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Abstract
This paper studies an implicit-explicit (IMEX) finite difference scheme for solving
a system of moving boundary partial integro-differential equations (PIDEs) which
arises in Asian option pricing under regime-switching jump-diffusion models. First,
the moving boundary PIDEs are recast into a fixed boundary problem of the PIDEs.
Then the IMEX scheme is proposed to solve the problem and the second-order
convergence rates are proved. Numerical examples are carried out to validate the
theoretical results.
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1 Introduction

Denote a complete probability space with risk-neutral measure by F,P) and
assume that the price of the underlying asset St follows the state-dependent regime-
switching jump-diffusion model under risk-neutral measure

dSt

St

= [r (χ(t))−δ (χ(t)) − λ (χ(t)) α (χ(t))] dt + σ (χ(t)) dWt

+ [η (χ(t)) − 1] dℵt , (1)
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where Wt is a standard Brownian motion under the risk-neutral measure P, χ(t) is a
continuous-time finite-state Markov chain with state space {c1, c2, . . . , cd}. Assume
that at each state χ(t) = ck, k ∈ D ≡ {1, 2, . . . , d}, the interest rates r (ck) = rk ,
dividend yields δ (ck) = δk and volatilities σ (ck) = σk are nonnegative con-
stants. ℵt denotes a Poisson jump process with the intensity λ (ck) = λk ≥ 0,
the amplitude η (ck) − 1 = ηk − 1, and the expectation of the random amplitude
α (ck) = αk = E (ηk − 1), where ηk = eY(ck) = eYk , and the jump sizes Yk for k ∈ D

are independent random variables with density functions

fk(y) = 1

k

√
2π

exp − (y − μk)
2

2 2
k

, (2)

where k > 0 and μk ≥ 0 are the constants depending solely on the regime state
ck for k ∈ D. Let A = (a ) ∈D be the generator matrix of the Markov chain
process whose elements are constants satisfying a ≥ 0 for k = and ∈ D, and

d
=1 a = 0 for k ∈ D. Finally, all sources of randomness in this model, χ(t), Wt

and ℵt are assumed to be conditionally independent.
This paper studies the numerical method for pricing Asian options. For Asian

option pricing using PDE approach, it is studied under the geometric Brownian
motion models (see, e.g., Zvan et al. [20], Večeř [17], Dubois and Lelièvre [4], Ma
and Zhou [11], Roul [2], and the references therein), and under the regime-switching
models (Boyle and Draviam [1], Ma and Zhou [12]). However, such problem under
the regime-switching jump-diffusion models remains to be insufficient in the litera-
ture and the governing equation is a system of two-dimensional PIDEs. Dang et al. [5]
decouple the PIDE system and solve the decoupled PIDEs by the numerical methods
— finite difference methods for time variable and finite element methods for space
variable. However, the convergence rates are not given in their paper. Ma and Wang
[13] transform the two-dimensional PIDEs into a one-dimensional moving bound-
ary problem of the PIDEs, then construct the moving mesh methods for solving the
problem. Denote

Mt =
t

0
Sldl. (3)

Then the value of the continuous arithmetic average Asian options is defined by

V (St , Mt , t; k) = e−rk(T −t)
Et [max (MT /T − K, 0)] , k ∈ D, (4)

where Et represents the conditional expectation at t , K the fixed strike price and T

the maturity date. Then the value function of the Asian option satisfies the following
system of PIDEs

∂V (S, M, t; k)

∂t
+ σ 2

k S2

2

∂2V (S, M, t; k)

∂S2
+ (rk − δk − λkαk) S

∂V (S, M, t; k)

∂S

+S
∂V (S, M, t; k)

∂M
− (rk + λk − akk)V (S, M, t; k) + λk

+∞

−∞
V (eyS, M, t; k)fk(y)dy

+
d

=1 =k

a V (S, M, t; = 0, k ∈ D, (5)
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with terminal condition V (S, M, T ; k) = max (M/T − K, 0) and boundary con-
dition V (S, −∞, t; k) = 0 for k ∈ D, where S and M are dummy variables. As
asserted by [11–13], each equation in (5) is a two-dimensional problem and there
is no diffusion in the M direction. These facts would arise many difficulties in the
numerical solutions and analysis with the standard finite difference methods.

Motivated by the works (see Zvan et al. [20], Večeř [17], Dubois and Lelièvre [4]),
Ma and Wang [13] recast the system of PIDEs (5) into a moving boundary problem of
one-dimensional PIDEs. First, they construct an explicit solution to (5) in the region
M ≥ KT for all t ≤ T as follows

V (S, M, t; k)= M

T
−K e−rk(T −t)+ S

(δk − rk)T
e−rk(T −t)−e−δk(T −t) , k ∈ D.

