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Abstract
In this study, we develop first- and second-order time-accurate energy stable meth-
ods for the phase-field crystal equation and the Swift–Hohenberg equation with
quadratic-cubic non-linearity. Based on a new Lagrange multiplier approach, the
first-order time-accurate schemes dissipate the original energy in a time-discretized
version, which are different from the modified energy laws obtained by the invariant
energy quadratization (IEQ) and the scalar auxiliary variable (SAV) methods. More-
over, the proposed schemes do not require the bounded-from-below restriction which
is necessary in the IEQ or SAV approach. We rigorously prove the energy dissipations
of first- and second-order accurate methods with respect to the original energy and
pseudo-energy in the time-discretized versions, respectively. An efficient algorithm
is used to decouple the resulting weakly coupled systems. In one time iteration, only
two linear systems with constant coefficients and one non-linear algebraic equation
need to be solved. Finally, the accuracy, stability and practicability of the proposed
methods are validated by intensive numerical tests.

Keywords Phase-field crystal model · Swift–Hohenberg model ·
New Lagrange multiplier approach · Energy dissipation law

1 Introduction

The phase-field method has been extensively used in fluid [1], material [2, 3], and
biological [4, 5] fields in the past twenty years. An important factor of the popular-
ity of the phase-field method lies in the energy-based structure, i.e., most phase-field
models can be derived from the free energy functional and the equilibrium state usu-
ally corresponds to the minimization of energy functional. This basic property is
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called the energy dissipation property or the energy stability. The energy dissipa-
tion law also provides a criterion to develop the so-called energy stable numerical
methods. For phase-field models, the convex splitting approach proposed by Eyre
[6] is a practical way. Based on the convex splitting method, Hu et al. [7] devel-
oped energy-stable finite difference method for the phase-field crystal (PFC) model.
Meanwhile, nonlinear multigrid technique was adopted in their work to accelerate
the convergence. Later, Wise et al. [8] performed estimations of energy stability
and convergence for the PFC model. Recently, the convex splitting method has
been extensively used to construct second-order time-accurate method for the Cahn–
Hilliard (CH) equation, please refer to [9, 10] for some details. Different from the
convex splitting method, the stabilization approach can be used to construct linear
and energy-stable schemes, earlier applications for the Allen–Cahn (AC) and the
CH equations can be found in [11]. The stabilization approach generally needs to
replace the original non-linear potential with a truncated potential. Pei et al. [12]
recently developed linear, second-order time-accurate, and energy-stable method for
the PFC equation by using the stabilization approach. The applications of second-
order stabilization method for the CH equation can be found in [13]. In recent years,
the IEQ approach [14] and the SAV approach [15–17] are good choices to construct
unconditionally energy stable schemes for the family of phase-field problems.

For a given free energy, one can obtain two systems based on theL2- andH−1-gradi-
ent flow approaches in general. For example, the well-known AC and CH equations
are derived from the Ginzburg–Landau free energy with respect to the L2- and H−1-
gradient flows, respectively. In this study, we will focus on the Swift–Hohenberg
(SH) and the PFC equations which are obtained from a SH type free energy functional
with respect to the L2- and H−1-gradient flow approaches, respectively.

The PFC model was originally introduced in [18] to study the crystallization. In
recent years, many researchers studied the dynamics of this model by using various
numerical methods. Wang et al. [19] proposed a convex splitting-based uncondition-
ally stable method to solve the PFC model. Lee et al. [20] numerically investigated
the PFC equation by using an operator splitting approach. Shin et al. [21] numeri-
cally investigated the PFC model by using a new convex splitting method. Yang and
Han [22] first treated the PFC equation by adopting the IEQ method. In their work,
second-order time-accurate schemes were developed by using the Crank–Nicolson
and second-order backward difference formulas. To strictly preserve the positivity
in square root, Liu and Li [23] proposed several modified IEQ methods and ana-
lytically performed the error analysis. Wang et al. [24] studied the error analysis of
the SAV finite element method for the PFC model. Li and Shen [25] established
detailed convergence and error estimations for the PFC model by using the SAV
Fourier-spectral method.

The SH model was original proposed by Swift and Hohenberg [26] to study the
thermal convection of the Rayleigh–Benard instability. Moreover, this model has
been applied for various pattern formations [27–29]. From the numerical point of
view, Gomez and Nogueira [30] developed a novel time-space discretization for solv-
ing the SH equation. Su et al. [31] proposed a spatial fourth-order accurate finite
difference method for simulating the SH model. Lee [32] developed second-order
time-accurate energy stable scheme for the SH model with cubic non-linearity. Wang
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and Zhai [33] proposed an efficient solver for the conservative SH model. Based on
the IEQ method, Liu and Yin [34] constructed unconditionally energy-stable scheme,
where the discontinuous Galerkin (DG) method was adopted to perform spatial dis-
cretization. Later, Liu and Yin [35] proposed arbitrarily high-order Runge–Kutta IEQ
method for the SH model. Based on the SAV DG method, Liu and Yin [36] studied
effective schemes for the SH model and other fourth-order gradient flows.

Although the convex splitting approach, the IEQ approach, and the SAV approach
can be used to develop energy stable schemes for the PFC and the SH models, the
convex splitting approach will leads to non-linear systems and proper iteration tech-
niques are needed. To avoid solving non-linear systems, the IEQ or the SAV approach
may be a good choice. However, there are two shortcomings: (i) Numerical methods
based on the IEQ or the SAV approach only dissipate a modified energy rather than
an original energy. (ii) The IEQ and the SAV approaches must assume the non-linear
term or its integral satisfies the bounded-from-below restriction. It is well known
that the PFC and the SH model will cause the negative energy. Especially, the lower
bound of the non-linear potential in the SH equation appears more involved due to
the parameters [35, 36]. Therefore, the classical IEQ and SAV approaches have to
estimate the lower bound properly. To overcome these shortcomings, we develop
first- and second-order accurate energy stable schemes for the PFC and the SH mod-
els by using a new developed Lagrange multiplier approach. The main merits of the
proposed methods are as follows: (i) The time-discretized energy dissipation law is
satisfied with respect to an original energy at least for the first-order case; (ii) the
non-linear term does not need to satisfy the bounded-from-below restriction; and (iii)
the proposed method is simple to implement.

