
https://doi.org/10.1007/s11075-021-01143-4

ORIGINAL PAPER

On a fast deterministic block Kaczmarz method
for solving large-scale linear systems

Jia-Qi Chen1 · Zheng-Da Huang1

Received: 10 December 2020 / Accepted: 23 May 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
For solving large-scale consistent systems of linear equations by iterative methods,
a fast block Kaczmarz method based on a greedy criterion of the row selections is
proposed. The method is deterministic and needs not compute the pseudoinverses
of submatrices or solve subsystems. It is proved that the method will converge lin-
early to the unique least-norm solutions of the linear systems. Numerical experiments
are given to illustrate that the method is more efficient and yields a significant
acceleration in convergence for the tested data.

Keywords Consistent linear systems · Acceleration · Greedy blocks ·
Kaczmarz method · Convergence

Mathematics Subject Classification (2010) 15A06 · 65F10 · 65F20 · 90C06 · 90C25

1 Introduction

We consider using block Kaczmarz-type methods to solve the large-scale consistent
linear system in the following form

Ax = b (1.1)

with A ∈ R
m×n and b ∈ R

m, where each row of A is nonzero, and x is the n-
dimensional unknown vector. Whenever the coefficient matrix A is overdetermined

� Zheng-Da Huang
zdhuang@zju.edu.cn

Jia-Qi Chen
11835035@zju.edu.cn

1 School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, Zhejiang,
People’s Republic of China

Published online: 18 June 2021

Numerical Algorithms (2022) 89:1007–1029

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01143-4&domain=pdf
mailto: zdhuang@zju.edu.cn
mailto: 11835035@zju.edu.cn

(i.e., m > n) or underdetermined (i.e., m < n), we are often interested in seeking the
least-norm solution x�.

Earlier researches on block Kaczmarz methods may date back at least to the work
by Elfving [10] and the work by Eggermont et al. [9]. Differing from the Kacz-
marz single-projection methods [2–4, 6, 12–14, 17, 24, 25], in general, multiple
equations are used in the block Kaczmarz methods at each iteration. One kind of
block Kaczmarz method selects a block of rows from the matrix A and computes the
Moore-Penrose pseudoinverse of the block at each iteration. That is to say, starting
from an initial guess x0, a general format of the block Kaczmarz (BK) method can
be formulated as

xk+1 = xk + A
†
ik
(bik − Aikxk), k ≥ 0 (1.2)

if the matrix A and the vector b are partitioned into A = [AT
1 , AT

2 , . . . , AT
p]T and

b = [bT
1 , bT

2 , . . . , bT
p]T , respectively, for a given integer 1 ≤ p ≤ m. In (1.2), (·)†

denotes the Moore-Penrose pseudoinverse of the corresponding matrix, and the block
control sequence {ik}k≥0 is determined by ik = (k mod p) + 1, k = 0, 1, 2, At
the (k + 1)th iteration, the current iteration point xk is projected onto the hyperplane
corresponding to the solution set of Aikx = bik . In the case when the coefficient
matrix A is nonsingular, Bai and Liu [1] proved the convergence based on the block
Meany inequality.

To improve the efficiency of block Kaczmarz methods, looking for appropri-
ate pre-determined partitions of the row indices of the matrix A and block control
sequences becomes the main goal of researches. Let P = {σ1, σ2, . . . , σp}, a partition
of {1, 2, . . . , m}, be a row paving of the matrix A. By choosing {τk}k≥0 uniformly at
random from P , Needell and Tropp [18] proposed the randomized block Kaczmarz
(RBK) method defined by

xk+1 = xk + A†
τk

(bτk
− Aτk

xk), k ≥ 0 (1.3)

for solving linear least-squares problems. In this case, Aτk
in (1.3) is the row subma-

trix of A indexed by τk , while bτk
is the subvector of b with component indices listed

in τk . In [18], the authors also gave analysis of the expected linear rate of convergence
of the RBK method. Based on the block control sequence {τk}k≥0 determined by

τk =
{
i

∣∣∣∣∣
∣∣∣b(i) − A(i)xk

∣∣∣2 ≥ δk max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}∥∥∥A(i)
∥∥∥2

2
, 1 ≤ i ≤ m

}
(1.4)

with δk ∈ (0, 1], a pre-defined parameter for each k ≥ 0, Niu and Zheng [20] pro-
posed the greedy block Kaczmarz (GBK) method. This method does not need to
pre-determine a partition of the row indices of the matrix A. Clearly, (1.4) is modified
from Uk defined by

Uk =
{
i

∣∣∣ |b(i) − A(i)xk|2 ≥ εk‖b − Axk‖2
2‖A(i)‖2

2, 1 ≤ i ≤ m
}

(1.5)

1008 Numerical Algorithms (2022) 89:1007–1029

with

εk = θ

‖b − Axk‖2
2

max
1≤i≤m

{
|b(i) − A(i)xk|2

‖A(i)‖2
2

}
+ 1 − θ

‖A‖2
F

in the greedy randomized Kaczmarz (GRK) method (θ = 1
2) [3] and the relaxed

greedy randomized Kaczmarz (RGRK) method (θ ∈ [0, 1]) [4]. Compared with the
randomized Kaczmarz (RK) method [24], it is said in [3, 4] that the GRK and RGRK
methods use a different but more effective probability criterion.

Recently, Necoara [16] proposed the randomized average block Kaczmarz (RaBK)
method defined by

xk+1 = xk + αk

⎛
⎝∑

i∈τk

ωk
i

b(i) − A(i)xk∥∥A(i)
∥∥2

2

(
A(i)
)T

⎞
⎠ , k ≥ 0, (1.6)

where ωk
1, ω

k
2, . . . , ω

k|τk | ∈ [0, 1] are weights satisfying
∑
i∈τk

ωk
i = 1 and αk is the

stepsize. Here, |τk| denotes the cardinality of the set τk . The RaBK method might
be second kind of block Kaczmarz method. In (1.6), xk+1 can be regarded as an
average or a convex combination of the resulting projections of the Kaczmarz single-
projection method applied to those rows whose indices appeared in τk . This kind of
average block Kaczmarz methods can also be traced back to [5, 15, 22]. One can see
for details in [5, 15, 16, 22] and the references therein. The RaBK method defined
by (1.6) is named as a randomized method in [16], since the block control sequence
{τk}k≥0 is selected at random by two sampling methods from a pre-determined par-
tition of the row indices of the coefficient matrix A. In [16], Necoara introduced
different choices for the stepsize αk and provided the analysis of the expected linear
rate of convergence. These deterministic and randomized block Kaczmarz methods
have also been extended to solve the inconsistent linear systems [8, 19, 23].

The Gaussian Kaczmarz (GK) method [11], defined by

xk+1 = xk + ηT (b − Axk)

‖AT η‖2
2

AT η, k ≥ 0, (1.7)

can be regarded as another kind of block Kaczmarz method that writes directly the
increment in the form of a linear combination of all columns of AT at each iteration,
where η is a Gaussian vector with mean 0 ∈ R

m and the covariance matrix I ∈
R

m×m, i.e., η ∼ N(0, I). Here I denotes the identity matrix. In (1.7), all columns of
AT are used. The expected linear convergence rate was analyzed in [11] in the case
that A is of full column rank.

