
https://doi.org/10.1007/s11075-021-01175-w

ORIGINAL PAPER

A Hessenberg-type algorithm for computing
PageRank Problems

Xian-Ming Gu1,2 ·Siu-Long Lei3 ·Ke Zhang4 ·Zhao-Li Shen5 ·ChunWen6 ·
Bruno Carpentieri7

Received: 7 November 2019 / Accepted: 20 July 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
PageRank is a widespread model for analysing the relative relevance of nodes within
large graphs arising in several applications. In the current paper, we present a cost-
effective Hessenberg-type method built upon the Hessenberg process for the solution
of difficult PageRank problems. The new method is very competitive with other
popular algorithms in this field, such as Arnoldi-type methods, especially when the
damping factor is close to 1 and the dimension of the search subspace is large. The
convergence and the complexity of the proposed algorithm are investigated. Numer-
ical experiments are reported to show the efficiency of the new solver for practical
PageRank computations.

Keywords PageRank vector · Hessenberg process · Arnoldi process ·
Krylov subspace method · Ritz values

Mathematics Subject Classification (2010) 65F15 · 65F10 · 65Y20

1 Introduction

The PageRank model was originally introduced by S. Brin and L. Page in 1999 [1] to
develop fast web search engines, and then studied and enhanced in a vast number of
research papers (see, e.g., [2–7]). The model provides a powerful network centrality
measure to identify the most important nodes within large graphs arising in several
applications fields, such as in chemistry, bioinformatics, neuroscience, and biblio-
metrics [8]. In the original Web problem, the PageRank algorithm determines the
ranking of each Web page by computing the stationary probability vector of a ran-
dom walking process on the Web link graph, which is a directed graph representing

� Siu-Long Lei
sllei@um.edu.mo

Extended author information available on the last page of the article.

Published online: 9 August 2021

Numerical Algorithms (2022) 89:1845–1863

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01175-w&domain=pdf
http://orcid.org/0000-0001-7895-2050
mailto: sllei@um.edu.mo

the linking structure of the Web [7, 9]. The Web link graph is a binary matrix
G ∈ N

n×n, where n denotes the number of pages, such that G(i, j) = 1 when page
j has a link pointing to page i, and G(i, j) = 0 otherwise. From a linear algebra
viewpoint, the algorithm finds the vector x that satisfies

Ax = x, ‖x‖1 = 1, x > 0, (1.1)

that is, it finds the principal unit positive eigenvector x [9] of the Google matrix

A = α(P + vd�) + (1 − α)ve�. (1.2)

In (1.2), matrix P ∈ R
n×n is called the transition matrix with respect to the random

walking process, and is defined as

P(i, j) =

⎧
⎪⎨

⎪⎩

1
n∑

k=1
G(k,j)

, if G(i, j) = 1,

0, otherwise.

(1.3)

The damping factor 0 < α < 1 defines the probability that random Web surfers
choose a random link from the page they are visiting [25]. The teleporting vector
v = [v1, · · · , vn]� ∈ R

n×1 (v ≥ 0 and ‖v‖1 = 1) defines the probability vi that the
Web surfer jumps to an external page i. Finally, d ∈ N

n×1 is such that d(i) = 1 if
page i has no hyperlink and 0 otherwise, and e = [1, 1, . . . , 1]� ∈ N

n×1.
The value of the damping factor α plays an important role in the PageRank model.

Theoretically, it represents an upper bound 0 < |λ2| ≤ α < 1 for the second largest
eigenvalue, λ2, of A. Further properties of the Google matrix can be found in [2, 4–
7, 10]. For low values of α (e.g., α = 0.85), λ2 is well separated from the largest
eigenvalue of A, which is λ1 = 1, ensuring rapid convergence of the power algo-
rithm applied to problem (1.1). On the other hand, convergence tends to slow down
noticeably when α is very close to 1, requiring more robust algorithms than the sim-
ple power method. Some computational approaches proposed in the literature include
Monte Carlo methods [11], adaptive algorithms [3, 12], extrapolation techniques [2,
7, 13], singular value decompositions [19–21] reordering [14, 15] and inner-outer
solution strategies [16].

A significant amount of work has been devoted in the last years to the use of
Krylov subspace methods based on the Arnoldi decomposition [17, 18] for large
PageRank computations, mainly due to their memory efficiency and attractive inher-
ent parallelism. Golub and Greif extended the refined Arnoldi procedure to PageRank
by forcing a relevant shift to be 1, being able to circumvent the drawbacks due
to complex arithmetic and showing overall very good algorithmic efficiency [22].
Many techniques have attempted to combine the conventional Arnoldi method and
the power algorithm to produce faster solvers, e.g., the Power-Arnoldi [23–25],
the Arnoldi-Extrapolation [26], and the Arnoldi-Inout [27] methods. In the tech-
nique proposed in [28], the weighted least squares problem is changed adaptively
according to the component of the residual. Then, the generalized Arnoldi method
is used to compute the approximate PageRank vector. However, when the dimen-
sion of the Krylov subspace is large, Arnoldi-based solvers tend to become very
expensive in terms of memory and computational costs; on the other hand, if the
dimension of the Krylov subspace is low, they sometimes fail to accelerate the basic

1846 Numerical Algorithms (2022) 89:1845–1863

power method, especially when the damping factor is high [22–25]. Similarly to the
restarted GMRES algorithm [31], they may stagnate in many circumstances [32].

Motivated by costs considerations, other work developed PageRank solvers based
on the Bi-Lanczos orthogonalization procedure [18, pp. 139-145] (see, e.g., [29, 30])
instead of Arnoldi. In this paper, we look in particular at the Hessenberg reduction
process [33–36] that was introduced by K. Hessenberg in 1940 [33], and revived
recently to establish a number of cost-effective Krylov subspace solvers for sparse
matrix systems, due to its lower arithmetic and storage requirements. The method
has been extended to compute the characteristic polynomial of matrices [33, 34, 37],
to solve general nonsymmetric linear systems [17, 35, 36, 38, 39], including systems
with multiple right-hand sides [40–44] and multi-shifted coefficient matrices [45–
47], other types of matrix equations [42, 48, 49], the action of a matrix function
f (A)v [47], and other related problems [51]. Theoretical and numerical studies have
investigated the mathematical properties of the Hessenberg process, especially in
relation with the more conventional Arnoldi procedure. The Arnoldi method was first
introduced in 1951 as a means of reducing a dense matrix A into a Hessenberg form
by unitary transformations, whereas the Hessenberg process applies similarity trans-
formations [50] and is more suitable for parallel computing. In his paper, Arnoldi
hinted that the eigenvalues of the Hessenberg matrix obtained after k � n steps,
where n is the size of A, could provide accurate approximations of some eigenvalue
of A. It was later discovered that this strategy can lead to efficient techniques for
approximating eigenvalues of large sparse matrices. In the current work, following
a similar development, we modify the Hessenberg process to establish a new family
of eigenvalue solvers. We combine the new solvers with the refined and explicitly
restarted techniques introduced in [19, 22] to compute realistic PageRank problems.
Finally, we analyze their convergence behavior and computational complexity.