The rest parts are organized as follows.We introduce the original governing equations
and their equivalent forms in Section 2. In Section 3, we give the time-discretized
schemes and rigorously prove their energy stability. In Section 4, we introduce effi-
cient algorithms to solve the resulting systems in step-by-step way. In Section 5, we
numerically validate our schemes. In Section 6, the conclusions are drawn.

2 Governing equations

Before the start of this section, we first define the notations which will be used in this
study. Let p = p(x) and q = q(x) be two space-dependent functions, the L2-inner
product is defined as (p, q) = ∫

Ω
(p · q)dx. The L2-norm of function p is defined as

‖p‖ = √
(p, p).

2.1 Original PFC equation

Let Ω be the domain and define φ = φ(x, t) be a space and time-dependent phase-
field function and φ = 1 or −1 in two materials. The total free energy of the PFC
system introduced in [18] is written to be

E(φ) =
∫

Ω

(

F(φ) + 1

2
φ2 − |∇φ|2 + 1

2
(�φ)2

)

dx, (1)
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where F(φ) = φ4/4 − εφ2/2 is the non-linear potential, ε is a positive constat, ∇
and � are the gradient and Laplace operators, respectively. The governing equations
of the PFC system can be obtained by taking the variational approach to (1)

φt = �μ, (2)

μ = F ′(φ) + φ + 2�φ + �κ, (3)

κ = �φ, (4)

where φt is the time derivative and F ′(φ) = φ3 − εφ, μ is the chemical potential. On
the domain boundary ∂Ω , the proper boundary conditions are

(i) periodic, (ii) ∂nφ = ∂nμ = ∂nκ = 0, (5)

where n is the unit normal vector to ∂Ω . By multiplying (2), (3), (4) by μ, −φt ,
�φ and taking the integrals, and then combining them together, the following energy
dissipation law is obtained

d

dt
E(φ) = −‖∇μ‖2 ≤ 0, (6)

where the integral by parts and boundary conditions, (5) are used. The inequality (6)
indicates that the energy dissipates with the evolution of (2) and (3).

2.2 Equivalent PFC equation

Inspired by a new Lagrange multiplier approach [37], we define a time-dependent
variable η = η(t) = 1 and rewrite (2) and (3) to be the equivalent form

φt = �μ, (7)

μ = ηF ′(φ) + φ + 2�φ + �κ, (8)

κ = �φ, (9)
d

dt

∫

Ω

F(φ)dx = η

∫

Ω

F ′(φ)φtdx. (10)

It can be observed that (7)–(10) and (2)–(4) are equivalent because η = 1 in a
time-continuous version. By multiplying (7), (8), (9) by μ, −φt , �φ and taking the
integrals, and then using (10), the original energy dissipation law (6) can be eas-
ily obtained. Based on (7)–(10), we will develop temporally first- and second-order
accurate methods for the PFC equation in Sections 3.1 and 3.2, respectively.

2.3 Original SH equation

Let ψ = ψ(x, t) be a space and time-dependent phase-field function and ψ = 1
or −1 in two materials. The total free energy of the SH model with quadratic-cubic
non-linearity [26, 32] is as follows

F(ψ) =
∫

Ω

(

G(ψ) + 1

2
ψ2 − |∇ψ |2 + 1

2
(�ψ)2

)

dx, (11)

1868 Numerical Algorithms (2022) 89:1865–1894



where G(ψ) = ψ4/4 − gψ3/3 − εψ2/2; g and ε are non-negative constants. The
governing equation of the SH system with quadratic-cubic non-linearity is

ψt = −G′(ψ) − ψ − 2�ψ − �ν, (12)

ν = �ψ, (13)

where G′(ψ) = ψ3 − gψ2 − εψ . On the domain boundary ∂Ω , the following
boundary conditions are considered

(i) periodic, (ii) ∂nψ = ∂nν = 0. (14)

By multiplying (12), (13) by −ψt , �ψ and taking the integral, we have

d

dt
F(ψ) = −

∫

Ω

(ψt )
2dx ≤ 0, (15)

where the integral by parts and boundary conditions, (14) are used. The above
inequality indicates that the energy is non-increasing with the evolution.

2.4 Equivalent SH equation

Here, we define another time-dependent variable r = r(t) = 1 and rewrite (12) as

ψt = −rG′(ψ) − ψ − 2�ψ − �ν, (16)

ν = �ψ, (17)
d

dt

∫

Ω

G(ψ)dx = r

∫

Ω

G′(ψ)ψtdx. (18)

It is obvious that (16)–(18) and (12)–(13) are equivalent. By multiplying (16), (17) by
−ψt , �ψ and taking the integral, and then using (18), the original energy dissipation
law (15) is satisfied. Based on (16) and (18), the time-dsicretized schemes will be
established in Sections 3.3 and 3.4.

3 Numerical schemes and energy stability

Before the beginning of this section, we define the time step to be δt = T/N , where
T is the final time and N is the number of time iteration.

3.1 First-order time-accurate scheme for the PFCmodel

For the equivalent PFC model (7)–(10), the temporally first-order accurate method
based on the backward Euler formula is

φn+1 − φn

δt
= �μn+1, (19)

μn+1 = ηn+1F ′(φn) + φn+1 + 2�φn + �κn+1, (20)

κn+1 = �φn+1, (21)

(F (φn+1) − F(φn), 1)
δt

= ηn+1
(

F ′(φn),
φn+1 − φn

δt

)

, (22)
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where 1 is the vector with all entries equal to 1. Here, φn is the approximation of
φ(·, t) at t = nδt . We use the periodic or the following zero Neumann boundary
conditions

∂nφ
n+1 = ∂nμ

n+1 = ∂nκ
n+1 = 0.