(6)

Then using transformation of variables, for k ∈ D,

x = T − τ

T
+ K − M/T

S
, G(x, τ ; k) = V (S, M, T − τ ; k)

S
, τ = T − t, (7)

the formula (6) becomes

G(x, τ ; k) = − x − T − τ

T
e−rkτ

+ 1

(δk − rk)T
e−rkτ − e−δkτ , x ∈ −∞,

T − τ

T
, (8)

and the system of PIDEs (5) is rewritten as, for k ∈ D,

∂G(x, τ ; k)

∂τ
− 1

2
σ 2

k x − T − τ

T

2
∂2G(x, τ ; k)

∂x2

+(rk − δk − λkαk) x − T − τ

T

∂G(x, τ ; k)

∂x

+(λk + δk + λkαk − akk)G(x, τ ; k) − λk

+∞

−∞
eyG

x − T −τ
T

ey
+ T − τ

T
, τ ; k fk(y)dy

−
d

=1 =k

a G(x, τ ; = 0, x ∈ T − τ

T
, +∞ , τ ∈ (0, T ], (9)

with initial and boundary conditions

G(x, 0; k) = 0, x ∈ [1, +∞), (10)

G
T − τ

T
, τ ; k = 1

(δk − rk)T
e−rkτ − e−δkτ , τ ∈ (0, T ], (11)

G(+∞, τ ; k) = 0, τ ∈ (0, T ]. (12)

Since the problems (9)–(12) contain a moving boundary, then Ma and Wang [13]
develop the moving mesh methods for solving the problems and the convergence
rates of first-order in time and second-order in space are also proved by them. For
solving PIDEs, the implicit-explicit (IMEX) finite difference schemes are efficient
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tools which discretize the integral term of the PIDEs explicitly, treat other terms
implicitly and therefore can avoid the inversion of the dense matrices in the com-
putation. The IMEX schemes are proposed to solve the PIDEs arising in the pricing
of European and American options under jump-diffusion models (see, e.g., [3, 6–10,
15, 16, 18, 19]). To the best of my knowledge, this paper is the first time in the litera-
ture to study the IMEX scheme for Asian option pricing. Moreover, the convergence
analysis of the studied IMEX scheme is significantly different from the literature and
also different from the moving mesh methods.

The remaining of the paper is organized as follows: In Section 2, we construct
an IMEX scheme for solving the system of PIDEs arising in the regime-switching
jump-diffusion Asian option pricing and prove the convergence rates; In Section 3,
we provide numerical examples to confirm the theoretical results. In the final section,
we conclude the paper.

2 IMEX scheme and convergence rates

For aim of computation, the semi-infinite domain T −τ
T

, +∞ is truncated into a
finite one τ ≡ T −τ

T
, X with an appropriate value of X such that G(X, τ ; k) ≈ 0.

Since x ∈ τ , we normalize the variable x as θ = x− T −τ
T

X− T −τ
T

which implies that

θ ∈ [0, 1] for any τ ∈ (0, T ]. Denote u(θ, τ ; k) ≡ G T −τ
T

+ θ X − T −τ
T

, τ ; k ,
then it is easy to derive that

∂G(x, τ ; k)

∂τ
= ∂u(θ, τ ; k)

∂τ
+ 1 − θ

T

∂G(x, τ ; k)

∂x
, (13)

∂G(x, τ ; k)

∂x
= 1

X − T −τ
T

∂u(θ, τ ; k)

∂θ
, (14)

∂2G(x, τ ; k)

∂x2
= 1

X − T −τ
T

2

∂2u(θ, τ ; k)

∂θ2
. (15)

Plugging the above identities into (9), we obtain that, for k ∈ D,

∂u(θ, τ ; k)

∂τ
= φ(θ, τ ; k)

∂2u(θ, τ ; k)

∂θ2
+ ψ(θ, τ ; k)

∂u(θ, τ ; k)

∂θ
− (λk + δk + λkαk − akk)u(θ, τ ; k)

+λk

+∞

−∞
eyu

θ

ey
, τ ; k fk(y)dy

+
d

=1 =k

a u(θ, τ ; ∈ (0, 1), τ ∈ (0, T ], (16)

1826 Numerical Algorithms (2022) 89:1823–1843



with initial and boundary conditions

u(θ, 0; k) = 0, θ ∈ [0, 1], (17)

u (0, τ ; k) = 1

(δk − rk)T
e−rkτ − e−δkτ , τ ∈ (0, T ], (18)

u(1, τ ; k) = 0, τ ∈ (0, T ]. (19)

where

φ(θ, τ ; k) = 1
2σ 2

k θ2,

ψ(θ, τ ; k) = θ−1
T

1
X− T −τ

T

− (rk − δk − λkαk)θ .

We below study the IMEX scheme to solve the system of PIDEs (16) and define
the uniform spatial and time meshes as follows:

θi = = 0, 1, . . . , I ; (20)

τn = = 0, 1, . . . , N, (21)

where I and N are the number of meshes in the θ and τ directions, and = 1
I

and
= T

N
are the meshsizes.

Denote ξ = θi

ey , then the integral term in (16) can be discretized at mesh point
(θi, τn; k) as follows, for k ∈ D,

+∞

−∞
eyu

θi

ey
, τn; k fk(y)dy

=
+∞

ln θi

eyu
θi

ey
, τn; k fk(y)dy +

ln θi

−∞
eyu

θi

ey
, τn; k fk(y)dy

=
+∞

ln θi

eyu
θi

ey
, τn; k fk(y)dy

=
1

0

θi

ξ2
u(ξ, τn; k)fk ln

θi

ξ
dξ

≈
I

j=1

θj

θj−1

θi

ξ2

ξ − θj

θj−1 − θj

u(θj−1, τn; k)fk ln
θi

ξ

+ θi

ξ2

ξ − θj−1

θj − θj−1
u(θj , τn; k)fk ln

θi

ξ
dξ ≡ Iu(θi, τn; k). (22)

where we have used the piecewise linear interpolation for function u:

u(ξ, τn; k) ≈ ξ − θj

θj−1 − θj

u(θj−1, τn; k) + ξ − θj−1

θj − θj−1
u(θj , τn; k), θj−1 ≤ ξ ≤ θj .