In this paper, inspired by the GK method [11], and taking the block control
sequence {τk}k≥0 determined by

τk = Uk, k ≥ 0,

1009Numerical Algorithms (2022) 89:1007–1029

where Uk is defined in (1.5), i.e., based on a greedy criterion of the row selections
in [3, 4], we will propose a fast deterministic block Kaczmarz (FDBK) method. At
(k + 1)th iteration, unlike the RK, GRK and RGRK methods [3, 4, 24] choosing one
index, the FDBK method uses all indices belonging to Uk . Unlike pre-partitioning
the row indices of the coefficient matrix A in BK, RBK and RaBK methods [9, 10,
16, 18], in the FDBK method, the index set τk at each step is selected adaptively and
is updated as iterations proceed. Even though this kind of choices of the index sets
is similar to that used in the GBK method [20], unlike the GBK method using the
Moore-Penrose pseudoinverse of the submatrix Aτk

, the FDBK method needs only
to compute a linear combination of all columns of AT

τk
. Unlike the GK method using

the distribution generated by the pre-determined probability, the FDBK method uses
the local residual distribution. The iterative format of the FDBK method can also
be seen as the case when the RaBK method takes a specific stepsize and weight.
Since the GRK method uses one index selected randomly from Uk , while the FDBK
method uses all indices in Uk , in a sense, the FDBK method can be regarded as a
deterministic block version of the GRK method with certain stepsize. In the extreme
case where the set τk only contains a unique element for each k ≥ 0, the FDBK
method, as well as the GRK and RGRK methods, becomes the maximum distance
Kaczmarz (MDK) method [21].

In the following, we will prove that the FDBK method converges to the unique
least-norm solution x� of the consistent linear system (1.1). Numerical experiments
on frequently used examples will show that the FDBK method is more efficient than
the GBK and the four special cases of the RaBK methods especially in terms of the
CPU time.

The paper is organized as follows. In the rest of this section, we describe some
notation that are used throughout this paper. In Section 2, we propose the fast deter-
ministic block Kaczmarz method and discuss basic properties. In Section 3, we
take the convergence analysis and derive the error estimates. Numerical results are
reported in Section 4, and the paper is ended in Section 5 with a few conclusions.

For a matrix M ∈ R
m×n, we call M(i), ‖M‖F , MT , M† and R(M) the ith row,

the Frobenius norm, the transpose, the Moore-Penrose pseudoinverse and the range
space of the matrix M , respectively, and let λmin(M

T M) and λmax(M
T M) represent

the smallest nonzero and the largest eigenvalue of the matrix MT M . For a vector
u ∈ R

m, we use u(i), uT and ‖u‖2 to denote its ith entry, the transpose and the
Euclidean norm of the vector u, respectively. Let [m] represent the set {1, 2, . . . , m}.
For any index set υ, we use Mυ , uυ and |υ| to denote the row submatrix of M indexed
by υ, the subvector of u with component indices listed in υ and the cardinality of the
set υ, respectively. Let I and ei represent the identity matrix and the ith column of
the identity matrix, respectively.

2 The fast deterministic block Kaczmarz method

The fast deterministic block Kaczmarz (FDBK) method for solving the consistent
linear system (1.1) is defined as follows.

1010 Numerical Algorithms (2022) 89:1007–1029

In this section, we want to discuss basic properties of the FDBK method. Let’s
begin with the problem: Is the FDBK method executable unconditionally? In other
words, does the iterative sequence {xk}k≥0 generated by the FDBK method exist for
any initial guess x0?

Property 1 The FDBK method described by Algorithm 1 is executable uncondition-
ally.

Proof For any x0 ∈ R
n, ‖b − Ax0‖2 equals zero or not. When ‖b − Ax0‖2 = 0,

the iterative sequence only contains x0. When ‖b − Ax0‖2 �= 0, τ0 is clearly
nonempty. In this case, to show x1 defined by (2.4) exists, what we need to do is
to prove

∥∥AT η0
∥∥

2 �= 0 since only basic algebra operations of matrices are used. If∥∥AT η0
∥∥

2 = 0, or equivalently, AT η0 = 0, then

ηT
0 (b − Ax0) = (AT η0)

T (x� − x0) = 0 (2.5)

according to Ax� = b. However, by (2.1)–(2.3), we have

ηT
0 (b − Ax0) =

∑
i∈τ0

∣∣∣b(i) − A(i)x0

∣∣∣2 ≥ ε0 ‖b − Ax0‖2
2

∑
i∈τ0

∥∥∥A(i)
∥∥∥2

2
> 0, (2.6)

which is a contradiction to (2.5). Therefore,
∥∥AT η0

∥∥
2 �= 0 holds true, and

accordingly x1 can be computed via (2.4).
If xk has been computed for some k ≥ 1, then repeat the above procedure by

substituting η0 and x0 with ηk and xk , respectively, we can find easily that the iterative
sequence is {x0, x1, . . . , xk} when ‖b − Axk‖2 = 0, and that (2.5) and (2.6) remain

1011Numerical Algorithms (2022) 89:1007–1029

true with η0, x0, τ0 and ε0 replaced by ηk , xk , τk and εk in the case of ‖b−Axk‖2 �= 0.
Therefore, when ‖b − Axk‖2 �= 0, the contradiction still happens. It follows that
AT ηk �= 0, which implies in the same way as described above that xk+1 exists.

By the induction method, {xk}k≥0 exists for any initial point x0 ∈ R
n.

This completes the proof.

Property 2 We have ηk ⊥ b − Axk+1 for all k ≥ 0, where ηk is defined by (2.3).

Proof In fact, for any k ≥ 0, according to the update rule (2.4), we have

ηT
k (b − Axk+1) = ηT

k

(
b − A

(
xk + ηT

k (b − Axk)∥∥AT ηk

∥∥2
2

AT ηk

))

= ηT
k (b − Axk) − ηT

k (b − Axk)∥∥AT ηk

∥∥2
2

ηT
k AAT ηk

= ηT
k (b − Axk) − ηT

k (b − Axk)

= 0,

which completes the proof.

Property 3 The format (2.4) can be written in the format of (1.6) with

αk = ‖ηk‖2
2‖Aτk

‖2
F

‖AT ηk‖2
2

, ωk
i = ‖A(i)‖2

2

‖Aτk
‖2
F

, i ∈ τk, k ≥ 0. (2.7)

Here, τk is defined by (2.2).

Proof For each k ≥ 0, by the straightforward computations, the format (2.4) can be
rewritten as:

xk+1 = xk + ηT
k (b − Axk)

‖AT ηk‖2
2

⎛
⎝∑

i∈τk

(
b(i) − A(i)xk

) (
A(i)
)T

⎞
⎠

= xk + ‖ηk‖2
2‖Aτk

‖2
F

‖AT ηk‖2
2

⎛
⎝∑

i∈τk

‖A(i)‖2
2

‖Aτk
‖2
F

b(i) − A(i)xk

‖A(i)‖2
2

(
A(i)
)T

⎞
⎠ ,

which is the format of (1.6). (2.7) follows. The proof is completed.

3 Convergence analysis and error estimates of the FDBK method

In this section, we will devote ourselves to the proof of the following convergence
theorem for the FDBK method.

Theorem 3.1 Let A ∈ R
m×n be a matrix without any zero row, and b ∈ R

m. The
iteration sequence {xk}∞k=0, generated by the FDBK method starting from any initial

1012 Numerical Algorithms (2022) 89:1007–1029

guess x0 ∈ R(AT), exists and converges to the unique least-norm solution x� = A†b

of the consistent linear system (1.1), with the error estimate

‖xk+1 − x�‖2
2 ≤

(
1 − γk

∥∥Aτk

∥∥2
F

λmax
(
Aτk

AT
τk

) λmin
(
AT A

)
‖A‖2

F

)
‖xk − x�‖2

2 , k ≥ 0, (3.1)

where

γk = 1

2

(
‖A‖2

F

qk

∥∥Aζk

∥∥2
F

+ (1 − qk)
∥∥Aτk

∥∥2
F

+ 1

)
≥ 1, k ≥ 0, (3.2)

with

ζk =
{
i

∣∣∣ b(i) − A(i)xk �= 0, i ∈ [m]
}

, k ≥ 0, (3.3)

and

qk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
i∈ζk\τk

⎧⎨
⎩
∣∣∣b(i)−A(i)xk

∣∣∣2
‖A(i)‖2

2

⎫⎬
⎭

max
1≤i≤m

{ |b(i)−A(i)xk|2

‖A(i)‖2
2

} < 1, if τk �= [m] and ζk �= τk,

1, otherwise,

k ≥ 0. (3.4)

Here the equality in (3.2) holds only when τk = [m] for each k ≥ 0.