Theorem 3.1 The numerical solutions of (19)–(22) dissipate the following time-
discretized version of the original energy functional, (1):

E1,d (φn) = (F (φn), 1) + 1

2
‖φn‖2 − ‖∇φn‖2 + 1

2
‖�φn‖2. (23)

Proof To verify the time-discretized energy dissipation law with respect to E1,d (φn),
we first multiply (19) by δtμn+1 and take the integral, we have

(φn+1 − φn, μn+1) = −δt‖∇μn+1‖2. (24)

By multiplying (20) by −(φn+1 − φn) and taking the integral, and in view of the
following equalities

2(p − q, p) = |p|2 − |q|2 + |p − q|2, 2(p − q, q) = |p|2 − |q|2 − |p − q|2,
we have

− (φn+1 − φn, μn+1) = −(ηn+1F ′(φn), φn+1 − φn)

− 1

2
(‖φn+1‖2 − ‖φn‖2 + ‖φn+1 − φn‖2)

− (‖∇φn‖2 − ‖∇φn+1‖2 + ‖∇φn − ∇φn+1‖2)
− (�κn+1, φn+1 − φn). (25)

By multiplying (21) by �(φn+1 − φn) and taking the integral, we have

(κn+1, �(φn+1 − φn)) = (�κn+1, φn+1 − φn)

= 1

2
(‖�φn+1‖2 − ‖�φn‖2 + ‖�φn+1 − �φn‖2). (26)

By combining (24)–(26) together and using (22), we obtain

(F (φn+1) − F(φn), 1) + 1

2
(‖φn+1‖2 − ‖φn‖2) − ‖∇φn+1‖2 + ‖∇φn‖2

+1

2
‖�φn+1‖2 − 1

2
‖�φn‖2 = −δt‖∇μn+1‖2 − 1

2
‖φn+1 − φn‖2

−‖∇φn − ∇φn+1‖2 − 1

2
‖�φn+1 − �φn‖2 ≤ 0. (27)

which indicates (19)–(22) dissipates the original energy functional in time-discretized
version.
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3.2 Second-order time-accurate scheme for the PFCmodel

For the equivalent PFCmodel (7)–(10), the temporally second-order accurate method
based on the BDF2 formula is

3φn+1 − 4φn + φn−1

2δt
= �μn+1, (28)

μn+1 = ηn+1F ′(φ∗) + φn+1 + 2(2�φn − �φn−1) + �κn+1, (29)

κn+1 = �φn+1, (30)

(3F(φn+1) − 4F(φn) + F(φn−1), 1)
2δt

=

ηn+1
(

F ′(φ∗), 3φ
n+1 − 4φn + φn−1

2δt

)

, (31)

where φ∗ = 2φn−φn−1 is the extrapolation from the information at nth and (n−1)th
time levels. By using the periodic or homogeneous Neumann boundary condition for
φn+1, μn+1, and κn+1 on ∂Ω .

Theorem 3.2 . The numerical solutions of (28)–(31) dissipate the following time-
discretized pseudo-energy functional:

E2,d (φn, φn−1) = 1

2
(3F(φn) − F(φn−1), 1) + 1

4
(‖φn‖2 + ‖2φn − φn−1‖2)

−1

2
(‖∇φn‖2 + ‖2∇φn − ∇φn−1‖2 − 2‖∇φn − ∇φn−1‖2)

+1

4
(‖�φn‖2 + ‖2�φn − �φn−1‖2). (32)

Proof To verify the time-discretized energy dissipation law with respect to
E2,d (φn, φn−1), we multiply (28) by 2δtμn+1 and take the integral, we get

(3φn+1 − 4φn + φn−1, μn+1) = −2δt‖∇μn+1‖2. (33)

By multiplying (29) by −(3φn+1 − 4φn + φn−1) and taking the integral, and in view
of the following equalities

2(3p − 4q + l, p) = |p|2 − |q|2 + |2p − q|2 − |2q − l|2 + |p − 2q + l|2,
2(3p − 4q + l, 2q − l) = (|p|2 + |2p − q|2 − 2|p − q|2) − (|q|2 + |2q − l|2

−2|q − l|2) − 3|p − 2q + l|2,
we have

− (3φn+1 − 4φn + φn−1, μn+1) = −(ηn+1F ′(φ∗), 3φn+1 − 4φn + φn−1)

− 1

2
(‖φn+1‖2 − ‖φn‖2 + ‖2φn+1 − φn‖2

− ‖2φn − φn−1‖2 + ‖φn+1 − 2φn + φn−1‖2)
+ (‖∇φn+1‖2 + ‖2∇φn+1 − ∇φn‖2
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− 2‖∇φn+1 − ∇φn‖2) − (‖∇φn‖2
+ ‖2∇φn − ∇φn−1‖2 − 2‖∇φn − ∇φn−1‖2)
− 3‖∇φn+1 − 2∇φn + ∇φn−1‖2
− (�κn+1, 3φn+1 − 4φn + φn−1). (34)

By multiplying (30) by �(3φn+1 − 4φn + φn−1) and taking the integral, we get

(κn+1, �(3φn+1 − 4φn + φn−1)) = (�κn+1, 3φn+1 − 4φn + φn−1)

= 1

2
(‖�φn+1‖2 − ‖�φn‖2

+ ‖2�φn+1 − �φn‖2 − ‖2�φn − �φn−1‖2
+ ‖�φn+1 − 2�φn + �φn−1‖2). (35)

By combining (33)–(35) together and using (31), we obtain the desired inequality as
follows

1

2
(3F(φn+1) − F(φn−1), 1) − 1

2
(3F(φn) − F(φn−1), 1)

+1

4
(‖φn+1‖2 + ‖2φn+1 − φn‖2 − ‖φn‖2 − ‖2φn − φn−1‖2)

−1

2
(‖∇φn+1‖2 + ‖2∇φn+1 − ∇φn‖2 − 2‖∇φn+1 − ∇φn‖2)

+1

2
(‖∇φn‖2 + ‖2∇φn − ∇φn−1‖2 − 2‖∇φn − ∇φn−1‖2)

−1

4
(‖�φn+1‖2 + ‖2�φn+1 − �φn‖2 − ‖�φn‖2 − ‖2�φn − �φn−1‖2)

= −δt‖∇μn+1‖2 − 1

4
‖φn+1 − 2φn + φn−1‖2 − 3

2
‖∇φn+1 − 2∇φn + ∇φn−1‖2

−1

4
‖�φn+1 − 2�φn + �φn−1‖2 ≤ 0, (36)