The rest of this paper is organized as follows. In Section 2, the Hessenberg pro-
cess is introduced and a novel family of eigenvalue solvers based on this procedure
is described. Moreover, theoretical aspects of such eigenvalue solvers are highlighted
in comparison with the classical Arnoldi-like methods. In Section 3, we derive the
Hessenberg-type method with explicit restarting and refined techniques for comput-
ing PageRank. Both the convergence behavior and the computational cost of the
proposed method are discussed. Numerical results in Section 4 show the effective-
ness of the proposed algorithm, also against other popular PageRank algorithms. In
Section 5, we present some conclusions arising from our study.

2 The Hessenberg process with applications to eigenvalue
computations

In this section, we briefly review the Hessenberg procedure that is at the basis of
our development. We recall some fundamental properties of the algorithm and then
we describe a Hessenberg-based projection technique for computing eigenvalues of
large nonsymmetric matrices. Our theoretical analysis demonstrates the feasibility
of the method, showing some computational advantages over the more conventional
Arnoldi procedure.

1847Numerical Algorithms (2022) 89:1845–1863

2.1 The Hessenberg process

The Hessenberg process is an an oblique projection technique that reduces a given
nonsymmetric matrix A ∈ R

n×n to a Hessenberg form [34, pp. 377-381; 45]. Orig-
inally, the method was described as a way to compute the characteristic polynomial
of a matrix [33]. The basic procedure is presented in Algorithm 1, where a pivoting
strategy is included to ensure numerical stability.

Let Lk = [l1, . . . , lm] denote a matrix, H̄m = [
hi,j

]
be an upper Hessenberg

matrix and Hm the submatrix obtained from H̄m by deleting its last row. Finally, we
denote by P�

k = [ep1 , ep2 , . . . , epn] where the scalars pi’s (for i = 1, . . . , n) are
defined in Algorithm 1. After k steps of Algorithm 1, the following matrix equation
can be easily established,

ALk = Lk+1H̄k

= LkHk + hk+1,klk+1e
�
k ,

(2.1)

and PkLk is lower trapezoidal [35, 39]. Unlike Arnoldi, the Hessenberg procedure
with pivoting is not guaranteed to be backward stable in finite precision arith-
metic [50]. However, the backward error is reported to be small for most practical
problems [36, 39, 45]. This is also confirmed by our computational experiences. We
did not observe noticeable numerical instabilities due to the non-orthogonality of the
Krylov basis in our numerical experiments; see also [45] for a discussion of this topic.

1848 Numerical Algorithms (2022) 89:1845–1863

2.2 Approximation of eigenpairs based on the Hessenberg process

Methods to approximate eigenpairs of a large nonsymmetric matrix A usually com-
pute them from the Hessenberg decomposition of A given by (2.1). The upper
Hessenberg matrix Hm can be seen as the projection of A onto the Krylov subspace

Km(A, v) = span{v, Av, . . . , Am−1v}, (2.2)

and the columns of the matrix Lm are a basis of Km(A, v). Under certain condi-
tions, the eigenvalues of Hm converge to the eigenvalues of A [18, 34, 50]. Various
eigenvalue solvers are built upon this idea, differing each other mainly on the type of
projection technique that is used to derive the decomposition (2.1), for example, the
Arnoldi process, the Bi-Lanczos procedure and the Induced Dimension Reduction
(IDR) strategy [52, 53]. The approximate eigenpairs of A are retrieved in the form
(θi, x(i) = Lmy(i)), where

(
θi, y

(i)
)
are eigenpairs of the small dimensional matrix

Hm, such that

Hmy(i) = θiy
(i) with ‖y(i)‖ = 1, i = 1, 2, · · · , m. (2.3)

A bound on the residual error can be established directly from (2.1), by writing

Ax(i) − θix
(i) = ALmy(i) − θiLmy(i)

= hm+1,mlm+1e
�
my(i).

If we denote as [y(i)]m the mth component of the vector y(i), then we obtain

‖Ax(i) − θix
(i)‖ ≤ |hm+1,m|‖lm+1,m‖

∣
∣
∣[y(i)]m

∣
∣
∣ (2.4)

or, if we normalize the vector lm,

‖Ax(i) − θix
(i)‖ ≤ |hm+1,m|

∣
∣
∣[y(i)]m

∣
∣
∣ . (2.5)

This analysis is in line with the results described in [19].
For the “west0479” problem, a real-valued 479-by-479 sparse matrix that has

both real and complex eigenvalues, in Fig. 1, we plot the eigenvalues of A com-
puted by the MATLAB command eig and those of the Hessenberg matrix produced
by the IDR(s = 4) projection technique [52], the Sonneveld pencil [52, 53], the
Arnoldi, and the Hessenberg procedures. We clearly see that the Hessenberg pro-
cedure can estimate the exterior Ritz values very well, in some cases even slightly
more accurately than the Arnoldi procedure. The condition number of the Krylov
basis matrix Lm is an effective metric to determine the accuracy of the method used.
Figure 2 illustrates that for the Hessenberg process, this condition number does not
grow significantly when the dimension of the Krylov subspace increases. The numer-
ical error of the Hessenberg decomposition often remains small.1 This observation
is also exemplified by the stochastic analysis presented in [52, Section 3.3] that can
produce (numerical) evidence that the Hessenberg process can be as efficient as the
Arnoldi process for practical eigenvalue computations.

1Here, we give its executable codes in the website: https://github.com/Hsien-Ming-Ku/PageRank- Hes-
senberg.