(23)
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It is easy to calculate that, for k ∈ D,

θj

θj−1

θi

ξ2

ξ − θj

θj−1 − θj

fk ln
θi

ξ
dξ

= −
θj

θj−1

θi

ξ

ξ − θj

θj−1 − θj

fk ln
θi

ξ
d ln

θi

ξ

= − exp μk +
2
k

2

θj

θj−1

ξ − θj

θj−1 − θj

dFk ln
θi

ξ

= exp μk +
2
k

2

⎡
⎣Fk ln

θi

θj−1
−

θj

θj−1
Fk ln θi

ξ
dξ

θj − θj−1

⎤
⎦ , (24)

where Fk(·) is the distribution function for a normal random variable with expectation
μk + 2

k and variance 2
k .

Similarly we have, for k ∈ D,

θj

θj−1

θi

ξ2

ξ − θj−1

θj − θj−1
fk ln

θi

ξ
dξ

= − exp μk +
2
k

2
Fk ln

θi

θj

−
θj

θj−1
Fk ln θi

ξ
dξ

θj − θj−1
, (25)

For ease of presentation, we introduce the finite difference operators. Denote by

(ui)θ = ui − ui−1
, (ui)θ = ui+1 − ui

, (26)

the backward difference and the forward difference operators respectively. Then, the
first-order central difference for function u at θ = θi can be expressed as

(ui)θ = (ui+1)θ + (ui)θ

2
= ui+1 − ui−1

2
, (27)

and the second-order central difference for function u at θ = θi as

(ui)θθ = ui+1 − 2ui + ui−1
2

. (28)
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Denote the approximation of u(θi, τn; k) by un
i (k), i.e., un

i (k) ≈ u(θi, τn; k). Then
the system of PIDEs (16) can be discretized as the following IMEX scheme, for
i = 1, 2, . . . , I − 1; n = 1, 2, . . . , N − 1 and k ∈ D,

3un+1
i (k) − 4un

i (k) + un−1
i (k)

2
= φ(θi, τn+1; k) un+1

i (k)
θθ

+ψ(θi, τn+1; k) un+1
i (k)

θ

− (λk + δk + λkαk − akk)u
n+1
i (k)

+λk 2Iun
i (k) − Iun−1

i (k)

+ 2
d

=1 =k

a un
i −

d

=1 =k

a un−1
i

(29)

with

u0
i (k) = 0, i = 0, 1, . . . , I, (30)

un
0(k) = 1

(δk − rk)T
e−rk − e−δk , n = 0, 1, . . . , N, (31)

un
I (k) = 0, n = 0, 1, . . . , N, (32)

where

Iun
i (k) ≡ exp μk +

2
k

2

I

j=1

un
j−1(k)

⎡
⎣Fk ln

θi

θj−1
−

θj

θj−1
Fk ln θi

ξ
dξ

θj − θj−1

⎤
⎦

− exp μk+
2
k

2

I

j=1

un
j (k)

⎡
⎣Fk ln

θi

θj

−
θj

θj−1
Fk ln θi

ξ
dξ

θj − θj−1

⎤
⎦ ,(33)

similarly, we have Iun−1
i (k). After solving (29), we can use the correspondence

u(θ, τ ; k) ≡ G T −τ
T

+ θ X − T −τ
T

, τ ; k and relations (7) to get the final Asian
option prices.

It can be seen from (29) that this numerical scheme involves three time levels
where the integral terms and the regime terms are treated explicitly. To proceed the
computations, we therefore need two initial conditions on the zeroth and first time
levels, the zeroth time level is given by (30) and the first time level can be derived
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as follows. Using the system of PIDEs (16) and the initial condition (17), applying
Taylor expansion, we obtain that, for k ∈ D,

u(θ, τ1; k) = u(θ, τ0; k) + ∂u(θ, τ0; k)

∂τ
+ O 2)

= O 2), (34)

which means that the initial condition for the first time level can be computed
through, for k ∈ D,

u1
i (k) = 0, i = 0, 1, . . . , I, (35)

with the truncation error O 2).
We below provide the convergence analysis for the scheme (29). We shall use the

mesh-dependent norm for spatial direction:

ζ

I−1

i=1

ζ 2
i

1/2

, (36)

where ζ = [ζ1, ζ2, . . . , ζI−1] .
To prove the convergence rates, we need the following Lemma 2.1 which is well

established in the literature.

Lemma 2.1 (Discrete Gronwall inequality). Let 0 and suppose that
w(N ), ρ(N ) are nonnegative sequences while ρ(N ) is non-decreasing. Then, if

w(N ) ≤ ρ(N ) +
N−1

n=1

w(n), ∀N ∈ N, (37)

then

w(N ) ≤ ρ(N )e N , ∀N ∈ N, (38)

where C is a positive constant.