3.3 First-order time-accurate scheme for the SHmodel

For the equivalent SH model (16)–(18), the temporally first-order accurate method
based on the backward Euler formula is

ψn+1 − ψn

δt
= −rn+1G′(ψn) − ψn+1 − 2�ψn − �νn+1, (37)

νn+1 = �φn+1, (38)

(G(ψn+1) − G(ψn), 1)
δt

= rn+1
(

F ′(φn),
ψn+1 − ψn

δt

)

. (39)

We use the periodic or the following zero Neumann boundary conditions

∂nψ
n+1 = ∂nν

n+1 = 0.
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Theorem 3.3 The numerical solutions of (37)–(39) dissipate the following time-
discretized version of the original energy functional, (11):

F1,d (ψn) = (G(ψn), 1) + 1

2
‖ψn‖2 − ‖∇ψn‖2 + 1

2
‖�ψn‖2. (40)

Proof To verify the time-discretized energy dissipation law with respect to F1,d

(ψn), we multiply (37) by −(ψn+1 − ψn) and take the integral, we get

(rn+1G(ψn), ψn+1 − ψn) + 1

2
(‖ψn+1‖2 − ‖ψn‖2 + ‖ψn+1 − ψn‖2)

+(‖∇ψn‖2 − ‖∇ψn+1‖2 + ‖∇ψn − ∇ψn+1‖2) + (�νn+1, ψn+1 − ψn)

= − 1

δt
‖ψn+1 − ψn‖2. (41)

By multiplying (38) by �(ψn+1 − ψn) and taking the integral, we have

(νn+1, �(ψn+1 − ψn)) = (�νn+1, ψn+1 − ψn) = 1

2
(‖�φn+1‖2

− ‖�ψn‖2 + ‖�ψn+1 − �ψn‖2). (42)

By combining (41)–(42) and using (39), we obtain the following energy inequality

(G(ψn+1) − G(ψn), 1) + 1

2
(‖ψn+1‖2 − ‖ψn‖2) + (‖∇ψn‖2 − ‖∇ψn+1‖2)

+1

2
(‖�ψn+1‖2 − ‖�ψn‖2) = − 1

δt
‖ψn+1 − ψn‖2 − 1

2
‖ψn+1 − ψn‖2

−‖∇ψn − ∇ψn+1‖2 − 1

2
‖�ψn+1 − �ψn‖2 ≤ 0. (43)

3.4 Second-order time-accurate method for the SHmodel

For the equivalent SHmodel (16)–(18), the temporally second-order accurate method
based on the BDF2 formula is

3ψn+1 − 4ψn + ψn−1

2δt
= −rn+1G′(ψ∗) − ψn+1 − 2(2�ψn − �ψn−1)

− �νn+1, (44)

νn+1 = �ψn+1, (45)

(3G(ψn+1) − 4G(ψn) + G(ψn−1), 1)
2δt

=

rn+1
(

G′(ψ∗), 3ψ
n+1 − 4ψn + ψn−1

2δt

)

, (46)

where ψ∗ = 2ψn − ψn−1. By using the periodic or homogeneous Neumann bound-
ary condition for ψn+1 and νn+1 on ∂Ω .
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Theorem 3.4 . The numerical solutions of (44)–(46) dissipate the following time-
discretized pseudo-energy functional:

F2,d (ψn, ψn−1) = 1

2
(3G(ψn) − G(ψn−1), 1) + 1

4
(‖ψn‖2 + ‖2ψn − ψn−1‖2)

− 1

2
(‖∇ψn‖2 + ‖2∇ψn − ∇ψn−1‖2 − 2‖∇ψn − ∇ψn−1‖2)

+ 1

4
(‖�ψn‖2 + ‖2�ψn − �ψn−1‖2). (47)

Proof To verify the time-discretized energy dissipation law with respect to F2,d (ψn,

ψn−1), we multiply (44) by−(3ψn+1−4ψn+ψn−1) and take the integral, we have

(rn+1G′(ψ∗), 3ψn+1−4ψn + ψn−1) + 1

2
(‖ψn+1‖2 − ‖ψn‖2 + ‖2ψn+1 − ψn‖2

−‖2ψn−ψn−1‖2+‖ψn+1−2ψn+ψn−1‖2)−(‖∇ψn+1‖2 + ‖2∇ψn+1−∇ψn‖2
−2‖∇ψn+1−∇ψn‖2) + (‖∇ψn‖2 + ‖2∇ψn−∇ψn−1‖2−2‖∇ψn−∇ψn−1‖2)
+3‖∇ψn+1 − 2∇ψn + ∇ψn−1‖2 + (�νn+1, 3ψn+1 − 4ψn + ψn−1)

= − 1

2δt
‖3ψn+1 − 4ψn + ψn−1‖2. (48)

By multiplying (45) by �(3ψn+1 − 4ψn + ψn−1) and taking the integral, we have

(νn+1, �(3ψn+1 − 4ψn + ψn−1)) = (�νn+1, 3ψn+1 − 4ψn + ψn−1)

= 1

2
(‖�ψn+1‖2 − ‖�ψn‖2

+ ‖2�ψn+1 − �ψn‖2 − ‖2�ψn − �ψn−1‖2
+ ‖�ψn+1 − 2�ψn + �ψn−1‖2). (49)

By combining (48)–(49) and using (46), we obtain the following energy inequality

1

2
(3G(ψn+1) − G(ψn), 1) − 1

2
(3G(ψn) − G(ψn−1), 1)

+1

4
(‖ψn+1‖2 + ‖2ψn+1 − ψn‖2 − ‖ψn‖2 − ‖2ψn − ψn−1‖2)

−1

2
(‖∇ψn+1‖2 + ‖2∇ψn+1 − ∇ψn‖2 − 2‖∇ψn+1 − ∇ψn‖2)

+1

2
(‖∇ψn‖2 + ‖2∇ψn − ∇ψn−1‖2 − 2‖∇ψn − ∇ψn−1‖2)

+1

4
(‖�ψn+1‖2 + ‖2�ψn+1 − �ψn‖2 − ‖�ψn‖2 − ‖2�ψn − �ψn−1‖2)

