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Abstract
We construct, analyze, and numerically validate a class of conservative discontin-
uous Galerkin (DG) schemes for the Schrödinger-Poisson equation. The proposed
schemes all shown to conserve both mass and energy. For the semi-discrete DG
scheme the optimal L2 error estimates are provided. Efficient iterative algorithms
are also constructed to solve the second-order implicit time discretization. The pre-
sented numerical tests demonstrate the method’s accuracy and robustness, confirming
that the conservation properties help to reproduce faithful solutions over long time
simulation.
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1 Introduction

Considered here is the following problem for the Schrödinger–Poisson (SP) equation:

iut = − + 0, x ∈ (1.1a)

− = μ(|u|2 − c), x ∈ (1.1b)

u(x, 0) = u0(x), in (1.1c)

where u = u(x, t) is a complex-valued function of time t > 0 and spatial variable x ∈
, which is a bounded domain in Rd , μ = ±1 is a rescaled physical constant, which

signifies the property of the underlying forcing, repulsive if μ > 0 and attractive if
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μ < 0. i = √−1 stands for the imaginary unit, and c is a background charge. For
the numerical purpose it is common to truncate the unbounded spatial domain to a
sufficiently large finite domain and impose simple boundary conditions (see [1]). In
this paper we consider both periodic and homogeneous Dirichlet boundary conditions
(see Section 2), although most of our derivations can be carried out for other types of
boundary conditions.

The Schrödinger–Poisson equation (also called Schrödinger-Newton equation or
Schrödinger-Maxwell equation) describes many physical phenomena in quantum
mechanical systems and in semiconductor modeling; we refer the readers to [14, 20,
23] and the references therein. It also appears as an approximate mean-field equation
derived from the first principle model in a system of a large number of particles [7].
Mathematically, the Schrödinger–Poisson equation is a prototypical dispersive wave
equation, its solution exhibits some intriguing properties. A great deal of interesting
research has been devoted to the mathematical analysis for the Schrödinger-Poisson
systems (see [10, 12, 19, 21, 34] and references therein). In particular, the equation
preserves both the mass and the energy under appropriate boundary conditions. The
quality of the numerical approximation hence hinges on how well the conserved inte-
grals can be preserved at the discrete level. Numerical methods without this property
may result in substantial phase and shape errors after long time integration. Indeed
for some wave equations the invariant preserving high-order numerical methods have
been shown more accurate than non-conservative methods after long-time numerical
integration (see, e.g., [9, 28]).

The objective of this work is to develop and analyze conservative discontinu-
ous Galerkin (DG henceforth ) schemes for the Schrödinger–Poisson equation, with
particular attention on preservation of both mass and energy at the discrete level.
In addition, we obtain sharp L2 error estimates for the semi-discrete DG method
(continuous in time) at the full nonlinear setting.

The DG method is a class of finite element approximations using discontinu-
ous, piecewise polynomials as both the solution and test-function spaces (see [13]
for a historical review). It combines advantages of both finite element and finite
volume methods, including high-order accuracy, high parallel efficiency, flexibility
for hp-adaptivity and straightforward implementation on arbitrary meshes in com-
plex geometries. Particularly relevant for the present discussion is the fact that such
schemes do not demand continuity at the spatial grid-points, and this allows a flexibil-
ity in making local refinements to an existing numerical grid not shared by continuous
Galerkin methods. The DG method is also known to enjoy mathematically provable
high-order accuracy and stability (see e.g., [17, 35, 36]).

The DG method was originally introduced in the context of hyperbolic conserva-
tion laws. Later, the method was extended to deal with derivatives of order higher
than one. In recent years, the DG schemes have been actively designed and applied
for the Schrödinger equation and its variants (see, e.g., [18, 22, 25, 29, 38, 39, 41–
43] and references therein; see also works by spectral methods [5, 6]). One main
effort is to preserve the mass by high-order spatial discretization. Within the DG-
framework, especially relevant to our development is the body of work [25, 30, 40]
on approximating solutions to Schrödinger type equations using the direct Discontin-
uous Galerkin method (DDG method) developed initially for the diffusion equation
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introduced by Liu and Yan [26, 27]. The idea of DDG methods is to directly force
the weak solution formulation of the PDE into the DG function space for both the
numerical solution and test functions. The main feature in the DDG schemes pro-
posed in [26, 27] lies in numerical flux choices for the solution gradient, which
involve higher order derivatives evaluated crossing cell interfaces. The parameter is
often called method parameter or flux parameter due to its appearing in the choice of
the numerical flux, or even penalty parameter when it is required to be large enough
to ensure the scheme stability. In [30], a high-order mass-preserving DG (MPDG)
method was introduced for the nonlinear Schrödinger equation, with the optimal L2

error estimate obtained in one-dimensional setting. A key observation in [30] is that
the conservation property and the optimal accuracy remains valid independent of
the size of the flux parameter. An extension to multi-dimensional setting was fur-
ther carried out in [25], in which the authors presented two different approaches to
handle structured and unstructured meshes, respectively. For rectangular meshes, the
error analysis is based-on tensor product of polynomials and a super-convergence
result, the obtained result is sharp and valid with or without a flux parameter. For
unstructured shape regular meshes, the optimal error analysis is based on a global
projection and its approximation error [3, 24] when the flux parameter is large. This
later approach was further extended to solve the nonlinear magnetic Schrödinger
equation in [40]. Both mass and energy conservation are shown to hold for the semi-
discrete DG scheme, with a proven optimal L2 error estimate in nonlinear setting.
For the time discretization a second-order Strang splitting is applied in [25, 30, 40].

In this paper, we extend the ideas in [25, 30, 40] to develop a mass- and energy-
conserved DG method for the Schrödinger–Poisson equation. Our focus will be on
constructing a spatially high-order conservative DG scheme with second-order time
discretization so that two conserved quantities are preserved in the presence of a
self-interaction electric field.

