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Abstract
It is well known that the monotonicity of the underlying mapping of variational
inequalities plays a central role in the convergence analysis. In this paper, we pro-
pose an infeasible projection algorithm (IPA for short) for nonmonotone variational
inequalities. The next iteration point of IPA is generated by projecting a vector
onto a half-space. Hence, the computational cost of computing the next iteration
point of IPA is much less than the algorithm of Ye and He (Comput. Optim. Appl.
60, 141–150, 2015) (YH for short). Moreover, if the underlying mapping is Lip-
schitz continuous with its modulus is known, by taking suitable parameters, IPA
requires only one projection onto the feasible set per iteration. The global conver-
gence of IPA is obtained when the solution set of its dual variational inequalities
is nonempty. Moreover, if in addition error bound holds, the convergence rate of
IPA is Q-linear. IPA can be used for a class of quasimonotone variational inequal-
ity problems and a class of quasiconvex minimization problems. Comparing with
YH and Algorithm 2 in Deng, Hu and Fang (Numer. Algor. 86, 191–221, 2021)
(DHF for short) by solving high-dimensional nonmonotone variational inequalities,
numerical experiments show that IPA is much more efficient than YH and DHF from
CPU time point of view. Moreover, IPA is less dependent on the initial value than
YH and DHF.
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1 Introduction

Let Rn be n dimension Euclidean space, C ⊂ R
n be a nonempty closed and convex

set and F : Rn → R
n be a continuous mapping. We consider the classical variational

inequality problem of finding a vector x ∈ C such that

〈F(x), u − x〉 ≥ 0, ∀u ∈ C, (1)

where 〈·, ·〉 denotes the inner product of Rn. We let

S := {x ∈ C : 〈F(x), u − x〉 ≥ 0, ∀u ∈ C}
denote the solution set of variational inequalities and let

SD := {x ∈ C : 〈F(u), u − x〉 ≥ 0, ∀u ∈ C}
denote the solution set of the dual variational inequalities of Problem (1).

If C is nonempty closed and convex and F is continuous or hemicontinuous on
C, the relationship SD ⊂ S is known as Minty lemma. The relationship S ⊂ SD

holds when F is pseudomonotone on C in the sense of Karamardian [1]; i.e., for all
x, y ∈ C,

〈F(x), y − x〉 ≥ 0 =⇒ 〈F(y), y − x〉 ≥ 0.

Hence, we obtain that

S = SD, (2)

whenever C is nonempty closed and convex, F is continuous and pseudomonotone
on C.

From [2, Example 4.2], we see that S = SD may not satisfied when F is
quasimonotone in the sense of Karamardian [1] on C, i.e., for all x, y ∈ C,

〈F(x), y − x〉 > 0 =⇒ 〈F(y), y − x〉 ≥ 0.

Recently, an interesting work in [3] show that if C ⊂ R is closed and bounded,
then SD 
= ∅ if and only if F is quasimonotone, see Lemma 3.1 and Proposi-
tion 3.1 therein. Moreover, from Theorem 3.1 and Example 3.1 in [3], we construct
high-dimensional variational inequalities, which is not quasimonotone with SD 
= ∅
whenever the number of dimensional n ≥ 2, see Example 6.1.

The global convergence of many well-known algorithms are based on the condi-
tion that S = SD; see, for example, Goldstein-Levitin-Polyak Projection algorithms
[4, 5], proximal point algorithm [6], extragradient projection algorithms [7, 8]
and its variant algorithms [9, 10], infeasible projection-based algorithm [11–13],
self-adaptive projection-based algorithm [14] and projected reflected gradient algo-
rithm [15] (because these algorithms need F is at least pseudomonotone on C). The
condition S = SD is also used for generalized monotone or nonmonotone vari-
ational inequalities or nonmonotone equilibrium problems to establish the global
convergence, see, for example, [16–18] and [19]. Moreover, the assumption about
monotonicity or pseudomonotonicity of the underlying mapping is used in varia-
tional inequality and fixed point problems, see, for example, [20–24]. However, if
we generalize the pseudomonotone of F to qusimonotone, there exists the case that
SD � S; see, for example, [2, Example 4.2]. So, assumption S = SD may not suit
for quasimonotone or nonmonotone variational inequalities.
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There still exist some algorithms for quasimonotone variational inequality prob-
lems; see, for example, [25] and [26]. However, the global convergence of these
algorithms need extra assumptions than SD 
= ∅. Recently, [27] presented an itera-
tive algorithm for quasimonotone variational inequalities, the global convergence is
established under the assumptions SD 
= ∅ and

{z ∈ C : F(z) = 0}\SD is a finite set. (3)

However, from Example 4.4 below, we see that assumption (3) may not suit for
quasimonotone variational inequalities.