1849Numerical Algorithms (2022) 89:1845–1863

https://github.com/Hsien-Ming-Ku/PageRank-Hessenberg
https://github.com/Hsien-Ming-Ku/PageRank-Hessenberg

real part

-2000

-1500

-1000

-500

0

500

1000

1500

2000

im
ag

in
ar

y
pa

rt

Test matrix: west0479, m = 20, s = 4

Eigenvalues of A
Ritz Arnoldi
Ritz IDR standard
Ritz IDR pencil
Ritz Hessenberg

real part

-2000

-1500

-1000

-500

0

500

1000

1500

2000

im
ag

in
ar

y
pa

rt

Test matrix: west0479, m = 30, s = 4

Eigenvalues of A
Ritz Arnoldi
Ritz IDR standard
Ritz IDR pencil
Ritz Hessenberg

real part

-2000

-1500

-1000

-500

0

500

1000

1500

2000

im
ag

in
ar

y
pa

rt

Test matrix: west0479, m = 40, s = 4

Eigenvalues of A
Ritz Arnoldi
Ritz IDR standard
Ritz IDR pencil
Ritz Hessenberg

-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150

-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150

real part

-2000

-1500

-1000

-500

0

500

1000

1500

2000

im
ag

in
ar

y
pa

rt

Test matrix: west0479, m = 50, s = 4

Eigenvalues of A
Ritz Arnoldi
Ritz IDR standard
Ritz IDR pencil
Ritz Hessenberg

Fig. 1 Plots of the Ritz values generated by the IDR(s = 4) factorization, the Sonneveld pencil, the
Arnoldi and the Hessenberg procedures

2.3 Relation between the Arnoldi and Hessenberg decompositions

In this subsection, we provide more theoretical background supporting the use of the
Hessenberg process to approximate effectively eigenpairs of a given nonsymmetric
matrix A. The starting point of our analysis is a comparison between the Hessenberg
decompositions computed by the Arnoldi and by the Hessenberg procedures. After
m steps of the Arnoldi method applied to A, starting with an initial vector v0 and
assuming no breakdown, the following Hessenberg decomposition is derived:

AVm = VmHm + hm+1,mvm+1e
�
m = Vm+1H̄m. (2.6)

On the other hand, after m steps of the Hessenberg procedure applied to A with
same initial vector l0, the resulting matrix factorization writes as

ALm = LmH(h)
m + h

(h)
m+1,mlm+1e

�
m = Lm+1Ĥ

(h)
m . (2.7)

Differently from Arnoldi, however, the columns of Lm in (2.7) are not mutually
orthogonal. By computing the reduced QR factorization of Lm+1,

Lm+1 = Qm+1Rm+1, (2.8)

1850 Numerical Algorithms (2022) 89:1845–1863

m (the dimension of Krylov subspace)

10-12

10-11

10-10

10-9

10-8

E
rr

or
 o

f m
at

rix
 n

or
m

 o
f v

ar
ou

is
 H

es
se

nb
er

g
de

co
m

po
si

tio
ns

Test matrix: west0479, s = 4

IDR Sonneveld pencil
IDR standard
Arnoldi process
Hessenberg process

20 25 30 35 40 45 50 55 60 20 25 30 35 40 45 50 55 60

m (the dimension of Krylov subspace)

100

102

104

106

108

1010

1012

C
on

di
tio

n
nu

m
be

r
of

 d
iff

er
en

t K
ry

lo
v

su
bs

pa
ce

 b
as

es

Test matrix: west0479, s = 4

IDR Sonneveld pencil
IDR standard
Arnoldi process
Hessenberg process

Fig. 2 The quality of different basis matrices; Left: the error of different Hessenberg decompositions;
Right: the condition number of basis matrices generated by different Hessenberg decompositions

we can establish the following relation between (2.7) and (2.8):

AQm = Qm+1Rm+1Ĥ
(h)
m R−1

m . (2.9)

Due to the uniqueness of the Arnoldi decomposition (see Section 3.3 in [52]), by
comparing (2.6) and (2.9) we conclude that Qm+1 = Vm+1 and

H̄m = Rm+1Ĥ
(h)
m R−1

m . (2.10)

The above result is summarized in the following proposition:

Proposition 2.1 It follows that

Hm = RmH(h)
m R−1

m + h
(h)
m+1,m

rm,m

r̃e�
m, (2.11)

h
(h)
m+1,m

rm,m

= hm+1,m

rm+1,m+1
, (2.12)

where r̃ = [ri,m+1]mi=1 is the vector containing the firstm components of the (m+1)th
column of Rm+1.

In fact, (2.11)–(2.12) can be also found in [38, 52]. According to (2.12), in
exact arithmetic both procedures produce upper Hessenberg matrices with the same
eigenvalues. If the Arnoldi process terminates successfully (i.e., a happy breakdown
situation hm+1,m = 0 occurs), so does the Hessenberg procedure (h(h)

m+1,m = 0).
On the other hand, a direct consequence of Proposition 2.1 is that the Ritz values
produced by the Arnoldi and by the Hessenberg processes are not the same. The con-
dition number of the Krylov basis matrix Lm, which is the same as the condition
number of matrix Rm, gives a clear indication of the accuracy of the eigenvalues of
H

(h)
m compared to those resulting from the Arnoldi process.
In conclusion, it can be expected that the Hessenberg process can produce feasible

approximations of eigenpairs of large nonsymmetric matrices matrix.

1851Numerical Algorithms (2022) 89:1845–1863

3 A Hessenberg-type algorithm for computing PageRank

In this section, we will propose a Hessenberg-based algorithm to compute the
PageRank vector, that is the positive unit eigenvector corresponding to the largest
eigenvalue of the Google matrix. Golub and Greif suggested that the explicitly
restarted Arnoldi process for computing eigenvalues and eigenvectors should be
implemented in complex arithmetic, thus it is not suitable (it needs to be refined) to
compute the PageRank vector [22]. Moreover, since the Hessenberg process is simi-
lar in nature to Arnoldi, except that it produces a non-orthogonal basis of the Krylov
subspace, we follow a similar development to the refined Arnoldi method for PageR-
ank problems. In other words, the solver described in this section may be called
the refined Hessenberg method for PageRank. However, we do not approximate the
eigenvectors of A from those of Hm (the so-called Ritz-like vectors). Instead, we
compute the refined Ritz-like vectors, i.e., the singular vectors associated with the
smallest singular values of A − θiI [19, 22], where {θi}mi=1 are named the Ritz-like
values; cf. (2.3). The Hessenberg-based method enjoys similar numerical properties
to the Arnoldi-based variant: an effective separation of the eigenvectors is ensured,
complex arithmetic is avoided by using a shift equal to 1 (due to the fact that the
largest eigenvalue of the Google matrix is known), the smallest singular value con-
verges more smoothly to zero than the largest Ritz value to 1 [22, Section 3]. The
Hessenberg-type method for computing the PageRank vector is presented in Algo-
rithm 2. The following convergence result can be established after each cycle of m

iterations of Algorithm 2.

Theorem 3.1 Let Qm = [q1, q2, · · · , qm] be the matrix obtained from running m-
steps of either the Arnoldi or the Hessenberg procedures applied to A starting from

1852 Numerical Algorithms (2022) 89:1845–1863

an initial vector q0, then the Hessenberg matrix decomposition can be uniformly
written as

AQm = QmHm + hm+1,mqm+1e
�
m

= Qm+1H̄m.
(3.1)

Denote as σm the smallest singular value of Hm+1,m − [Im; 0], then vm at Line 6 of
Algorithm 2 is the corresponding right singular vector, andQmvm is the approximate
PageRank vector. The residual vector at each restarting cycle can be computed as
r = σmQm+1um.

