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Abstract
In the two parts of the present note we discuss several questions concerning the imple-
mentation of overdetermined least-squares collocation methods for higher index
differential-algebraic equations (DAEs). Since higher index DAEs lead to ill-posed
problems in natural settings, the discrete counterparts are expected to be very sensi-
tive, which attaches particular importance to their implementation. In the present Part
1, we provide a robust selection of basis functions and collocation points to design the
discrete problem. We substantiate a procedure for its numerical solution later in Part
2. Additionally, in Part 1, a number of new error estimates are proven that support
some of the design decisions.

Keywords Least-squares collocation · Higher index differential-algebraic
equations · Ill-posed problem
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1 Introduction

An overdetermined least-squares collocation method for the solution of boundary
value problems for higher index differential-algebraic equations (DAEs) has been
introduced in [28] and further investigated in [25–27]. A couple of sufficient conver-
gence conditions have been established. Numerical experiments indicate an excellent
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behavior. Moreover, it is particularly noteworthy that the computational effort is not
much more expensive than for standard collocation methods applied to boundary
value problems for ordinary differential equations. However, the particular proce-
dures are much more sensitive which reflects the ill-posedness of higher index DAEs.
The question of a reliable implemention is almost completely open. The method
offers a number of parameters and options whose selection has not been backed up
by any theoretical justifications. Both parts of the present paper are devoted to a first
investigation of this topic. We focus on the choice of collocation nodes, the repre-
sentation of the ansatz function as well as the shape and structure of the resulting
discrete problem. We apply various theoretical arguments, among them also new suf-
ficient convergence conditions in Theorems 1, 2, and 3, and report on corresponding
systematic comprehensive numerical experiments.

Considering that so far for the practical simulation of general unstructured DAEs
with higher index only such methods are available which are connected with the con-
struction, analysis, and evaluation of high-dimensional prolonged systems (derivative
array systems), a reliable direct method, as we aim at, would be a significant progress.
This is confirmed by a first comparison with the classical derivative array-based
method from [6] in [27, subsection 6.4] and [25, subsection 5.2]. A discussion of
some earlier direct approaches can be found in [28, Section 5].

The present Part 1 of the note is organized as follows: Section 2 contains the
information concerning the problem to be solved as well as the basics on the overde-
termined least-squares approach, and, additionally, the new error estimates. Section 3
deals with the selection and calculation of collocation points and integration weights
for the different functionals of interest and Section 4 provides a robust selection of
bases of the ansatz space. It should also be mentioned at this point that the resulting
discrete least-squares problem is treated in detail in Part 2 [24]. We conclude with
Section 5, which contains a summary and further comments.

The algorithms have been implemented in C++11. All computations have been
performed on a laptop running OpenSuSE Linux, release Leap 15.1, the GNU
g++ compiler (version 7.5.0) [40], the Eigen matrix library (version 3.3.7) [22],
SuiteSparse (version 5.6.0) [7], in particular its sparse QR factorization [8], Intel®

MKL (version 2019.5-281), all in double precision with a rounding unit of εmach ≈
2.22 × 10−16.1 The code is optimized using the level -O3.2

2 Fundamentals of the problem andmethod

Consider a linear boundary value problem for a DAE with properly involved derivative,

A(t)(Dx)′(t) + B(t)x(t) = q(t), t ∈ [a, b], (1)

Gax(a) + Gbx(b) = d. (2)

1Intel is a registered trademark of Intel Corporation.
2The interested reader can get access to the code by writing to the corresponding author. However, it
should be noted that the code has been written with the aim of a thorough testing of the ingredients of the
proposed methods. So it does not yet have production quality.
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with [a, b] ⊂ R being a compact interval, D = [I 0] ∈ R
k×m, k < m, with the

identity matrix I ∈ R
k×k . Furthermore, A(t) ∈ R

m×k , B(t) ∈ R
m×m, and q(t) ∈ R

m

are assumed to be sufficiently smooth with respect to t ∈ [a, b]. Moreover, Ga, Gb ∈
R

l×m and kerGa ⊇ kerD, kerGb ⊇ kerD. Thereby, l is the dynamical degree of
freedom of the DAE, that is, the number of free parameters which can be fixed by
initial and boundary conditions.

Unlike regular ordinary differential equations (ODEs) where l = k = m, for
DAEs it holds that 0 ≤ l ≤ k < m, in particular, l = k for index-one DAEs, l < k

for higher index DAEs, and l = 0 can certainly happen.
Supposing accurately stated initial and boundary conditions, index-one DAEs

yield well-posed problems in natural settings and can be numerically treated quite
well similarly as ODEs [34]. In contrast, in the present paper, we are mainly inter-
ested in higher index DAEs which lead to essentially ill-posed problems even if the
boundary conditions are stated accurately [27, 33, 34]. The tractability index and
projector-based analysis serve as the basis for our investigations. We refer to [33] for
a detailed presentation and to [27, 34, 36] for corresponding short sketches.

We assume that the DAE is regular with arbitrarily high index μ ∈ N and the
boundary conditions are stated accurately so that solutions of the problem (1)–(2)
are unique. We also assume that a solution x∗ : [a, b] → R

m actually exists and is
sufficiently smooth.

For the construction of a regularization method to treat an essentially ill-posed
problem a Hilbert space setting of the problem is most convenient. For this reason,
as in [26–28], we apply the spaces

H 1
D := H 1

D((a, b),Rm) = {x ∈ L2((a, b),Rm) : Dx ∈ H 1((a, b),Rk)},
L2 := L2((a, b),Rm),

which are suitable for describing the underlying operators. In particular, let T :
H 1

D → L2 × R
l be given by

(T x)(t) =
[

A(t)(Dx)′(t) + B(t)x(t)

Gax(a) + Gbx(b)

]
. (3)

Then the boundary value problem can be described by T x = (q, d)T .
For K ≥ 0, letPK denote the set of all polynomials of degree less than or equal to

K . Next, we define a finite dimensional subspaceXπ ⊂ H 1
D of piecewise polynomial

functions which should serve as ansatz space for the least-squares approximation:
Let the partition π be given by

π : a = t0 < t1 < · · · < tn = b, (4)

with the stepsizes hj = tj − tj−1, h = max1≤j≤n hj , and hmin = min1≤j≤n hj .
Let Cπ([a, b],Rm) denote the space of piecewise continuous functions having

breakpoints merely at the meshpoints of the partition π . Let N ≥ 1 be a fixed integer.
Then, we define

Xπ = {x ∈ Cπ([a, b],Rm) : Dx ∈ C([a, b],Rk),

xκ |[tj−1,tj )∈ PN, κ = 1, . . . , k, xκ |[tj−1,tj )∈ PN−1,

κ = k + 1, . . . , m, j = 1, . . . , n}. (5)
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The continuous version of the least-squares method reads: Find an xπ ∈ Xπ that
minimizes the functional

Φ(x)=‖T x‖2=
∫ b

a

|A(t)(Dx)′(t)+B(t)x(t)−q(t)|2dt +|Gax(a)+Gbx(b)−d|2.
(6)

It is ensured by [27, Theorem 4.1] that, for all sufficiently fine partitions π with
bounded ratios 1 ≤ h/hmin ≤ ρ, ρ being a global constant, there exists a unique
solution xπ ∈ Xπ and the inequality

‖xπ − x∗‖H 1
D

≤ ChN−μ+1 (7)

is valid. The constant C ∈ R depends on the solution x∗, the degree N , and the index
μ, but it is independent of h. If N > μ− 1 then (7) apparently indicates convergence

xπ
h→0−−−→ x∗ in H 1

D .
At this place it is important to mention that, so far, we are aware of only sufficient

conditions of convergence and the error estimates may not be sharp. Not only more
practical questions of implementation are open, but also several questions about the
theoretical background. We are optimistic that much better estimates are possible
since the results of the numerical experiments have performed impressively better
than theoretically expected till now.

The following theorem can be understood as a specification of [27, Theorem 4.1]
by a more detailed description of the ingredients of the constant C, in particular,
now the role of N is better clarified, which could well be important for the practical
realization. In particular, it suggests that smooth problems could perhaps be solved
better with large N and coarser partitions.

Theorem 1 Let the DAE (1) be regular with index μ ∈ N and let the boundary
condition (2) be accurately stated. Let x∗ be a solution of the boundary value problem
(1)–(2), and let A, B, q and also x∗ be sufficiently smooth.