In [2], we proposed a double projection algorithm for nonmonotone variational
inequalities. The global convergence is obtained under assumptions that SD 
= ∅1,
C is closed and convex and F is continuous on C (without needing any monotonic-
ity of F ). This algorithm is generalized to solve nonmonotone set-valued variational
inequalities and nonmonotone equilibrium problems; see, for example, [28–30] and
[31]. However, the next iteration point xk+1 in [2] is generated by projecting a vector
onto the intersection of the feasible set C and k + 1 half-spaces. Hence, the com-
putational cost of computing xk+1 will increase as k increase. Moreover, the next
iterate point of algorithms in [28–30] and [31] are all similarly generated in [2]. Very
recently, [32] proposed an extragradient method for solving variational inequalities
without monotonicity.

Inspired by [11–13, 33, 34], we present an infeasible projection algorithm (IPA)
for Problem (1) with SD 
= ∅. In IPA, xk+1 is generated by projecting xk onto
only one half-space, which is selected from former k + 1 half-spaces and has the
largest distance from xk . Moreover, the computational cost of computing xk+1 can be
ignored, see Remark 3.1 below. If F is in addition L-Lipschitz continuous, by taking
suitable parameters, IPA requires only one projection onto the feasible set per itera-
tion (see Proposition 4.1 and Remark 4.3 below). Comparing with the algorithm in
[27], the global convergence of IPA without needing extra assumption in (3). More-
over, if in addition the error bound condition holds and F is Lipschitz continuity,
the convergence rate of IPA is Q-linear (see Theorem 5.1 below). To compare with
YH and DHF, we construct high-dimensional variational inequalities with SD 
= ∅
and perform these algorithms in Matlab. Numerical experiments show that IPA is
much more efficient than YH and DHF in terms of CPU time. Moreover, IPA is less
dependent on the initial value than YH and DHF.

The rest of this paper is organized as follows. Some notations and preliminary
materials are introduced in Section 2. IPA and its convergence analysis is introduced
in Section 3. The simplified IPA is introduced in Section 4 when F is in addition
Lipschitz continuous on R

n. The convergence rate of IPA is introduced in Section 5
under additional error bound assumption. Finally, numerical experiments are reported
in Section 6.

1From Lemma 2.8 (b) below or [35, Theorem 3.5.4] , we see that the global minimizer on C of a smooth
quasiconvex function f belongs to SD with F = ∇f . Hence, our algorithm can be applied in a class of
quasiconvex optimization problem.

1725Numerical Algorithms (2022) 89:1723–1742



2 Preliminaries

In this section, we introduce some properties about the projection mapping and some
materials which will be used in future convergence analysis.

Let ‖ · ‖ denote Euclidean norm in R
n and let dist(x, C) denote the Euclidean

distance from a vector x to C; i.e.,

dist(x, C) := inf{‖x − y‖ : y ∈ C}.
Let PC(x) denote the orthogonal projection of the vector x onto C; i.e.,

PC(x) := argmin{‖y − x‖ : y ∈ C}.
From the fact that C is closed and convex, we have dist(x, PC(x)) = inf{‖x − y‖ :
y ∈ C}. For a fixed x ∈ R

n and a positive number μ, we let r(x, μ) denote the
natural residual mapping of problem (1); i.e.,

r(x, μ) := x − PC(x − μF(x)). (4)

In the following, we recall some well-known properties about the projection
mapping and the natural residual mapping.

Lemma 2.1 [36] Let C ⊂ R
n be a nonempty closed convex set. Then, the following

statements hold.

(a) for any fixed x ∈ R
n, we have

z = PC(x) ⇐⇒ z ∈ C and 〈z − x, y − z〉 ≥ 0 for all y ∈ C. (5)

(b) PC(·) is nonexpansive; i.e.,
‖PC(x) − PC(z)‖ ≤ ‖x − z‖ for all x, z ∈ R

n.

Lemma 2.2 [10] Let C ⊂ R
n be a nonempty closed convex set and x be any fixed

point in Rn. If y = PC(x), then we have

‖y − z‖2 ≤ ‖x − z‖2 − ‖y − x‖2 for all z ∈ C.

Lemma 2.3 [37] Let v be a fixed vector and H := {x ∈ R
n : 〈u, x〉 ≤ a} be a

half-space. Then

PH (v) = v − max

{ 〈u, v〉 − a

‖u‖2 , 0

}
u.

Moreover, if in addition v /∈ H , it follows that

PH (v) = v − 〈u, v〉 − a

‖u‖2 u.

Lemma 2.4 [34, 38] Let C be a nonempty closed and convex set of Rn and r(x, μ)

be defined in (4). Then the following statements hold.

(a) x is a solution of problems (1) if and only if ‖r(x, μ)‖ = 0 for each fixedμ > 0.
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(b) If there exists a positive number μ > 0 such that ‖r(x, μ)‖ = 0, then x is a
solution of problems (1).

Lemma 2.5 [39] Let r(x, μ) be defined in (4). Then, for any fixed point x ∈ R
n, the

following properties hold.

(a) function μ �→ ‖r(x, μ)‖ is nondecreasing whenever μ > 0.
(b) function μ �→ ‖r(x,μ)‖

μ
is nonincreasing whenever μ > 0.