Theorem 2.1 Denote the computational error by, for i = 1, 2, . . . , I − 1; n =
1, 2, . . . , N; k ∈ D,

en
i (k) ≡ u(θi, τn; k) − un

i (k), (39)

1830 Numerical Algorithms (2022) 89:1823–1843



and the error vector by

en(k) ≡ [en
1(k), en

2(k), . . . , en
I−1(k)] . (40)

Then, the convergence rate of the IMEX scheme (29) with initial and boundary
conditions (30)–(32) and (35) is estimated by, for N = 1, 2, . . . , N ,

d

k=1

eN (k) 2 ≤ O 2 + 2
2

. (41)

Proof Define the local truncation error ηn+1
i (k), for i = 1, 2, . . . , I − 1; n =

1, 2, . . . , N − 1 and k ∈ D,

3u(θi, τn+1; k) − 4u(θi, τn; k) + u(θi, τn−1; k)

2
= φ(θi, τn+1; k) (u(θi, τn+1; k))θθ + ψ(θi, τn+1; k) (u(θi, τn+1; k))θ

− (λk + δk + λkαk − akk)u(θi, τn+1; k) + λk (2Iu(θi, τn; k) − Iu(θi, τn−1; k))

+ 2
d

=1 =k

a u(θi, τn; −
d

=1 =k

a u(θi, τn−1; + ηn+1
i (k). (42)

Performing Taylor expansion at mesh point (θi, τn+1; k), since all terms in
(42) are the second-order approximations of the corresponding terms in (16)
around (θi, τn+1; k), then using the system of PIDEs (16), it is trivial to obtain
that

ηn+1
i (k) = O 2 + 2). (43)

Then subtracting (29) from (42) yields, for i = 1, 2, . . . , I − 1; n = 1, 2, . . . , N − 1;
k ∈ D,

3en+1
i (k) − 4en

i (k) + en−1
i (k)

2
= φ(θi , τn+1; k) en+1

i (k)
θθ

+ ψ(θi, τn+1; k) en+1
i (k)

θ

− (λk + δk+λkαk−akk)e
n+1
i (k)+λk 2Ien

i (k)−Ien−1
i (k)

+ 2
d

=1 =k

a en
i −

d

=1 =k

a en−1
i + ηn+1

i (k), (44)

Moreover we know that

e0
i (k) = 0, en

0(k) = 0, en
I (k) = 0, e1

i (k) = O 2). (45)
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Multiplying (44) by n+1
i (k) and summing up for i = 1, 2 . . . , I − 1 give that, for

n = 1, 2, . . . , N − 1 and k ∈ D,

3en+1(k) − 4en(k) + en−1 n+1(k)

2

=
I−1

i=1

φ(θi, τn+1; k) en+1
i (k)

θθ
en+1
i (k) +

I−1

i=1

ψ(θi, τn+1; k) en+1
i (k)

θ
en+1
i (k)

− (λk + δk + λkαk − akk

I−1

i=1

en+1
i (k)

2

+ λk 2
I−1

i=1

en+1
i (k)Ien

i (k) −
I−1

i=1

en+1
i (k)Ien−1

i (k)

+ 2
d

=1 =k

a

I−1

i=1

en+1
i (k)en

i −
d

=1 =k

a

I−1

i=1

en+1
i (k)en−1

i

+
I−1

i=1

en+1
i (k)ηn+1

i (k), (46)

where < ·, · > denotes inner product.
Using the relation 2 < 3a − 4b + c, a > a 2 b 2 2a − b 2 2b −

c 2 a − 2b + c 2, the term on the left-hand side of (46) can be estimated as

3en+1(k) − 4en(k) + en−1 n+1(k)

2

= 1

4
en+1(k) 2 en(k) 2 2en+1(k) − en(k) 2 2en(k) − en−1(k) 2

en+1(k) − 2en(k) + en−1(k) 2

≥ 1

4
en+1(k) 2 en(k) 2 2en+1(k) − en(k) 2 2en(k) − en−1(k) 2 ,

(47)

We now estimate the right-hand side of (46) term by term. Using the discrete Green
formula (see, e.g., [14]) and identities (45), the first term can be estimated as

I−1

i=1

φ(θi, τn+1; k) en+1
i (k)

θθ
en+1
i (k)

= −
I

i=1

φ(θi, τn+1; k)en+1
i (k)

θ
en+1
i (k)

θ
− φ(θi, τn+1; k)en+1

i (k) en+1
i (k)

θ
|i=0

+ φ(θi, τn+1; k)en+1
i (k) en+1

i (k)
θ
|i=I
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= −
I

i=1

φ(θi, τn+1; k)en+1
i (k)

θ
en+1
i (k)

θ

= −
I

i=1

en+1
i (k)

θ
en+1
i (k)

θ
φ(θi , τn+1; k) + en+1

i−1 (k) (φ(θi , τn+1; k))θ

≤ −
I

i=1

en+1
i (k)

θ
en+1
i−1 (k) (φ(θi , τn+1; k))θ . (48)

Also we obtain that

I−1

i=1

φ(θi, τn+1; k) en+1
i (k)

θθ
en+1
i (k)

= −
I

i=1

φ(θi, τn+1; k)en+1
i (k)

θ
en+1
i (k)

θ

= −
I

i=1

en+1
i (k)