To our knowledge, there is as yet no rigorous convergence result in the literature
for the DG method for the nonlinear Schrödinger-Poisson equation. We mention,
however, the work by Lubich [33], where an error analysis was first given for a time-
splitting method; and further works such as [4, 11] using the splitting method. The
main conclusion of this paper is that both semi-discrete and fully discrete schemes
can preserve both mass and energy independent of the size of the flux parameter. For
time discretization we follow the recent work [16] in adopting a Crank-Nicolson type
discretization, so that the resulting full-discrete scheme is second order in time. Fur-
thermore, we establish the optimal L2 error estimate for the semi-discrete scheme.
Though the main analysis tool for nonlinear terms follows the line as in [40], it
requires a careful handling of the coupling with the Poisson equation (see Lemma
3.2 and its proof).

This paper is organized as follows: In Section 2 we review some basic proper-
ties of the SP equation, and present semi-discrete DG schemes, which are shown
to preserve both mass and energy for meshes of arbitrary size, for the nonlinear
Schrödinger–Poisson equation. In Section 3 we carry out error estimates for the DG
method, followed by an efficient iterative algorithm to solve the resulting nonlinear
equations. In Section 4 we present numerical experiments to validate the theoretical

907Numerical Algorithms (2022) 89:905–930



results and to gauge the performance of the proposed schemes, especially the sharp-
ness of the convergence rates. The paper is completed with some concluding remarks
and comments given in Section 5.

Throughout this paper, we denote spatial variable x = (x1, · · · , xd) ∈ R
d and

adopt standard notations for Sobolev spaces such asWm,p(D) on sub-domainD ⊂
equipped with the norm m,p,D and semi-norm | · |m,p,D . When D = , we omit
the index D; and if p = 2, we set Wm,p(D) = Hm(D), m,p,D m,D , and
| · |m,p,D = | · |m,D . When m = 0, we simply use to denote the usual L2-norm.
We also denote the boundary of . We use the notation C B to indicate that
C can be bounded by B multiplied by a constant independent of the mesh size h.
C ∼ B stands for C B and B C. Also we use (·)+ to denote max(·, 0), and
(·)− = min(·, 0).

2 The conservative DGmethod

Details of the numerical approximations are now set forth. This begins with a dis-
cussion of two conservation properties of the continuous problem, followed by the
spatial discretization which leads directly to a semi-discrete approximation.

2.1 The Schrödinger-Poisson equation

For the model equation considered in this paper, we impose the homogeneous
Dirichlet boundary condition

(i) u = 0 = 0, x ∈ 0, (2.1)

with which the weak formulation of the problem reads: find u ∈ C0([0, T ), H 1
0

and ∈ H 1
0 , such that

i ut , v u,∇v , ∀v ∈ H 1
0 (2.2)

(∇ ∇w) = μ(|u|2 − c, w), ∀w ∈ H 1
0 . (2.3)

Here, , denotes the standard L2 product for complex valued functions, i.e,
u, v u(x) · v∗(x)dx with v∗ denoting the complex conjugate of v, and (·, ·)
denotes the standard L2 product for real valued functions, i.e, (u, v) = u(x) ·
v(x)dx.

One can verify that the problem (1.1) satisfies the conservation laws

mass conservation M(t) = |u|2dx = M(0), (2.4)

energy conservation E(t) = |∇u|2 + 1

2μ
|∇ |2 dx = E(0). (2.5)

In fact, take v = u in (2.2), one has

i ut , u u,∇u .

This upon subtraction of its conjugate gives (2.4).
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Furthermore, taking v = ut in (2.2) we have

i ut , ut u,∇ut t ,

and

−i ut , ut ut , ∇u t , u .

Thus,

d

dt
u 2 + d

dt
|u|2dx = d

dt
u 2 + d

dt
(|u|2 − c)dx = 0.

The second term when using (2.3) reduces to

1

μ
∇ t · ∇ = 1

2μ

d

dt
|∇ |2dx.

Hence d
dt

E(t) = 0, i.e., (2.5) holds. Note that these solution properties also hold true
for periodic boundary conditions, for which we also present corresponding schemes
as a comparison.

We shall design high-order DG schemes so that both mass and energy are also
preserved at the discrete level.

2.2 Scheme formulation

Let the domain be a Cartesian product

= d
i=1I

i,

where I i = ∪Ni

αi=1I
i
αi

with I i
αi

= [xi
αi−1/2, x

i
αi+1/2]. We use rectangular meshes

Th = {Kα}, withKα = I 1α1×· · ·×I d
αd
, where α = (α1, · · · , αd),N = (N1, · · · , Nd).

Denote by hi = max1≤αi≤Ni
|I i

αi
|, with h = max1≤i≤d hi . In the following, we omit

the subscript index α of Kα , for simplicity.
We define the discontinuous Galerkin (DG) space as follows

Vh = {v : v ∈ Qk(K), ∀K ∈ Th},
where Qk is the space of tensor products of one-dimensional polynomials of degree
up to k. We also define another DG space V c

h as

V c
h = {v : v ∈ Qc

k(K), ∀K ∈ Th},
whereQc

k is the space of tensor products of one-dimensional complex polynomials of
degree up to k. Note that the traces of functions are double-valued on 0

h := h −
and single-valued on ∂

h = , where h = 0
h ∪ ∂

h is the union of interior faces
and boundary faces.

We also introduce some trace operators that will help us to define the interface
terms. Let K1 and K2 be two neighboring cells with a common edge e∈ 0

h, and
wi = w|∂Ki i = 1, 2, we define the average {w} and the jump [w] as follows:

{w} = 1

2
(w1 + w2), [w] = w2 − w1 on e = K̄1 ∩ K̄2,
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where the jump is defined as a forward difference along the normal direction n, which
is defined to be oriented from K1 to K2. For e ∈ ∂

h , w has a uniquely defined
restriction on e, both average and jump need to be carefully defined in virtue of the
specified boundary conditions.