Proof The iteration sequence {xk}∞k=0 exists and is contained in R(AT) for any ini-
tial guess x0 ∈ R(AT) via Property 1 and (2.4), respectively. {xk}k≥0 might be
a sequence containing finite members once ‖b − Axk‖2 = 0 happens for some
0 ≤ k < +∞, or a sequence containing infinite members once ‖b −Axk‖2 �= 0 hap-
pens for each k ≥ 0. Without loss of generality, in the following, it is often assumed
that ‖b − Axk‖2 �= 0 is true for each k ≥ 0.

For each k ≥ 0, Pk , defined by Pk = AT ηkη
T
k A

‖AT ηk‖2
2

, exists by Property 1. Then for the

least-norm solution x� of the consistent linear system (1.1), according to the iterative
format (2.4) of the FDBK method, we have

xk+1 − x� = xk − x� + ηT
k (b − Axk)∥∥AT ηk

∥∥2
2

AT ηk

= xk − x� − ηT
k A (xk − x�)∥∥AT ηk

∥∥2
2

AT ηk

= xk − x� − AT ηkη
T
k A

‖AT ηk‖2
2

(xk − x�)

= (I − Pk) (xk − x�) .

1013Numerical Algorithms (2022) 89:1007–1029

Since P T
k = Pk and P 2

k = Pk , Pk is an orthogonal projector. It follows that

‖xk+1 − x�‖2
2 = ‖(I − Pk) (xk − x�)‖2

2

= ‖xk − x�‖2
2 − ‖Pk (xk − x�)‖2

2

= ‖xk − x�‖2
2 −
∥∥∥∥∥ηT

k A (xk − x�)

‖AT ηk‖2
2

AT ηk

∥∥∥∥∥
2

2

= ‖xk − x�‖2
2 −

∣∣ηT
k (b − Axk)

∣∣2∥∥AT ηk

∥∥2
2

(3.5)

by the Pythagorean Theorem.
Let Ek ∈ R

m×|τk | denote the matrix whose columns in turn are composed of all
the vectors ei ∈ R

m with i ∈ τk , then, Aτk
= ET

k A. Denote by η̂k = ET
k ηk , we have

‖η̂k‖2
2 = ηT

k EkE
T
k ηk = ‖ηk‖2

2 =
∑
i∈τk

∣∣∣b(i) − A(i)xk

∣∣∣2 (3.6)

and∥∥∥AT ηk

∥∥∥2

2
= ηT

k AAT ηk = η̂T
k ET

k AAT Ekη̂k = η̂T
k Aτk

AT
τk

η̂k =
∥∥∥AT

τk
η̂k

∥∥∥2

2
. (3.7)

Therefore, we can obtain∥∥∥AT
τk

η̂k

∥∥∥2

2
= η̂T

k Aτk
AT

τk
η̂k ≤ λmax

(
Aτk

AT
τk

)
‖η̂k‖2

2 . (3.8)

From the definition of ηk in (2.3), we have, by (3.6), that

ηT
k (b − Axk) =

⎛
⎝∑

i∈τk

(
b(i) − A(i)xk

)
eT
i

⎞
⎠ (b − Axk)

=
∑
i∈τk

((
b(i) − A(i)xk

)
eT
i (b − Axk)

)

=
∑
i∈τk

∣∣∣b(i) − A(i)xk

∣∣∣2
= ‖η̂k‖2

2 .

(3.9)

Since xk, x� ∈ R(AT) implies xk − x� ∈ R(AT), we can obtain

‖b − Axk‖2
2 = ‖A (xk − x�)‖2

2 ≥ λmin

(
AT A

)
‖xk − x�‖2

2 (3.10)

by the following well-known inequality

‖Au‖2
2 ≥ λmin

(
AT A

)
‖u‖2

2, ∀u ∈ R
(
AT
)

.

1014 Numerical Algorithms (2022) 89:1007–1029

It then holds that

∣∣ηT
k (b − Axk)

∣∣2∥∥AT ηk

∥∥2
2

=

(∑
i∈τk

∣∣b(i) − A(i)xk

∣∣2) ‖η̂k‖2
2∥∥AT

τk
η̂k

∥∥2
2

≥

∑
i∈τk

∣∣b(i) − A(i)xk

∣∣2
λmax

(
Aτk

AT
τk

)

≥

∑
i∈τk

(
εk‖b − Axk‖2

2

∥∥A(i)
∥∥2

2

)
λmax

(
Aτk

AT
τk

)

=
εk‖b − Axk‖2

2

∑
i∈τk

∥∥A(i)
∥∥2

2

λmax
(
Aτk

AT
τk

)
≥ εk

∥∥Aτk

∥∥2
F

λmin
(
AT A

)
λmax

(
Aτk

AT
τk

) ‖xk − x�‖2
2

(3.11)

by (3.7)–(3.10) and the definition of τk in (2.2).
For each k ≥ 0, since

‖b − Axk‖2
2

‖A‖2
F

=
m∑

i=1

∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

∥∥A(i)
∥∥2

2

‖A‖2
F

≤ max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}
,

by the definition of εk in (2.1), we have

εk‖b − Axk‖2
2 = 1

2
max

1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}
+ 1

2

‖b − Axk‖2
2

‖A‖2
F

≤ max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}
,

which implies via (2.2) that l ∈ τk , i.e., τk �= ∅, when

∣∣b(l) − A(l)xk

∣∣2∥∥A(l)
∥∥2

2

= max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}
.

In the case of τk �= [m] and ζk �= τk , where ζk is defined by (3.3), qk , defined by
(3.4), is a positive number less than 1, i.e., 0 < qk < 1. According to the definition
of γk in (3.2), we have

γk = 1

2

(
‖A‖2

F

qk

∥∥Aζk

∥∥2
F

+ (1 − qk)
∥∥Aτk

∥∥2
F

+ 1

)
>

1

2

(
‖A‖2

F∥∥Aζk

∥∥2
F

+ 1

)
≥ 1. (3.12)

1015Numerical Algorithms (2022) 89:1007–1029

Since i /∈ τk and i ∈ ζk if and only if i ∈ ζk\τk , it follows that

‖b − Axk‖2
2 =

∑
i∈τk

∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

∥∥∥A(i)
∥∥∥2

2
+
∑

i∈ζk\τk

∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

∥∥∥A(i)
∥∥∥2

2

≤ max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}⎛⎝∑
i∈τk

∥∥∥A(i)
∥∥∥2

2

⎞
⎠

+ max
i∈ζk\τk

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}⎛⎝ ∑
i∈ζk\τk

∥∥∥A(i)
∥∥∥2

2

⎞
⎠

= max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}⎛⎝∑
i∈τk

∥∥∥A(i)
∥∥∥2

2
+ qk

∑
i∈ζk\τk

∥∥∥A(i)
∥∥∥2

2

⎞
⎠

= max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}(
qk

∥∥Aζk

∥∥2
F

+ (1 − qk)
∥∥Aτk

∥∥2
F

)
,

where the last equality holds due to

∑
i∈ζk\τk

∥∥∥A(i)
∥∥∥2

2
= ∥∥Aζk

∥∥2
F

− ∥∥Aτk

∥∥2
F

.