The following inequality is a direct conclusion from Lemma 2.5. For simplicity,
we omit its proof.

min (1, μ)‖r(x, 1)‖ ≤ ‖r(x, μ)‖ ≤ max (1, μ)‖r(x, 1)‖ for any fixed μ > 0. (6)

Lemma 2.6 [10] Let � ⊂ R
n be a closed convex set and h be a real-valued function

with domh = R
n. Denote �̃ := {x ∈ � : h(x) ≤ 0}. If �̃ is nonempty and h is

Lipschitz continuous on � with modulus θ > 0, then

dist(x, �̃) ≥ θ−1 max{h(x), 0} for all x ∈ �.

Lemma 2.7 [40, 41] Let {γk} and {βk} be the nonnegative real number sequences
satisfying

∑∞
k=0 βk < ∞ and γk+1 ≤ γk + βk for all k. Then, the sequence {γk} is

convergent.

Before ending this section, we use the following lemma to show some sufficient
condition about SD 
= ∅, see, for example, [2, Proposition 2.1] and [42, Proposition 1].

Lemma 2.8 If one of the following statements hold

(a) F is pseudomonotone on C and S 
= ∅;
(b) F is the gradient of f , where f is a differentiable quasiconvex function on an

open set K ⊃ C and can attains its global minimum on C;
(c) F is quasimonotone on C, F 
= 0 and C is bounded;
(d) F is quasimonotone on C, F 
= 0 on C and there exists a positive number r

such that, for every x ∈ C with ‖x‖ ≥ r , there exists y ∈ C such that ‖y‖ ≤ r

and 〈F(x), y − x〉 ≤ 0;
(e) F is quasimonotone on C and S \ ST 
= ∅ with ST := {x ∈ C|〈F(x), y − x〉 =

0, for all y ∈ C};
(f) F is quasimonotone on C, intC is nonempty and there exists x∗ ∈ S such that

F(x∗) 
= 0,

then SD is nonempty.

3 IPA and its convergence analysis

To solve nonmonotone Problem (1) with SD 
= ∅, we see that the next iterate point
in [2] is generated by projecting a vector onto the intersection of the feasible set C
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and k + 1 half-spaces. In this section, we present a new infeasible projection-based
algorithm (IPA) for Problem (1) without monotonicity. The next iteration point of
IPA is generated by projecting the current iteration point onto only one half-space,
which is selected from the former k + 1 half-spaces and has the largest distance from
the current iteration point. In this section, we first present our IPA as Algorithm 1
below. Then, we will show the well-definedness and the global convergence of IPA.

Remark 3.1 The line search procedure in (7) is inspired by [11]. The initial step-size
α0

k therein is suggested as αk−1. This together with the fact η ∈ (0, 1) show that {αk}
is nonincreasing. In this paper, we relax the range of α0

k on a bounded closed inter-
val below away from zero. Thus, we can use Barzilai-Borwein step-size to accelerate
algorithm (Barzilai-Borwein step-size is wildly used in convex and nonconvex opti-
mization). Moreover, to avoid a smaller step-size, we enlarge the initial step-size α0

k

by using a self-adaptive strategy. So, our α0
k is computed by (30), see also our former

work [43].
The procedure to choose the half-space which has the largest distance from xk to

half-spaces {H0, · · · , Hk} needs k + 1 projection from xk onto each half-space in
{H0, · · · , Hk}. Fortunately, this procedure can be performed in a parallel way. Hence,
together with Lemma 2.3, the computational cost of this procedure can be ignored.

Now, we show the well-definedness of line search of IPA whenever F is
continuous on Rn.
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Lemma 3.2 Suppose that F is continuous on R
n. Let α ∈ [αmin, αmax] be a fixed

number and η ∈ (0, 1). Then there exists a nonnegative integer m such that

αηm‖F(x) − F(PC(x − αηmF(x)))‖ ≤ σ‖x − PC(x − αηmF(x))‖. (11)

Proof If x ∈ S, then, from Lemma 2.4 (a), we have x = PC(x − αF(x)). Hence,
(11) holds at m = 0.

If x /∈ S, from Lemma 2.4 (b), we see that ‖r(x, ν)‖ > 0 for any ν > 0. In this
case, we claim that inequality (11) holds after finitely many iterations. Suppose to
the contrary that

αηm‖F(x)−F(PC(x−αηmF(x)))‖ > σ‖x−PC(x−αηmF(x))‖ for all m. (12)

Then, we consider the following two cases.

Case A: If x ∈ C, then we have PC(x) = x. This together with the continuity of
both PC(·) and F(·) on Rn and the fact η ∈ (0, 1) gives

‖F(x) − F(PC(x − αηmF(x)))‖ → 0 as m → ∞. (13)

On the other hand, in view of the fact that η ∈ (0, 1) and the second relation
of Lemma 2.5, for sufficient large m, we see that

σ
‖x − PC(x − αηmF(x))‖

αηm
= σ

‖r(x, αηm)‖
αηm

≥ σ
‖r(x, 1)‖

1
> 0, (14)

where the last inequality holds due to the fact x 
∈ S and Lemma 2.4(b).
Consequently, (13) and (14) contradict (12).