A direct discretization of (2.2) and (2.3) leads to the DG method: find (uh h) ∈
V c

h × Vh, such that

i uht , vh A0(uh, vh) huh, vh , ∀vh ∈ V c
h , (2.6)

A1 h, wh) = μ(|uh|2 − c, wh), ∀wh ∈ Vh. (2.7)

Here, uht = ∂uh(x,t)
∂t

, the bilinear functional

A0(uh, vh) = A0
0(uh, vh) + Ab

0(uh, vh)

A0
0(uh, vh) =

K∈Th

uh, ∇vh K +
e∈ 0

h

∂nuh, [vh e uh], {∂nvh e, (2.8)

and

A1 h, wh) =A0
1 h, wh) + Ab

1 h, wh)

A0
1 h, wh) =

K∈Th

(∇ h, ∇wh)K +
e∈ 0

h

(∂n h, [wh])e + ([ h], {∂nwh})e, (2.9)

where boundary terms Ab
1(uh, vh) and Ab

0 h, wh) are specified later accroding to
the boundary conditions, the numerical fluxes are taken as

∂nuh := βh−1
e [uh] + {∂nuh}, ∀e ∈ 0

h, (2.10)

∂n h := β0h
−1
e [ h] + {∂n h} + β1he[∂2n h], ∀e∈ 0

h, (2.11)

where n is the unit normal vector on the interface, ∂2n denotes the second-order direc-
tional derivative in n, and β, β0, β1 are method parameters to be chosen. Boundary
fluxes depend on the boundary conditions pre-specified, leading to the following
formulations:

for periodic case Ab
0(u, v) = 1

2 ∂

{∂nuh}[v∗
h] + [uh]{∂nv

∗
h} ds, (2.12a)

for periodic case Ab
1 h) = 1

2 ∂

({∂n h}[wh] + [ h]{∂nwh}) ds, (2.12b)

for (i) in (2.1) Ab
0(uh, vh) =

∂

((βh−1
e uh − ∂nuh)v∗

h − uh∂nv
∗
h)ds, (2.12c)

for (ii) in (2.1) Ab
1 h, wh) =

∂

((βh−1
e h − ∂n h)wh − h∂nwh)ds.(2.12d)

Remark 2.1 Several remarks are in order:

(i) For non-homogeneous boundary conditions, one needs only a slight change in
boundary terms Ab

i (i = 0, 1).
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(ii) For periodic case the left boundary and the right boundary are considered as
same, for which we use the factor 1/2 to avoid recounting.

(iii) In the scheme formulation the choice of n on interior faces does not affect
each product involved. Hence ∂n is defined based on a fixed choice of n.
However, on the boundary phase, n is taken as the usual outside normal unit
to the domain boundary .

(iv) Here on the interface with xi = xi
αi+1/2,

he = 1

2
(|I i

αi
| + |I i

αi+1
|).

Note that for uniform meshes he = hi .

The initial data for the semi-discrete DG scheme (2.6) can be defined by

uh(x, 0) = 0,

where is the standard piecewise L2 projection.

2.3 Conservation properties

In order to verify the conservation properties of the scheme (2.6)–(2.7), we prepare
the following lemma.

Lemma 2.1 Let a, b be complex polynomials in V c
h , then

A0(a, b) = A0(b, a). (2.13)

The proof of this identity requires only a direct verification. Then it is straightfor-
ward to show that the semi-discrete DG scheme (2.6)–(2.7) conserves both mass and
energy.

Theorem 2.1 The semi-discrete DG scheme (2.6)–(2.7) for any β ∈ R satisfies
discrete conservation laws for both mass and energy, respectively,

Mh(t) := |uh|2dx = Mh(0), (2.14)

Eh(t) := A0(uh, uh) + 1

2
h |uh|2 − c dx = Eh(0) (2.15)

for all t ≥ 0 for which the solution exists.

Proof Letting vh = uh in (2.6) leads to

i uht , uh A0(uh, uh) huh, uh .

Then (2.14) follows at once from subtracting its conjugate.
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Letting vh = uht in (2.6) leads to

i uht , uht A0(uh, uht ) huh, uht , (2.16)

Taking its conjugate using (2.13) we obtain

− i uht , uht A0(uht , uh) huht , uh . (2.17)

Adding (2.16) and (2.17) gives

d

dt
A0(uh, uh) + h, ∂t |uh|2 = d

dt
A0(uh, uh) + h, ∂t (|uh|2 − c) = 0.

That is
d

dt
A0(uh, uh) + h, |uh|2 − c = ht , |uh|2 − c . (2.18)

Taking wh = ht in (2.7), we have

(∇ h, ∇ ht ) = μ(|uh|2 − ht ).

Take time derivative in (2.7) and choose wh = h so that

(∇ ht , ∇ h) = μ ∂t (|uh|2 − h .

Then
(|uh|2 − ht ) = ∂t (|uh|2 − h .

From (2.18) we have

d

dt
A0(uh, uh) + h, |uh|2 − c = ∂t (|uh|2 − h = 1

2

d

dt
|uh|2 − h .

Thus
d

dt
Eh(t) = d

dt
A0(uh, uh) + 1

2
h, |uh|2 − c = 0.

This completes the proof.