= − 1

4δt
‖3ψn+1 − 4ψn + ψn−1‖2 − 1

4
‖ψn+1 − 2ψn + ψn−1‖2

−3

2
‖∇ψn+1 − 2∇ψn + ∇ψn−1‖2 − 1

4
‖�ψn+1 − 2�ψn + �ψn−1‖2 ≤ 0. (50)
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Remark Comparing with the well-known IEQ or SAV approach, it can be observed
that the first-order accurate methods based on the Lagrange multiplier approach
derive the energy inequalities with respect to the original energy in time-discretized
version. Moreover, the auxiliary variables η and r are equal to 1 in time-continuous
version; thus, we do not require any bounded-from-below restriction. Although the
error analysis of this new Lagrange multiplier approach is still difficult [37], the
results in Section 5 indicate that the proposed schemes have desired accuracy and
stability. The detailed convergence and error estimations will be further studied in a
separate work. In (20), (29), (37), and (44), we treat �φ and �ψ explicitly and this
treatment allows us to easily perform the estimations of energy stability. Similar treat-
ments can be found in [22] for the PFC model and [32] for the SH model. We admit
that the energy stability can not preserve the convergence and accuracy. Therefore, a
relatively small time step is still necessary to obtain accurate numerical solutions.

4 Efficient numerical algorithms

We notice that all schemes in Section 3 are weakly coupled, i.e., the auxiliary variable
and phase-field function are coupled in time. To solve those weakly coupled systems,
we propose efficient algorithms in this section. In the following parts, we only take
the first-order accurate schemes, (19)–(22) and (37)–(39) as examples because the
implementations for the second-order schemes are straightforward.

4.1 Numerical algorithm for the PFCmodel

For the PFC system, we split φn+1, μn+1, and κn+1 into the following linear combi-
nation

{φn+1, μn+1, κn+1} = {φn+1
1 , μn+1

1 , κn+1
1 } + ηn+1{φn+1

2 , μn+1
2 , κn+1

2 }, (51)

where φn+1
1 and φn+1

2 , μn+1
1 and μn+1

2 , κn+1
1 and κn+1

2 are independent with each
other. Thus, (19)–(22) can be expressed to be

φn+1
1 + ηn+1φn+1

2 − φn

δt
= �(μn+1

1 + ηn+1μn+1
2 ), (52)

μn+1
1 + ηn+1μn+1

2 = ηn+1F ′(φn) + (φn+1
1 + ηn+1φn+1

2 ) + 2�φn

+ �(κn+1
1 + ηn+1κn+1

2 ), (53)

κn+1
1 + ηn+1κn+1

2 = �(φn+1
1 + ηn+1φn+1

2 ), (54)

(F (φn+1) − F(φn), 1) = ηn+1(F ′(φn), φn+1 − φn). (55)

Then, the computation of φn+1 and ηn+1 in one time iteration can be split into the
following four steps
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Step 1-1. Update φn+1
1 by solving the following linear system with constant coef-

ficients

φn+1
1 − φn

δt
= �μn+1

1 , (56)

μn+1
1 = φn+1

1 + 2�φn + �κn+1
1 , (57)

κn+1
1 = �φn+1

1 . (58)

Step 1-2. Update φn+1
2 by solving the following linear system with constant coef-

ficients

φn+1
2

δt
= �μn+1

2 , (59)

μn+1
2 = F ′(φn) + φn+1

2 + �κn+1
2 , (60)

κn+1
2 = �φn+1

2 . (61)

Step 1-3. With the computed φn+1
1 and φn+1

2 , ηn+1 is updated by solving the fol-
lowing non-linear algebraic equation with respect to ηn+1

(F (φn+1
1 +ηn+1φn+1

2 )−F(φn), 1)=ηn+1(F ′(φn), φn+1
1 +ηn+1φn+1

2 −φn).(62)

Step 1-4. Update φn+1 by (51).

4.2 Numerical algorithm for the SHmodel

For the SH system, we split ψn+1 and νn+1 into the following linear combination

{ψn+1, νn+1} = {ψn+1
1 , νn+1

1 } + rn+1{ψn+1
2 , νn+1

2 }. (63)

where ψn+1
1 and ψn+1

2 , νn+1
1 and νn+1

2 are independent with each other. Thus, (37)–
(39) can be expressed to be

ψn+1
1 + rn+1ψn+1

2 − ψn

δt
= −rn+1G′(ψn) − (ψn+1

1 + rn+1ψn+1
2 ) − 2�ψn

− �(νn+1
1 + rn+1νn+1

2 ), (64)

νn+1
1 + rn+1νn+1

2 = �(ψn+1
1 + rn+1ψn+1

2 ), (65)

(G(ψn+1) − G(ψn), 1) = rn+1(G′(ψn), ψn+1 − ψn). (66)

Then, the computation of ψn+1 and rn+1 in one time iteration can be split into the
following four steps

Step 2-1. Update ψn+1
1 by solving the following linear system with constant

coefficients

ψn+1
1 − ψn

δt
= −ψn+1

1 − 2�ψn − �νn+1
1 , (67)

νn+1
1 = �ψn+1

1 . (68)
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Step 2-2. Update ψn+1
2 by solving the following linear system with constant

coefficients

ψn+1
2

δt
= −G′(ψn) − ψn+1

2 − �νn+1
2 , (69)

νn+1
2 = �ψn+1

2 . (70)

Step 2-3. With the computed ψn+1
1 and ψn+1

2 , rn+1 is updated by solving the
following non-linear algebraic equation with respect to rn+1

(G(ψn+1
1 +rn+1ψn+1

2 )−G(ψn), 1)=rn+1(G′(ψn), ψn+1
1 +rn+1ψn+1

2 −ψn). (71)

Step 2-4. Update ψn+1 by (63).