Case B: If x /∈ C, then we have σ‖x − PC(x)‖ > 0. Using this together with
the continuity of F(·) and PC(·), it follows that αηm‖F(x) − F(PC(x −
αηmF(x)))‖ → 0 and σ‖x − PC(x − αηmF(x))‖ → σ‖x − PC(x)‖ >

0 as m → ∞. However, this contradicts (12).

Hence, we see that (11) holds for some finite nonnegative integer m.

Next, we use following lemma to show that the half-space Hk defined by hk(v) in
(8) can separate strictly the current iteration point xk from SD .

Lemma 3.3 Suppose that F is continuous on R
n and SD 
= ∅. Let hk be defined in

(8) and {xk} be the infinite sequence generated by IPA. Then, for any fixed x∗ ∈ SD ,
we have

hk(x
∗) ≤ 0 and hk(x

k) ≥ (1 − σ)‖r(xk, αk)‖2 > 0 for all k. (15)

Moreover, we have SD ⊆ Hk and xk /∈ Hk for all k.

Proof Let x∗ ∈ SD . Invoking the definition of hk , we see that

hk(x
∗) = 〈xk − zk − αk(F (xk) − F(zk)), x∗ − zk〉

= 〈xk − zk − αkF (xk), x∗ − zk〉 + αk〈F(zk), x∗ − zk〉
≤ 〈xk − zk − αkF (xk), x∗ − zk〉 ≤ 0,
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where the first inequality holds from the definition of SD and the fact that zk ∈ C,
the last inequality holds from (5), the fact zk = PC(xk − αkF (xk)) and the fact
x∗ ∈ C. This completes the first relation of (15).

Next, from the definition of hk , we see that

hk(x
k)=〈xk − zk − αk(F (xk) − F(zk)), xk − zk〉 = ‖xk − zk‖2 − αk〈F(xk)

−F(zk), xk − zk〉
=‖r(xk, αk)‖2−αk〈F(xk)−F(zk), r(xk, αk)〉≥‖r(xk, αk)‖2−σ‖r(xk, αk)‖2
=(1 − σ)‖r(xk, αk)‖2 > 0,

where the first inequality holds from Cauchy-Schwartz inequality and (7), the last
inequality holds from the fact ‖r(xk, αk)‖ > tol > 0. This completes the second
relation of (15).

Hence, from (15) and the definition of Hk , we further obtain that x∗ ∈ Hk and
xk /∈ Hk for all k. This completes the proof.

Before analyze the convergence of the sequence {xk} generated by IPA, we study
the properties of the sequence {xk, zk, αk} generated by IPA.

Theorem 3.4 Suppose that F is continuous onRn and SD 
= ∅. Let σ and η be given
in IPA and {xk, zk, αk} be the infinite sequence generated by IPA. Then the following
statements hold.

(a) For any fixed x ∈ ⋂∞
i=0 Hi , the sequence {‖xk − x‖} is convergent. Moreover,

the sequences {xk}, {F(xk)}, {zk} and {xk − zk − αk(F (xk) − F(zk))} are all
bounded. If F is in addition Lipschitz continuous with modulus L, one has

inf
k>0

αk ≥ min{αmin, η
σ

L
} > 0. (16)

(b) For any fixed x ∈ ⋂∞
i=0 Hi , it holds that

0<dist2(xk, Hk)≤dist2(xk, Ĥk)≤‖xk−x‖2−‖xk+1−x‖2 for all k. (17)

Moreover, we have lim
k→∞ dist(xk, Ĥk) = 0.

(c) For any cluster point x̄ of the sequence {xk}, it holds that x̄ ∈ ⋂∞
i=0 Hi .

(d) (Global subsequential convergence) Any cluster point of the infinite sequence
{xk} is a solution of Problem (1).

Proof (a) From the fact SD 
= ∅ and Lemma 3.3 that SD ⊂ ⋂∞
i=0 Hi , we have⋂∞

i=0 Hi 
= ∅. Moreover, together with the fact
⋂∞

i=0 Hi ⊂ Ĥk for any k and
(10), we see that, for any fixed x ∈ ⋂∞

i=0 Hi ,

‖xk+1 − x‖ = ‖P
Ĥk

(xk) − x‖ = ‖P
Ĥk

(xk) − P
Ĥk

(x)‖ ≤ ‖xk − x‖ for any k.
(18)

Using this together with Lemma 2.7, we obtain that, for any fixed x ∈ ⋂∞
i=0 Hi ,

the sequence {‖xk+1 − x‖} is convergent. Moreover, {xk} is bounded. Hence,
by using the continuity of F , we see that {F(xk)} is bounded. Combine this
with the fact zk = PC(xk − αkF (xk)), 0 < αk < αmax and the continuity of
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PC(·), we further obtain that {zk} is bounded. similarly, we have {F(zk)}, and
{xk − zk − αk(F (xk) − F(zk))} are all bounded.