θ
en+1
i (k)

θ
φ(θi−1, τn+1; k) + en+1

i (k) (φ(θi , τn+1; k))θ

≤ −
I

i=1

en+1
i (k)

θ
en+1
i (k) (φ(θi , τn+1; k))θ . (49)

Adding (48) and (49) together gives

I−1

i=1

φ(θi, τn+1; k) en+1
i (k)

θθ
en+1
i (k)

≤ −1

2

I

i=1

(φ(θi, τn+1; k))θ en+1
i−1 (k) + en+1

i (k) en+1
i (k)

θ

= −1

2

I

i=1

(φ(θi, τn+1; k))θ en+1
i (k)

2 − en+1
i−1 (k)

2

= −1

2

I

i=1

(φ(θi, τn+1; k))θ en+1
i (k)

2 + 1

2

I

i=1

(φ(θi, τn+1; k))θ en+1
i−1 (k)

2

= −1

2

I−1

i=1

(φ(θi, τn+1; k))θ en+1
i (k)

2 + 1

2

I−1

i=0

(φ(θi+1, τn+1; k))θ en+1
i (k)

2
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= −1

2

I−1

i=1

(φ(θi, τn+1; k))θ en+1
i (k)

2 + 1

2

I−1

i=1

(φ(θi+1, τn+1; k))θ en+1
i (k)

2

= 1

2

I−1

i=1

(φ(θi+1, τn+1; k))θ − (φ(θi, τn+1; k))θ en+1
i (k)

2

= σ 2
k

2

I−1

i=1

en+1
i (k)

2 ≤ C1 en+1(k) 2. (50)

where C1 ≡ 1
2 maxk∈D σ 2

k .
Shifting the index, using Cauchy-Schwartz inequality and identities (45), the

second term can be estimated as

I−1

i=1

ψ(θi, τn+1; k) en+1
i (k)

θ
en+1
i (k)

= 1

2

I−1

i=1

ψ(θi, τn+1; k) en+1
i+1 (k) − en+1

i−1 (k) en+1
i (k)

= 1

2

I−1

i=1

ψ(θi, τn+1; k)en+1
i+1 (k)en+1

i (k) − 1

2

I−1

i=1

ψ(θi+1, τn+1; k)en+1
i (k)en+1

i+1 (k)

= 1

2

I−1

i=1

(ψ(θi, τn+1; k) − ψ(θi+1, τn+1; k)) en+1
i (k)en+1

i+1 (k)

≤
2

I−1

i=1

rk − δk − λkαk − 1

XT − T + τn+1

en+1
i (k)

2 + en+1
i+1 (k)

2

2

≤ C2

I−1

i=1

en+1
i (k)

2+ en+1
i+1 (k)

2

2
≤C2

I−1

i=1

en+1
i (k)

2 =C2 en+1(k)
2
,

(51)

where C2 ≡ 1
2 maxτ∈[0,T ],k∈D rk − δk − λkαk − 1

XT −T +τ
.

The third term can be estimated as

− (λk + δk + λkαk − akk

I−1

i=1

en+1
i (k)

2 ≤ 0. (52)
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Using the triangle and Cauchy-Schwartz inequalities, we obtain that

I−1

i=1

en+1
i (k)Ien

i (k)

≤
I−1

i=1

en+1
i (k)Ien

i (k)

≤ exp μk +
2
k

2

⎡
⎣ I−1

i=1

|en+1
i (k)|

⎛
⎝ I

j=1

|en
j−1(k)| ·

θj

θj−1

ξ − θj

θj−1 − θj

dFk ln
θi

ξ

⎞
⎠

+
I−1

i=1

|en+1
i (k)|

⎛
⎝ I

j=1

|en
j (k)| ·

θj

θj−1

ξ − θj−1

θj − θj−1
dFk ln

θi

ξ

⎞
⎠
⎤
⎦

≤ exp μk +
2
k

2
en+1(k)

⎧⎪⎨
⎪⎩
⎡
⎢⎣ I−1

i=1

⎛
⎝ I

j=1

|en
j−1(k)| ·

θj

θj−1

ξ − θj

θj−1 − θj

dFk ln
θi

ξ

⎞
⎠

2
⎤
⎥⎦

1/2

+
⎡
⎢⎣ I−1

i=1

⎛
⎝ I

j=1

|en
j (k)| ·

θj

θj−1

ξ − θj−1

θj − θj−1
dFk ln

θi

ξ

⎞
⎠

2
⎤
⎥⎦

1/2⎫⎪⎬
⎪⎭

= exp μk +
2
k

2
en+1(k) (I1 + I2), (53)

where the meanings of I1 and I2 are obvious.