Remark Thanks to the efficient algorithms in this section, the weakly coupled sys-
tems can be solved in a fully decoupled manner. We can observe that only four linear
systems need to be calculated by using any fast and accurate numerical methods. In
this work, the fast Fourier transform (FFT) is adopted to solve the linear equations.
In each time cycle, we actually do not need any iterative algorithms. The unique solvabil-
ity of these linear systems can be easily proved by using the Lax–Milgram theorem.
Please refer to [15, 17] for the similar processes. For two non-linear algebraic equa-
tions with respect to ηn+1 and rn+1, Newton’s iteration is a proper choice because
the exact solutions of η and r are 1; thus, Newton’s iteration quickly converges in
general if we use 1 as initial assumption. It is well known that the traditional convex
splitting method needs to iteratively compute the PDE until the error is less than a given
tolerance. Comparing with the iterative calculation of non-linear PDE, the computa-
tional cost of Newton’s iteration for non-linear algebraic equations can be neglected.
We note that the unique solvability of η and r is still an open problem, Cheng et al. [37]
also reported this for other phase-field models, such as the AC, the CH, and the block
copolymer equations. We will further consider this in our future work. In Section 5,
we plot the evolutions of η and r with respect to each simulation, the numerical
results show that the values of η and r are always close to the desired value 1.

5 Numerical validations

In this section, 2D and 3D simulations are done to validate the proposed numerical
schemes. Without specific needs, we use the periodic boundary condition and the
Fourier spectral method [32, 38, 39] is used to discretize the equations in space.

5.1 Accuracy test

First of all, we will test the temporal accuracy of the proposed schemes, the first-
order accurate method, denoted by Euler, the second-order accurate method, denoted
by BDF2. For the PFC and the SH models, the initial states are

φ(x, y, 0) = ψ(x, y, 0) = sin
(πx

8

)
cos

(πy

8

)
, (72)
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in the domain Ω = [0, L]2 and L = 32. The 257 Fourier modes and the parameters
ε = 0.25 and g = 1 are used. A finer time step δtr = 0.1h2 ≈ 1.5625e-4 is used
to obtain the reference solution. Here, h = L/256 is the space step. The increas-
ingly coarser time steps δt = 80δtr , 160δtr , 320δtr , and 640δtr are considered. In
Table 1, we list the L2-errors and convergence rates for the PFC model at t = 0.2.
The results obtained for the SH model are illustrated in Table 2. For the PFC and the
SH models, it is clear that the proposed schemes have desired temporal accuracy.

5.2 Energy stability

We now investigate the unconditionally energy dissipation law of the proposed first-
and second-order accurate methods. For the SH model, we consider the following
initial condition [32] in the domain Ω = [0, 32]2

ψ(x, y, 0) = 0.07 − 0.02 cos

(
π(x − 12)

16

)

sin

(
π(y − 1)

16

)

+0.02 cos2
(

π(x + 10)

32

)

sin2
(

π(y + 3)

32

)

−0.01 sin2
(πx

8

)
sin2

(
π(y − 6)

8

)

. (73)

The 129 Fourier modes and the parameters ε = 0.25, g = 1 are used. Figure 1 lists
the snapshots at different computational times by using the second-order scheme and
finer time step δt = δtmax/64 ≈ 3.9e-3. In this test, the maximum time step is set as
δtmax = 0.25. Figures 2(a) and (b) show the normalized energy curves with respect to
different schemes. The evolutions of r with respect to different schemes are plotted
in Figs. 2(c) and (d). Here, Fig. 2(e) shows the original energy and pseudo-energy
(second-order scheme) with different time steps. As we can observe, both schemes
dissipate the energy. The value of r converges to 1 as the refinement of time step.

For the PFC model, we consider the grain growth in a supercooled liquid by using
the following initial condition [32]

φ(xl, yl, 0) = 0.285+0.446

(

cos

(
0.66√

3
yl

)

cos(0.66xl)−0.5 cos

(
1.32√

3
yl

))

,(74)

in the domain Ω = [0, 400]2, where the local coordinates are
xl = x sin θ + y cos θ,

yl = −x cos θ + y sin θ .

Table 1 L2-errors and
convergence rates for the PFC
model at t = 0.2

δt Euler Order BDF2 Order

640δtr 2.90e-1 − 2.07e-1 −
320δtr 1.69e-1 0.78 6.36e-2 1.70

160δtr 9.18e-2 0.88 1.67e-2 1.93

80δtr 4.78e-2 0.94 4.20e-3 1.99The reference time step is
δtr = 1.5625e-4

1878 Numerical Algorithms (2022) 89:1865–1894



Table 2 L2-errors and
convergence rates for the SH
model at t = 0.2

δt Euler Order BDF2 Order

640δtr 2.48e-1 − 2.39e-1 −
320δtr 1.39e-1 0.84 7.17e-2 1.74

160δtr 7.39e-2 0.91 1.86e-2 1.95

80δtr 3.80e-2 0.96 4.90e-3 1.92The reference time step is
δtr = 1.5625e-4

Three crystallite patches with length 40 locate in (150, 150), (200, 250), and
(250, 150). The corresponding orientations are θ = 0.25π, 0, and −0.25π , respec-
tively. The 513 Fourier modes and ε = 0.25 are considered. Figure 3 shows the
snapshots of grain growth by using the second-order method and time step δt =
δtmax/8 ≈ 6.25e-2. In this test, the maximum time step is set as δtmax = 0.5. We can
find that obvious grain boundaries appear with the growth of crystallites, this phe-
nomenon can be used to interpret the generation of flaw on natural crystal structure.
The evolutions of normalized energy curves with respect to first-order and second-
order methods are plotted in Fig. 4(a) and (b), respectively. The evolutions of η

with respect to first-order and second-order schemes are shown in Fig. 4(c) and (d),
respectively. Here, Fig 4(e) displays the original energy curves and pseudo-energy
(second-order scheme) curves. It can be observed that all schemes satisfy the energy
dissipation law. Comparing with the first-order scheme, the second-order method
generally converges fast with the refinement of time step. Therefore, we will use the
second-order scheme for the following tests.