2.4 Time discretization

Not just any time-stepping method employed in a fully discrete scheme will pre-
serve the conservation properties of the semi-discrete approximations. In this paper,
we consider the Crank-Nicolson method for the time discretization so that the fully
discrete DG scheme also conserves both mass and energy. Let 0 = t0 < t1 <

· · · < tK = T be a partition of the interval [0, T ] with time step = tn+1 − tn.
Here uniform time step is simply taken. The fully discrete second-order in time
approximations are constructed using the midpoint rule in the following manner. We
define

Dtu
n
h = un+1

h − un
h , u

n+1/2
h = un+1

h + un
h

2
.

n+1/2
h is defined analogously to u

n+1/2
h . Then the fully discrete DG method is to

find
un+1

h
n+1
h ∈ V c

h × Vh
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such that

i〈Dtu
n
h, vh〉 = A0(u

n+1/2
h , vh) + 〈�n+1/2

h u
n+1/2
h , vh〉, ∀vh ∈ V c

h , (2.19a)

A1(�
n+1
h , wh) = μ(|un+1

h |2 − c, wh), ∀wh ∈ Vh, (2.19b)

with the initial data defined as follows:

u0h = �u0, A1(�
0
h, wh) = μ(|u0h|2 − c, wh), ∀wh ∈ Vh. (2.20)

Theorem 2.2 The fully discrete DG scheme (2.19) for any β ∈ R and β1 = 0
satisfies discrete conservation laws for both mass and energy, respectively,

Mn
h :=

∫

�

|un
h|2dx = M0

h, (2.21)

En
h := A0(u

n
h, u

n
h) + 1

2μ
A1(�

n
h, �

n
h) = E0

h, (2.22)

for any integer n > 0.

Proof Letting vh = u
n+1/2
h in (2.19a) leads to

i

〈

Dtu
n
h,

un+1
h + un

h

2

〉

= A0(u
n+1/2
h , u

n+1/2
h ) +

〈
�

n+1/2
h u

n+1/2
h , u

n+1/2
h

〉
. (2.23)

Subtracting this from its conjugate and using (2.13) we obtain

i

(〈

Dtu
n
h,

un+1
h + un

h

2

〉

+
〈

un+1
h + un

h

2
, Dtu

n
h

〉)

= i
�t

∫

�

|un+1
h |2 − |un

h|2dx = 0.

Thus Mn+1
h = Mn

h .
Letting vh = Dtu

n
h in (2.19a) leads to

i
〈
Dtu

n
h, Dtu

n
h

〉 = A0

(
u

n+1/2
h , Dtu

n
h

)
+

〈
�

n+1/2
h u

n+1/2
h , Dtu

n
h

〉
.

Adding this upon its conjugate and using (2.13), after some algebraic manipulation,
we obtain

A0

(
u

n+1/2
h , Dtu

n
h

)
+ A0

(
Dtu

n
h, u

n+1/2
h

)

+
〈
�

n+1/2
h u

n+1/2
h , Dtu

n
h

〉
+

〈
�

n+1/2
h Dtu

n
h, u

n+1/2
h

〉
= 0.

Upon rewriting we obtain

A0

(
un+1

h , un+1
h

)
− A0

(
un

h, u
n
h

) +
〈
�

n+1/2
h un+1

h , un+1
h

〉
−

〈
�

n+1/2
h un

h, u
n
h

〉
= 0.
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Note that A1(a, b) = A1(b, a) if β1 = 0, then

〈
�

n+1/2
h un+1

h , un+1
h

〉
−

〈
�

n+1/2
h un

h, un
h

〉
=

∑

K∈Th

∫

K

�
n+1/2
h

(
|un+1

h |2 − c −
(
|un

h|2 − c
))

dx

= 1

μ
A1(�

n+1
h , �

n+1/2
h ) − 1

μ
A1(�

n
h, �

n+1/2
h )

= 1

2μ
(A1(�

n+1
h , �n+1

h ) − A1(�
n
h, �n

h)).

The energy conservation now follows from combining the above two relations.

Finally, we introduce a simple iteration algorithm for solving the fully discrete DG
scheme (2.19). From (un

h, �
n
h), we obtain (un+1

h , �n+1
h ) as follows:

Set (un+1/2,m
h , �

n+1,m
h ) = (un

h, �
n
h) for m = 0, we find

(u
n+1/2,m+1
h , �

n+1,m+1
h ) ∈ V c

h × Vh

by iteratively solving
(

i − �t

4
(�

n+1,m
h + �n

h)

) 〈
u

n+1/2,m+1
h , vh

〉
−�t

2
A0(u

n+1/2,m+1
h , vh) = i

〈
un

h, vh

〉
, ∀vh ∈ V c

h ,

A1(�
n+1,m+1
h ,wh) =μ

(
|2un+1/2,m+1

h − un
h|2 − c, wh

)
, ∀wh ∈ Vh,

with m = 0, 1, 2, · · · , L, provided

‖un+1/2,L+1
h − u

n+1/2,L
h ‖ ≤ δ,

with some tolerance δ > 0 small, then let un+1
h = 2un+1/2,L+1

h − un
h, and �n+1

h =
�

n+1,L+1
h .

Remark 2.2 For the Schrödinger-Poisson equation of form

iut = − �u + �u + V (x)u + |u|2u, t > 0, x ∈ �,

−�� =μ(|u|2 − c), x ∈ �,

u(x, 0) =u0(x), x ∈ �,

(2.24)

both mass and energy of form

E(t) =
∫

�

(

|∇u|2 + 1

2μ
|∇�|2 + V |u|2 + 1

2
|u|4

)

dx (2.25)

are conserved. To deal with the additional nonlinear term |u|2u and still preserve total
mass and energy at the discrete level, we adopt the relaxation-type scheme developed
in [8]. As a consequence, the fully discrete DG scheme for (2.24) is formulated as
follows: find

(�
n+1/2
h , un+1

h , �n+1
h ) ∈ Vh × V 2

h × Vh,
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such that
(

�
n+1/2
h +�

n−1/2
h

2 , wh

)

= (|un
h|2, wh), ∀wh ∈ Vh, (2.26a)

i
〈
Dtu

n
h, vh

〉 = A0

(
u

n+1/2
h , vh

)
+

〈(
�

n+1/2
h + V + �

n+1/2
h

)
u

n+1/2
h , vh

〉
, ∀vh ∈ V c

h (2.26b)

A1(�
n+1
h ,wh) = μ(|un+1

h |2 − c,wh), ∀wh ∈ Vh, (2.26c)

subject to initial data u0(x) = u0(x). With this time discretization, the discrete
energy

En
h := A0(u

n
h, u

n
h) + 1

2μ
A1(�

n
h, �

n
h) +

∫

�

(

V (x)|un
h|2 + 1

2
�

n+1/2
h �

n−1/2
h

)

dx

is indeed conserved. At each time step the discrete system can be solved by an iter-
ation algorithm in the same manner. More precisely, set �−1/2(x) = |u0(x)|2 we
update �

n+1/2
h by

(
�

n+1/2
h , wh

)
= (2|un

h|2 − �
n−1/2
h , wh), ∀wh ∈ Vh.