Thus, we have

εk‖A‖2
F = 1

2

(
‖A‖2

F

‖b − Axk‖2
2

max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}
+ 1

)

≥ 1

2

(
‖A‖2

F

qk

∥∥Aζk

∥∥2
F

+ (1 − qk)
∥∥Aτk

∥∥2
F

+ 1

)

= γk .

(3.13)

In the case of τk �= [m] and ζk = τk , i.e., ζk = τk � [m], it holds that

‖b − Axk‖2
2 =

∑
i∈ζk

∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

∥∥∥A(i)
∥∥∥2

2
≤ max

1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}∥∥Aζk

∥∥2
F

and that

εk‖A‖2
F ≥ 1

2

(
‖A‖2

F∥∥Aζk

∥∥2
F

+ 1

)
= γk > 1. (3.14)

In the case of τk = [m], it should be that∣∣b(1) − A(1)xk

∣∣2∥∥A(1)
∥∥2

2

=
∣∣b(2) − A(2)xk

∣∣2∥∥A(2)
∥∥2

2

= · · · =
∣∣b(m) − A(m)xk

∣∣2∥∥A(m)
∥∥2

2

,

1016 Numerical Algorithms (2022) 89:1007–1029

i.e., ζk = τk = [m]. Therefore,

max
1≤i≤m

{∣∣b(i) − A(i)xk

∣∣2∥∥A(i)
∥∥2

2

}
= ‖b − Axk‖2

2

‖A‖2
F

.

Thanks to the definition of εk and γk in (2.1) and (3.2), respectively, we can obtain

εk‖A‖2
F = γk = 1. (3.15)

Inequalities in (3.12)–(3.15) imply that

εk ≥ 1

‖A‖2
F

γk, (3.16)

and that (3.2) is true and the equality in it holds only when τk = [m].
For any nonzero vector ŷ ∈ R

|τk |, we have

λmin(A
TA)=λmin(AAT)≤ (Ekŷ)TAAT(Ekŷ)

(Ekŷ)T (Ekŷ)
= ŷTAτk

AT
τk

ŷ

ŷT ŷ
≤λmax(Aτk

AT
τk

). (3.17)

Moreover, by (2.2) and (3.16), we have

γk

∥∥Aτk

∥∥2
F

‖A‖2
F

≤ εk

∥∥Aτk

∥∥2
F

=
∑
i∈τk

εk‖A(i)‖2
2 ≤

∑
i∈τk

∣∣b(i) − A(i)xk

∣∣2
‖b − Axk‖2

2

≤ 1. (3.18)

Since it is always true that

0 <
λmin

(
AT A

)
‖A‖2

F

≤ 1,

∥∥Aτk

∥∥2
F

λmax
(
Aτk

AT
τk

) ≥ 1,

it follows from (3.17) and (3.18) that

0 ≤ 1 − γk

∥∥Aτk

∥∥2
F

‖A‖2
F

λmin
(
AT A

)
λmax

(
Aτk

AT
τk

) = 1 − γk

∥∥Aτk

∥∥2
F

λmax
(
Aτk

AT
τk

) λmin
(
AT A

)
‖A‖2

F

≤ 1 − λmin
(
AT A

)
‖A‖2

F

< 1. (3.19)

Now, to complete the proof, what we need to do is to prove the convergence of the
sequence {xk}k≥0.

It follows from (3.5), (3.11) and (3.16) that

‖xk+1 − x�‖2
2 ≤

(
1 − γk

∥∥Aτk

∥∥2
F

λmax
(
Aτk

AT
τk

) λmin
(
AT A

)
‖A‖2

F

)
‖xk − x�‖2

2 , k ≥ 0, (3.20)

i.e., (3.1) holds. By (3.19) and (3.20), we can get

‖xk+1 − x�‖2
2 ≤

(
1 − λmin

(
AT A

)
‖A‖2

F

)
‖xk − x�‖2

2 , k ≥ 0,

1017Numerical Algorithms (2022) 89:1007–1029

which deduces

‖xk+1 − x�‖2
2 ≤

(
1 − λmin

(
AT A

)
‖A‖2

F

)k+1

‖x0 − x�‖2
2, k ≥ 0 (3.21)

via the mathematical induction method. Here, 1− λmin
(
AT A

)
‖A‖2

F

is a nonnegative number

less than 1 by (3.19). (3.21) shows us that the sequence {xk}k≥0 converges to x� as
k → ∞.

4 Experimental results

In this section, we will make numerical experiments on consistent linear systems with
three types of matrices for comparing the fast deterministic block Kaczmarz (FDBK)
method with the following methods:

• RaBK: the randomized average block Kaczmarz method [16];
• GBK: the greedy block Kaczmarz method [20].

For the RaBK method, we consider four cases appeared in [16], and use the same
sampling methods and choices of blocks, stepsizes and weights. The details are listed
below.

The meanings of the partition sampling, Lk and λblock
max in Table 1 are described in

the following.

• The partition sampling means that τk used is selected randomly from the row
partition Ps = {σ1, σ2, . . . , σs} at (k + 1)th iteration, where s = ⌈‖A‖2

2

⌉
, and

σi =
{⌊

(i − 1)
m

s

⌋
+ 1,

⌊
(i − 1)

m

s

⌋
+ 2, . . . ,

⌊
i
m

s

⌋}
, i = 1, 2, . . . , s.

• Lk = ∑
i∈τk

ωk
i

(
A(i)xk − b(i)

)2/∥∥∥∥∥∑i∈τk

ωk
i

(
A(i)xk − b(i)

)
(A(i))T

∥∥∥∥∥
2

2

.

• λblock
max = max

τk∈P
λmax(A

T
τk

Aτk
), where Ps is the partition defined above.

For the GBK method, we take the parameter δk in (1.4) as the same value
as that used in [20] and also use the CGLS algorithm instead of calculating the

Table 1 The sampling methods and parameters of four cases of the RaBK method in [16]

Method Sampling method Block size τ Stepsize αk Weight ωk
i

RaBK-c Uniform sampling 10 1.95 1
τ

RaBK-a Uniform sampling 10 1.95Lk
1
τ

RaBK-e-paved Partition sampling

⌊
m

‖A‖2
2

⌋
1.95τ

/
λblock

max
1
τ

RaBK-a-paved Partition sampling

⌊
m

‖A‖2
2

⌋
1.95Lk

1
τ

1018 Numerical Algorithms (2022) 89:1007–1029

Moore-Penrose inverse A†
τk

at each iteration. The details are described as follows.
For each k ≥ 0,

– δk = 1
2 + 1

2
‖b−Axk‖2

2
‖A‖2

F

(
max

1≤i≤m

{∣∣b(i)−A(i)xk

∣∣2
‖A(i)‖2

2

})−1

,

– the stopping criterion of the CGLS algorithm is taken as 10−4.

The stopping criterion used for the CGLS algorithm is an appropriate error cri-
terion to ensure that the GBK method can be carried out. In fact, on the one hand,
the CPU time of the GBK method will increase with the decrease of the stopping
criterion of the CGLS algorithm, and on the other hand, when the stopping criterion
of the CGLS algorithm is taken as 10−3, the GBK method cannot converge for the
overdetermined matrix generated by using the MATLAB function randn(1000,800)
and used in the numerical experiments.

Three types of coefficient matrices of the consistent linear systems used in the
numerical experiments are

• forty dense and well-conditioned matrices, generated by using the MATLAB
function randn;

• twenty full-rank sparse matrices, selected from the SuiteSparse Matrix Collec-
tion (formerly known as the University of Florida Sparse Matrix Collection) [7];

• six rank-deficient sparse matrices, selected from the SuiteSparse Matrix Collec-
tion [7].

Thus, the dense matrices used are generated randomly, while two kinds of sparse
matrices used are of deterministic.

In the numerical experiments, all zero rows, which might be appeared in four
matrices, will be removed, and the lengths of all nonzero rows in each matrix are
normalized to 1.