Let N ≥ 1 and all partitions π be such that h/hmin ≤ ρ, with a global constant
ρ. Then, for all such partitions with sufficiently small h, the estimate (7) is valid with

C = N !
(2N)!√2N + 1

CNC∗ρμ−1Cdata,

where

C∗ = max{‖x(N)∗ ‖∞, ‖x(N+1)∗ ‖∞}(m + 4k(b − a)3)1/2,

Cdata is independent of N and h, it depends only on the data A, D,B,Ga,Gb,

and CN is a rather involved function of N . In particular, there is an integer K with
N ≤ K ≤ 2(μ − 1) + N such that, for N → ∞, CN does not grow faster than
K2(μ−1). If A and B are constant, it holds K = N .

At this place it should be mentioned that the estimate [38]

√
2πN

(
N

e

)N

e1/(12N+1) ≤ N ! ≤ √
2πN

(
N

e

)N

e1/(12N),
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or its slightly less sharp version,

√
2πN

(
N

e

)N

≤ N ! ≤ √
2πN

(
N

e

)N

e1/12

allow the growth estimate N !
(2N)! ≤ √

πNe1/6 1
N !

1
4N , thus

C ≤ √
πNe1/6

1

N !
1

4N
√
2N + 1

CNC∗ρμ−1Cdata ≤
√

π

2
e1/6

1

N !
1

4N
CNC∗ρμ−1Cdata

≤ 1

N !
1

4N
CNC∗ρμ−1

√
π

2
e1/6Cdata . (8)

However, it should be considered that CN and C∗ also depend on N .

Proof We apply the estimate [27]

‖xπ − x∗‖H 1
D

≤ ‖T ‖απ

γπ

+ απ,

in which the approximation error απ and the instability threshold γπ are given by

απ = inf
x∈Xπ

‖x − x∗‖H 1
D
, γπ = inf

x∈Xπ ,x �=0

‖T x‖
‖x‖H 1

D

.

Owing to [27, Theorem 4.1], there is a constant cγ > 0 independent of π so that
the instability threshold γπ satisfies the inequality

cγ h
μ−1
min ≤ γπ ≤ ‖T ‖,

for all partitions with sufficiently small h. This leads to

‖xπ − x∗‖H 1
D

≤ απ

γπ

(‖T ‖ + γπ) ≤ 2
απ

γπ

‖T ‖.
Choosing N interpolation points ρi with

0 < ρ1 < · · · < ρN < 1, (9)

ω̃(ρ) = (ρ − ρ1) · · · (ρ − ρN),

the approximation error can be estimated by straightforward but elaborate computa-
tions by constructing p∗ ∈ Xπ such that p′∗,s(tj−1 + ρihj ) = x′∗,s(tj−1 + ρihj ),
p∗,s(a) = x∗,s(a), s = 1, . . . , k, p∗,s(tj−1 + ρihj ) = x∗,s(tj−1 + ρihj ), s =
k + 1, . . . , m, i = 1, . . . , N , j = 1, . . . , n, and regarding απ ≤ ‖p∗ − x∗‖H 1

D
. One

obtains

απ ≤ hN

N ! ‖ω̃‖L2(0,1)C∗, (10)

C∗ = max
{
‖x(N)∗ ‖∞, ‖x(N+1)∗ ‖∞

} (
m + 4k(b − a)3

)1/2
.

Turning to shifted Gauss-Legendre nodes that minimize ‖ω̃‖L2(0,1) we obtain

‖ω̃‖L2(0,1) = (N !)2
(2N)!√2N + 1

.
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To verify this, we consider the polynomial

ω(t) = 2Nω̃

(
t + 1

2

)
= (t − t1) · · · (t − tN )

with zeros tj = 2ρj − 1, j = 1, . . . , N , which is nothing else but the standard
Legendre polynomial with leading coefficient one. Using the Rodrigues formula and
other arguments from [23, Section 5.4], one obtains

‖ω‖L2(−1,1) = 2N+ 1
2

(N !)2
(2N)!√2N + 1

.

Finally, shifting back to the interval (0, 1) leads to ‖ω̃‖L2(0,1) =2−(N+1
2 )‖ω‖L2(−1,1).

Thus we have

απ ≤ hN

N !
(N !)2

(2N)!√2N + 1
C∗ = hN N !

(2N)!√2N + 1
C∗. (11)

Next, a careful review of the proof of [27, Theorem 4.1 (a)] results in the repre-
sentation (in terms of [27])

1

cγ

= 12cY
√

gμ−1 = 12cY

√
d1,μ−1c

∗
μ−1‖DLμ−1‖2∞

= 12cY

√
2‖DΠ0Q1 · · · Qμ−1D

+‖∞‖DLμ−1‖∞
√

c∗
μ−1.

The factors ‖DΠ0Q1 · · · Qμ−1D
+‖∞ and ‖DLμ−1‖∞ depend only on the data

A, D, B, likewise the bound cY introduced in [27, Proposition 4.3].
In contrast, the term c∗

μ−1 depends additionally on N besides the problem data.
Let K denote the degree of the auxiliary polynomial qμ−1 = Aμ−1(Dp)′ +Bμ−1p,

p ∈ Xπ in the proof of [27, Theorem 4.1]. Then we have N ≤ K ≤ N + 2(μ −
1) and, by [27, Lemma 4.2], c∗

μ−1 = 4μ−1λK · · · λK−μ+2, where each λS > 0 is
the maximal eigenvalue of a certain symmetric, positive semidefinite matrix of size
(S + 1) × (S + 1) [28, Lemma 3.3].

Owing to [28, Corollary A.3] it holds that λS ≤ 4
π2 S

4 + O(S2) for large S, and
therefore

c∗
μ−1 = 4μ−1λK · · · λK−μ+2

≤ 4μ−1
(

4

π2

)μ−1

K4(K − 1)4 · · · (K − μ + 2)4 + O
(
K4(μ−1)−1

)

= 4μ−1
(

4

π2

)μ−1

K4(μ−1) + O
(
K4(μ−1)−1

)

≤ 4μ−1
(

4

π2

)μ−1

(N + 2(μ − 1))4(μ−1) + O
(
(N + 2(μ − 1))4(μ−1)−1

)
.

Finally, letting

Cdata = 2‖T ‖12cY

√
2‖DΠ0Q1 · · · Qμ−1D

+‖∞‖DLμ−1‖∞, CN =
√

c∗
μ−1,

we are done.
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Observe that, for smooth problems, any fixed sufficiently fine partition π , and
N → ∞, the growth rate of the error ‖xπ − x∗‖H 1

D
is not greater than that of

C∗hN (N + 2(μ − 1))2(μ−1)

4NN ! = C∗
(

h

4

)N
(N + 2(μ − 1))2(μ−1)

N ! (12)

and, for constant matrix function A and B,

C∗hN N2(μ−1)

4NN ! = C∗
(

h

4

)N
N2(μ−1)

N ! . (13)

Remember that C∗ is a function of N .

Remark 1 The specific error estimation provided in [28] for the case of DAEs in
Jordan chain form on equidistant grids may provide some further insight into the
behavior of the instability threshold γπ . It is shown that

γπ ≥ C̄μ

(
h√
λN

)μ−1

holds true for sufficiently small h where C̄μ is a moderate constant depending only
on μ [28, Theorem 3.6]. This leads to the dominant error term

απ

γπ

≤ C∗
C̄μ

√
π

2
e1/6

1

22N
λ

μ−1
2

N

N ! hN−μ+1 = 1

C̄μ

√
π

2
e1/6

1

hμ−1
C∗

(
h

4

)N λ
μ−1
2

N

N ! ,

indicating again that, for smooth problems, it seems reasonable to calculate with
larger N and coarse partitions. Moreover, for sufficiently small h√

λN
, the estima-

tion λN ≤ 4
π2 N

4 + O(N2) becomes valid [28, Remark 3.4], and hence the growth
characteristic (13) for large N is confirmed once more.