Now, we show that inf
k>0

αk > 0 when F is Lipschitz continuous. Let L > 0 be the

Lipschitz modulus of F . Then, we see that (7) holds when α ≤ σ
L
. Hence, from the

definition of αk , we deduces that either αk = α0
k (if α0

k ≤ σ
L
) or αk > η σ

L
. Using this

together with the fact 0 < αmin ≤ α0
k , we have

αk ≥ min{αmin, η
σ

L
} > 0 for all k.

(b) The first inequality holds from the fact xk /∈ Hk in Lemma 3.3, the sec-
ond inequality holds from (9) and the third inequality holds from the fact⋂∞

i=0 Hi ⊆ Ĥk for any k, Lemma 2.2 and (10). This completes the proof
of (17). Note that the right hand of (17) is summable. Then, we have
lim

k→∞ dist(xk, Ĥk) = 0.

(c) From the definition of Ĥk , we have

0 ≤ dist(xk, Hi) ≤ dist(xk, Ĥk) for all i ≤ k.

This together with Theorem 3.4(b) implies that

lim
k→∞ dist(xk, Hi) = 0 for any fixed i.

Using this together with the fact dist(·, Hi) is continuous on R
n and the fact x̄

is a cluster point of {xk}, we further obtain that dist(x̄, Hi) = 0 for any fixed i.
This completes the proof.

(d) Let x̄ be a cluster point of the sequence {xk} and I ⊂ N be an index set such
that limk→∞,k∈I xk = x̄.

We first show that limk→∞ ‖r(xk, αk)‖ = 0. To this end, we recall from (a) that
there exists M1 > 0 such that ‖xk − zk − αk(F (xk) − F(zk))‖ ≤ M1 for all k. Using
this together with the definition of hk in (8), we see that M1 is a Lipschitz modulus
of hk for all k. Moreover, from Lemma 2.6 and (15), we have

dist(xk, Hk) ≥ M−1
1 hk(x

k) ≥ M−1
1 (1 − σ)‖r(xk, αk)‖2 > 0.

This together with (b) gives

lim
k→∞‖r(xk, αk)‖ = lim

k→∞ ‖xk − zk‖ = 0. (19)

Next, we show that there exists an index set J ⊆ I such that

lim
k→∞,k∈J

‖r(xk, 1)‖ = 0. (20)

To this end, we denote α̃ := infi∈I {αi} and consider the following two cases.
Case 1: If α̃ > 0, then α̃ ≤ αi for all i. Using this together with (6), we see that

0 ≤ ‖r(xi, 1)‖ ≤ ‖r(xi, αi)‖
min{αi, 1} ≤ ‖r(xi, αi)‖

min{̃α, 1} , ∀i ∈ I .
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Hence, together with (19), we have limi→∞,i∈I ‖r(xi, 1)‖ = 0. By taking
J = I , we see that (20) holds.

Case 2: If α̃ = 0, then there exists an index set J ⊆ I such that limi→∞,i∈J αi = 0.
This together with (7) implies that, for sufficiently large i ∈ J ,

αiη
−1

∥∥∥F(xi) − F
(
PC

(
xi − αiη

−1F(xi)
))∥∥∥ > σ‖r(xi, αiη

−1)‖.
Hence, for sufficiently large i ∈ J , it follows that

∥∥∥F(xi) − F
(
PC

(
xi − αiη

−1F(xi)
))∥∥∥ >

σ‖r(xi, αiη
−1)‖

αiη−1

≥ σ‖r(xi, 1)‖
1

> 0, (21)

where the second inequality holds from the second relation of Lemma 2.5
and the fact that limi→∞,i∈J αi = 0, the third inequality holds because
xi /∈ S.

On the other hand, from the triangle inequality and the fact that PC(·) is
nonexpansive, it holds that

‖xi − PC

(
xi − αiη

−1F(xi)
)

‖
≤ ‖r(xi, αi)‖ + ‖PC

(
xi − αiF (xi)

)
− PC

(
xi − αiη

−1F(xi)
)

‖
≤ ‖r(xi, αi)‖ + ‖xi − αiF (xi) − (xi − αiη

−1F(xi))‖ (22)

= ‖r(xi, αi)‖ + αi(η
−1 − 1)‖F(xi)‖ → 0 (as i → ∞, i ∈ J ),

where the limit holds from the fact J ⊆ I , (19), the fact limi→∞,i∈J αi =
0 and the fact {F(xi)} is bounded. Using this together with the fact
limk→∞,k∈I xk = x̄, the continuity of F and (22), it follows that

lim
i→∞,i∈J

∥∥∥F(xi) − F
(
PC

(
xi − αiη

−1F(xi)
))∥∥∥ = 0.