Then from (u
n+1/2,m
h , �

n+1,m
h ) = (un

h, �
n
h) with m = 0, we find

(u
n+1/2,m+1
h , �

n+1,m+1
h ) ∈ V c

h × Vh by iteratively solving
(

i − �t

4
(�

n+1,m
h + �n

h)

) 〈
u

n+1/2,m+1
h , vh

〉
− �t

2
A0(u

n+1/2,m+1
h , vh)

− �t

2

〈
(V + �n+1/2)u

n+1/2,m+1
h , vh

〉
= i

〈
un

h, vh

〉
, ∀vh ∈ V c

h ,

A1(�
n+1,m+1
h ,wh) = μ

(
|2un+1/2,m+1

h − un
h|2 − c,wh

)
, ∀wh ∈ Vh,

with k = 0, 1, 2, · · · , L. Finally, let un+1
h = 2un+1/2,L+1

h − un
h and �n+1

h =
�

n+1,L+1
h .

3 Optimal L2 error estimates for the semi-discrete scheme

In this section, we derive the optimal L2 error estimates for the semi-discrete DG
method proposed in Section 2.2. To be specific, we consider the periodic boundary
condition for u and the homogeneous Dirichlet condition for �. Boundary terms are
given by (2.12a) and (2.12d), respectively.

For v ∈ V c = V c
h + H 2(�), we define the DG norm as

|||v|||2 =
∑

K∈Th

‖∇v‖2K +
∑

K∈Th

h2K |v|22,K +
∑

e∈�0
h

h−1
e |[v]|2e + 1

2

∑

e∈�∂
h

h−1
e |[v]|2e, (3.1)

where he is the characteristic length of the edge e. One can verify that

|A0(w, v)| ≤ �0|||w||| · |||v|||, ∀w, v ∈ V c, (3.2)

where �0 is called the continuous constant. Furthermore, for v ∈ V c
h , we have

‖v‖2E ≤ |||v|||2 ≤ C0‖v‖2E (3.3)
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for a constant C0 > 1. Here the energy norm is given by

‖v‖2E :=
∑

K∈Th

‖∇v‖2K +
∑

e∈�0
h

h−1
e |[v]|2e + 1

2

∑

e∈�∂
h

h−1
e |[v]|2e . (3.4)

Similarly, for w ∈ V = Vh + H 2(�), we have

|A1(w, v)| ≤ �1|||w||| · |||v|||, ∀w, v ∈ V, (3.5)

‖v‖2E ≤ |||v|||2 ≤ C1‖v‖2E, ∀v ∈ Vh. (3.6)

By abuse of notation, |[vh]|2 is meant to be |vh|2 in case of the homogeneous Dirichlet
data on �∂ . Now we show that the bilinear operators A0(·, ·) and A1(·, ·) are coercive
on DG spaces V c

h and Vh, respectively.

Lemma 3.1 For the bilinear forms A0(·, ·) and A1(·, ·) defined by (2.8) and (2.9),
respectively, there exists �1 > 0 and α ∈ (0, 1) such that if β > �1, then

A0(v, v) ≥ α‖v‖2E, ∀v ∈ V c
h , (3.7)

and if the numerical flux (2.11) with (β0, β1) chosen so that β0 > �2(β1) is suitably
large, there exists γ > 0, such that

A1(w, w) ≥ γ ‖w‖2E, ∀w ∈ Vh. (3.8)

The inequality (3.7) can be derived as in [40, Theorem 2.1], and the inequality
(3.8) can be derived following [24, Lemma 3.1]. Details are hence omitted.

Remark 3.1 The conditions on the method parameters are only sufficient for the error
estimate later. In our numerical tests β can be chosen as a small fixed number or zero,
and the choice of (β0, β1) follows those known for the DDG method [24].

3.1 Projection and approximation properties

We first introduce a projection and then present its approximation properties. The
specific form of the DG scheme led us to define the projection �1 by

〈w − �1w, v〉 + A0(w − �1w, v) = 0, ∀v ∈ V c
h , (3.9)

where this projection maps a function w into space V c
h . This projection is uniquely

defined; since for w = 0 with v = −�1w we have

0 = ‖v‖2 + A0(v, v) ≥ ‖v‖2 + α|||v|||2, ∀v ∈ V c
h ,

where we have used the coercivity (3.7), hence v ≡ 0. This says that such projection
is well-defined.

Theorem 3.1 For w ∈ Hk+1(�) and h suitably small, we have the following
projection error:

‖w − �1w‖ ≤ Chk+1|w|k+1 and |||w − �1w||| ≤ Chk|w|k+1, (3.10)

where C depends on k, d, 1/α, and �0.
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This is a special case of that proved in [40].
We proceed to collect some basic inequalities, in which the bounding coefficients

are easy to figure out in one dimension, yet often more involved in the case of several
dimensions.

(1) Note that if w ∈ H 3(K) and e is an edge of element K , we have [2, 2.4 & 2.5]
the following trace inequalities

‖v‖20,e ≤ C(h−1
e ‖v‖20,K + he|v|21,K), (3.11a)

‖∂nv‖20,e ≤ C(h−1
e |v|21,K + he|v|22,K), (3.11b)

‖∂2nv‖20,e ≤ C(h−1
e |v|22,K + he|v|23,K), (3.11c)

where the constant C can depend on several geometric features of K , but it does not
depend on the size of K and e.