Proof According to (3.1) and Algorithm 2, it follows that

r = Aqm − qm = AQmvm − Qmvm

= Qm+1Hm+1,mvm − Qmvm

= Qm+1

[

Hm+1,m −
(

Im

0

)]

vm

= σmQm+1um,

(3.2)

where qm is an approximate PageRank vector. Thus, the assertion is verified.

Below, we give the norms of the residual vectors computed by the Arnoldi and by
the Hessenberg procedures, respectively:

‖r‖1 = σm‖Qm+1um‖1, where Q�
mQm :

{
= Im (Arnoldi process),

�= Im (Hessenberg process),
(3.3)

and

‖r‖2 =
{

σm, Q�
mQm = Im (Arnoldi process),

σm‖Qm+1um‖2, Q�
mQm �= Im (Hessenberg process).

(3.4)

Although the 2-norm of the Arnoldi residual vectors is much cheaper than the
2-norm of the Hessenberg residual vectors, it should be noted that for PageRank
computations it is generally recommended to use the 1-norm; refer, e.g., to [2, 25,
26]. Therefore, the computational complexity of the stopping criterion (at line 8 of
Algorithm 2) is almost the same for both methods [24, 28, 30].

Before we end this section, we provide estimates on the storage requirement and
the computational complexity of the new algorithm, also compared against other
popular methods.

Table 1 shows the memory required in addition to A for running k iterations of the
power method (referred to as Power in the table), the power method with quadratic
extrapolation (called as QE-power), the Arnoldi-type method (abbreviated as
Arnoldi), the adaptively accelerated Arnoldi method (called as A-Arnoldi), and
the Hessenberg-type method (abbreviated as Hessenberg). Here,w, x, u, and r are
intermediate working vectors used at the kth step, and Qk denotes the k orthonormal
vectors in the modified Gram-Schmidt process. Analogously, Lk denotes the n × k

non-orthonormal matrix in the variant of the LU -like factorization process.
Table 2 shows the computational workloads required to execute one cycle of each

different iterative algorithm. Here, Nz represents the number of nonzero entries of

1853Numerical Algorithms (2022) 89:1845–1863

Table 1 Memory requirement for running k iterations of different PageRank algorithms

Algorithm dim(n) dim(k) total

Power xk, xk−1 – 2n

QE-Power xk, xk−1, xk−2, xk−3 – 4n

Inner-Outer x, y, f – 3n

Arnoldi Qk, w Hk
1 (k + 1)n + k2/2 + 2k

Hessenberg Lk, u Hk (k + 1)n + k2/2 + 2k

A-Arnoldi Qk, w, r Hk (k + 2)n + k2/2 + 2k

1To minimize the memory requirements, both Lk and H̄k can be written into the same array as A. Hence,
the Hessenberg process requires slightly less storage than the Arnoldi’s procedure; refer to [35, 39] for
discussions on this issue

matrix A. In fact, both Arnoldi and A-Arnoldi for computing PageRank enjoy
the similar pseudo-code of Algorithm 2, the only difference is to choose the Hessen-
berg, Arnoldi, or generalized Arnoldi process at Line 4 of Algorithm 2. It implies
that we need to compare the cost of the Hessenberg process with both the Arnoldi
and generalized Arnoldi procedures. We can see that one cycle of the Hessenberg-
type method is cheaper than for Arnoldi and for the generalized Arnoldi methods.
Thus its use can be computationally attractive for large PageRank computation. The
convergence performance of the Hessenberg method is also superior to Arnoldi algo-
rithms (i.e., Arnoldi and A-Arnoldi), as proved numerically in the next section.
Besides matrix-vector multiplications, also the computation of vector norms and
SAXPY2 (which stands for “Single-Precision A·X Plus Y” and is a combination of the
scalar multiplication and vector addition) operations determines the total computa-
tional cost of these three algorithms. Overall, whenm increases, the cost of each cycle
increases too but the total number of iterations decreases. The optimal value of the
restart parameter that minimizes the total solution time remains problem dependent,
and this issue will be examined in our numerical experiments section.

4 Numerical experiments

In this section, numerical experiments are reported to illustrate the efficiency of the
Hessenberg-based PageRank algorithm presented in this paper also against other
popular PageRank algorithms that are the conventional power method including
its variants with quadratic extrapolation [2] and with linear extrapolation [13], the
Arnoldi-based PageRank method introduced in [22], and the adaptively accelerated
Arnoldi method [28]3. The performance of these methods were assessed in terms of

2See the details from https://developer.nvidia.com/blog/six-ways-saxpy/.
3Numerical results with the IDR(s)-based PageRank method are omitted due to its unsatisfactory perfor-
mance for large values of s and m. However, the MATLAB code of the IDR(s)-based PageRank method
is still included in our GitHub repository: https://github.com/Hsien-Ming-Ku/PageRank-Hessenberg for
testing purposes.

1854 Numerical Algorithms (2022) 89:1845–1863

https://developer.nvidia.com/blog/six-ways-saxpy/
https://github.com/Hsien-Ming-Ku/PageRank-Hessenberg

Table 2 Computational cost of one cycle of different algorithms for computing PageRank

operation Arnoldi Hessenberg A-Arnoldi

matrix-vector product (see Line 4 of Algorithm 1) 2mNz 2mNz 2mNz

inner product (e.g., see Line 6 of Arnoldi) m(m + 1)n 0 3m(m + 1)n/2

(u)p(i) (see Line 6 of Algorithm 1) 0 mn 0

SAXPY: x + αy (see Line 7 of Algorithm 1) m(m + 1)n m(m + 1)n m(m + 1)n

‖u‖2 or ‖u‖∞ (e.g., see Line 10 of Algorithm 1) 2mn mn 3mn

vector scaling (see Line 11 of Algorithm 1) mn mn mn

number of matrix-vector products (or, equivalently, number of iteration steps for the
first three algorithms) and elapsed CPU time (in seconds) required to achieve conver-
gence to a prescribed accuracy. Unless otherwise stated, the stopping criterion used
in our runs was

‖Aq − q‖1
‖q‖1 < tol = 10−8,

and all the algorithms were started from the initial vector q0 = e/‖e‖1, where
e = [1, . . . , 1]T . According to Theorem 3.1, the cost of implementing the above
stopping criterion can be alleviated for both Arnoldi- and Hessenberg-type methods,
since Aq − q = σmQm+1um and the computation of σmQm+1um is actually cheaper
than that of Aq−q, when m is not large. In our experiments with the method denoted
as QE-power, the quadratic extrapolation technique was applied every five itera-
tions, following the observations made in [2]. The experiments were run in MATLAB
R2017b (64 bit) on a computer equipped with Intel Core i5-8250U processor (CPU
1.60∼1.80 GHz), 8 GB of RAM using double precision floating point arithmetic with
machine epsilon set equal to 10−16.