This together with (21) gives (20).

Finally, by using the continuity of ‖r(·, 1)‖ and passing to the limit in (20) along
the index set J , we see that ‖r(x̄, 1)‖ = 0. This together with Lemma 2.4 completes
the proof.

Now, we are ready to show the global convergence of IPA.

Theorem 3.5 [Global sequential convergence] Suppose that F is continuous on
R

n and SD 
= ∅. Let {xk} be the infinite sequence generated by IPA. Then {xk} is
globally convergent to a solution of Problem (1).

Proof Let x∗ be any fixed cluster point of {xk}. Then, from Theorem 3.4(c), we see
that x∗ ∈ ⋂∞

i=0 Hi . Hence, by replacing x by x∗ in (18), we see that

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all k.
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Moreover, from Lemma 2.7, it follows that {‖xk − x∗‖} is convergent. This together
with the fact that x∗ is a cluster point of {xk} gives

lim
k→∞ xk = x∗.

This together with Theorem 3.4(d) gets the desired conclusion.

4 Simplified IPA when underlyingmapping is Lipschitz continuous

In Section 3, we present IPA for nonmonotone Problem (1). The global convergence
is established under the assumption that SD 
= ∅. In this section, we aims to simply
IPA by omitting its line search procedure2 whenever F is L-Lipschitz continuous.
We call this simplified IPA as IPAL

Now, we show the simplified IPA as Algorithm 2 below.

We use the following Proposition to show that IPA can reduce to IPAL whenever
F is L-Lipschitz continuous.

Proposition 4.1 Suppose that F is L-Lipschitz continuous on R
n. Let α0

k = λ with
λ ∈ (0, 1/L) and σ = λL. Then, IPA reduces to IPAL.

Proof It suffices to show that, for each k, αk = λ whenever α0
k = λ with λ ∈

(0, 1/L). Invoking the definition of Lipschitz continuous, we see that

λ

∥∥∥F(xk) − F
(
PC

(
xk − λF(xk)

))∥∥∥ ≤ λL‖xk − PC(xk − λF(xk))‖.
Using this together with the fact that α0

k = λ and σ = λL, we see that (7) holds at
mk = 0 for any k. Hence, we obtain that αk =λ for any k. This completes the proof.

From Proposition 4.1 and Theorem 3.5, we have the following corollary.

2For each k, we take step-size αk as a fixed positive number to avoid computing αk by (7).
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Corollary 4.2 Suppose that F is L-Lipschitz continuous on R
n and SD 
= ∅. Let

{xk} be an infinite sequence generated by IPAL. Then {xk} is globally convergent to
a solution of Problem (1).

Remark 4.3 If the Lipschitz modulus of F is known, from Proposition 4.1, we see
that, by taking suitable parameters, IPA requires only one projection onto the feasi-
ble set in each iteration. Moreover, from Lemma 2.3, the computational cost of the
next iteration point in IPA is much less than the algorithm in [2]. Comparing with
algorithm in [27], the global convergence of simplified IPA without needing extra
assumption {z ∈ C : F(z) = 0}\SD is a finite set. Moreover, from (23) in the follow-
ing example, we see that this assumption may not suit for quasimonotone variational
inequality problems.

Before ending this section, we use the following example to show the extra
assumption in [27] (see also assumption (3)). Note that the label of formula (3) is
(cond:notsuit) may not suit for quasimonotone variational inequality problems.

Example 4.4 Let C = [−1, 1] × [−1, 1] and F(x) = (x2
1 , 0)

T with x = (x1, x2)
T ∈

R
2. Then, it is routine to check that F is quasimonotone on C. Moreover, we see that

S = {(x1, x2) : x1 = −1 or 0, x2 ∈ [−1, 1]} and SD = {(−1, x2) : x2 ∈ [−1, 1]}.
Moreover,

{z ∈ C : F(z) = 0}\SD = {(0, x2) : x2 ∈ [−1, 1]}. (23)

5 Convergence rate of IPA

In this section, we analyze the rate of the sequence generated by IPA. Our analysis based
on the following local error bound; there exist positive numbers c1 and c2 such that

dist(x, SD) ≤ c1‖r(x, 1)‖ for all x ∈ R
n with ‖r(x, 1)‖ ≤ c2, (24)

where SD is the solution set of dual variational inequality of Problem (1). This con-
dition is different with the error bound condition in [11], see formula (3) therein. The
difference is that we replace S with SD in [11] therein. However, from (2), we see
that (24) is coincide with the error bound in [11] if F is in addition pseudomonotone
on C. The error bound plays an central role in convergence rate analysis. Interested
reader can refer [44–46] and the survey paper [47] for the sufficient conditions of the
error bound.

Theorem 5.1 Suppose that F is Lipschitz continuous on R
n with modulus L and

SD 
= ∅. Let {xk} be the infinite sequence generated by IPA. Then, the following
statements hold.