The functional values Φ(x), which are needed when minimizing for x ∈ Xπ ,
cannot be evaluated exactly and the integral must be discretized accordingly. Taking
into account that the boundary value problem is ill-posed in the higher index case
μ > 1, perturbations of the functional may have a serious influence on the error
of the approximate least-squares solution or even prevent convergence towards the
solution x∗. Therefore, careful approximations of the integral in Φ are required. We
discuss the following three options:

ΦC
π,M(x) =

n∑
j=1

hj

M

M∑
i=1

|A(tji)(Dx)′(tji) + B(tji)x(tji) − q(tji)|2

+|Gax(a) + Gbx(b) − d|2, (14)

ΦI
π,M(x) =

n∑
j=1

hj

M∑
i=1

γi |A(tji)(Dx)′(tji) + B(tji)x(tji) − q(tji)|2

+|Gax(a) + Gbx(b) − d|2, (15)
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and

ΦR
π,M(x) =

n∑
j=1

∫ tj

tj−1

∣∣∣∣∣
M∑
i=1

lj i(t)(A(tji)(Dx)′(tji) + B(tji)x(tji) − q(tji))

∣∣∣∣∣
2

dt

+|Gax(a) + Gbx(b) − d|2, (16)

in which from the DAE (1) and x ∈ Xπ only data at the points

tj i = tj−1 + τihj , i = 1, . . . , M, j = 1, . . . , n,

are included, with
0 ≤ τ1 < · · · < τM ≤ 1. (17)

In the last functional ΦR
π,M Lagrange basis polynomials appear, i.e.,

lj i(t) =
∏M

κ=1
κ �=i

(t − tjκ )

∏M
κ=1
κ �=i

(tj i − tjκ )
=

∏M
κ=1
κ �=i

(τ − τκ)

∏M
κ=1
κ �=i

(τi − τκ)
=: li (τ ), τ = (t − tj−1)/hj . (18)

Remark 2 The direct numerical implementation of ΦR
π,M(x) with the Lagrangian

basis functions includes the use of the mass matrix belonging to such functions. It is
well known that this matrix may be very bad conditioned thus leading to an ampli-
fication of rounding errors. In connection with the ill-posedness of higher index
DAEs, this may render the numerical solutions useless. The solution of the least-
squares problem with ΦI

π,M is much less expensive than that with ΦR
π,M , and in

turn, solving system (21)–(22) below for x ∈ Xπ in a least-squares sense using the
(diagonally weighted) Euclidean norm in R

nMm+l according to ΦC
π,M is even less

computationally expensive than using ΦI
π,M(x).

Introducing, for each x ∈ Xπ and w(t) = A(t)(Dx)′(t) + B(t)x(t) − q(t), the
corresponding vector W ∈ R

mMn by

W =
⎡
⎢⎣

W1
...

Wn

⎤
⎥⎦ ∈ R

mMn, Wj = h
1/2
j

⎡
⎢⎣

w(tj1)
...

w(tjM)

⎤
⎥⎦ ∈ R

mM, (19)

we obtain new representations of these functionals, namely

ΦC
π,M(x) = WT L CW + |Gax(a) + Gbx(b) − d|2,

ΦI
π,M(x) = WT L IW + |Gax(a) + Gbx(b) − d|2,

and
ΦR

π,M(x) = WT L RW + |Gax(a) + Gbx(b) − d|2,
whereby the first two formulae are evident, with L C = diag(LC ⊗ Im, . . . , LC ⊗
Im), ⊗ denoting the Kronecker product, and LC = M−1IM such that finally
L C = M−1InMm, and further, L I = diag(LI ⊗ Im, . . . , LI ⊗ Im) and LI =
diag(γ1, . . . , γM). LC and thus L C are positive definite. The matrices LI and L I

are positive definite if and only if all quadrature weights are positive.
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The formula for ΦR
π,M(x) can be established by straightforward evaluations fol-

lowing the lines3 of [28, Section 2.3], in which L R = diag(LR ⊗ Im, . . . , LR ⊗ Im),
LR is the mass matrix associated with the Lagrange basis functions li , i = 1, . . . ,M ,
(18) for the node sequence (17), more precisely,

LR =
(
LR

iκ

)
i,κ=1,...,M

, LR
iκ =

∫ 1

0
li (τ )lκ (τ )dτ . (20)

LR is symmetric and positive definite and, consequently, L R is so.
We emphasize that the matrices LC, LI , LR depend only onM , the node sequence

(17), and the quadrature weights, but do not depend on the partition π and h at all.
We set always M ≥ N + 1. Although the nodes (17) serve as interpolation points

in the functional ΦR
π,M , we still call them collocation nodes after [28]. It should be

underlined here that minimizing each of the above functionals on Xπ can be viewed
as a special least-squares method to solve the overdetermined collocation system
W = 0, Gax(a) + Gbx(b)) = d, with respect to x ∈ Xπ , that is in detail, the
collocation system

A(tji)(Dx)′(tji) + B(tji)x(tji) = q(tji), i = 1, . . . , M, j = 1, . . . , n, (21)

Gax(a) + Gbx(b)) = d. (22)

The system (21)–(22) for x ∈ Xπ becomes overdetermined since Xπ has dimen-
sion mnN + k, whereas the system consists of mnM + l ≥ mnN + mn + l ≥
nmN + m + l > nmN + k + l ≥ mnN + k scalar equations.4

Remark 3 Based on collocation methods for index-1 DAEs, the first thought in [27,
28] was to turn to the functionalΦC

π,M with nodes 0 < τ1 < · · · < τM < 1. However,
the use of the special discretized norm in these papers for providing convergence
results is in essence already the use of the functional ΦR

π,M .

For a general set of nodes (17), ΦC
π,M represents a simple Riemann approximation

of the corresponding integral which has first order of accuracy, only. If, however, the
nodes are chosen as those of the Chebyshev integration, the orders 1, . . . , 7 and 9 can
be obtained for the corresponding number M of nodes [29, p 349]. The marking with
the upper index C indicates now that Chebyshev integration formulas are conceiv-
able. As developed in [23, Section 7.5.2], integration formulas with uniform weights,
i.e., Chebyshev formulas, are those where random errors in the function values have
the least effect on the quadrature result. This makes these formulas very interesting
in our context. However, although a lot of test calculations run well, we are not aware
of convergence statements going along with ΦC

π,M so far.

3Hanke and März [28, Section 2.3] is restricted to equidistant partitions π and collocation points 0 < τ1 <

· · · < τM < 1. The generalization works without further ado.
4If the DAE (1) has index μ = 1, then l = k, and hence also the choice M = N makes sense. Then
the system (21)–(22) for x ∈ Xπ is nothing else but the classical collocation approach, and the least-
squares solution becomes the exact solution of the collocation system. We refer to [34] for a detailed
survey of classical collocation methods, however, here we mainly focus on higher index cases yielding
overdetermined systems.
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Remark 4 The functional ΦR
π,M gets its upper index R from the restriction operator

Rπ,M introduced in [26] with nodes 0 < τ1 < · · · < τM < 1. Note that [26, Theorem
2.3] generalizes convergence results from [27, 28] to a large extend. Theorem 2 below
allows even any nodes with (17).

Remark 5 The functional ΦI
π,M has its upper index I simply from the word inte-

gration formula. We will see first convergence results going along with ΦI
π,M in

Theorem 2 below.
Intuitively, it seems reasonable to use a Gaussian quadrature rule for these pur-

poses. However, it is not known if such a rule is most robust against rounding errors
and/or other choices of the overall process.

Remark 6 Our approximations are according to the basic ansatz space Xπ discontin-
uous, with possible jumps at the grid points in certain components. In this respect it
does not matter which of our functionals is selected. Since we always have overde-
termined systems (21)–(22), it can no longer be expected that all components of the
approximation are continuous even for the case τ1 = 0, τM = 1. This is an impor-
tant difference to the classical collocation methods for index-1 DAEs, which base on
classical uniquely solvable linear systems, e.g., [34].

Theorem 2 Let the DAE (1) be regular with index μ ∈ N and let the boundary
condition (2) be accurately stated. Let x∗ be a solution of the boundary value problem
(1)–(2), and let A, B, q and also x∗ be sufficiently smooth.

Let all partitions π be such that h/hmin ≤ ρ, with a global constant ρ. Then, with

M ≥ N + μ,

the following statements are true:

(1) For sufficient fine partitions π and each sequence of arbitrarily placed nodes
(17), there exists exactly one xR

π ∈ Xπ minimizing the functional ΦR
π,M on Xπ ,

and

‖xR
π − x∗‖H 1

D
≤ CRhN−μ+1.

(2) For each integration rule related to the interval [0, 1], with M nodes (17) and
positive weights γ1, . . . , γM , that is exact for polynomials with degree less than
or equal to 2M − 2, and sufficient fine partitions π , there exists exactly one
xI
π ∈ Xπ minimizing the functional ΦI

π,M on Xπ , and xI
π = xR

π , thus

‖xI
π − x∗‖H 1

D
≤ CRhN−μ+1.