In our implementations, to ensure that each linear system (1.1) with the selected
matrix A is consistent, a vector y ∈ R

n with its entries randomly generated by the
MATLAB function randn is formed at first, and b ∈ R

m, the right-hand-side of the
linear system (1.1) is then set to be b = Ay.

For all methods, the iterations are started from x0 = 0, and terminated once the
relative solution error (RSE) satisfies

RSE = ‖xk − x�‖2
2

‖x�‖2
2

< 10−6,

or the number of iteration steps exceeds 200000.
All numerical experiments are implemented in MATLAB (version R2019b) and

executed on an Intel(R) Core(TM) i5-10210U CPU 1.60GHz computer with 12 GB
of RAM and Windows 10 operating system.

We report the performance of the methods in terms of the number of iteration steps
(denoted by “IT”) and the CPU time in seconds (denoted by “CPU”) in Tables 2,
3, 4, 5, 6, 7, and 8, where each “IT” and “CPU” of the randomized methods are
the arithmetic mean of the results obtained by repeatedly running the corresponding
method 50 times.

1019Numerical Algorithms (2022) 89:1007–1029

Table 2 Numerical results corresponding to the dense matrices A of Type I with m > n

m 1000 2000 3000 4000 5000

n = 100 RaBK-c IT 588.3 483.7 445.6 426.8 433.3

CPU 0.0093 0.0083 0.0080 0.0080 0.0091

RaBK-a IT 1504.5 1509.2 1514.5 1514.8 1516.9

CPU 0.0165 0.0171 0.0174 0.0184 0.0196

RaBK-e-paved IT 35.0 29.1 27.0 25.8 24.9

CPU 0.0076 0.0123 0.0162 0.0213 0.0259

RaBK-a-paved IT 362.9 338.9 325.1 319.4 313.1

CPU 0.0104 0.0137 0.0140 0.0165 0.0178

GBK IT 20 14 12 9 10

CPU 0.0021 0.0026 0.0035 0.0043 0.0051

FDBK IT 23 16 12 12 11

CPU 0.0011 0.0020 0.0023 0.0031 0.0039

speed-up RaBK-c 8.45 4.15 3.48 2.58 2.33

speed-up RaBK-a 15.00 8.55 7.57 5.94 5.03

speed-up RaBK-e-paved 6.91 6.15 7.04 6.87 6.64

speed-up RaBK-a-paved 9.45 6.85 6.09 5.32 4.56

speed-up GBK 1.91 1.30 1.52 1.39 1.31

n = 150 RaBK-c IT 1028.8 799.0 713.5 682.2 670.4

CPU 0.0214 0.0171 0.0169 0.0182 0.0197

RaBK-a IT 2223.8 2220.4 2226.9 2222.7 2223.0

CPU 0.0306 0.0314 0.0347 0.0394 0.0440

RaBK-e-paved IT 42.6 32.0 29.1 27.8 26.6

CPU 0.0143 0.0203 0.0295 0.0362 0.0438

RaBK-a-paved IT 400.3 350.1 341.2 330.7 326.1

CPU 0.0269 0.0284 0.0315 0.0345 0.0369

GBK IT 28 17 14 12 12

CPU 0.0036 0.0043 0.0052 0.0062 0.0090

FDBK IT 33 21 17 14 14

CPU 0.0025 0.0030 0.0039 0.0053 0.0069

speed-up RaBK-c 8.56 5.70 4.33 3.43 2.86

speed-up RaBK-a 12.24 10.47 8.90 7.43 6.38

speed-up RaBK-e-paved 5.72 6.77 7.56 6.83 6.35

speed-up RaBK-a-paved 10.76 9.47 8.08 6.51 5.35

speed-up GBK 1.44 1.43 1.33 1.17 1.30

In the following tables, the item “> 200000” represents that the number of itera-
tion steps exceeds 200000. In this case, the corresponding CPU time is expressed as
“−−”.

1020 Numerical Algorithms (2022) 89:1007–1029

Table 3 Numerical results corresponding to the dense matrices A of Type I with m > n

m 1000 2000 3000 4000 5000

n = 500 RaBK-c IT 12143.0 4645.9 3594.3 3211.4 2925.3

CPU 1.2105 0.6349 0.5741 0.5421 0.5213

RaBK-a IT 7326.4 7215.9 7199.2 7198.6 7199.3

CPU 0.4555 0.6223 0.7497 0.7195 0.7302

RaBK-e-paved IT 172.0 60.5 43.8 39.1 36.1

CPU 0.1343 0.1525 0.2179 0.2831 0.3426

RaBK-a-paved IT 532.8 440.1 407.9 391.9 383.0

CPU 0.1859 0.2199 0.2530 0.5661 0.6019

GBK IT 251 69 43 39 33

CPU 0.0784 0.0523 0.0543 0.0634 0.0708

FDBK IT 271 72 45 39 35

CPU 0.0322 0.0379 0.0416 0.0515 0.0563

speed-up RaBK-c 37.69 16.75 13.80 10.53 9.26

speed-up RaBK-a 14.15 16.42 18.02 13.97 12.97

speed-up RaBK-e-paved 4.17 4.02 5.24 5.50 6.09

speed-up RaBK-a-paved 5.77 5.80 6.08 10.99 10.69

speed-up GBK 2.43 1.38 1.31 1.23 1.26

n = 800 RaBK-c IT 123550.0 13029.5 7997.8 6561.4 5675.4

CPU 23.1951 3.4222 2.1305 1.8914 1.7800

RaBK-a IT 15336.0 11614.8 11499.3 11495.0 11467.5

CPU 1.7558 1.7511 1.8781 1.7543 1.9439

RaBK-e-paved IT 1228.0 110.3 64.6 50.9 44.2

CPU 2.0417 0.7696 0.7859 0.7872 0.7936

RaBK-a-paved IT 979.7 512.1 461.5 435.6 421.8

CPU 1.6381 1.2537 1.3348 1.3066 1.3824

GBK IT 2419 167 83 67 49

CPU 1.2390 0.2141 0.1805 0.1947 0.1962

FDBK IT 2511 184 91 72 52

CPU 0.6833 0.1702 0.1460 0.1612 0.1592

speed-up RaBK-c 33.95 20.11 14.59 11.73 11.18

speed-up RaBK-a 2.57 10.29 12.86 10.88 12.21

speed-up RaBK-e-paved 2.99 4.52 5.38 4.88 4.98

speed-up RaBK-a-paved 2.40 7.37 9.14 8.11 8.68

speed-up GBK 1.81 1.26 1.24 1.21 1.23

To compare the degree of convergence speeds, the speed-up of the FDBK method
against the other one, defined by

speed-up Method = CPU of Method

CPU of FDBK
,

1021Numerical Algorithms (2022) 89:1007–1029

Table 4 Numerical results corresponding to the dense matrices A of Type I with m < n