The matrix problems used in our runs are obtained from the SuiteSparse Matrix
Collection, which is available online at https://sparse.tamu.edu/. In Table 3, we
describe the characteristics of our test matrices, including number of rows (n), num-
ber of nonzeros (Nz), number of zero columns (zcol), average nonzeros of every row
(aNz), and density (den) which is defined as

den = Nz

n × n
× 100.

Table 3 The characteristic of test matrices

Matrix ID Matrix name Size Nonzeros zcol aNz den

I soc-Slashdot0902 82,168 948,464 3,727 11.543 1.405 × 10−2

II amazon0312 400,727 3,200,440 12,353 7.987 1.993 × 10−3

III amazon-2008 735,323 5,158,388 88,557 7.015 9.540 × 10−4

IV wiki-Talk 2,394,385 5,021,410 2,246,783 2.097 8.759 × 10−5

V ljournal-2008 5,363,260 79,023,142 545,626 14.734 2.747 × 10−4

1855Numerical Algorithms (2022) 89:1845–1863

https://sparse.tamu.edu/

Table 4 Number of iterations required by the Arnoldi-, GArnoldi- and Hessenberg-based algorithms with
different restart numbers. (problem soc-Slashdot0902 and tol = 10−7)

α m = 6 m = 7 m = 8 m = 9 m = 10

A-P GA-P H-P A-P GA-P H-P A-P GA-P H-P A-P GA-P H-P A-P GA-P H-P

0.85 5 5 5 4 4 4 3 3 4 3 3 3 3 3 3

0.90 6 6 7 5 5 5 4 4 4 4 4 4 3 3 4

0.95 9 8 9 7 7 8 5 5 6 5 5 6 4 4 4

0.99 16 15 21 15 13 15 11 10 11 9 8 10 7 7 8

Here, the number of zero columns corresponds to the number of dangling nodes. The
largest problem in our set has size 5,363,260 and 79,023,142 nonzeros.

4.1 Choice of the restart valuem

First, we investigate the effect of the restart parameter m on the convergence of
the Arnoldi (A-P), A-Arnoldi (GA-P) and Hessenberg (H-P) meth-
ods in terms of number of iterations and elapsed CPU time, since this parameter may
noticeably affect the performance of Krylov subspace-based methods. The results
are presented numerically in Tables 4, 5 and 6. In Figs. 3 and 4, for the test matrix
‘soc-Slashdot0902’ we plot the curves showing the total CPU time versus m

for different damping factors and tol’s values.
According to the results reported in Tables 4–6, the number of iterations required

to converge by these three algorithms tends to decrease for higher restart numbers
m, especially for larger damping factors. This behaviour is expected because larger
search spaces may provide better approximations. On the other hand, the total solu-
tion time of the three methods is not significantly reduced. As mentioned in Section 3,
and explained in Tables 1–2, the storage requirement and the computational cost of
one Arnoldi and Hessenberg cycles increase with m. However, it should be noted
that Hessenberg is more cost effective than both Arnoldi and A-Arnoldi
for larger m. In our numerical experiments, we choose the restart numbers equal to

Table 5 Number of iterations required by the Arnoldi-, GArnoldi- and Hessenberg-type algorithms with
different restart numbers (problem soc-Slashdot0902 and tol = 10−8).