Since Gauss-Legendre and Gauss-Radau integration rules are exact for polynomi-
als up to degree 2M−1 and 2M−2, respectively, with positive weights, they are well
suitable here, but Gauss-Lobatto rules do not meet the requirement of Theorem 2 (2).

Proof (1) In [26], additionally supposing 0 < τ < · · · < τM < 1, conditions are
derived that ensure the existence and uniqueness of xR

π minimizing ΦR
π,M on
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Xπ . It is shown that xR
π has similar convergence properties as xπ minimizing Φ

on Xπ . Merely the constant CR is slightly larger than C in (7). A further careful
check of the proofs in [26] shows that the assertion holds also true for τ1 = 0
and/or τM = 1, possibly with a larger constant CR .

(2) For each arbitrary x ∈ Xπ , the expression

θj (t) :=
∣∣∣∣∣

M∑
i=1

lj i(t)(A(tji)(Dx)′(tji)+B(tjix(tji)−q(tji))

∣∣∣∣∣
2

, t ∈ (tj−1, tj ),

shows that θj is a polynomial with degree less than or equal to 2M − 2, thus

∫ tj

tj−1

θj (t)dt=hj

M∑
i=1

γiθj (tji )=hj

M∑
i=1

γi

∣∣A(tji)(Dx)′(tji )+B(tji)x(tji )−q(tji )
∣∣2

Therefore, it follows that ΦI
π,M(x) = ΦR

π,M(x), for all x ∈ Xπ , and ΦI
π,M

coincides with the special functional ΦI
π,M having the same nodes. Eventually,

(2) is a particular case of (1).

As already emphasized above, until now we are aware of only sufficient conver-
gence conditions, which is, in particular, especially applicable for the size of M . So
far, often the applications run well with M = N + 1 and no significant difference to
calculations with a larger Mwas visible, e.g., [27, Section 6] and [28, Section 4]. Also
the experiments in Section 4 below are carried out with M = N + 1. The following
statement for A and B with polynomial entries allows to choose M independently of
the index μ and confirms the choice M = N + 1 for constant A and B.

Theorem 3 Let the DAE (1) be regular with index μ ∈ N and let the boundary
condition (2) be accurately stated. Let x∗ be a solution of the boundary value problem
(1)–(2), and let q and also x∗ be sufficiently smooth. Let the entries of A and B be
polynomials with degree less than or equal to NAB . Let all partitions π be such that
h/hmin ≤ ρ, with a global constant ρ. Then, with

M ≥ N + 1 + NAB,

the following statements are true:

(1) For sufficient fine partitions π and each sequence of arbitrarily placed nodes
(17), there exists exactly one xR

π ∈ Xπ minimizing the functional ΦR
π,M on Xπ ,

and

‖xR
π − x∗‖H 1

D
≤ CRhN−μ+1.

(2) For each integration rule of interpolation type related to the interval [0, 1], with
M nodes (17) and positive weights γ1, . . . , γM , that is exact for polynomials
with degree less than or equal to 2M − 2, and sufficient fine partitions π , there
exists exactly one xI

π ∈ Xπ minimizing the functional ΦI
π,M on Xπ , and xI

π =
xR
π , thus

‖xI
π − x∗‖H 1

D
≤ CRhN−μ+1.
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(3) If A and B are even constant matrices, for sufficient fine partitions π and each
sequence of arbitrarily placed nodes (17), there exists exactly one xR

π ∈ Xπ

minimizing the functional ΦR
π,M on Xπ , and

‖xR
π − x∗‖H 1

D
≤ CRhmax{0,N−μ+1}.

Proof (1): This follows from [26, Proposition 2.2(iv)] and [27, Theorem 4.1]. (2):
As in the proof of the previous theorem, this is again a consequence of (1). (3): The
statement is a consequence of [26, Proposition 2.2(iv)] and [27, Theorem 4.7].

Remark 7 Observe a further interesting feature. Let A and B be constant matrices.
Set N = 1, M = N + 1. Then, it holds that

ΦC
π,M(x) = ΦR

π,M(x) = ΦI
π,M(x), x ∈ Xπ,

in whichΦI
π,M is associated with the corresponding Gauss-Legendre or Gauss-Radau

rules. This follows from the fact that the 2-point Chebyshev integration nodes are just
the Gauss-Legendre nodes.

We underline that, by Theorem 3 (3), the approximate solutions stay bounded also
for DAEs with larger index μ, for instance [28, Table 6] confirming that for an index
four Jordan DAE.

Having in mind the implementation of such an overdetermined least-squares col-
location, for given partition π and a given polynomial degree N , a number of
parameters and options must be selected:

– basis functions for Xπ ;
– number M of collocation points and their location 0 ≤ τ1 < · · · < τM ≤ 1;
– setup and solution of the discrete least-squares problem.

We will discuss the first two issues in this context below and refer to [24] for
the third one. The main aim is on implementations being as stable as possible, not
necessarily best computational efficiency.

3 Collocation nodes, mass matrix and integration weights

3.1 Collocation nodes forΦR
π ,M

The functional ΦR
π,M in (16) is based on polynomial interpolation using M nodes

(17). It seems reasonable to choose these nodes in such a way that, separately on each
subinterval [tj−1, tj ] of the partition, the interpolation error is as small as possible in
a certain sense. Without restriction of the generality we can trace back the matter to
the interval [0, 1].
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Consider functions q ∈ C([0, 1],Rm) and define the interpolation operator RM :
C([0, 1],Rm) → C([0, 1],Rm) by

RMq =
M∑
i=1

liq(τi),

with the Lagrange basis functions (18) such that (RMq)(τi) = q(τi), i = 1, . . . ,M ,
and RMq ∈ YM , where YM ⊂ C([0, 1],Rm) is the subspace of all functions whose
components are polynomials up to degree M − 1. Introducing ω(τ) = (τ − τ1)(τ −
τ2) · · · (τ − τM) and using componentwise the divided differences we have the error
representation, e.g., [23, Kapitel 5],

q(τ) − (RMq)(τ) = ω(τ) q[τ1, . . . , τM, τ ].
For smooth functions q ∈ CM([0, 1],Rm) it follows that

‖q − RMq‖2
L2 =

∫ 1

0
ω(τ)2 |q[τ1, . . . , τM, τ ]|2dτ ≤

∫ 1

0
ω(τ)2dτ

m

(M!)2 ‖q(M)‖2∞.

For the evaluation of ΦR
π,M (16), it seems reasonable to choose the collocation

nodes in such a way that this expression is minimized for all functions q ∈
C(M)([0, 1],Rm). The optimal set of nodes is determined by the condition

min
0≤τ1<···<τM≤1

‖ω‖L2(0,1).

It is well known that this functional is minimized if the collocation nodes are
chosen to be the Gauss-Legendre nodes [23, Chapter 7.5.1 and 4.5.4].

On the other hand, the best polynomial approximation to a given function q in the
L2-norm is obtained if the Fourier approximation with respect to the Legendre poly-
nomials is computed. However, to the best of our knowledge, there are no estimations
of the interpolation error in L2((0, 1),Rm) known.5 However, in the uniform norm
and with arbitrary node sequences, for each q ∈ C([0, 1],Rm), the estimate

‖RMq − q‖∞ ≤ (1 + ΛM)dist∞(q, YM)

holds true where dist∞(q, YM) = min{‖q − y‖∞|y ∈ YM} and ΛM is so-called
Lebesgue constant defined by

ΛM = max
τ∈[0,1]

M∑
i=1

|li (τ )|

in which li are again the Lagrange basis functions (18).
The Lebesgue constant ΛL

M for Gauss-Legendre nodes has the property ΛL
M =

O(
√

M). If instead Chebyshev nodes are used, the corresponding Lebesgue constant
ΛC

M behaves like ΛC
M = O(logM) ([12, p 206] and the references therein). For uni-

form polynomial approximations, these nodes are known to be optimal [9, Theorem

5It holds that ‖RMq‖∞ ≤ maxτ∈[0,1]
∑M

i=1|li (τ )||q(τi )| ≤ ΛM‖q‖∞ which means that the interpolation
operator RM is bounded in C([0, 1],Rm), and the Lebesgue constant is a bound of the operator norm. In
contrast, RM it is unbounded in L2((0, 1),Rm)!
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Table 1 Lebesgue constants for Chebyshev nodes (ΛC
M ), Gauss-Legendre nodes (ΛL