(2) Inverse inequality. For a finite dimensional space, all norms are equivalent. For
every polynomial of degree ≤ k, there exists C depending on k such that

|v|2s,K ≤ Ch
−2(s−m)
K |v|2m,K for s, m integers with s > m. (3.12)

Moreover, for any function v ∈ Vh, the following inverse inequalities hold

‖v‖�h
≤ Ch−1/2‖v‖, (3.13a)

‖v‖∞ ≤ Ch−d/2‖v‖, (3.13b)

where d is the spatial dimension, and ‖v‖2�h
:= ∑

e∈�h

∫
e
v2ds. For more details of

these inverse properties, we refer the reader to [15].

3.2 Error estimates

In order to obtain the error estimates for solutions to the semi-discrete DG scheme,
we first verify that the DG scheme (2.6)–(2.7) is consistent in the sense that the exact
solution (u, �) of (1.1) also satisfies (2.6)–(2.7), i.e.,

i〈ut , vh〉 = A0(u, vh) + 〈�u, vh〉, ∀vh ∈ V c
h , (3.14)

A1(�, wh) = μ(|u|2 − c, wh), ∀wh ∈ Vh. (3.15)

Substracting (2.6)–(2.7) from (3.14)–(3.15), respectively, leads to the error equation

i 〈ut − uht , vh〉 =A0(u − uh, vh) + H(vh), ∀vh ∈ V c
h ,

A1(� − �h, wh) =μ(|u|2 − |uh|2, wh), ∀wh ∈ Vh.
(3.16)

Here
H(vh) := 〈�u − �huh, vh〉 .

To proceed we first prepare the following estimate.

Lemma 3.2 Given f ∈ L2(�). If

A1(a, wh) = (f, wh), ∀wh ∈ Vh, (3.17)

then there exists a constant C > 0 such that

‖a‖ ≤ C(‖f ‖ + h min
ah∈Vh

|||ah − a|||). (3.18)
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Proof This will be proved in two steps.
Step 1. Let ah ∈ Vh approximate a, then

A1(ah, wh) = A1(ah − a, wh) + (f, wh).

Taking wh = ah and using (3.8), then (3.6), we obtain

C−1
1 γ |||ah|||2 ≤ γ ‖ah‖2E ≤ �1|||ah − a||||||ah||| + ‖f ‖‖ah‖.

Note that ‖ah‖ ≤ C|||ah|||. Thus
|||ah||| ≤ C(|||ah − a||| + ‖f ‖).

This when combined the triangle inequality yields

|||a||| ≤ C( min
ah∈Vh

|||ah − a||| + ‖f ‖). (3.19)

Step 2. We proceed to obtain ‖a‖ by coupling with a duality argument. Define the
auxiliary function ψ as the solution of the elliptic problem

{
−�ψ =a in �,

ψ =0 on ∂�.
(3.20)

This problem has a unique solution and admits the following regularity estimate for
ψ ∈ H 2(�),

‖ψ‖2 ≤ ‖a‖. (3.21)

We then have

‖a‖2 =
∑

K∈Th

∫

K

a(−�ψ)dx

=
∑

K∈Th

∫

K

(∇a · ∇ψ)dx +
∑

K∈Th

∫

∂K

(

−a
∂ψ

∂n

)

ds

=
∑

K∈Th

(∇a, ∇ψ)K +
∑

e∈�0
h

(∂̂na, [ψ])e + ([a], {∂nψ})e + Ab
1(ψ, a)

= A1(ψ, a) = A1(a, ψ). (3.22)

For k ≥ 1, we take ψh ∈ Vh to be a piecewise linear interpolant of ψ so that

‖∂m
x (ψ − ψh)‖ ≤ Ch2−m|ψ |2, m = 0, 1, 2.

Using (3.17) with wh = ψh, we obtain

‖a‖2 = A1(a, ψ) = (f, ψh) + A1(a, ψ − ψh)

≤ ‖f ‖(‖ψ‖ + ‖ψ − ψh‖) + �|||a||| · |||ψ − ψh|||
≤ C(1 + h2)‖ψ‖2‖f ‖ + Ch‖ψ‖2|||a|||
≤ C(‖f ‖ + h|||a|||)‖a‖, (3.23)

where we used (3.21). Hence

‖a‖ ≤ C(‖f ‖ + h|||a|||). (3.24)
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For h small, (3.24) with (3.19) yields

‖a‖ ≤ C(‖f ‖ + h min
ah∈Vh

|||ah − a|||).
This is (3.18) as claimed.

The groundwork has been laid for stating and proving the main convergence result
for the semi-discrete approximation (2.6)–(2.7).

Theorem 3.2 Let u be the smooth solution of (1.1) subject to periodic boundary
conditions for u and the Dirichlet condition for �. Let uh be the solution to the semi-
discrete DG scheme (2.6), (2.7) with β > �1 and β0 > �2(β1), and boundary terms
(2.12a) and (2.12d), respectively. If h is suitably small, then we have the following
error estimate

‖u(·, t) − uh(·, t)‖ ≤ Chk+1, 0 ≤ t ≤ T ,

where C depends on |u|k+1, |ut |k+1, ‖�‖∞, T , β, β0, β1, and ‖u0‖k+1, but is
independent of h.

Proof Applying the estimate (3.18) to the second error equation in (3.16) with a =
� − �h and f = μ(|u|2 − |uh|2), we obtain

‖� − �h‖ (‖f ‖ + hk+1) hk+1 + (‖u‖∞ + ‖uh‖∞)‖u − uh‖. (3.25)

We now return to the first error equation. Set ξ = �1u − u, η = �1u − uh, and
vh = η, we have

i
∫

�

ηtη
∗dx = i

∫

�

ξtη
∗dx + A0(η, η) − A0(ξ, η) + H(η).