α m = 6 m = 7 m = 8 m = 9 m = 10

A-P GA-P H-P A-P GA-P H-P A-P GA-P H-P A-P GA-P H-P A-P GA-P H-P

0.85 6 5 6 5 4 5 4 4 4 4 4 4 3 3 3

0.90 7 7 7 6 5 6 5 5 5 4 4 5 4 4 4

0.95 11 9 10 8 7 9 6 6 7 6 5 6 5 5 5

0.99 18 19 24 17 15 16 14 11 12 11 10 12 9 8 9

1856 Numerical Algorithms (2022) 89:1845–1863

Ta
bl
e
6

M
at
ri
x-
ve
ct
or

pr
od
uc
ts
an
d
C
PU

tim
e
in

se
co
nd
s
ve
rs
us

da
m
pi
ng

fa
ct
or
s

ID
α

P
o
w
e
r

P
o
w
e
r
-
T
a
n

Q
E
-
P
o
w
e
r

A
r
n
o
l
d
i

A
-
A
r
n
o
l
d
i

H
e
s
s
e
n
b
e
r
g

m
=

8
m

=
10

m
=

8
m

=
10

m
=

8
m

=
10

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

M
v
p

C
P
U

I
0.
85

82
0.
21
6

83
0.
22
8

52
0.
16
8

32
0.
15
2

30
0.
13
6

32
0.
12
2

30
0.
13
2

32
0.
12
2

30
0.
11
8

0.
90

12
5

0.
32
4

12
6

0.
33
3

52
0.
15
9

40
0.
18
6

40
0.
18
7

40
0.
15
9

40
0.
16
3

40
0.
14
4

40
0.
14
6

0.
95

24
1

0.
62
8

24
3

0.
63
4

98
0.
29
8

48
0.
19
2

50
0.
20
6

48
0.
19
5

50
0.
20
2

56
0.
18
7

50
0.
17
6

0.
99

82
4

2.
08
9

83
2

2.
10
5

16
9

0.
50
4

11
2

0.
41
9

90
0.
35
0

88
0.
32
7

80
0.
30
8

96
0.
31
9

90
0.
30
3

II
0.
85

80
1.
03
2

80
1.
03
5

66
1.
01
4

40
0.
95
1

40
0.
94
3

40
0.
99
6

40
1.
08
9

48
0.
85
4

40
0.
72
6

0.
90

12
0

1.
55
3

12
1

1.
56
2

98
1.
52
2

56
1.
25
3

40
1.
18
7

48
1.
16
6

40
1.
29
2

56
0.
99
3

40
0.
91
8

0.
95

23
4

3.
03
3

23
5

3.
04
1

15
2

2.
42
2

80
1.
77
9

56
1.
68
1

72
1.
73
2

70
1.
80
2

88
1.
55
4

80
1.
39
3

0.
99

10
71

13
.8
0

10
76

14
.1
6

39
1

6.
19
6

22
4

4.
91
7

19
0

4.
40
4

17
6

4.
21
2

16
0

4.
09
5

21
6

3.
79
8

25
0

4.
38
7

II
I

0.
85

79
1.
78
2

80
1.
82
1

64
1.
77
9

40
1.
63
3

40
1.
70
4

40
1.
76
1

40
1.
89
6

40
1.
31
5

40
1.
32
1

0.
90

11
9

2.
78
2

12
0

2.
83
9

95
2.
65
9

48
1.
98
1

50
2.
30
4

48
2.
13
0

50
2.
37
6

56
1.
82
8

50
1.
62
7

0.
95

23
5

5.
24
8

23
6

5.
28
9

15
2

4.
21
5

72
2.
88
9

70
3.
03
4

72
3.
15
2

70
3.
28
3

72
2.
34
5

80
2.
63
2

0.
99

10
82

24
.8
5

10
84

25
.0
2

41
1

11
.7
9

20
8

8.
42
8

18
0

7.
77
9

15
2

6.
81
7

15
0

7.
10
7

17
6

5.
84
3

19
0

6.
35
8

IV
0.
85

67
4.
79
8

67
4.
81
9

52
4.
72
7

32
4.
32
1

30
4.
40
3

32
4.
68
3

30
4.
80
8

32
3.
32
7

40
4.
26
4

0.
90

10
4

7.
34
4

10
4

7.
46
4

52
4.
77
0

40
5.
35
2

40
5.
83
8

40
5.
94
8

40
6.
26
6

40
4.
21
7

40
4.
29
9

0.
95

21
4

15
.1
1

21
4

15
.2
7

84
7.
32
7

56
7.
41
3

60
8.
73
6

48
7.
10
8

60
9.
53
2

64
6.
76
8

50
5.
33
5

0.
99

10
66

20
.2
1

10
68

75
.9
6

17
5

15
.5
7

15
6

20
.2
1

15
0

21
.4
7

11
2

16
.2
4

11
0

17
.0
8

16
0

16
.6
9

15
0

15
.9
3

V
0.
85

80
36
.5
9

79
36
.4
7

61
30
.6
1

48
28
.5
3

50
30
.8
8

48
29
.7
9

50
32
.3
8

56
29
.4
4

50
26
.8
7

0.
90

12
2

54
.7
7

12
2

55
.1
2

92
45
.3
2

64
38
.2
6

60
36
.6
6

64
39
.2
1

60
38
.6
5

72
37
.6
2

60
31
.8
2

0.
95

24
7

11
0.
9

24
4

10
9.
5

14
8

71
.6
1

10
4

61
.8
5

90
55
.9
2

96
59
.0
5

90
57
.8
4

10
4

54
.5
9

90
47
.9
7

0.
99

11
53

79
4.
7

10
61

52
9.
1

63
0

32
2.
6

35
2

21
4.
7

24
0

14
5.
8

21
6

13
2.
3

19
0

12
1.
4

24
8

12
7.
7

22
0

11
5.
9

1857Numerical Algorithms (2022) 89:1845–1863

m

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

C
P

U
 (

s)

 = 0.85

A-P
GA-P
H-P

m

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

C
P

U
 (

s)

 = 0.90

A-P
GA-P
H-P

m

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

C
P

U
 (

s)

 = 0.95

A-P
GA-P
H-P

67 8 9 10 6 7 8 9 10

6 7 8 9 10 6 7 8 9 10

m

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44
C

P
U

 (
s)

 = 0.99

A-P
GA-P
H-P

Fig. 3 Plot of the elapsed CPU time in seconds versus the restart number (i.e., m) for the test problem
‘soc-Slashdot0902’ using tol = 10−7

m = 8, 10 due to memory constraints4, since the number of iterations and the total
elapsed CPU time are still acceptable. It may be worth investigating techniques that
can effectively reduce the dimension of the Krylov subspace for the Hessenberg
method, e.g., by optimizing the choice of the starting vector [52] and by utilizing
vector extrapolations [13], but this analysis is beyond the scope of this study.

4.2 Effect of damping factors on the CPU time and the number of iterations

For the five matrix problems listed in Table 3, we report on the number of matrix-
vector products (Mvp in short) and the elapsed CPU time of the power method, the
power methods with quadratic extrapolation and with linear extrapolation, the Arnoldi-
type method, the adaptively accelerated Arnoldi method and the Hessenberg-type
method for various values of the damping factor α ranging from 0.85 to 0.99.

4In fact, the restart number is often chosen in the PageRank literature as m ≤ 10 [27, 30, 31].

1858 Numerical Algorithms (2022) 89:1845–1863

We can see from the results of Table 6 that the power method accelerated by
quadratic extrapolation outperforms the conventional power method and its lin-
early extrapolated variant, while in most cases our Hessenberg-based solver is the
fastest method in terms of elapsed CPU time, with the only exception for matrix
‘IV’ using α = 0.99. It can be observed that Arnoldi is more cost-effective
than A-Arnoldi at equal number of Mvp, especially for large problems. This
behaviour is in agreement with the cost analysis presented in Table 2. Except these
few cases, the A-Arnoldi method is still attractive to consider. On the other
hand, one observes from Table 6 that the numerical behaviors of the Arnoldi,
A-Arnoldi and Hessenberg algorithms relies on the choice of m and α. For
example, when m is small, say m = 8, these three algorithms are only slightly
better than the Power, Power-Tan and QE-Power methods. However, as m

and α increase, their improvements become gradually more significant. Unlike
the Arnoldi, A-Arnoldi, and Hessenberg, the Power, Power-Tan, and
QE-Power methods are simple and their main computational cost is the evaluation

m

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

C
P

U
 (

s)

 = 0.85

A-P
GA-P
H-P

m

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

C
P

U
 (

s)

 = 0.90

A-P
GA-P
H-P

m

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

C
P

U
 (

s)

 = 0.95

A-P
GA-P
H-P

6 7 8 9 10 6 7 8 9 10

6 6.5 7 7.5 8 8.5 9 9.5 10 6 6.5 7 7.5 8 8.5 9 9.5 10

m

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

C
P

U
 (

s)

 = 0.99

A-P
GA-P
H-P

Fig. 4 Plot of the elapsed CPU time in seconds versus the restart number m for the test problem
‘soc-Slashdot0902’ using tol = 10−8

1859Numerical Algorithms (2022) 89:1845–1863

of matrix-vector products. These characteristics often make them still feasible for
computing PageRank when the damping factor α is not large.

In addition, it is interesting to mention that the Hessenberg-type method often
needs more Mvp’s for convergence than both Arnoldi and A-Arnoldi, whereas
the total CPU time of Hessenberg is still less. This is because the Hessenberg
uses the cheap similarity transformations to reduce the large matrix into the Hes-
senberg form, whereas the latter two methods use expensive (weighted) unitary
transformations.

5 Conclusions

In this paper, we proposed a novel approach for computing the PageRank prob-
lem. The proposed method has lower computational cost than both Arnoldi and
A-Arnoldi to find the approximate PageRank vector; thus, it can afford to use
higher dimensional Krylov subspaces. Extensive numerical experiments are reported
to illustrate the efficiency of the proposed method also compared to other state-of-
the-art matrix solvers for this problem class, especially when the damping factor is
large. Hence, we conclude that the Hessenberg method as well as the Arnoldi
and A-Arnoldimethods can be useful computational tools for practical large-scale
PageRank computations.