M ), Gauss-Lobatto
nodes (ΛLo

M ), Gauss-Radau nodes (ΛR
M ), and uniform nodes including the boundaries (ΛU

M ) and without
boundaries (ΛO

M )

M ΛC
M ΛL

M ΛLo
M ΛR

M ΛU
M ΛO

M

5 1.989 3.322 1.636 4.035 2.708 10.375

10 2.429 5.193 2.121 6.348 17.849 204.734

15 2.687 6.649 2.386 8.126 283.211 5107.931

20 2.870 7.885 2.576 9.627 5889.584 138852.138

7.6]. Table 1 shows some values for the Lebesgue constants. Note that the Lebesgue
constants ΛU

M for equidistant nodes grow exponentially (see, e.g., [44]).6

Remark 8 Computation of nodes and weights for Gauss-type integration formulae
In the following we will make heavy use of Gauss-Legendre, Gauss-Radau, and

Gauss-Lobatto integration nodes and their corresponding weights. Since we do not
have them available in tabular form for large M with sufficient accuracy, they will be
computed on the fly. A severe concern is the accuracy of the nodes and weights. In
the case of Gauss-Legendre integration rules, the computed nodes and weights have
been provided by the Gnu Scientific Library routine glfixed.c [14]. It makes use
of tabulated values for M = 1(1)20, 32, 64, 96, 100, 128, 256, 512, 1024 with an
accuracy of 27 digits. Other values are computed on the fly with an accuracy being a
small multiple of the machine rounding unit using an adapted version of the Newton
method.

For computing the Gauss-Lobatto nodes and weights, the methods of [37] (using
the Newton method) as well as [17] (a variant of the method in [21]) have been
implemented. Table 2 contains some comparisons to the tabulated values in [37] that
have 20 digits. The method of [37] provides slightly more accurate values than that
of [17]. Therefore, the former has been used further on.

We did not find sufficiently accurate tabulated values for the Gauss-Radau nodes
and weights. Therefore, the method of [16] has been implemented. We assume that
the results obtained have an accuracy similar to the values for the Gauss-Lobatto
nodes and weights using the method in [17].

3.2 Themass matrix

In the following, we will make extensive use of Legendre polynomials. For the
readers’ convenience, the necessary properties are collected in Appendix A.1.

6For each M , there is a set of interpolation nodes τ ∗
i that minimizes the corresponding Lebesgue constant

Λ∗
M . This constant is only slightly smaller than ΛC

M [30].
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Table 2 Accuracy of the computed nodes and weights of the Gauss-Lobatto integration rules

M Method of [37] Method of [17]

(A) (B) (C) (D) (A) (B) (C) (D)

6 1.11e-16 1.11e-16 4.73e-16 5.87e-16 1.11e-16 3.33e-16 4.73e-16 9.99e-15

12 1.11e-16 8.33e-17 2.01e-15 6.14e-16 3.33e-16 4.44e-16 6.04e-15 5.86e-14

24 0 3.47e-17 0 9.64e-16 2.22e-16 2.22e-16 8.37e-15 1.23e-13

48 1.11e-16 3.47e-17 3.41e-14 5.23e-15 3.33e-16 1.22e-15 1.71e-13 2.76e-12

96 5.55e-16 2.95e-17 4.73e-16 1.76e-14 4.44e-16 4.44e-16 2.76e-13 4.05e-12

For each method, the absolute error of the nodes (A), the absolute error of the weights (B), the maximum
componentwise relative error of nodes (C) and weights (D) are shown. The machine accuracy (machine
epsilon) is 2.22 × 10−16

Let us turn to ΦR
π,M (16) again. A critical ingredient for determining its properties

is the mass matrix LR in (20). Denote as before by li (τ ), i = 1, . . . ,M , the Lagrange
basis functions for the node sequence (17), that is, cf. (18),

li (τ ) =
∏

κ �=i (τ − τκ)∏
κ �=i (τi − τκ)

.

For evaluatingLR , we will use the normalized shifted Legendre polynomials P̂ν =
(2ν + 1)1/2P̃ν (cf Appendix A.1). Assume the representation

li (τ ) =
M∑

ν=1

αiνP̂ν−1(τ ). (23)

A short calculation shows

LR
ij =

M∑
λ=1

αiλαjλ.

Letting ai = (αi1, . . . , αiM)T we obtain LR
ij = (ai)T aj . Collecting the vectors ai

in a matrix A = (a1, . . . , aM) it holds LR = AT A. The definition of the coefficients
αiν provides us with Ṽ ai = ei where ei denotes the ith unit vector and

Ṽ =
⎡
⎢⎣

P̂0(τ1) . . . P̂M−1(τ1)
...

...
P̂0(τM) . . . P̂M−1(τM)

⎤
⎥⎦ . (24)

This gives A = Ṽ −1.
V = Ṽ T is a so-called Vandermonde-like matrix [15]. It is nonsingular under

the condition (17) [41, Theorem 3.6.11]. In [15], representations and estimations
of the condition number with respect to the Frobenius norm of such matrices are
derived. In particular, [15, Table 1] shows impressingly small condition numbers if
the collocation nodes are chosen to be the zeros of P̃M , that is the Gauss-Legendre
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Table 3 Spectral condition numbers of the Vandermonde-like matrices for different node choices

M GLe GR GLo Ch cNC oNC

5 1.55e+0 2.79e+0 3.23e+0 2.16e+0 3.76e+0 3.04e+0

10 2.11e+0 3.96e+0 4.28e+0 3.00e+0 2.39e+1 5.23e+1

15 2.57e+0 4.85e+0 5.11e+0 3.66e+0 3.98e+2 1.14e+3

20 2.94e+0 5.60e+0 5.83e+0 4.21e+0 8.62e+3 3.10e+4

50 4.62e+0 8.86e+0 9.00e+0 6.60e+0 1.13e+12 1.97e+13

100 6.52e+0 1.25e+1 1.26e+1 9.32e+0 * *

The columns represent Gauss-Legendre nodes (GLe), Gauss-Radau nodes (GR), Gauss-Lobatto nodes
(GLo), Chebyshev nodes (Ch), Newton-Cotes type nodes including the boundary (cNC) and without the
boundary (oNC). An asterisk * indicates an overflow condition

nodes. Moreover, this condition number is optimal among all scalings of the Legen-
dre polynomials [15]. A consequence of the Christoffel-Darboux formula is that the
rows of Ṽ are orthogonal for Gauss-Legendre nodes.7 Thus, we have the representa-
tion Ṽ = DU with an orthogonal matrix U and a diagonal matrix D with positive
diagonal entries.8

It is known that the Gauss-Legendre nodes are not the very best set of nodes.
However, a comparison of Tables 1 and 2 in [15] as well as [18, Table 4] indicates
that the gain of choosing optimal nodes for Legendre polynomials compared to the
choice of Gauss-Legendre nodes is rather minor.

In Table 3 we provide condition numbers of Ṽ with respect to the Euclidean norm
for different choices of nodes. Note that the condition number of LR is the square of
that of Ṽ .

The condition numbers for all Gauss-type and Chebyshev nodes are remarkably
small.

3.3 Computation of quadrature weights for generalΦ I
π ,M

In oder to apply ΦI
π,M (15), a numerical quadrature formulae is necessary. For

standard nodes sequences (Gauss-Legendre, Gauss-Lobatto, Gauss-Radau) their

7The Christoffel-Darboux formula for Legendre polynomials reads: If i �= κ , then

M−1∑
ν=0

P̂ν (τi )P̂ν (τκ ) = μM−1

μM

P̂M(τi)P̂M−1(τκ ) − P̂M(τκ )P̂M−1(τi )

τi − τκ

where μM and μM−1 are the leading coefficients of P̂M and P̂M−1, respectively. For the Gauss-Legendre
nodes, it holds P̂M(τi ) = 0. Hence, the right-hand sides vanish.
8The diagonal elements di , i = 1, . . . , M ofD can be evaluated analytically using the Christoffel-Darboux
formula again:

di =
M−1∑
ν=0

P̂ 2
ν (τi ) = μM−1

μM

(
P̂ ′

M(τi)P̂M−1(τi ) − P̂M−1(τi )P̂M(τi )
)

= μM−1

μM

P̂ ′
M(τi)P̂M−1(τi ).
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computation has been described above. However, for general node sequences, the
weights must be evaluated. This can be done following the derivations in [41, p.
175]: Let P̂ν(τ ) denote the normalized shifted Legendre polynomials as before. In
particular, it holds then∫ 1

0
P̂0(τ )dτ = 1,

∫ 1

0
P̂ν(τ )dτ = 0, ν = 1, 2, . . .

For a given function q ∈ C[0, 1], the integral is approximated by the integral
of its polynomial interpolation. Using the representation (23) of the Lagrange basis
functions we obtain

∫ 1

0
q(τ)d τ ≈

∫ 1

0

M∑
i=1

q(τi)

M∑
ν=1

αiνP̂ν−1(τ )dτ

=
M∑
i=1

q(τi)

M∑
ν=1

αiν

∫ 1

0
P̂ν−1(τ )dτ

=
M∑
i=1

q(τi)αi1.