Applying Lipschitz continuity and inequality I
i=1 ai

2 ≤ I
I
i=1 a2

i , we derive

that

I1 ≤
⎡
⎢⎣ I−1

i=1

⎛
⎝ I

j=1

|en
j−1(k)| ·

θj

θj−1

dFk ln
θi

ξ

⎞
⎠

2
⎤
⎥⎦

1/2

=
⎡
⎢⎣ I−1

i=1

⎛
⎝ I

j=1

|en
j−1(k)| · Fk ln

θi

θj

− Fk ln
θi

θj−1

⎞
⎠

2
⎤
⎥⎦

1/2

≤
⎡
⎢⎣ I−1

i=1

⎛
⎝ I

j=1

|en
j−1(k)| · Lk(θj |θi) · θj − θj−1

⎞
⎠

2
⎤
⎥⎦

1/2

≤
⎡
⎢⎣ I−1

i=1

L2
k(θi

2

⎛
⎝ I

j=1

|en
j−1(k)|

⎞
⎠

2
⎤
⎥⎦

1/2

≤
⎡
⎣ I−1

i=1

L2
k(θi

2I

I

j=1

en
j−1(k)

2

⎤
⎦

1/2

, (54)
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where Lk(θi) = max1≤j≤I Lk(θj |θi) and Lk(θj |θi) is Lipschitz constant in the range
[θj−1, θj ] by fixing θi , for k ∈ D.

Define C2
3 ≡ max1≤i≤I−1,k∈D L2

k(θi) and noting that = 1 and − 1) <

1, it therefore follows from (54) that

I1 ≤ C3

⎡
⎣ I−1

i=1

1 ·
I

j=1

en
j−1(k)

2

⎤
⎦

1/2

≤ C3 en(k) . (55)

Similarly we have

I2 ≤ C4 en(k) . (56)

where C4 is a positive constant.
Combining (55) and (56) into (53), we have

I−1

i=1

en+1
i (k)Ien

i (k) ≤ C5 en+1(k) en(k) , (57)

where C5 ≡ (C3 + C4) maxk∈D exp μk + 2
k

2 .

Similarly we derive that

−
I−1

i=1

en+1
i (k)Ien−1

i (k) ≤
I−1

i=1

en+1
i (k)Ien−1

i (k)

≤ C6 en+1(k) en−1(k) , (58)

where C6 is a positive constant.
Using Cauchy-Schwartz inequality, the fifth term can be estimated as

d

=1 =k

a

I−1

i=1

en+1
i (k)en

i en+1(k)

d

=1 =k

a en . (59)

Similarly we have

−
d

=1 =k

a

I−1

i=1

en+1
i (k)en−1

i en+1(k)

d

=1 =k

a en−1 . (60)

Using Cauchy-Schwartz inequality, the last term can be estimated as

I−1

i=1

en+1
i (k)ηn+1

i (k) en+1(k) ηn+1(k) . (61)
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Combining (47), (50), (51), (52), (57), (58), (59), (60) and (61) with (46), we
obtain that

1

4
en+1(k) 2 en(k) 2 2en+1(k) − en(k) 2 2en(k) − en−1(k) 2

≤ C1 en+1(k) 2 + C2 en+1(k)
2 + 2C5λk en+1(k) en(k) C6λk en+1(k) en−1(k)

en+1(k)

d

=1 =k

a 2 en en−1 en+1(k) ηn+1(k)

≤ C1 + C2 + C5λk + C6λk

2
+ 1 en+1(k) 2 + C5λk en(k) 2 + C6λk

2
en−1(k) 2

+
d
=1 =k a 2 en en−1

2

2
+ 1

2
ηn+1(k) 2

≤ C1 + C2 + C5λk + C6λk

2
+ 1 en+1(k) 2 + C5λk en(k) 2 + C6λk

2
en−1(k) 2

+ (d − 1)
d
=1 =k a2 2 en en−1 2

2
+ 1

2
ηn+1(k) 2

≤ C8 en+1(k) 2 + C5C7 en(k) 2 + C6C7

2
en−1(k) 2

+ (d − 1)

d

=1 =k

a2 4 en 2 en−1 2 + 1

2
ηn+1(k) 2, (62)

where C7 ≡ maxk∈D λk and C8 ≡ C1 + C2 + C5C7 + C6C7
2 + 1.

Define C9 ≡ max =k a2 , we derive that

d

k=1

d

=1 =k

a2 4 en 2 en−1 2

≤ 4C9

d

k=1

d

=1 =k

en 2 + C9

d

k=1

d

=1 =k

en−1 2

= 4C9

d

k=1

d

=1

en 2 en(k) 2 + C9

d

k=1

d

=1

en−1 2 en−1(k) 2

= 4C9(d − 1)

d

k=1

en(k) 2 + C9(d − 1)

d

k=1

en−1(k) 2. (63)
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Using (63) and summing up (62) for index k ∈ D, we obtain that

1

4

d

k=1

en+1(k) 2 en(k) 2 2en+1(k) − en(k) 2 2en(k) − en−1(k) 2

≤ C8

d

k=1

en+1(k) 2 + C5C7

d

k=1

en(k) 2 + C6C7

2

d

k=1

en−1(k) 2

+ (d − 1)

d

k=1

d

=1 =k

a2 4 en 2 en−1 2 + 1

2

d

k=1

ηn+1(k) 2

≤ C8

d

k=1

en+1(k) 2 + C10

d

k=1

en(k) 2 + C11

d

k=1

en−1(k) 2 + 1

2

d

k=1

ηn+1(k) 2,

(64)

where C10 ≡ 4C9(d − 1)2 + C5C7 and C11 ≡ C9(d − 1)2 + C6C7
2 .