5.3 Pattern formation of the PFCmodel

In previous works [21, 23], the authors found that the values of concentration will
affect the pattern of phase transition. To simulate this benchmark problem, we
consider the following initial condition

φ(x, y, 0) = φ̄ + 0.1rand(x, y), (75)

where φ̄ is the average concentration of φ, rand(x, y) takes the random value in
[−1, 1]. We use 257 Fourier modes, δt = 5e-2, ε = 0.25 to perform the simulation

Fig. 1 Snapshots of ψ using the second-order accurate scheme and time step δt = 3.9e-3
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Fig. 2 Normalized energy curves: the first-order scheme, a F1,d (ψn)/F1,d (ψ0), and the second-order
scheme, b F2,d (ψn)/F2,d (ψ0), of the SH model. The evolutions of r with respect to c first-order and d
second-order schemes. Here, e illustrates the original and pseudo-energy curves

in the domain Ω = [0, 128]2. Figures 5 and 6 display the snapshots of φ for φ̄ = 0
and 0.15. For φ̄ = 0, the striped structure appears, while hexagonal structure appears
for φ̄ = 0.15. The energy curves plotted in Fig. 7(a) indicate that the original energy
and pseudo-energy dissipate with the formation of phase pattern. From Fig. 7(b), we
find that the value of η is close to exact value 1.

5.4 Pattern formation of the SHmodel

Recently, Lee [32] investigated the pattern formation of the SHmodel with quadratic-
cubic non-linearity. The numerical results indicated the value of g played a dominant
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Fig. 3 Snapshots of grain growth using the second-order accurate scheme and time step δt = 6.25e-2

role in the formation of different structures. In this subsection, we investigate the
effect of g by using our proposed method. The computational domain is Ω =
[0, 128]2. The initial condition is

ψ(x, y, 0) = 0.15 + 0.1rand(x, y). (76)

The 257 Fourier modes, δt = 5e-2, and ε = 0.25 are used. Figures 8 and 9 display
the snapshots of pattern formation with respect to g = 0 and g = 1, respectively. As
g = 0, the effect of cubic term in energy functional is removed and we can observe
the formation of striped pattern, this phenomenon is similar with the results in a
previous work [32]. As g = 1, the hexagonal pattern forms due to the effect of cubic
term. The normalized energy curves plotted in Fig. 10(a) indicate that the original
energy and pseudo-energy are non-increasing. The value of r plotted in Fig. 10(b) is
always close to 1.

5.5 Formation of mixed pattern

In a previous work [40], the formation of mixed pattern of the PFC model on 3D
surface was studied. We now simulate the mixed pattern in Ω = [0, 128]2. The 257
Fourier modes, δt = 5e-2, and ε = 0.25 are used. The initial condition is

φ(x, y, 0) = 0.28

(
90 + √

(x − 64)2 + (y − 64)2

180

)3

+ 0.1rand(x, y). (77)
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Fig. 4 Normalized energy curves: the first-order scheme, a E1,d (φn)/E1,d (φ0), and the second-order
scheme, b E2,d (φn)/E2,d (φ0), of the PFC model. The evolutions of η with respect to c first-order and d
second-order schemes. Here, e illustrates the original and pseudo-energy curves

The snapshots at different computational times are shown in Fig. 11. We can find that
the striped pattern forms in the center region of domain, while the hexagonal pattern
appears in the rest region. The result in Fig. 12(a) indicates that the original energy
and pseudo-energy are non-increasing. The value of η plotted in Fig. 12(b) is always
close to 1.

5.6 Comparison with the classical SAVmethod

The classical SAV method is an effective way to develop linear, second-order time-
accurate, and energy stable method for dissipative system. The only drawback of
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Fig. 5 Pattern formation of the PFC model with respect to φ̄ = 0

Fig. 6 Pattern formation of the PFC model with respect to φ̄ = 0.15
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Fig. 7 The evolutions of a normalized energy curves of the PFC model and b η

the SAV method is that the resulting energy-dissipation law holds with respect to
modified variables instead of the original variables. In this subsection, we perform
a comparison study with classical SAV method to show the advantage of the pro-
posed method. Here, only PFC model is considered because the implementation for
the SH model is straightforward. Let us first review the SAV method and its numer-
ical implementation. Defining a time-dependent auxiliary variable as U = J (φ) =√∫

Ω
F(φ) dx + B, where F(φ) = φ4/4 − εφ2/2, B is a positive number ensur-

ing the positivity of radicand. Here, we take B = 1e5 [41]. Next, we can obtain the
following equivalent equations

φt = �μ, (78)

μ = U

J(φ)
F ′(φ) + φ + 2�φ + �κ, (79)

κ = �φ, (80)

Ut = 1

2

∫

Ω

F ′(φ)

J (φ)
φt dx, (81)
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Fig. 8 Pattern formation of the SH model with respect to g = 0

Fig. 9 Pattern formation of the SH model with respect to g = 1
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Here, the periodic boundary condition is used. Based on (78)–(81), the linear,
second-order time-accurate scheme can be constructed as follows

3φn+1 − 4φn + φn−1

2δt
= �μn+1, (82)

μn+1 = Un+1

J (φ∗)
F ′(φ∗) + φn+1 + 2(2�φn − �φn−1) + �κn+1, (83)

κn+1 = �φn+1, (84)

3Un+1 − 4Un + Un−1 = 1

2

∫

Ω

F ′(φ∗)
J (φ∗)

(3φn+1 − 4φn + φn−1) dx. (85)

Here, φ∗ = 2φn − φn−1. By taking the inner product of (82) with 2δtμn+1, of (83)
with −(3φn+1 − 4φn + φn−1), of (84) with �(3φn+1 − 4φn + φn−1), of (85) with
2Un+1, and combining the results together, we have the following time-discretized
energy law

1

2
[(Un+1)2 + (2Un+1 − Un)2 − (Un)2 − (2Un − Un−1)2]
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Fig. 11 The formation of mixed pattern

+1

4
(‖φn+1‖2 + ‖2φn+1 − φn‖2 − ‖φn‖2 − ‖2φn − φn−1‖2)

−1

2
(‖∇φn+1‖2 + ‖2∇φn+1 − ∇φn‖2 − 2‖∇φn+1 − ∇φn‖2)

+1

2
(‖∇φn‖2 + ‖2∇φn − ∇φn−1‖2 − 2‖∇φn − ∇φn−1‖2)

−1

4
(‖�φn+1‖2 + ‖2�φn+1 − �φn‖2 − ‖�φn‖2 − ‖2�φn − �φn−1‖2)