n 1000 2000 3000 4000 5000

m = 100 RaBK-c IT 556.8 473.9 447.3 439.0 425.6

CPU 0.0759 0.1191 0.1658 0.2287 0.3086

RaBK-a IT 1410.3 1410.4 1412.0 1408.3 1405.3

CPU 0.1192 0.2082 0.3116 0.4234 0.5697

RaBK-e-paved IT 112.5 137.6 114.5 137.4 156.0

CPU 0.1355 0.7212 1.9664 4.2535 7.6041

RaBK-a-paved IT 276.4 277.0 276.3 276.7 277.9

CPU 0.0497 0.0948 0.3997 0.5240 0.6441

GBK IT 37 30 26 25 23

CPU 0.0093 0.0103 0.0110 0.0150 0.0190

FDBK IT 39 29 26 27 24

CPU 0.0015 0.0031 0.0033 0.0043 0.0053

speed-up RaBK-c 50.60 38.42 50.24 53.19 58.23

speed-up RaBK-a 79.47 67.16 94.42 98.47 107.49

speed-up RaBK-e-paved 90.23 232.65 595.88 989.19 1434.74

speed-up RaBK-a-paved 33.13 30.58 121.12 121.86 121.53

speed-up GBK 6.20 3.32 3.33 3.49 3.58

m = 150 RaBK-c IT 1065.2 785.3 722.5 681.0 656.6

CPU 0.1619 0.2267 0.3402 0.4649 0.5533

RaBK-a IT 2130.3 2117.3 2114.3 2118.9 2118.8

CPU 0.1894 0.3498 0.5469 0.8814 1.0814

RaBK-e-paved IT 85.7 107.0 101.3 153.1 122.9

CPU 0.1435 0.8174 2.0681 4.4995 7.6442

RaBK-a-paved IT 277.1 279.1 277.5 278.1 276.7

CPU 0.0815 0.4105 0.5990 0.7888 0.9709

GBK IT 51 36 29 29 28

CPU 0.0106 0.0198 0.0209 0.0289 0.0356

FDBK IT 50 36 31 31 28

CPU 0.0025 0.0043 0.0090 0.0126 0.0171

speed-up RaBK-c 64.76 52.72 37.80 36.90 32.36

speed-up RaBK-a 75.76 81.35 60.77 69.95 63.24

speed-up RaBK-e-paved 57.40 190.09 229.79 357.10 447.03

speed-up RaBK-a-paved 32.60 95.47 66.56 62.60 56.78

speed-up GBK 4.24 4.60 2.32 2.29 2.08

is also reported. Clearly, the greater the “speed-up Method” is than 1, the faster the
convergence speed of the FDBK method against the corresponding “Method” is.

Dense and well-conditioned matrices Numerical results corresponding to these forty
matrices of Type I are listed in Tables 2, 3, 4, and 5, where Tables 2 and 3 stands for

1022 Numerical Algorithms (2022) 89:1007–1029

Table 5 Numerical results corresponding to the dense matrices A of Type I with m < n

n 1000 2000 3000 4000 5000

m = 500 RaBK-c IT 11764.0 4877.3 3575.4 3182.7 2893.2

CPU 2.6910 2.7763 2.9999 3.7439 4.2782

RaBK-a IT 7265.1 7141.5 7121.2 7104.6 7108.2

CPU 0.9201 2.1601 3.4666 4.5042 5.5678

RaBK-e-paved IT 134.6 79.1 76.7 87.4 89.2

CPU 0.4022 1.2886 2.3977 4.9434 8.3194

RaBK-a-paved IT 427.3 421.9 279.0 277.5 276.9

CPU 0.7075 1.3900 1.9680 2.5381 3.1891

GBK IT 302 102 66 56 49

CPU 0.1120 0.1094 0.1340 0.1785 0.2088

FDBK IT 313 106 68 58 51

CPU 0.0327 0.0588 0.0707 0.0889 0.1090

speed-up RaBK-c 82.29 47.22 42.43 42.11 39.25

speed-up RaBK-a 28.14 36.74 49.03 50.67 51.08

speed-up RaBK-e-paved 12.30 21.91 33.91 55.61 76.32

speed-up RaBK-a-paved 21.64 23.64 27.84 28.55 29.26

speed-up GBK 3.43 1.86 1.90 2.01 1.92

m = 800 RaBK-c IT 120710.5 14295.0 7697.8 6492.2 5742.0

CPU 38.5108 8.8431 6.9098 8.2531 9.4483

RaBK-a IT 15741.0 11549.6 11410.3 11385.0 11382.5

CPU 2.4834 3.8037 5.4229 7.2930 9.1952

RaBK-e-paved IT 1261.2 96.9 80.5 92.0 60.0

CPU 2.3818 1.5653 3.4208 6.8780 8.2795

RaBK-a-paved IT 997.2 424.8 422.4 419.8 277.7

CPU 1.9628 1.9260 2.9184 3.7890 4.7668

GBK IT 2657 244 113 87 70

CPU 1.6345 0.3857 0.3520 0.4195 0.4229

FDBK IT 2764 243 116 90 73

CPU 0.7717 0.2246 0.2007 0.2181 0.2417

speed-up RaBK-c 49.90 39.37 34.43 37.84 39.09

speed-up RaBK-a 3.22 16.94 27.02 33.44 38.04

speed-up RaBK-e-paved 3.09 6.97 17.04 31.54 34.26

speed-up RaBK-a-paved 2.54 8.58 14.54 17.37 19.72

speed-up GBK 2.12 1.72 1.75 1.92 1.75

the case of thin (or tall) matrices while Tables 4 and 5 for the case of fat matrices. The
numbers of columns of the matrices used in Tables 2 and 3 are fixed with 100, 150,
500 and 800, respectively, and the numbers of rows of the matrices used in Tables 4
and 5 are fixed with 100, 150, 500 and 800, respectively.

From Tables 2, 3, 4, and 5, we can observe the following phenomena:

1023Numerical Algorithms (2022) 89:1007–1029

• FDBK versus GBK: These two methods use the same criterion to construct the
block at each iteration. Since the linear combination of columns of AT

τk
is used

directly in the FDBK method, the decrease of the norm of the residual of the
FDBK method might be not greater than that of the GBK method at each itera-
tion, and the number of the iteration steps would be greater than that of the GBK
method. But the decrement of the number of floating-point operations leads the
FDBK method to have a faster convergence and own less CPU time. More specif-
ically, the speed-up of the FDBK method against the GBK method is distributed
from 1.17 to 6.20.

• FDBK versus RaBK: Compared with the four special cases of the RaBK method,
data in tables shows us that the FDBK method has great advantages in terms of
the CPU time in all cases and the number of iteration steps in most cases. In
detail, for the matrices of 1000 × 500, 2000 × 500, 3000 × 500, 2000 × 800,
3000 × 800, 4000 × 800, 5000 × 800, 500 × 1000, 500 × 2000, 800 × 2000,
800 × 3000 and 800 × 5000, the RaBK-e-paved method owns the least number
of iteration steps, and for the matrices of 1000×800 and 800×1000, the RaBK-
a-paved method owns the least number of iteration steps. In these tables, the
speed-up of the FDBK method against the RaBK-c method is distributed from
2.33 to 82.29, the speed-up of the FDBK method against the RaBK-a method is
distributed from 2.57 to 107.49, the speed-up of the FDBK method against the
RaBK-e-paved method is distributed from 2.99 to 1434.74, and the speed-up of
the FDBK method against the RaBK-a-paved method is distributed from 2.40 to
121.86. Therefore, the submatrices, stepsizes and weights chosen in the FDBK
method are much effective.

Full-rank sparse matrices selected from [7] There are five thin (or tall) matrices,
five square matrices, and ten fat matrices, which originate in different applications
such as linear programming problem, combinatorial problem, least-squares problem,
directed weighted graph, weighted bipartite graph and undirected weighted graph [7].
These twenty matrices of Type II are determined uniquely.

Numerical results corresponding to these matrices of Type II are listed in Tables 6
and 7, where “density”, the sparsity of these matrices, is computed as usual via the
following format:

density = number of nonzeros of an m × n matrix

m × n
,

and “cond(A)”, the Euclidean condition number of A, is computed by using the
matlab function cond.

Since the matrix WorldCities has zero rows, in the numerical experiments, we
removed these zero rows from the matrix. Clearly, this operation does not influence
the solution of the corresponding linear system.