(a) There exist t1 > 0 and t2 > 0 such that

t1‖r(xk, 1)‖ ≤ dist(xk, Hk) ≤ t2‖r(xk, 1) for all k. (25)
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(b) If in addition (24) holds, the convergence of the sequence generated by IPA is
Q-linear; i.e., there exists a positive number c̃ ∈ [0, 1) such that

dist(xk+1, SD) ≤ c̃ · dist(xk, SD) for sufficient large k. (26)

Proof (a) From Lemma 3.3, we have xk 
∈ Hk for all k. Using this together with
Lemma 2.3, we see that

PHk
(xk) = xk − 〈xk−zk−αk(F (xk) − F(zk))〉xk − zk

‖xk − zk−αk(F (xk)−F(zk))‖2 (xk − zk − αk(F (xk)

−F(zk))). (27)

Moreover, it follows that

dist(xk, Hk) = ‖〈xk − zk − αk(F (xk) − F(zk)), xk − zk〉
‖xk − zk − αk(F (xk) − F(zk))‖2

(xk − zk − αk(F (xk) − F(zk)))‖
=

∣∣‖xk − zk‖2 − αk〈F(xk) − F(zk), xk − zk〉∣∣
‖xk − zk − αk(F (xk) − F(zk))‖

≥ ‖xk − zk‖2 − αk

∣∣〈F(xk) − F(zk), xk − zk〉∣∣
‖xk − zk − αk(F (xk) − F(zk))‖

≥ ‖xk−zk‖2−αk‖F(xk)−F(zk)‖‖xk−zk‖
‖xk−zk−αk(F (xk)−F(zk))‖ ≥ ‖xk − zk‖2 − σ‖xk − zk‖2

‖xk − zk − αk(F (xk) − F(zk))‖
≥ ‖xk − zk‖2 − σ‖xk − zk‖2

‖xk − zk‖ + αk‖F(xk) − F(zk)‖ ≥ ‖xk − zk‖2 − σ‖xk − zk‖2
‖xk − zk‖ + σ‖xk − zk‖

= 1 − σ

1 + σ
‖xk − zk‖ = 1 − σ

1 + σ
‖r(xk, αk)‖ ≥ 1 − σ

1 + σ
min{1, αk}‖r(xk, 1)‖

≥ 1 − σ

1 + σ
min{1, αmin, η

σ

L
}‖r(xk, 1)‖,

where the first inequality holds from triangle inequality and the fact αk > 0 for all
k, the second inequality holds from Cauchy-Schwartz inequality, the third inequality
and the fifth inequality hold from (7) and the fact σ < 1, the sixth inequality holds
from (6) and the last inequality holds from (16). Let t1 = 1−σ

1+σ
min{1, αmin, η

σ
L
}.

Then, the first inequality of (25) holds.
Next, from (27), we see that

dist(xk, Hk) ≤ ‖xk − zk‖2 + σ‖xk − zk‖2
‖xk − zk‖ − σ‖xk − zk‖ = 1 + σ

1 − σ
‖r(xk, αk)‖

≤ 1 + σ

1 − σ
max{1, αk}‖r(xk, 1)‖ ≤ 1 + σ

1 − σ
max{1, αmax}‖r(xk, 1)‖,

where the first inequality holds from the fact αk‖F(xk) − F(zk)‖ ≤ σ‖xk − zk‖,
the second inequality holds from (6) and the last inequality holds from the facts
0 < α0

k ≤ αmax and 0 < η < 1. Let t2 = 1+σ
1−σ

max{1, αmax}. Then, the second
inequality of (25) holds.
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(b) Note the fact SD = ∩y∈C{x : 〈F(y), y − x〉 ≥ 0} that SD is closed and convex.
Using this together with the assumption SD 
= ∅, we see that there exists only
one vector x̄k ∈ SD such that

x̄k := PSD
(xk) for each k. (28)

We first claim that the following inequality holds

dist2(xk+1, SD) ≤ dist2(xk, SD) − t21‖r(xk, 1)‖2. (29)

To this end, recall from Lemma 3.3 that SD ⊂ ⋂∞
k=0 Hk and (17), we see that

‖xk+1 − x̄k‖2 ≤ ‖xk − x̄k‖2 − dist2(xk, Hk).

Using this, we obtain that

dist2(xk+1, SD) ≤ dist2(xk+1, x̄k) ≤ dist2(xk, x̄k) − dist2(xk, Hk)

= dist2(xk, SD) − dist2(xk, Hk) ≤ dist2(xk, SD) − t21‖r(xk, 1)‖2,
where the first equality holds from (28) and the last inequality holds from (25).

Now, we are ready to show our main conclusion.
From Theorem 3.4(b), we see that lim

k→∞ dist(xk, Hk) = 0. Using this together with

the first relation of (25), it follows that lim
k→∞ ‖r(xk, 1)‖ = 0. Hence, for any given

c2 > 0, there exists integer N > 0 such that ‖r(xk, 1)‖ ≤ c2 for all k ≥ N . This
together with (29) and (24) gives

dist2
(
xk+1, SD

)
≤

(
1 − t21

c21

)
dist2

(
xk, SD

)
for all k ≥ N .