Consequently, for the weights it holds γi = αi1, i = 1, . . . , M . The definition (23)
shows that the vector γ = (γ1, . . . , γM)T of weights fulfills the linear system

V γ = e1

where V = Ṽ T with Ṽ from (24) and e1 = (1, 0, . . . , 0)T is the first unit vector.
The discussion of the condition number of V shows that we can expect reliable

and accurate results at least for reasonable node sequences.
For general node sequences, the weights may become negative. This happens,

for example, for uniformly distributed nodes and M > 7 (Newton-Cotes formulae)
[41, p. 148]. So forΦI

π,M , only node sequences leading to positive quadrature weights

γi are admitted in order to prevent LI from not being positive definite.

4 Choice of basis functions for the ansatz space Xπ

The ansatz space Xπ (5) consists of piecewise polynomials having the degree N − 1
for the algebraic components and the degree N for the differentiated ones on each
subinterval of the partition π (4). For collocation methods for boundary value prob-
lems for ordinary differential equations this question has led to the choice of a
Runge-Kutta basis for stability reasons (see [2]). This has been later on also used suc-
cessfully for boundary value problems for index-1 DAEs [3, 31, 32, 34]. However,
this ansatz makes heavily use of the collocation nodes which are at the same time
used as the nodes for the Runge-Kutta basis. In our case, the number M of colloca-
tion nodes and the degree N of the polynomials for the differentiated components do
not coincide since M > N such that the reasoning applied in the case of ordinary
differential equations does not transfer to the least-squares case.
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Taking into account the computational expense for solving the discretized system,
bases with local support are preferable. Ideally, the support of each basis function
consists of only one subinterval of (4).9 Note that the Runge-Kutta basis has this
property. We consider the Runge-Kutta basis and further local basis with orthogo-
nal polynomials. A drawback of this strategy is the fact that the continuity of the
piecewise polynomials approximating the differentiated components must be ensured
explicitly. This in turn will lead to a discrete least-squares problem with equality
constraints. Details can be found in Part 2 [24].

Looking for a local basis we turn to the reference interval [0, 1]. Once a basis on
this reference interval is available it can be defined on any subinterval (tj−1, tj ) by a
simple linear transformation.

Assume that {p0, . . . , pN−1} is a basis of the set of polynomials of degree less
than N defined on the reference interval [0, 1]. Then, a basis {p̄0, . . . , p̄N } for the
ansatz functions for the differentiated components is given by

p̄i(ρ) =
{
1, i = 0,∫ ρ

0 pi−1(σ )dσ, i = 1, . . . , N, ρ ∈ [0, 1], (25)

and the transformation to the interval (tj−1, tj ) of the partition π (4) yields

pji(t) = pi((t − tj−1)/hj ),

p̄ji(t) = hj p̄i((t − tj−1)/hj ). (26)

Additionally to this transformation, the continuity of the piecewise polynomials
must be ensured. This gives rise to the additional conditions

p̄j i(tj ) = p̄j+1,i (tj ), i = 0, . . . , N, j = 1, . . . , n − 1, (27)

which must be imposed explicitly.10

4.1 The Runge-Kutta basis

In order to define the Runge-Kutta basis, let the N interpolation points ρi with (9) be
given. Then, the Lagrange basis functions are chosen,

pi(ρ) =
∏

κ �=i+1(ρ − ρκ)∏
κ �=i+1(ρi − ρκ)

, i = 0, . . . , N − 1.

Remark 9 Note that the interpolation nodes are only used to define the local basis
functions. Thus, their selection is completely independent of the choice of collocation
nodes. In view of the estimations (10) and (11) and the argumentation there we prefer
Gauss-Legendre interpolation nodes. This choice is also supported by Experiments 2
and 5 below.

9This excludes for example B-spline bases!
10This is in contrast to choices of basis functions that fulfil the basis conditions. An example of such basis
functions is B-splines.
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The numerical computation of p̄ is more involved. If not precalculated, the inte-
grals must be available in a closed formula. This can surely be done by expressing
the Lagrange basis functions in the monomial representation such that the integration
can be carried out analytically. Once these coefficients are known, the evaluation of
the values of the basis functions at a given ρ ∈ [0, 1] is easily done using the Horner
method. However, this approach amounts to the inversion of the Vandermonde matrix
using the nodes (9). This matrix is known to be extremely ill-conditioned. In par-
ticular, its condition number grows exponentially with N [5, 19]. Therefore, an
orthogonal basis might be better suited. This leads to a representation

pi(ρ) =
N∑

κ=1

αiκQκ(ρ) (28)

for some polynomials Q1, . . . , QN . If these polynomials fulfil a three-term recur-
sion,11 the evaluation of function values can be performed using the Clenshaw
algorithm [13] which is only slightly more expensive than the Horner method. In
order to use this approach, the integrals of p0, . . . , pN−1 must be easily representable
in terms of the chosen basis. Here, the Legendre and Chebyshev polynomials are
well-suited (cf below Appendix A.1 and (30) as well as Appendix A.2 and (32)).

4.2 Orthogonal polynomials

A reasonable choice for the basis is orthogonal polynomials. We will consider
Legendre polynomials first. A motivation is provided in the following example.

Example 1 Consider the index-1 DAE

x = q(t), t ∈ [0, 1].
Let {P̂0, . . . , P̂N−1} be the normalized shifted Legendre polynomials. Then letting

x = ∑N
i=1 αiP̂i−1 for some vector α = (α1, . . . , αN)T , the least-squares functional

Φ(x) =
∫ 1

0
(x(t) − q(t))2dt

corresponding to this DAE is minimized if α = b and b = (b1, . . . , bN)T where
bi = ∫ 1

0 q(t)P̂i−1(t)dt which is just the best approximation of the solution in
H 1

D((0, 1),R) = L2((0, 1),R).
Similar relations hold for the differential equation x ′ = f if the basis functions for

the differentiated components are constructed according to (25). Hence, these basis
functions seem to qualify well for index-1 DAEs.

The necessary ingredients for the efficient implementation of the Legendre
polynomials are collected in Appendix A.1.

11Which they do if the polynomials are orthogonal with respect to some scalar product [9, Theorem 6.2].
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Another common choice is Chebyshev polynomials of the first kind. They have
been used extensively in the context of spectral methods because of their excellent
approximation properties (cf [11, 43], see also [10]). The relations used for their
implementation can be found in Appendix A.2.12

4.3 Comparison of different basis representations

The choice of the basis function representations is dominated by the question of
obtaining a most robust implementation. The computational complexity of the rep-
resentations presented above is not that much different such that this aspect plays a
minor role.

The check for robustness can be subdivided into two questions:

1. Which representation is most robust locally?
2. Which representation is most robust globally?

In the following experiments, N will be varied. The functional used is ΦR
π,M .

The number of collocation nodes is M = N + 1. Table 3 motivates the choice
of the Gauss-Legendre nodes as collocation nodes. In order to compute the norms
of L2((0, 1),Rm) and H 1

D((0, 1),Rm), Gaussian quadrature with N + 2 integration
nodes on each subinterval of π is used.

4.3.1 Local behavior of the basis representations

In order to answer the first question, it is reasonable to experiment first with a higher
index example that does not have any dynamic components (that is, l = 0) on a grid
π consisting only of one subinterval (that is, n = 1). In that case, we check the ability
to interpolate functions and to numerically differentiate them.

For n = 1, there are no continuity conditions (27) involved. Therefore, the discrete
problem becomes a linear least-squares problem. We will solve it by a Householder
QR factorization with column pivoting as implemented in the Eigen library.

The following example is used in [27, 28].