From Tables 6 and 7, we can see that the phenomena here are similar to those
observed from Tables 2, 3, 4, and 5:

• FDBK versus GBK: The FDBK method performs better than the GBK method
especially in terms of the CPU time, although the number of the iteration steps of

1024 Numerical Algorithms (2022) 89:1007–1029

Table 6 Numerical results corresponding to the full-rank sparse matrices A of Type II with m ≥ n

name ash958 ash608 WorldCitiesa ash219 Cities

m × n 958 × 292 608 × 188 315 × 100 219 × 85 55 × 46

density 0.68% 1.06% 23.87% 2.35% 53.04%

cond(A) 3.20 3.37 66.00 3.02 207.15

RaBK-c IT 2685.0 2055.3 18133.0 798.1 109750.2

CPU 0.1465 0.0534 0.2751 0.0109 1.0085

RaBK-a IT 4276.1 2746.6 5738.1 1273.5 66455.0

CPU 0.1487 0.0458 0.0628 0.0129 0.4762

RaBK-e-paved IT 318.1 225.5 16009.0 225.0 > 200000

CPU 0.0635 0.0217 0.1641 0.0048 −−
RaBK-a-paved IT 1242.7 1069.2 7585.9 918.7 > 200000

CPU 0.1965 0.0827 0.0731 0.0142 −−
GBK IT 30 28 990 30 31748

CPU 0.0152 0.0034 0.0934 0.0016 2.7097

FDBK IT 58 43 1894 38 55881

CPU 0.0051 0.0023 0.0336 0.0009 0.2463

speed-up RaBK-c 28.73 23.22 8.19 12.28 4.09

speed-up RaBK-a 29.16 19.91 1.87 14.54 1.93

speed-up RaBK-e-paved 12.45 9.43 4.88 5.41 −−
speed-up RaBK-a-paved 38.53 35.96 2.18 16.00 −−
speed-up GBK 2.98 1.48 2.78 1.80 11.00

name Trefethen 700 Trefethen 300 Trefethen 20 cage5 Stranke94

m × n 700 × 700 300 × 300 20 × 20 37 × 37 10 × 10

density 2.58% 5.20% 39.50% 17.02% 90.00%

cond(A) 4710.39 1772.69 63.09 15.42 51.73

RaBK-c IT 5850.8 7250.3 706.8 1250.1 9496.0

CPU 0.7359 0.3998 0.0051 0.0104 0.0550

RaBK-a IT 9938.0 4232.5 288.5 538.4 7348.0

CPU 0.7901 0.1479 0.0018 0.0036 0.0330

RaBK-e-paved IT 194.2 198.8 262.7 353.0 > 200000

CPU 0.3546 0.0394 0.0018 0.0026 −−
RaBK-a-paved IT 420.9 417.6 423.9 571.5 > 200000

CPU 0.6014 0.0614 0.0026 0.0042 −−
GBK IT 35 37 135 132 4311

CPU 0.0175 0.0039 0.0014 0.0016 0.0932

FDBK IT 44 42 132 147 6977

CPU 0.0105 0.0023 0.0005 0.0006 0.0169

speed-up RaBK-c 70.09 173.83 10.81 17.13 3.25

speed-up RaBK-a 75.25 64.30 3.82 5.93 1.95

speed-up RaBK-e-paved 33.77 17.13 3.82 4.28 −−
speed-up RaBK-a-paved 57.28 26.70 5.51 6.92 −−
speed-up GBK 1.67 1.70 2.97 2.63 5.51

aThe matrix WorldCities has two zero rows, which are removed

1025Numerical Algorithms (2022) 89:1007–1029

Table 7 Numerical results corresponding to the full-rank sparse matrices A of Type II with m < n

name df2177 cari model1 nemsafm bibd 17 8

m × n 630 × 10358 400 × 1200 362 × 798 334 × 2348 136 × 24310

density 0.34% 31.83% 1.05% 0.36% 20.59%

cond(A) 2.01 3.13 17.57 4.77 9.04

RaBK-c IT 2953.4 1641.4 12733.0 2548.7 1417.8

CPU 9.8847 0.3651 1.6393 1.3547 9.3782

RaBK-a IT 8947.2 5671.6 5230.5 4734.6 2068.8

CPU 13.3825 0.7288 0.4143 1.4091 7.9277

RaBK-e-paved IT 219.0 1120.3 240.9 169.1 1235.5

CPU 81.2929 1.1274 0.1708 1.6436 12532.2438

RaBK-a-paved IT 418.0 1419.5 423.6 416.5 4498.1

CPU 8.5530 0.3169 0.1663 1.0567 8.2525

GBK IT 42 67 357 66 242

CPU 0.5063 0.0353 0.0702 0.0566 7.5696

FDBK IT 43 70 379 66 260

CPU 0.2497 0.0102 0.0184 0.0256 0.6151

speed-up RaBK-c 39.59 35.79 89.09 52.92 15.25

speed-up RaBK-a 53.59 71.45 22.52 55.04 12.89

speed-up RaBK-e-paved 325.56 110.53 9.28 64.20 20374.32

speed-up RaBK-a-paved 34.25 31.07 9.04 41.28 13.42

speed-up GBK 2.03 3.46 3.82 2.21 12.31

name crew1 bibd 16 8 bibd 13 6 refine Trec8

m × n 135 × 6469 120 × 12870 78 × 1716 29 × 62 23 × 84

density 5.38% 23.33% 19.23% 8.51% 28.43%

cond(A) 18.20 9.54 6.27 66.67 26.89

RaBK-c IT 7297.4 1407.3 736.6 1027.6 3271.8

CPU 9.1950 3.8979 0.1546 0.0105 0.0387

RaBK-a IT 2206.5 1859.4 1161.2 431.3 1525.7

CPU 1.4169 2.2453 0.1447 0.0036 0.0134

RaBK-e-paved IT 1630.5 1039.6 484.3 285.7 3781.7

CPU 57.8892 1634.2695 3.0749 0.0027 0.0283

RaBK-a-paved IT 1493.1 4543.3 2462.5 587.0 2378.3

CPU 1.0218 4.5207 0.2716 0.0049 0.0185

GBK IT 516 268 125 170 688

CPU 1.0068 3.9287 0.0590 0.0021 0.0122

FDBK IT 1023 282 156 176 1012

CPU 0.3866 0.2599 0.0049 0.0007 0.0033

speed-up RaBK-c 23.78 15.00 31.55 14.90 11.73

speed-up RaBK-a 3.67 8.64 29.53 5.11 4.06

speed-up RaBK-e-paved 149.74 6288.07 627.53 3.83 8.58

speed-up RaBK-a-paved 2.64 17.39 55.43 6.95 5.61

speed-up GBK 2.60 15.12 12.04 2.98 3.70

1026 Numerical Algorithms (2022) 89:1007–1029

the GBK method is less than that of the FDBK method. Moreover, the speed-up
of the FDBK method against the GBK method is distributed from 1.48 to 15.12.

• FDBK versus RaBK: Compared with the four special cases of the RaBK method,
data in tables shows us that the FDBK method has great advantages in terms
of the CPU time in all cases and the number of iteration steps except the case
when the matrix is model1. In detail, for the matrix of model1, the RaBK-e-
paved method owns the least number of iteration steps. For the matrices of Cities
and Stranke94, the RaBK-e-paved and RaBK-a-paved methods failed due to the
number of the iteration steps exceeding 200000. Specifically, the speed-up of the
FDBK method against the RaBK-c method is distributed from 3.25 to 173.83,
and the speed-up of the FDBK method against the RaBK-a method is distributed
from 1.87 to 75.25. When the numbers of iteration steps do not exceed 200000,
the speed-up of the FDBK method against the RaBK-e-paved method is dis-
tributed from 3.82 to 20374.32, and the speed-up of the FDBK method against
the RaBK-a-paved method is distributed from 2.18 to 57.28.

Rank-deficient sparse matrices selected from [7] The matrices used here, originated
in different applications such as combinatorial problem, undirected weighted graph,
directed graph and bipartite graph [7], include a thin (or tall) matrix, two square
matrices and three fat matrices. As is in the previous part, these six matrices of Type
III are determined uniquely.