Future research will focus on the theory of the Hessenberg process and the con-
vergence of the Hessenberg-type algorithm is still required to be further analyzed.
In addition, it is interesting to study how to optimize the restart number m and
improve the convergence speed of our methods. Moreover, the proposed method can
be extended to compute the more general Markov chains [8, 29], e.g., in ProteinRank
and CiteRank.

Acknowledgements The authors would like to thank Prof. Zhongxiao Jia for his comments about the
strategy used in the refined Arnoldi algorithm. Meanwhile, the authors are grateful to Dr. Reinaldo
Astudillo (ASML Holding N.V.) for his kind suggestions about executing the IDR-based Hessenberg
decompositions used in Section 2.2.

Funding This research is supported by NSFC (11601323 and 11801463), the Applied Basic Research
Program of Sichuan Province (2020YJ0007), and the research grants MYRG2018-00025-FST, MYRG2020-
00208-FST from University of Macau. The last author is member of the Gruppo Nazionale per il Calcolo
Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM) and his work was partially
supported by INdAM-GNCS under Progetti di Ricerca 2020.

References

1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the
web, Technical Report No. 1999-66, Stanford InfoLab., Jan. 29, 1999, 17 pages. Available online at:
http://ilpubs.stanford.edu:8090/422/

2. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for acceler-
ating PageRank computations, in: WWW ’03 Proceedings of the 12th international conference on
World Wide Web, Budapest, Hungary, May 20-24, 2003, ACM New York, NY (2003): 261–270.
https://doi.org/10.1145/775152.775190

1860 Numerical Algorithms (2022) 89:1845–1863

http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1145/775152.775190

3. Kamvar, S., Haveliwala, T., Golub, G.: Adaptive methods for the computation of PageRank, Linear
Algebra Appl., 386 (2004): 51–65

4. Langville, A.N., Meyer, C.D.: Deeper inside PageRank, Internet Math., 1(3) (2005): 335–380
5. Langville, A.N., Meyer, C.D.: A survey of eigenvector methods of web information retrieval, SIAM

Rev., 47(1) (2005): 135–161
6. Berkhin, P.: A survey on PageRank computing, Internet Math., 2(1) (2005): 73–120
7. Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond: the Science of Search Engine

Rankings, Princeton University Press, Princeton, NJ (2006)
8. Gleich, D.F.: PageRank beyond the web, SIAM Rev., 57(3) (2015): 321–363
9. Bryan, K., Leise, T.: The 25,000,000,000 eigenvector: the linear algebra behind Google, SIAM Rev.,

48(3) (2006): 569–581
10. Cicone, A., Serra-Capizzano, S.: Google PageRanking problem: the model and the analysis, J.

Comput. Appl. Math., 234(11) (2010): 3140–3169
11. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo methods in PageRank

computation: when one iteration is sufficient, SIAM J. Numer. Anal., 45(2) (2007): 890–904
12. Liu, W., Li, G., Cheng, J.: Fast PageRank approximation by adaptive sampling, Knowl. Inf. Syst.,

42(1) (2015): 127–146
13. Tan, X.: A new extrapolation method for PageRank computations, J. Comput. Appl. Math., 313

(2017): 383–392
14. Langville, A.N., Meyer, C.D.: A reordering for the PageRank problem, SIAM J. Sci. Comput., 27(6)

(2006): 2112–2120
15. Lin, Y., Shi, X., Wei, Y.: On computing PageRank via lumping the Google matrix, J. Comput. Appl.

Math., 224(2) (2009): 702–708
16. Gleich, D.F., Gray, A.P., Greif, C., Lau, T.: An inner-outer iteration for computing PageRank, SIAM

J. Sci. Comput., 32(1) (2010): 349–371
17. Heyouni, M., Sadok, H.: On a variable smoothing procedure for Krylov subspace methods, Linear

Algebra Appl., 268 (1998): 131–149
18. Saad, Y.: Numerical methods for large eigenvalue problems (Revised Ed.), SIAM, Philadelphia, PA

(2011)
19. Jia, Z.: Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems,

Linear Algebra Appl., 259 (1997): 1–23
20. Jia, Z.: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method

and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287(1-3) (1999): 191–214
21. Jia, Z.: A refined subspace iteration algorithm for large sparse eigenproblems, Appl. Numer. Math.,

32(1) (2000): 35–52
22. Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing page rank, BIT, 46(4) (2006): 759–

771
23. Wu, G., Wei, Y.: A Power-Arnoldi algorithm for computing PageRank, Numer. Linear Algebra Appl.,

14(7) (2007): 521–546
24. Yin, G.-J., Yin, J.-F.: On Arnoldi method accelerating PageRank cmputations, in: Web Infor-

mation Systems and Mining. WISM 2010 (F.-L. Wang, Z. Gong, X. Luo, J. Lei, eds.), Lec-
ture Notes in Computer Science, vol 6318, Springer, Berlin, Heidelberg (2010): 378–385.
https://doi.org/10.1007/978-3-642-16515-3 47

25. Wu, G., Zhang, Y., Wei, Y.: Accelerating the Arnoldi-type algorithm for the PageRank problem and
the ProteinRank problem, J. Sci. Comput., 57(1) (2013): 74–104

26. Wu, G., Wei, Y.: An Arnoldi-extrapolation algorithm for computing PageRank, J. Comput. Appl.
Math., 234(11) (2010): 3196–3212

27. Gu, C., Wang, W.: An Arnoldi-Inout algorithm for computing PageRank problems, J. Comput. Appl.
Math., 309 (2017): 219–229

28. Yin, J.-F., Yin, G.-J., Ng, M.: On adaptively accelerated Arnoldi method for computing PageRank,
Numer. Linear Algebra Appl., 19(1) (2012): 73–85

29. Freund, R.W., Hochbruck, M.: On the use of two QMR algorithms for solving singular systems and
applications in Markov chain modeling, Numer. Linear Algebra Appl., 1(4) (1994): 403–420

30. Teramoto, K., Nodera, T.: A note on Lanczos algorithm for computing PageRank, in: Forging Con-
nections between Computational Mathematics and Computational Geometry (K. Chen, A. Ravindran,
eds.), Springer Proceedings in Mathematics & Statistics, Vol. 124, Springer, Cham, Switzerland
(2016): 25–33. https://doi.org/10.5176/2251-1911 CMCGS14.15 3

1861Numerical Algorithms (2022) 89:1845–1863

https://doi.org/10.1007/978-3-642-16515-3_47
https://doi.org/10.5176/2251-1911_CMCGS14.15_3

31. Wu, G., Wang, Y.-C., Jin, X.-Q.: A preconditioned and shifted GMRES algorithm for the PageRank
problem with multiple damping factors, SIAM J. Sci. Comput., 34(5) (2012): A2558–A2575

32. Wu, G., Wei, Y.: Arnoldi versus GMRES for computing pageRank: A theoretical con-
tribution to google’s pageRank problem, ACM Trans Inf. Syst., 28(3) (2010): 11.
https://doi.org/10.1145/1777432. 1777434