Example 2

x′
2(t) + x1(t) = q1(t),

tηx′
2(t) + x′

3(t) + (η + 1)x2(t) = q2(t),

tηx2(t) + x3(t) = q3(t), t ∈ [0, 1].

12Let us note in passing that the first routine for solving two-point boundary value problems in the NAG
library (NAG® is a registered trademark of The Numerical Algorithms Group) besides shooting methods
was just a least-squares collocation method corresponding to n = 1 and using a version of the functional
ΦC

π,M . The NAG routine D02AFF and its predecessor D02TGF (and its driver D02JBF) use Chebyshev
polynomials as basis functions and Gauss-Legendre nodes as collocation points [1, 20]. This routine
appeared as early as 1970 in Mark 8 of the library and survived to date (as of Mark 27 of 2019) [42].
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This is an index-3 example with dynamical degree of freedom l = 0 such that
no additional boundary or initial conditions are necessary for unique solvability. We
choose the exact solution

x∗,1(t) = e−t sin t,

x∗,2(t) = e−2t sin t,

x∗,3(t) = e−t cos t

and adapt the right-hand side q accordingly. For the exact solution, it holds
‖x∗‖L2((0,1),R3) ≈ 0.673, ‖x∗‖L∞((0,1),R3) = 1, and ‖x∗‖H 1

D((0,1),R3) ≈ 1.11.

Experiment 1 Robustness of the representation of the Runge-Kutta basis
In a first experiment we intend to clarify the differences between different rep-

resentations of the Runge-Kutta basis. The interpolation nodes (9) have been fixed
to be the Gauss-Legendre nodes (cf (10)). The Runge-Kutta basis has been repre-
sented with respect to the monomial, Legendre, and Chebyshev bases. The results are
shown in Fig. 1 (see Appendix). This test indicates that the monomial basis is much
less robust than the others for N > 10 while the other representations behave very
similar.

Experiment 2 Robustness of the Runge-Kutta basis with respect to the node sequence
In this experiment we are interested in understanding the influence of the

interpolation nodes. For that, we compared the uniform nodes sequence to the Gauss-
Legendre and Chebyshev nodes. The uniform nodes are given by ρi = (i − 1

2 )/N .
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Fig. 1 Error of the approximate solution in Experiment 1 measured in the norm of H 1
D((0, 1),Rm).

The abbreviations (M) for the monomial basis, (L) for the Legendre basis, and (C) for the Chebyshev basis
are used
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In accordance with the results of the previous experiment, the representation of
the Runge-Kutta basis in Legendre polynomials has been chosen. The results are
shown in Fig. 2. Not unexpectedly, uniform nodes are inferior to the other choices
at least for N > 13. On the other hand, there is no significant difference between
Gauss-Legendre and Chebyshev nodes.

Experiment 3 Robustness of different polynomial representations
In this experiment we intend to compare the robustness of different bases. There-

fore, we have chosen the Runge-Kutta basis with Gauss-Legendre interpolation
nodes, the Legendre polynomials, and the Chebyshev polynomials. The results are
shown in Fig. 3. All representations show similar behavior.

A general note is in order. The exact solution has approximately the norm 1. The
machine accuracy is εmach ≈ 2.22 × 10−16 in all computations. The best accuracy
obtained is approximately 10−12. Considering that there is a twofold differentiation
involved in the problem of the example we would expect a much lower accuracy. This
surprising behavior has also been observed in other experiments and when using the
norms of L2((0, 1),Rm) and L∞((0, 1),Rm).

The next example is an index-3 one which has l = 4 dynamical degrees of free-
dom. It is the linearized version of an example presented [6] that has also been
considered in [27].

Example 3 Consider the DAE

A(Dx)′(t) + B(t)x(t) = q(t), t ∈ [0, 5],
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Fig. 2 Error of the approximate solution in Experiment 2 measured in the norm of H 1
D((0, 1),Rm). The

abbreviations (U) for uniform nodes, (L) for the Gauss-Legendre nodes, and (C) for the Chebyshev nodes
are used
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Fig. 3 Error of the approximate solution in Experiment 3 measured in the norm of H 1
D((0, 1),Rm). The

abbreviations (R) for the Runge-Kutta basis in Legendre representation, (L) for the Legendre basis, and
(C) for the Chebyshev basis are used

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the smooth coefficient matrix

B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 sin t 0 1 − cos t −2ρ cos2 t

0 0 − cos t −1 0 − sin t −2ρ sin t cos t

0 0 1 0 0 0 2ρ sin t

2ρ cos2 t 2ρ sin t cos t −2ρ sin t 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ρ = 5,

subject to the initial conditions

x2(0) = 1, x3(0) = 2, x5(0) = 0, x6(0) = 0.
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This problem has the tractability index 3 and dynamical degree of freedom l = 4.
The right-hand side q has been chosen in such a way that the exact solution becomes

x∗,1 = sin t, x∗,4 = cos t,

x∗,2 = cos t, x∗,5 = − sin t,

x∗,3 = 2 cos2 t, x∗,6 = −2 sin 2t,

x∗,7 = −ρ−1 sin t .

For the exact solution, it holds ‖x∗‖L2((0,5),R7) ≈ 5.2, ‖x∗‖L∞((0,5),R7) = 2, and
‖x∗‖H 1

D((0,5),R7) ≈ 9.4.

The following experiments with Example 3 are carried out under the same
conditions as before when using Example 2.

Experiment 4 Robustness of the representation of the Runge-Kutta basis
In this experiment we intend to clarify the differences between different represen-

tations of the Runge-Kutta basis. The interpolation points have been fixed to be the
Gauss-Legendre nodes. The Runge-Kutta basis has been represented with respect to
the monomial, Legendre, and Chebyshev bases. The results are shown in Fig. 4. This
test indicates that the monomial basis is much less robust than the others for N > 15
while the other representations behave very similar.

Experiment 5 Robustness of the Runga-Kutta basis with respect to the node sequence
In this experiment we are interested in understanding the influence of the interpola-

tion nodes. For that, we compared the uniform nodes sequence to the Gauss-Legendre
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Fig. 4 Error of the approximate solution in Experiment 4 measured in the norm of H 1
D((0, 1),Rm). The

abbreviations (M) for the monomial basis, (L) for the Legendre basis, and (C) for the Chebyshev basis are
used
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and Chebyshev nodes. The uniform nodes are given by ρi = (i− 1
2 )/N . In accordance

with the results of the previous experiment, the representation of the Runge-
Kutta basis in Legendre polynomials has been chosen. The results are shown in
Fig. 5. Not unexpectedly, uniform nodes are inferior to the other choices at least
for N > 20. However, there is no real difference between Gauss-Legendre and
Chebyshev nodes.

Experiment 6 Robustness of different polynomial representations
In this experiment we intend to compare the robustness of different bases. There-

fore, we have chosen the Runge-Kutta basis with Gauss-Legendre interpolation
nodes, the Legendre polynomials, and the Chebyshev polynomials. The results are
shown in Fig. 6. All representations show similar behavior.

As a conclusion, we can see that the results of the Experiments 1–3 and 4–6 are
largely consistent.

4.3.2 Global behavior of the basis representations

We are interested in understanding the global error, which corresponds to error
propagation in the case of initial value problems. In order to understand the error
propagation properties we will investigate the accuracy of the computed solution with
respect to an increasing number of subintervals n. This motivates to use a rather low
order N of polynomials. In the previous section we observed that there is no differ-
ence in the local properties between different basis representations for low degrees
N of the ansatz polynomials.
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Fig. 5 Error of the approximate solution in Experiment 5 measured in the norm of H 1
D((0, 1),Rm). The

abbreviations (U) for uniform nodes, (L) for the Gauss-Legendre nodes, and (C) for the Chebyshev nodes
are used

955Numerical Algorithms (2022) 89:931–963



0 10 20 30 40 50 60 70
N

10-15

10-10

10-5

100

E
rr
o
r

(R)
(L)
(C)

Fig. 6 Error of the approximate solution in Experiment 6 measured in the norm of H 1
D((0, 1),Rm). The

abbreviations (R) for the Runge-Kutta basis in Legendre representation, (L) for the Legendre basis, and
(C) for the Chebyshev basis are used

In the following experiments, the functionals used are ΦR
π,M and ΦC

π,M . The num-
ber of collocation nodes is again M = N + 1. The basis functions are the shifted
Legendre polynomials.