= −δt‖∇μn+1‖2 − 1

4
‖φn+1 − 2φn + φn−1‖2 − 3

2
‖∇φn+1 − 2∇φn + ∇φn−1‖2

−1

4
‖�φn+1 − 2�φn + �φn−1‖2 − 1

2
(Un+1 − 2Un + Un−1)2 ≤ 0, (86)

with respect to the modified energy functional

Em(φn, φn−1) = 1

2
[(Un)2 + (2Un − Un−1)2] + 1

4
(‖φn‖2 + ‖2φn − φn−1‖2)

− 1

2
(‖∇φn‖2 + ‖2∇φn − ∇φn−1‖2 − 2‖∇φn − ∇φn−1‖2)

+ 1

4
(‖�φn‖2 + ‖2�φn − �φn−1‖2). (87)

Although (82)–(85) satisfy the time-discretized energy dissipation law, we notice that
the system is not easy to solve because the coupling between local variable φn+1 and
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Fig. 12 The evolutions of a normalized energy and b η

non-local variable Un+1. To achieve simple and decoupled computation, we recast
φn+1, μn+1, and κn+1 to be the following linear combinations

φn+1 = φn+1
1 + Un+1φn+1

2 , (88)

μn+1 = μn+1
1 + Un+1μn+1

2 , (89)

κn+1 = κn+1
1 + Un+1κn+1

2 . (90)

By using these variables, we can split (82)–(84) to be
3φn+1

1 − 4φn + φn−1

2δt
= �μn+1

1 , (91)

μn+1
1 = φn+1

1 + 2(2�φn − �φn−1) + �κn+1
1 , (92)

κn+1
1 = �φn+1

1 , (93)

and
3φn+1

2

2δt
= �μn+1

2 , (94)

μn+1
2 = F ′(φ∗)

J (φ∗)
+ φn+1

2 + �κn+1
2 , (95)

κn+1
2 = �φn+1

2 . (96)
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Here, the periodic boundary condition is considered for φn+1
1 , φn+1

2 , μn+1
1 , μn+1

2 ,
κn+1
1 , and κn+1

2 . We can easily obtain φn+1
1 and φn+1

2 by solving some linear systems
with constant coefficients. The unique solvability is easy to show by using Lax–
Milgram theorem [15, 17]. With computed φn+1

1 and φn+1
2 , we can updateUn+1 from

(85), i.e.,
[

3 − 3

2

∫

Ω

F ′(φ∗)
J (φ∗)

φn+1
2 dx

]

Un+1 = 4Un − Un−1

+ 1

2

∫

Ω

F ′(φ∗)
J (φ∗)

(3φn+1
1 − 4φn + φn−1) dx. (97)

To show the unique solvability of the above equation, we only need to prove[
3 − 3

2

∫
Ω

F ′(φ∗)
J (φ∗) φn+1

2 dx
]

	= 0. By taking the inner product of (94) with μn+1
2 , of

(95) with
3φn+1

2
2δt , of (96) with �φn+1

2 , and combining the results together, we obtain

3

2δt

(
F ′(φ∗)
J (φ∗)

, φn+1
2

)

= −‖∇μn+1
2 ‖2 − 3

2δt
‖φn+1

2 ‖2 − 3

2δt
‖�φn+1

2 ‖2 ≤ 0, (98)

which indicates
[
3 − 3

2

∫
Ω

F ′(φ∗)
J (φ∗) φn+1

2 dx
]

> 0, the solvability is proved. AfterUn+1

is computed, we can directly update φn+1 from (51).
In the simulation, the initial condition and other parameters are unchanged like

those in Section 5.3. Here, φ̄ = 0.15 is considered. A relatively large time step δt =
0.5 is used to perform the comparison. The top and bottom rows of Fig. 13 display the

Fig. 13 Snapshots of the PFCmodel. Here, the top and bottom rows are the results obtained by the classical
SAV method and the proposed method
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snapshots with respect to the classical SAV method and the proposed method. It can
be observed the patterns does not have obvious difference. In Fig. 14(a), the original,
modified (SAV method), and pseudo-energy (present method) curves are plotted. As
we can observe, the modified energy obtained by the SAVmethod obviously deviates
from the original energy. However, the pseudo-energy calculated by the proposed
method consists with the original energy. The evolution of η is plotted in Fig. 14(b),
we can find that the value of η is always close to 1.

5.7 3D pattern formations of the PFC and the SHmodels

In this subsection, we simulate the pattern formations with respect to the PFC and the
SH models in 3D space. The computational domain is Ω = [0, 128]3 and the initial
conditions are

φ(x, y, 0) = ψ(x, y, 0) = 0.15 + 0.1rand(x, y). (99)

The 129 and 257 Fourier modes are used for the SH and the PFC models, respec-
tively. The parameters are δt = 0.1, ε = 0.25, g = 1. In Figs. 15 and 16, we can
observe the formations of phase pattern with respect to the PFC and the SH models,
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Fig. 14 The evolutions of a normalized energy and b η
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Fig. 15 Pattern formation of the PFC model in 3D space

Fig. 16 Pattern formation of the SH model in 3D space
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Fig. 17 Normalized energy curves for a the PFC model and b the SH model. Here, the evolutions of η and
r are shown in c

respectively. The normalized energy curves plotted in Fig. 17(a) indicate that the
original energy and pseudo-energy are non-increasing. The values of η and r plotted
in Fig. 17(b) are always close to 1.

6 Conclusions

We developed first- and second-order time-accurate energy stable schemes for the
PFC and the SH models by using a recently developed Lagrange multiplier approach.
The main merits of the proposed schemes were as follows: (i) The energy stability
was satisfied with respect to the original energy rather than the modified energy.
(ii) The bounded-from-below restriction was removed. The first- and second-order
schemes could be established by using the backward Euler and the BDF2 formulas,
respectively. The results showed that the proposed schemes not only satisfied energy
dissipation property, but also accurately simulated specific structures, such as the
striped and hexagonal patterns, mixed pattern, and grain boundaries. In the upcoming
works, the proposed methods will be extended to simulate more complex PFC and
SH problems [41–44].
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