Thus

d

dt
‖η‖2 = 2Re

(∫

�

ξtη
∗dx

)

− 2 Im(A0(ξ, η)) − 2ImH(η). (3.26)

Note that from (3.9) we have A0(ξ, η) = − ∫
�

ξη∗dx. Thus the first two terms on
the right are bounded from above by

2‖ξt‖ · ‖η‖ + 2‖ξ‖ · ‖η‖ ≤ (2‖ξt‖ + 2‖ξ‖)‖η‖ ≤ Chk+1‖η‖, (3.27)

where C depends on |u|k+1 and |ut |k+1. We proceed to estimate the nonlinear term
as follows:

2|H(η)| = 2 |〈(� − �h)uh + �(u − uh), η〉|
≤ 2 (‖� − �h‖‖uh‖∞ + ‖u − uh‖‖�‖∞) ‖η‖.

Using the Sobolev embedding result we have for k > d
2 − 1,

‖u‖∞ ≤ C‖u‖k+1.

By the approximation results (3.10), we have for small h,

‖u − uh‖ = ‖ξ − η‖ ≤‖ξ‖ + ‖η‖ hk+1 + ‖η‖,
‖u − uh‖∞ = ‖ξ − η‖∞ ≤‖ξ‖∞ + ‖η‖∞ hk + h−d/2‖η‖,
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where we used the following fact:

‖ξ‖∞ ≤ ‖u − uI‖∞ + ‖uI − �u‖∞
hk + h−1‖uI − �u‖ ≤ Chk,

with uI is a local interpolation polynomial to approximate u.
Substitution of the above estimates into (3.25) gives

‖� − �h‖ hk+1 + ‖η‖ + h−d/2‖η‖2. (3.28)

Hence (3.26) reduces to

d

dt
‖η‖ hk+1 + ‖� − �h‖(‖u − uh‖∞ + ‖u‖∞) + ‖u − uh‖‖�‖∞

hk+1 + ‖� − �h‖(‖u‖k+1 + (hk + h−d/2)‖η‖) + (hk+1 + ‖η‖)‖�‖∞
hk+1 + ‖η‖ + h−d/2‖η‖2 + h−d‖η‖3.

For h < 1, we have
ε = h(k+1−d/2) < 1.

Set B = ‖η‖
hk+1 , so that

d

dt
B ≤ C(1 + B + εB2 + ε2B3) ≤ C(εB2 + 1)(B + 1). (3.29)

Note that at t = 0 we have

η(x, 0) = �u0(x) − uh(x, 0) = ξ(x; 0) + u0(x) − uh(x, 0),

hence ‖η(·, 0)‖2 ≤ C0h
2k+2 by (3.10) and the L2-projection error, with C0

depending on ‖u0‖k+1. Thus B(0) = ‖η(·, 0)‖/hk+1 ≤ C0.
Integration of (3.29) gives

G(B(t)) ≤ G(B(0)) + CT, G(s) :=
∫ s

1

dz

(εz2 + 1)(z + 1)

for t ∈ [0, T ]. If B(t) ≤ 1, then the proof is done. Otherwise for B(t) > 1, we bound
G from below as follows:

G(B) ≥ 1

2

∫ B

1

dz

z(1 + εz2)

= 1

2

∫ B
√

ε

√
ε

dy

y(1 + y2)
(set εz2 = y2)

= −1

4
log

(

1 + 1

εB2

)

+ 1

4
log

(

1 + 1

ε

)

.

Hence
1

4
log

(

1 + 1

ε

)

− 1

4
log

(

1 + 1

εB2

)

≤ G(B(0)) + CT,

from which we are able to derive

B(t) ≤
[

ea

1 − ε(ea − 1)

] 1
2

, a = 4(G(B0) + CT ).
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It suffices to choose h suitably small so that ε ≤ 1
2(ea−1) , and as a result we have

B(t) ≤ [2ea] 12 = √
2e2(G(B0)+CT ) = C∗.

We thus conclude B(t) ≤ max{1, C∗}. Hence ‖η(·, t)‖ ≤ max{1, C∗}hk+1, which
when combined with the triangle inequality ‖u(·, t) − uh(·, t)‖ ≤ ‖η‖ + ‖ξ‖ leads
to the desired error estimate.

Remark 3.2 A sharp L2 error estimate with homogeneous boundary condition also
for u can be obtained as well. In such case, instead of projection (3.9) one can simply
define �1 by

A0(w − �1w, v) = 0, ∀v ∈ V c
h .

The approximation result stated in Theorem 3. remains valid, as is already known
from [3] in the non-complex setting.

Remark 3.3 Under some regularity assumptions on the exact solution, the conver-
gence rates

max
0≤n≤K

‖u·, tn) − un
h(·)‖ = O(hk+1 + (�t)2),

are expected for the fully discrete approximation. The arguments in a proof of these
estimates are similar to those appearing already in [31, 32], yet more involved in
handling nonlinear terms and stability of the time discretization, and so we leave it
for future work.

4 Numerical examples

In this section, we present several numerical tests designed to gauge the perfor-
mance of our conservative DG schemes. Interest is given particularly to validate our
theoretical results, including a study of the convergence rates.

In all our numerical tests the L2 error is measured in discrete norm by

‖v − vh‖ :=
⎛

⎝
N∑

α=1

Q∑

i=1

ωi(v(xi
α, t) − vh(x

i
α, t))2|Kα|

⎞

⎠

1/2

,

where v = uR or uI , the real or imaginary part of u, and vh is the corresponding
part of the numerical solution. Here xα

i is the i-th quadrature point associated with

weight ωi so that
∑Q

i=1 ωi = 1. In our numerical tests, we take Q = 25 for all poly-
nomial elements we tested. For the parameters β, β0, β1 in numerical fluxes (2.10)
and (2.11), we take β = β0 = 10 and β1 = 1

12 for Qk, k = 1, 2 approximations.
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Table 1 Errors for Example 4.1 when using Qk, k = 1, 2, 3 polynomials on a uniform mesh. Final time
is t = 0.1

Qk ‖u50 − u100‖ Order ‖u100 − u200‖ Order ‖u200 − u400‖ Order

k = 1 1.7534e−01 – 4.4228e−02 1.99 1.1066e−02 2.00

k = 2 3.1607e−03 – 3.4212e−04 3.21 3.9861e−05 3.10

Example 4.1 We consider the two-dimensional Schrödinger-Poisson problem:

iut (x, y, t) = −1

2
�u(x, y, t) + �(x, y, t)u(x, y, t), (x, y) ∈ � = [0, 5]2,

��(x, y, t) = |u(x, y, t)|2, (x, y) ∈ �,

u(x, y, t) = 0, (x, y) ∈ ∂�,

�(x, y, t) = 0, (x, y) ∈ ∂�,

u(x, y, 0) = u0(x, y) = 10e−10((x−2.5)2+(y−2.5)2), (x, y) ∈ �.