Summing up (64) for n from 1 to N − 1, for 1 ≤ N ≤ N , we have

1

4

d

k=1

eN (k) 2 e1(k) 2 2eN (k) − eN−1(k) 2 2e1(k) − e0(k) 2

≤ C8

N−1

n=1

d

k=1

en+1(k) 2 + C10

N−1

n=1

d

k=1

en(k) 2

+ C11

N−1

n=1

d

k=1

en−1(k) 2 + 1

2

N−1

n=1

d

k=1

ηn+1(k) 2

≤ C8

d

k=1

eN (k) 2 + C8

N−1

n=2

d

k=1

en(k) 2 + C10

N−1

n=1

d

k=1

en(k) 2

+ C11

N−2

n=0

d

k=1

en(k) 2 + 1

2

N−1

n=1

d

k=1

ηn+1(k) 2, (65)

which implies that

1

4

d

k=1

eN (k) 2 e1(k) 2 2e1(k) − e0(k) 2

≤ C8

d

k=1

eN (k) 2 + C12

N−1

n=1

d

k=1

en(k) 2 + 1

2

N−1

n=1

d

k=1

ηn+1(k) 2, (66)

where C12 ≡ C8 + C10 + C11.
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For small time meshsize such that 1
4C8

, it follows from (66) that

d

k=1

eN (k) 2 ≤ 1

1 − 4C8

d

k=1

e1(k) 2 +
d

k=1

2e1(k) − e0(k) 2

+ 4

1−4C8

⎛
⎝C12

N−1

n=1

d

k=1

en(k) 2+ 1

2

N−1

n=1

d

k=1

ηn+1(k) 2

⎞
⎠ .

(67)

Recall that 1
1−4C8

= 1 + 4C8 + (4C8
2 + · · · , and incorporating higher-

order term into the truncation error term, we derive that

d

k=1

eN (k) 2 ≤ C

d

k=1

e1(k) 2 +
d

k=1

2e1(k) − e0(k) 2

+
N−1

n=1

d

k=1

en(k) 2 +
N−1

n=1

d

k=1

ηn+1(k) 2

⎤
⎦ , (68)

where C is a positive constant.
From (45), we know that d

k=1 e1(k) 2 = O 2)2 and d
k=1 e0(k) 2 = 0,

noting that N ≤ T , applying the discrete Gronwall inequality to (68), and using
the estimation of the truncation error (43), we prove that, for 1 ≤ N ≤ N ,

d

k=1

eN (k) 2 ≤ O 2 + 2)2. (69)

where we complete the proof.

3 Numerical examples

In this section, we conduct several numerical examples to verify the theoretical results
studied in this paper. The model parameters used in the computation are given in the
corresponding examples. The codes are run in MATLAB R2014a on a PC with the
configuration: AMD, CPU A10-9600P@2.40GHz and 24.0GB RAM.

Since the exact solution of the problem is unknown, we shall use the following
formulas given by Ma and Zhou [11] to calculate the convergence rates for time
and space. To this end, let uI,N (k) for k ∈ D, be the computational solutions at
τ = T of the studied numerical scheme with respect to the number of θ -direction
meshes I and time meshes N , then the continuous form of the computational solu-
tions uI,N (θ, T ; k) can be obtained by applying the cubic spline interpolation to
uI,N (k). When we test the convergence rates for θ -direction, we may fix the number
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N and vary I , and use the following log-formula with respect to three consecutive
levels I = I1, I2, I3 (see Ma and Zhou [11]),

Convergence rate for space θ =
log I1 uI1,N (k)−uI2,N (k)

I2 uI2,N (k)−uI3,N (k)

log I3
I2

, (70)

where the norm is defined by (36), and uI,N (k) can be obtained by calculating
the values of uI,N (θ, T ; k) on spatial mesh of the previous adjacent level. Similarly,
we can define the convergence rate for time direction (see Ma and Zhou [11]),

Convergence rate for time τ =
log N1 uI,N1 (k)−uI,N2 (k)

N2 uI,N2 (k)−uI,N3 (k)

log N3
N2

. (71)

Example 3.1 We use this example to test the convergence rates of the studied IMEX
scheme (29) with initial conditions (30), (35) and boundary conditions (31), (32).
Functions fk (k = 1, 2) are given by (2) and other model parameters are given by
X = 1.5, r1 = r2 = 0.05, σ1 = 0.15, σ2 = 0.25, δ1 = δ2 = 0, T = 1, λ1 = 1,
λ2 = 2, μ1 = μ2 = −0.1, 1 = 2 = 0.3, −a11 = a12 = a21 = −a22 = 1.

From Tables 1 and 2, we observe that the second-order convergence rates in both
time and space are consistent with theoretical findings in Theorem 2.1.

Example 3.2 We use this example to test the convergence rates of the studied IMEX
scheme (29) with initial conditions (30), (35) and boundary conditions (31), (32).
Functions fk (k = 1, 2, 3) are given by (2) and other model parameters are given by
X = 1.5, r1 = r2 = r3 = 0.05, σ1 = 0.2, σ2 = 0.15, σ3 = 0.25, δ1 = δ2 = δ3 = 0,
T = 1, λ1 = 1, λ2 = 5, λ3 = 2, μ1 = −0.1, μ2 = −0.15, μ3 = −0.05, 1 = 0.3,

2 = 0.25, 3 = 0.35, a12 = a13 = a21 = a23 = a31 = a32 = 1/3, a11 = a22 =
a33 = −2/3.