Note the fact dist2
(
xk+1, SD

) ≥ 0 that 1 − t21
c21

≥ 0. Let c̃ =
√(

1 − t21
c21

)
. Then (26)

holds.

6 Numerical experiments

In this section, we test IPA, Algorithm 2.1 in [2] (YH for short) and Algorithm 2
in [31] (DHF for short) for high-dimensional nonmonotone variational inequalities
problem. All codes are written in Matlab and performed in Matlab2015a on a note-
book with Intel(R) Core(TM) i7-5500U CPU (2.40GHZ 2.40 GHZ) and 8 GB of
RAM.

In IPA, we take αmin = 10−10, αmax = 1010, η = 0.5 and σ = 0.99. Inspired
by the renowned Barzilai-Borwein step-size and self-adaptive step-size, we take the
parameter α0

k as follows: set α0
0 = 1 and take, for k ≥ 1,

α0
k =

{
P[10−10,1010]

( ‖xk−xk−1‖2
〈xk−xk−1,F (xk)−F(xk−1)〉

)
if 〈xk−xk−1, F (xk)−F(xk−1)〉>10−12,

P[10−10,1010](1.5αk−1) otherwise,
(30)
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which is similar as in our former work [43]. In YH, we take γ = 0.4 and σ = 0.99.
In DHF, we take the parameters are what the corresponding reference proposed in
[31, Table 5], i.e., γk = k+0.1

30(k+1) , θ = 0.98 and ρ = 0.5.

Example 6.1 Let

C = [−1, 1]n and F : (x1, . . . , xn) �→ (x2
1 , · · · , x2

n).

Then, it is routine to check that SD = {(−1, . . . , −1)} and S = {(x1, . . . , xn) : xi ∈
{−1, 0}, ∀i}. Moreover, from the fact that x → x2 is quasimonotone on [−1, 1],
[3, Theorem 3.1] and [3, example 3.1], we see that F is not quasimonotone on C

whenever n ≥ 2.

In Example 6.1, the terminated criterion for YH and DHF are both tol = 10−5

and the terminated criterion for IPA is tol = 10−6, i.e., the procedure of YH and
DHF terminated whenever ‖r(x, 1)‖ ≤ 10−5 and the procedure of IPA terminated
whenever ‖r(x, α)‖ ≤ 10−6. We first generate 9 initial points x0 by setting

x0 := 0.1 ∗ i ∗ ones(n, 1), i ∈ {1, 2, 3, . . . , 9},
where ones(n, 1) ∈ R

n×1 is a vector with each component is 1. Next, for a fixed
dimensional number n, we repeatedly use YH, DHF and IPA to solve Example 6.1
with different initial point 9 times, respectively. Finally, we report the number of
iterations (iter), the number of projections (np), the CPU time (in seconds) and disxS3

in Table 1, averaged over the 9 initial points.

Example 6.2 In this example, we set

C = [0, 1]n and G : (x1, . . . , xn) �→ (x2
1 − x1, · · · , x2

n − xn).

Then, we can check that SD = {(1, . . . , 1)} and S = {(x1, . . . , xn) : xi ∈ {0, 1}, ∀i}.
Let I be the identity mapping. Then, from Example 6.1, we see that G is the
difference of F and I .

In Example 6.2, the terminated criterion for YH and DHF are both tol = 10−4

and the terminated criterion for IPA is tol = 10−6. We first use YH, DHF and IPA
to solve Example 6.2 with n = 1 and initial point x0 ∈ {0.1, 0.2, 0.3, . . . , 0.9}. We
let \ denote the procedure of algorithm lose to find the approximate solution when
CPU time less than 2 min. We report iter, np, the CPU time (in seconds) and disxS

in Table 2.
Based on Table 2, we test DHF and IPA by solving high-dimension Example 6.2

with the initial point belongs to the following set

{0.1 ∗ i ∗ ones(n, 1) : i ∈ {4, 5, 6, . . . , 9}} . (31)

We report iter, np, the CPU time (in seconds) and disxS in Table 3, averaged over the
6 different initial points.

3Here, disxS is used to denote the distance of the output point to S.
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Table 3 Results for Example 6.2 with initial point choose in (31)

n iter np CPU disxS

DHF IPA DHF IPA DHF IPA DHF IPA

1000 25 20 50 43 6.12 0.01 4e-05 1e-06

3000 34 41 70 86 10.83 0.04 8e-05 3e-06

5000 43 63 90 131 20.65 0.08 0.0001 4e-06

Remark 6.3 From Tables 1, 2 and 3, we see that YH, DHF and IPA are all have the
ability to find a solution of nonmonotone VI. Obviously, IPA is much more efficient
than YH and DHF from the terms of CPU time. Moreover, from Table 2, we see that
IPA is less dependent on the initial value than YH and DHF.
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