally,
somewhat larger ones, but never by more than 3 units.)

It can be seen that, for each N shown, the results are more or less the same, which
means that the underlying conditioning is essentially independent of the parameters ν

Table 1 The number dig of digits required in the Chebyshev algorithm to obtain the first N recurrence
coefficients of the generalized Prudnikov polynomials to an accuracy of 15 decimal digits

N ν α dig N ν α dig N ν α dig

25 0 −1/2 25 50 0 −1/2 43 100 0 −1/2 78

1/2 25 1/2 44 1/2 79

1/3 −1/2 27 1/3 −1/2 45 1/3 −1/2 81

1/2 27 1/2 45 1/2 82

2/3 −1/2 27 2/3 −1/2 45 2/3 −1/2 81

1/2 27 1/2 45 1/2 82

1 −1/2 25 1 −1/2 43 1 −1/2 80

1/2 25 1/2 43 1/2 80

3 −1/2 25 3 −1/2 44 3 −1/2 80

1/2 26 1/2 43 1/2 81

6 −1/2 26 6 −1/2 44 6 −1/2 81

1/2 26 1/2 43 1/2 81
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and α. The results, in fact, suggest condition numbers of the order 1010 − 1012 when
N = 25, 1028 − 1030 when N = 50, and 1063 − 1067 when N = 100.

We used our routine sr gprudnikov(dig,nofdig,N,nu,alpha) with
dig =30, nofdig=18, N=11, nu=alpha=0, to check Table 9.1 in [7] containing
the values of an = √

βn for n = 1, 2, . . . , 10. Agreement to all digits was observed
except for the last digit, which occasionally is off by one unit.

3.2 Prudnikov-type polynomials of the first type

Here the results of the routine dig prudnikov type.m with type=1 (for the
weight function w+

ν ) are shown in Table 2 for selected values of ν > −1. As
before in the case of generalized Prudnikov polynomials, the results are practically
independent of ν.

The condition numbers for N = 25, 50, 100 are now about 1020, 1040, and
1085, that is, substantially larger than in the case of generalized Prudnikov weight
functions.

3.3 Prudnikov-type polynomials of the second type

Here, the results of the routine dig prudnikov type.m with type=2 (for the
weight function w−

ν ) are shown in Table 3 for selected values of ν ∈ R. They are
quite similar to the ones in Section 3.1 where applicable, and so is the degree of
ill-contitioning.

Knowing the degree of ill-conditioning, it is easy to estimate the number of dig-
its needed to get any desired accuracy. Thus, for example, when N = 100, to get
32-digit accuracy will require something like 32+67=99 digits in the case of gen-
eralized Prudnikov weight functions and Prudnikov weight functions of type 2, and
32+87=119 digits for Prudnikov weight functions of type 1. Both these numbers have
been corroborated numerically.

Table 2 The number dig of digits required in the Chebyshev algorithm to obtain the first N recurrence
coefficients of the Prudnikov-type polynomials of type 1 to an accuracy of 15 decimal digits

N ν dig N ν dig N ν dig

25 −2/3 34 50 −2/3 55 100 −2/3 102

−1/3 35 −1/3 55 −1/3 102

0 35 0 54 0 100

1/3 35 1/3 55 1/3 102

2/3 35 2/3 55 2/3 102

1 35 1 54 1 100

3 35 3 54 3 101

6 35 6 54 6 101
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Table 3 The number dig of digits required in the Chebyshev algorithm to obtain the first N recurrence
coefficients of the Prudnikov polynomials of type 2 to an accuracy of 15 decimal digits

N ν dig N ν dig N ν dig

25 −6 23 50 −6 42 100 −6 79

−3 25 −3 42 −3 79

−1 25 −1 43 −1 79

−2/3 26 −2/3 44 −2/3 81

−1/3 26 −1/3 44 −1/3 81

0 24 0 42 0 79

1/3 26 1/3 44 1/3 81

2/3 26 2/3 44 2/3 81

1 24 1 43 1 79

3 26 3 43 3 80

6 25 6 44 6 80

3.4 Polynomials orthogonal relative to the symmetric extension of weight
functions of Prudnikov type

Symmetry usually lowers condition numbers. This is the case here, where, compared
with the case of generalized Prudnikov polynomials in Section 3.1, the number dig
of required digits is now about one half of those in Table 1 when N is 25 and 50, and
even somewhat smaller when N = 100. More specifically, dig is never greater than
16, 22, 35 for, respectively, N = 25, 50, 100 and parameters ν and α as in Table 1.
Similarly, for symmetric Prudnikov-type polynomials of type 1, the largest numbers
dig are 20, 27, 45 for, respectively N = 25, 50, 100 and for ν as in Table 2, and
for symmetric Prudnikov-type polynomials of type 2 they are 15, 21, 34 for ν as in
Table 3.
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