From Tables 3 and 4, we observe that the second-order convergence rates are still
consistent with theoretical findings in Theorem 2.1.

Table 1 Convergence rates for time for Example 3.1

I = 400 Regime 1 Regime 2

N Error Rate Error Rate

400 3.1249e-06 2.06 2.7344e-06 2.06

450 2.2338e-06 2.06 1.9546e-06 2.06

500 1.6519e-06 2.05 1.4455e-06 2.05

550 1.2559e-06 2.05 1.0989e-06 2.05

600 9.7707e-07 2.05 8.5494e-07 2.05

650 7.7505e-07 2.04 6.7817e-07 2.04

700 6.2512e-07 2.04 5.4697e-07 2.04

750 5.1151e-07 – 4.4756e-07 –

1840 Numerical Algorithms (2022) 89:1823–1843



Table 2 Convergence rates for space for Example 3.1

N = 400 Regime 1 Regime 2

I Error Rate Error Rate

200 4.6325e-06 2.12 2.6487e-06 2.12

250 2.5157e-06 2.10 1.4390e-06 2.10

300 1.5167e-06 2.08 8.6779e-07 2.08

350 9.8440e-07 2.07 5.6329e-07 2.07

400 6.7490e-07 2.06 3.8623e-07 2.06

450 4.8276e-07 2.06 2.7629e-07 2.05

500 3.5719e-07 2.05 2.0444e-07 2.05

550 2.7168e-07 – 1.5550e-07 –

Table 3 Convergence rates for time for Example 3.2

I = 400 Regime 1 Regime 2 Regime 3

N Error Rate Error Rate Error Rate

400 2.9169e-06 2.07 2.9869e-06 2.07 2.5191e-06 2.07

450 2.0853e-06 2.06 2.1343e-06 2.06 1.8006e-06 2.06

500 1.5422e-06 2.05 1.5779e-06 2.06 1.3315e-06 2.06

550 1.1725e-06 2.05 1.1993e-06 2.05 1.0122e-06 2.05

600 9.1221e-07 2.05 9.3287e-07 2.05 7.8743e-07 2.05

650 7.2362e-07 2.04 7.3986e-07 2.04 6.2458e-07 2.04

700 5.8365e-07 2.04 5.9664e-07 2.04 5.0373e-07 2.04

750 4.7758e-07 – 4.8814e-07 – 4.1216e-07 –

Table 4 Convergence rates for space for Example 3.2

N = 400 Regime 1 Regime 2 Regime 3

I Error Rate Error Rate Error Rate

200 3.5917e-06 2.12 3.3667e-06 2.13 1.9225e-06 2.12

250 1.9511e-06 2.10 1.8266e-06 2.10 1.0445e-06 2.10

300 1.1766e-06 2.08 1.1006e-06 2.09 6.2995e-07 2.08

350 7.6371e-07 2.07 7.1409e-07 2.07 4.0892e-07 2.07

400 5.2364e-07 2.06 4.8946e-07 2.06 2.8039e-07 2.06

450 3.7458e-07 2.05 3.5006e-07 2.06 2.0058e-07 2.05

500 2.7716e-07 2.05 2.5898e-07 2.05 1.4842e-07 2.05

550 2.1082e-07 – 1.9697e-07 – 1.1289e-07 –
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Table 5 Prices for Asian options at t = 0 for Example 3.3

Moving mesh method [13] IMEX method

S0 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3

90 4.5747 8.4427 7.5254 4.5646 8.4334 7.5162

100 9.3929 13.9724 12.4362 9.3819 13.9623 12.4259

110 16.2474 20.6496 18.8443 16.2368 20.6390 18.8335

CPU time (s) 4076 – – 2252 – –

Example 3.3 In this example, we compare the IMEX scheme studied in this paper
with the moving mesh method in Ma and Wang [13] for the 3-state regime-switching
jump-diffusion model, the model parameters are given by Example 3.2. Therefore,
we transform the computational solution u(θ, τ ; k) from (16) into V (S, M, t; k) via
the following variable transformations

V (S, M, t; k) = Su(θ, T − t; k), θ = K − M/T

S(X − t/T )
. (72)

We calculate the value V (S0, M0, 0; k) with K = 100 and M0 = 0. Moreover, the
IMEX method of this paper uses time meshes 400 and spatial meshes 400, and the
moving mesh method [13] uses time meshes 800 and spatial meshes 400 to obtain
the results that have two digit accuracy after decimal point.

From Table 5, we observe that the IMEX method of this paper uses less mesh
nodes while achieving almost the same accuracy as the moving mesh method in [13].
The reasons for these facts are just that the convergence rate of the moving mesh
method is first-order in time direction and our IMEX method is second-order.

4 Conclusions

This paper studies an IMEX scheme for solving moving boundary problem of
the PIDEs which arises in Asian option pricing under the regime-switching jump-
diffusion models. The moving boundary problem of the PIDEs is recast into the
fixed boundary problem and the IMEX scheme is constructed to solve the problem.
Compared to the moving mesh method (for Asian option pricing under the regime-
switching jump-diffusion models, it is the first time in the literature to study the
convergence rates of the numerical methods), the IMEX method studied in this paper
achieves the second-order convergence rates in both time and space.
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