Numerical results corresponding to these matrices of Type III are listed in Table 8,
where “density” and “cond(A)” are computed via the method in the previous part.

Since the matrices relat6, GD00 a and GL7d26 have zero rows, respectively, we
removed these zero rows from the matrices in the numerical experiments in the same
reason described in the previous part.

From Table 8, we can also observe the similar phenomena to those observed from
Tables 2, 3, 4, 5, 6, and 7:

• FDBK versus GBK: The FDBK method performs better than the GBK method
especially in terms of the CPU time, although the number of the iteration steps
of the FDBK method is greater than that of the GBK method. Moreover, the
speed-up of the FDBK method against the GBK method is distributed from 1.45
to 2.51.

• FDBK versus RaBK: The FDBK method outperforms the four special cases of
the RaBK method in terms of both the number of iteration steps and the CPU
time. Specifically, in the table, the speed-up of the FDBK method against the
RaBK-c method is distributed from 5.92 to 56.55, the speed-up of the FDBK
method against the RaBK-a method is distributed from 1.52 to 31.80, the speed-
up of the FDBK method against the RaBK-e-paved method is distributed from
5.02 to 44.69, and the speed-up of the FDBK method against the RaBK-a-paved
method is distributed from 3.07 to 19.79.

All in all, data in Tables 2, 3, 4, 5, 6, 7, and 8 illustrates that the CPU time of
the FDBK method is less than those of other tested methods, i.e., the FDBK method
performs more efficiently than other tested methods especially in terms of the CPU
time.

1027Numerical Algorithms (2022) 89:1007–1029

Table 8 Numerical results corresponding to the rank-deficient matrices A of Type III

name relat6a GD00 aa Sandi authors Sandi sandi GL7d26a n4c5-b10

m × n 2340 × 157 352 × 352 86 × 86 314 × 360 305 × 2798 120 × 630

density 2.21% 0.37% 3.35% 0.54% 0.87% 1.75%

cond(A) Inf Inf 1.11e+18 1.20e+18 1.55e+19 2.37e+16

RaBK-c IT 7449.0 8368.4 76351.0 17420.0 1411.6 454.0

CPU 0.1765 0.5174 1.0025 1.1592 0.9594 0.0390

RaBK-a IT 2110.7 1974.5 8552.8 4083.2 3896.3 1563.9

CPU 0.0453 0.0838 0.0822 0.1768 1.4512 0.0954

RaBK-e-paved IT 5568.0 5399.5 15393.0 853.4 172.4 221.3

CPU 0.1856 0.2538 0.1396 0.1030 2.5163 0.0635

RaBK-a-paved IT 2639.4 3409.3 8076.3 859.2 417.3 274.4

CPU 0.0916 0.1481 0.0821 0.0970 1.1144 0.0439

GBK IT 176 184 3706 212 35 28

CPU 0.0598 0.0390 0.0565 0.0297 0.0821 0.0057

FDBK IT 295 427 4507 388 36 30

CPU 0.0298 0.0198 0.0225 0.0205 0.0563 0.0030

speed-up RaBK-c 5.92 26.13 44.56 56.55 17.04 13.00

speed-up RaBK-a 1.52 4.23 3.65 8.62 25.78 31.80

speed-up RaBK-e-paved 6.23 12.82 6.20 5.02 44.69 21.17

speed-up RaBK-a-paved 3.07 7.48 3.65 4.73 19.79 14.63

speed-up GBK 2.01 1.97 2.51 1.45 1.46 1.90

aThe matrices relat6, GD00 a and GL7d26 have zero rows, which are removed in the numerical
experiments

5 Conclusions

In this paper, we propose the fast deterministic block Kaczmarz (FDBK) method
for solving large-scale consistent linear systems. It is proved that the FDBK method
converges to the least-norm solutions of the linear systems whether they are overde-
termined or underdetermined. Numerical results illustrate that the FDBK method
provides significant computational advantages and is more efficient, which means
that the FDBK method is a competitive block Kaczmarz-type method for consistent
linear system.

Funding This work was supported by NSFC under grant number 11871430.

References

1. Bai, Z.-Z., Liu, X.-G.: On the Meany inequality with applications to convergence analysis of several
row-action iteration methods. Numer. Math. 124(2), 215–236 (2013)

1028 Numerical Algorithms (2022) 89:1007–1029

2. Bai, Z.-Z., Wu, W.-T.: On convergence rate of the randomized Kaczmarz method. Linear Algebra
Appl. 553, 252–269 (2018)

3. Bai, Z.-Z., Wu, W.-T.: On greedy randomized Kaczmarz method for solving large sparse linear
systems. SIAM J. Sci. Comput. 40(1), A592–A606 (2018)

4. Bai, Z.-Z., Wu, W.-T.: On relaxed greedy randomized Kaczmarz methods for solving large sparse
linear systems. Appl. Math. Lett. 83, 21–26 (2018)

5. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine-convex feasibility
problems. Numer. Algorithms 41(3), 239–274 (2006)

6. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4),
444–466 (1981)

7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Software
38(1), 1–25 (2011)

8. Du, K., Si, W.-T., Sun, X.-H.: Randomized extended average block Kaczmarz for solving least
squares. SIAM J. Sci. Comput. 42(6), A3541–A3559 (2020)

9. Eggermont, G.T., Herman, P.P.B., Lent, A.: Iterative algorithms for large partitioned linear systems,
with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981)

10. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math.
35(1), 1–12 (1980)

11. Gower, R.M., Richtárik, P.: Randomized iterative methods for linear systems. SIAM J. Matrix Anal.
Appl. 36(4), 1660–1690 (2015)

12. Kaczmarz, S.: Angenäherte Auflösung von Systemen Linearer Gleichungen. Bull. Int. Acad. Polon.
Sci. Lett. A 35, 355–357 (1937)

13. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and
conditioning. Math. Oper. Res. 35(3), 641–654 (2010)

14. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel
and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36(4), 1590–1604 (2015)

15. Merzlyakov, Y.I.: On a relaxation method of solving systems of linear inequalities. USSR Comput.
Math. Math. Phys. 2(3), 504–510 (1963)

16. Necoara, I.: Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Appl. 40(4), 1425–
1452 (2019)

17. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT 50(2), 395–403 (2010)
18. Needell, D., Tropp, J.A.: Paved with good intentions: Analysis of a randomized block Kaczmarz

method. Linear Algebra Appl. 441(1), 199–221 (2014)
19. Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving

least squares. Linear Algebra Appl. 484, 322–343 (2015)
20. Niu, Y.-Q., Zheng, B.: A greedy block Kaczmarz algorithm for solving large-scale linear systems.

Appl. Math. Lett. 104, 106294 (2020)
21. Nutini, J., Sepehry, B., Laradji, I., Schmidt, M., Koepke, H., Virani, A.: Convergence rates for

greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality graph.
arXiv:1612.07838 (2016)

22. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28(1), 96–115
(1984)

23. Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and
rank-deficient least-squares problems. BIT 38(1), 151–176 (1998)

24. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J.
Fourier Anal. Appl. 15(2), 262–278 (2009)

25. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least-squares. SIAM J. Matrix
Anal. Appl. 34(2), 773–793 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1029Numerical Algorithms (2022) 89:1007–1029

http://arxiv.org/abs/1612.07838

	On a fast deterministic block Kaczmarz method for solving large-scale linear systems
	Abstract
	Introduction
	The fast deterministic block Kaczmarz method
	Convergence analysis and error estimates of the FDBK method
	Experimental results
	Dense and well-conditioned matrices
	Full-rank sparse matrices selected from sprase
	Rank-deficient sparse matrices selected from sprase

	Conclusions
	References