33. Hessenberg, K.: Behandlung Linearer Eigenwertaufgaben Mit Hilfe Der Hamilton-Cayleyschen Gle-
ichung, Numerische Verfahren, Bericht 1, Institut Für Praktische Mathematik (IPM), Technische
Hochschule Darmstadt. The scanned report and a biographical sketch of Karl Hessenberg’s life are
available at. http://www.hessenberg.de/karl1.html (1940)

34. Wilkinson, J.H.: The algebraic eigenvalue problem, Clarendon Press, Oxford, UK (1965)
35. Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg

reduction algorithm. Numer. Algorithms 20(4), 303–321 (1999)
36. Stephens, D.: ELMRES: An oblique projection method to solve sparse non-symmetric linear sys-

tems (Ph.D Dissertation), Florida Institute of Technology, Melbourne USA. http://ncsu.edu/hpc/
Documents/Publications/gary howell/stephens.pdf (1999)

37. Householder, A.S., Bauer, F.L.: On certain methods for expanding the characteristic polynomial,
Numer. Math., 1(1) (1959): 29–37

38. Sadok, H., Szyld, D.B.: A new look at CMRH and its relation to GMRES, BIT, 52(2) (2012): 485–501
39. Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear

systems, J. Comput. Appl. Math., 213(2) (2008): 387–399
40. Zhang, K., Gu, C.: Flexible global generalized Hessenberg methods for linear systems with multiple

right-hand sides, J. Comput. Appl. Math., 263 (2014): 312–325
41. Heyouni, M.: The global Hessenberg and CMRH methods for linear systems with multiple right-hand

sides, Numer. Algorithms, 26(4) (2001): 317–332
42. Heyouni, M., Essai, A.: Matrix Krylov subspace methods for linear systems with multiple right-hand

sides, Numer. Algorithms, 40(2) (2005): 137–156
43. Amini, S., Toutounian, F., Gachpazan, M.: The block CMRHmethod for solving nonsymmetric linear

systems with multiple right-hand sides, J. Comput. Appl. Math., 337 (2018): 166–174
44. Amini, S., Toutounian, F.: Weighted and flexible versions of block CMRH method for solving non-

symmetric linear systems with multiple right-hand sides. Comput. Math. Appl. 76(8), 2011–2021
(2018)

45. Gu, X.-M., Huang, T.-Z., Yin, G., Carpentieri, B., Wen, C., Du, L.: Restarted Hessenberg method for
solving shifted nonsymmetric linear systems, J. Comput. Appl. Math., 331 (2018): 166–177

46. Gu, X.-M., Huang, T.-Z., Carpentieri, B., Imakura, A., Zhang, K., Du, L.: Efficient variants of the
CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously,
J. Comput. Appl. Math., 375 (2020): 112788. https://doi.org/10.1016/j.cam.2020.112788

47. Ramezani, Z., Toutounian, F.: Extended and rational Hessenberg methods for the evaluation of matrix
functions, BIT, 59(2) (2019): 523–545

48. Addam, M., Heyouni, M., Sadok, H.: The block Hessenberg process for matrix equations, Electron.
Trans. Numer. Anal., 46 (2017): 460–473

49. Heyouni, M., Saberi-Movahed, F., Tajaddini, A.: On global Hessenberg based methods for solving
Sylvester matrix equations, Comput. Math. Appl., 77(1) (2019): 77–92

50. Businger, P.A.: Reducing a matrix to Hessenberg form, Math. Comp., 23(108) (1969): 819–821
51. Heyouni, M.: Newton Generalized Hessenberg method for solving nonlinear systems of equations,

Numer. Algorithms, 21(1-4) (1999): 225–246
52. Astudillo, R., van Gijzen, M.B.: A restarted induced dimension reduction method to approximate

eigenpairs of large unsymmetric matrices, J. Comput. Appl. Math., 296 (2016): 24–35
53. Gutknecht, M.H., Zemke, J.-P.M.: Eigenvalue computations based on IDR, SIAM J. Matrix Anal.

Appl., 34(2) (2013): 283–311

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1862 Numerical Algorithms (2022) 89:1845–1863

https://doi.org/10.1145/1777432.1777434
https://doi.org/10.1145/1777432.1777434
http://www.hessenberg.de/karl1.html
http://ncsu.edu/hpc/Documents/Publications/gary_howell/stephens.pdf
http://ncsu.edu/hpc/Documents/Publications/gary_howell/stephens.pdf
https://doi.org/10.1016/j.cam.2020.112788

Affiliations

Xian-Ming Gu1,2 ·Siu-Long Lei3 ·Ke Zhang4 ·Zhao-Li Shen5 ·ChunWen6 ·
Bruno Carpentieri7

Xian-Ming Gu
guxianming@live.cn; guxm@swufe.edu.cn

Ke Zhang
xznuzk123@126.com

Zhao-Li Shen
szlxiaoyao@163.com

Chun Wen
wchun17@163.com

Bruno Carpentieri
Bruno.Carpentieri@unibz.it

1 School of Economic Mathematics/Institute of Mathematics, Southwestern University of Finance
and Economics, Chengdu, Sichuan 611130, People’s Republic of China

2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University
of Groningen, Nijenborgh 9, P.O. Box 407, 9700 AK Groningen, The Netherlands

3 Department of Mathematics, Faculty of Science and Technology, University of Macau, Avenida da
Universidade, Macao, People’s Republic of China

4 College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306,
People’s Republic of China

5 Department of Applied Mathematics, College of Science, Sichuan Agricultural University, Yaan,
Sichuan 625014, People’s Republic of China

6 School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu, Sichuan 611731, People’s Republic of China

7 Facoltà di Scienze e Tecnologie Informatiche, Libera Università di Bolzano, Dominikanerplatz
3 - piazza Domenicani, 3 Italy - 39100, Bozen-Bolzano, Italy

1863Numerical Algorithms (2022) 89:1845–1863

http://orcid.org/0000-0001-7895-2050
mailto: guxianming@live.cn
mailto: guxm@swufe.edu.cn
mailto: xznuzk123@126.com
mailto: szlxiaoyao@163.com
mailto: wchun17@163.com
mailto: Bruno.Carpentieri@unibz.it

	A Hessenberg-type algorithm for computing PageRank Problems
	Abstract
	Introduction
	The Hessenberg process with applications to eigenvalue computations
	The Hessenberg process
	Approximation of eigenpairs based on the Hessenberg process
	Relation between the Arnoldi and Hessenberg decompositions

	A Hessenberg-type algorithm for computing PageRank
	Numerical experiments
	Choice of the restart value m
	Effect of damping factors on the CPU time and the number of iterations

	Conclusions
	References
	Affiliations