The discrete problem for n > 1 is an equality constraint linear least-squares
problem. The equality constraint consists just of the continuity requirements for the
differentiated components of the elements in Xπ . The problem is solved by a direct
solution method as described in Part 2 [24]. In short, the equality constraints are
eliminated by a sparse QR-decomposition with column pivoting as implemented in
the code SPQR [8]. The resulting least-squares problem has then been solved by the
same code.

Experiment 7 Influence of selection of collocation nodes, approximation degree N ,
and number n of subintervals.

In this experiment, we use Example 3 and vary the choice of collocation nodes
as well as the degree N of the polynomial basis and the number n of subintervals.
We compare Gauss-Legendre, Radau IIA and Lobatto collocation nodes. Since this
example is a pure initial value problem, the use of the Radau IIA collocation nodes
is especially justified.13 The results using ΦR

π,M are collected in Table 4, those using

ΦC
π,M in Table 5. We observe no real difference between the different sets of col-

location points. The results seem to confirm the conjecture that, in case of smooth

13Such methods are proven in time-stepping procedures for ordinary initial value problems because of
their stability properties. Radau IIA methods are also used for many DAEs with index μ ≤ 2 since the
generated approximations on the grid points satisfy the obvious constraint.
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problems, a higher degree N is preferable over a larger n or, equivalently, a smaller
stepsize h. In addition, for the highest degree polynomials (N = 20), the use ofΦC

π,M

seems to produce more accurate results than that of ΦR
π,M .

5 Final remarks and conclusions

In summary, in the present paper, we investigated questions related to an efficient
and reliable realization of a least-squares collocation method. These questions are
particularly important since a higher index DAE is an essentially ill-posed problem
in naturally given spaces, which is why we must be prepared for highly sensitive
discrete problems. In order to obtain an overall procedure that is as robust as possible,
we provided criteria which led to a robust selection of the collocation points and of
the basis functions, whereby the latter is also useful for the shape of the resulting
discrete problem. Additionally, a number of new, more detailed, error estimates have
been given that support some of the design decisions. The following particular items
are worth highlighting in this context:

– The basis for the approximation space should be appropriately shifted and scaled
orthogonal polynomials. We could not observe any larger differences between
the behavior of Legendre and Chebyshev polynomials.

– The collocation points should be chosen to be the Gauss-Legendre, Lobatto,
or Radau nodes. This leads to discrete problems whose conditioning using the
discretization by interpolation (ΦR

π,M ) is not much worse than that resembling

collocation methods for ordinary differential equations (ΦC
π,M ). A particular

efficient and stable implementation is obtained if Gauss-Legendre or Radau
nodes are used since, in this case, diagonal weighting (ΦI

π,M ) coincides with the
interpolation approach.

– A critical ingredient for the implementation of the method is the algorithm
used for the solution of the constrained linear least-squares problems. Given the
expected bad conditioning of the least-squares problem, a QR factorization with
column pivoting must lie at the heart of the algorithm. At the same time, the
sparsity structure must be used as best as possible. This issue will be discussed
in Part 2.

– It seems as if, for problems with a smooth solution, a higher degree N of the
ansatz polynomials with a low number of subintervals n in the mesh is prefer-
able over a smaller degree with a larger number of subintervals with respect to
accuracy. Some first theoretical justification has been provided for this claim.

– So far, in all experiments of this and previously published papers, we did not
observe any serious differences in the accuracy obtained in dependence on the
choice of M > N for fixed n. The results for M = N + 1 are not much different
from those obtained for a larger M .

– While superconvergence in classical collocation for ODEs and index-1 DAEs
is a very favorable phenomenon, we could not find anything analogous in our
experiments.

959Numerical Algorithms (2022) 89:931–963



– The simple collocation procedure using ΦC
π,M performs surprisingly well. In

fact, the results are, in our experiments, in par with those using ΦR
π,M = ΦI

π,M .
However, we have no theoretical justification for this as yet.

– Our method is designed for variable grids. However, so far we have only worked
with constant step size. In order to be able to adapt the grid and the polynomial
degree, or even select appropriate grids, it is important to understand the structure
of the error, that is, how the global error depends on local errors. This is a very
important open problem, for which we have no solution yet.

In conclusion, we note that earlier implementations, among others the one from
the very first paper in this matter [28] which started from proven ingredients for ODE
codes, are from today’s point of view and experience a rather bad version for the least-
squares collocation. Nevertheless, the test results calculated with it were already very
impressive. This strengthens our belief that a careful implementation of the method
will give rise to a very efficient solver for higher index DAEs.

Appendix: Some facts about classical orthogonal polynomials

In the derivations, classical orthogonal polynomials have been heavily used. For the
reader’s convenience important properties are collected below.

A.1 Legendre polynomials

The Legendre polynomials Pν , ν = 0, 1, . . ., are defined by the recurrence relation

P0(τ ) = 1,

P1(τ ) = τ, (29)

(ν + 1)Pν+1(τ ) = (2ν + 1)τPν(τ ) − νPν−1(τ ), ν = 1, 2, . . . .

Some properties of the Legendre polynomials are

1. Pν(−1) = (−1)ν , Pν(1) = 1, ν = 0, 1, . . .,
2.

∫ 1
−1 P0(τ ) = 2,

∫ 1
−1 Pν(τ) = 0, ν = 1, 2, . . .

3.
∫ 1
−1 Pν(τ)Pμ(τ)dτ = 2

2ν+1δνμ, ν, ν = 0, 1, . . ., where δνμ denotes the
Kronecker δ-symbol,

4. P ′
ν+1(τ ) − P ′

ν−1(τ ) = (2ν + 1)Pν(τ ), ν = 1, 2, . . .

The latter property is useful for representing integrals,

∫ τ

−1
Pν(σ )dσ = 1

2ν + 1

(
Pν+1(τ ) − Pν−1(τ ) − (−1)ν+1 + (−1)ν−1

)

= 1

2ν + 1
(Pν+1(τ ) − Pν−1(τ )) . (30)

Moreover,
∫ τ

−1 P0(σ )dσ = τ + 1.

960 Numerical Algorithms (2022) 89:931–963



For a stable evaluation of the Legendre polynomials, we use a representation
proposed in [35],

Pν+1(τ ) = ν

ν + 1
(τPν(τ ) − Pν−1(τ )) + τPν(τ ).

In the implementation, all polynomials must be evaluated simultaneously for each
given τ . The evaluation of the recursions is cheap. Linear combinations of the basis
function can be conveniently and stably evaluated using the Clenshaw algorithm [13,
p. 56] [4, 39].

The shifted Legendre polynomials P̃ν are given by P̃ν(ρ) = Pν(2ρ − 1), ν =
0, 1, . . . They fulfill the orthogonality relations∫ 1

0
P̃ν(ρ)P̃μ(ρ)dρ = 1

2ν + 1
δνμ.

Moreover, we introduce the normalized shifted Legendre polynomials P̂ν by

P̂ν(ρ) = (2ν + 1)1/2P̃ (ρ).

A.2 Chebyshev polynomials

The Chebyshev polynomials of the first kind Tν , ν = 0, 1, . . ., are defined by the
recurrence relation

T0(τ ) = 1,

T1(τ ) = τ, (31)

Tν+1(τ ) = 2τTν(τ ) − Tν−1(τ ), ν = 1, 2, . . . .

Some properties of the Chebyshev polynomials are

1. Tν(−1) = (−1)ν, Tν(1) = 1, ν = 0, 1, . . .

2. Tν(τ ) = 1
2

(
1

ν+1T
′
ν+1(τ ) − 1

ν−1T
′
ν−1(τ )

)
, ν = 2, 3, . . .

Similarly as before, we obtain the simple representation∫ τ

−1
Tν(σ )dσ = 1

2(ν2 − 1)

(
(ν − 1)Tν+1(τ ) − (ν + 1)Tν−1(τ ) + (−1)ν−12

)
.

(32)
The orthogonality property of the Chebyshev polynomials reads

∫ 1

−1
Tν(τ )Tμ(τ)

dτ√
1 − x2

=
⎧⎨
⎩
0, ν �= μ,

π, ν = μ = 0,
π
2 , ν = μ �= 0.

The normalized Chebyshev polynomials T̄ν are given by

T̄ν(τ ) =
⎧⎨
⎩

√
1
π
T0(τ ), ν = 0,√

2
π
Tν(τ ), ν = 1, 2, . . . .

Linear combinations of Chebyshev polynomials can be stably computed by the
Clenshaw algorithm [13, p. 57ff], [4, 39].
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