This problem was tested numerically in [4] by a second-order Strang splitting
time discretization combined with a conforming finite element space discretization.
We first test the accuracy and convergence rate using the Qk polynomials with k =
1, 2 on a uniform mesh with N × N cells. Without the exact solution, we calculate
the error ‖uN − u2N‖ between the two level approximations with uN denoting the
numerical approximation on a mesh with N × N cells. Table 1 reports the L2 errors

0 1 2 3 4 5 6 7 8 9 10

t

0.997

0.998

0.999

1

1.001

1.002

1.003

R
el

at
iv

e 
m

as
s 

an
d 

en
er

gy

Mass

Energy

DG Energy

Fig. 1 Example 4.1. Mass and energy history
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Fig. 2 Example 4.1. Wave function |u(x, y, t)| at t = 0.1, 0.2, 2, and t = 10

and orders of accuracy. We observe that the DG method achieves the optimal k + 1
order for k = 1, 2. We then test the conservation property of the scheme using Q2

polynomials. Figure 1 plots the history of the relative mass and energy, respectively;
we also compare the energy

Eh(u
n
h) =

∫

�

(

|∇un
h|2 + 1

2μ
|∇�n

h|2
)

dx,
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Fig. 3 Example 4.2. Mass and energy history. Left: V (x, y) = x2−y2

2 , Right: V (x, y) = −x2+y2
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Fig. 4 Example 4.2, V (x, y) = x2−y2

2 , numerical |u(x, y, t)| at t = 0, 1, 2. Left: 3D view of |u(x, y, t)|,
Right: top view of |u(x, y, t)|

and the DG energy defined by

Ẽh(u
n
h) = A0(u

n
h, u

n
h) + 1

2

∫

�

�n
h

(
|un

h|2
)

dx.

It shows that the mass is well preserved, and the energy is asymptotically preserved as
the discrete energy appears to evolve quite close to the initial energy. Figure 2 shows
the wave function |u(x, y, t)| at time t = 0.1, 0.2, 2, and t = 10; using a 100 × 100
mesh and polynomial basis functions of degree 2.
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Fig. 5 Example 4.2, V (x, y) = x2−y2

2 , numerical |u(x, y, t)| at t = 5, 7.5, 10. Left: 3D view of
|u(x, y, t)|, Right: top view of |u(x, y, t)|

Example 4.2 We consider the two-dimensional Schrödinger–Poisson equation in
� = [−8, 8]2 with nonlinear interaction:

iut (x, y, t) = −1

2
�u(x, y, t) + �(x, y, t)u(x, y, t) + V (x, y)u(x, y, t) + |u|2u(x, y, t),

−��(x, y, t) = |u(x, y, t)|2 − 1, (x, y) ∈ �,

u(x, y, t) = 0, (x, y) ∈ ∂�,

�(x, y, t) = 0, (x, y) ∈ ∂�,

u(x, y, 0) = u0(x, y) = 1√
2π

e− x2+y2

4 (x + iy), (x, y) ∈ �.
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Fig. 6 Example 4.2, V (x, y) = −x2+y2

2 , numerical |u(x, y, t)| at t = 0, 1, 2. Left: 3D view of |u(x, y, t)|,
Right: top view of |u(x, y, t)|

This problem has been tested numerically in [37] with the potential V (x, y) =
x2+y2

2 . We apply the fully discrete DG scheme (2.26a)–(2.26c) and the corresponding
iteration algorithm for this problem. We carry out numerical tests with the potential

V (x, y) = x2−y2

2 and V (x, y) = −x2+y2

2 on a 80 × 80 mesh and polynomial basis
functions of degree 2. In Fig. 3 we plot the relative mass and energy history. During
the simulation up to t = 10, the mass is preserved well, and the energy is asymp-
totically preserved. Figures 4, 5, 6 and 7 show the wave function |u(x, y, t)| at time
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Fig. 7 Example 4.2, V (x, y) = −x2+y2

2 , numerical |u(x, y, t)| at t = 5, 7.5, 10. Left: 3D view of
|u(x, y, t)|, Right: top view of |u(x, y, t)|

t = 0, 1, 2 and t = 5, 7.5, 10, respectively. We can see clearly that the repulsive V

enforces the dispersion in x or y direction.

5 Concluding remarks

In this paper, we have constructed, analyzed and tested high-order conservative
DG schemes for the nonlinear Schrödinger–Poisson equation. It is shown that both
semi-discrete and fully discrete schemes preserve both mass and energy. For the
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semi-discrete DG scheme we obtained optimal L2 error estimates in the full nonlin-
ear setting. We presented a number of numerical tests to illustrate the performance
of the proposed schemes and to validate the theoretical results of the paper. The
numerical results confirm that the method is both accurate and robust, both mass and
energy are well preserved over long time simulations. Therefore, the schemes can be
considered as a competitive algorithm in the solution of the nonlinear Schrödinger–
Poisson equation. A very interesting question is whether it is possible to improve
these schemes into higher order (in time) schemes while still conserving both mass
and (a modified) energy.

Funding Yi’s research was partially supported by NSFC Project (11671341, 11971410) and Hunan
Provincial NSF Project (2019JJ20016).
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