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Abstract
We present strongly convergent explicit and semi-implicit adaptive numerical
schemes for systems of semi-linear stochastic differential equations (SDEs) where
both the drift and diffusion are not globally Lipschitz continuous. Numerical instabil-
ity may arise either from the stiffness of the linear operator or from the perturbation
of the nonlinear drift under discretization, or both. Typical applications arise from
the space discretization of an SPDE, stochastic volatility models in finance, or cer-
tain ecological models. Under conditions that include montonicity, we prove that a
timestepping strategy which adapts the stepsize based on the drift alone is sufficient
to control growth and to obtain strong convergence with polynomial order. The order
of strong convergence of our scheme is (1 − ε)/2, for ε ∈ (0, 1), where ε becomes
arbitrarily small as the number of finite moments available for solutions of the SDE
increases. Numerically, we compare the adaptive semi-implicit method to a fully
drift-implicit method and to three other explicit methods. Our numerical results show
that overall the adaptive semi-implicit method is robust, efficient, and well suited as
a general purpose solver.
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1 Introduction

Consider the d-dimensional semi-linear stochastic differential equation (SDE) of Itô
type

dX(t) = [AX(t) + f (X(t)]dt + g(X(t))dW(t), t ∈ [0, T ]; X(0) ∈ R
d , (1)

where T > 0, A ∈ R
d×d , f : R

d → R
d , g : R

d → R
d×m, and W is an m-

dimensional Wiener process. We suppose that the drift coefficient f and the diffusion
coefficient g together satisfy polynomial bounds and a monotone condition permit-
ting g to grow superlinearly as long as that growth is countered sufficiently strongly
by f. Global Lipschitz bounds are not required. For example, consider f (x) = −x2

with g(x) = x3/2 or f (x) = −x5 with g(x) = x2. Such applications arise in finance:
for example, the Lewis stochastic volatility model [17] which has a polynomial diffu-
sion coefficient of order 3/2. It was shown in [11] that the explicit Euler-Maruyama
method with constant stepsize fails to converge in the strong sense to solutions of (1)
if either the drift or the diffusion coefficients grow superlinearly. Also, as noted in
[4], fixed stepsize schemes may need to use very small stepsizes when the SDE being
solved is stiff. We address these issues here by a semi-implicit scheme with adaptive
timestepping.

In [14], a class of timestepping strategies, referred to as admissible, was moti-
vated for the numerical discretization of SDEs where the drift satisfies a one-sided
Lipschitz coefficient and the diffusion satisfies a global Lipschitz bound. An admis-
sible strategy uses the present value of the numerical trajectory to select the next
timestep to avoid spuriously large drift responses. This is distinct from the error
control approach in (for example) [4, 5, 13].

Timesteps selected by an admissible strategy are subject to upper and lower lim-
its hmax and hmin in a fixed ratio ρ, with hmax serving as a convergence parameter
and hmin serving to ensure that the simulation completes in a reasonable time. If the
strategy attempts to select a timestep smaller than hmin, then a backstop method is
applied instead over a single step of length hmin. It was proved in [14] that the explicit
Euler-Maruyama method over a random mesh generated by an admissible timestep-
ping strategy is strongly convergent in hmax with order 1/2. The proof relied upon
pth-moment bounds on the supremum of solutions of the underlying SDE. Note also
the adaptive approach in [6] which is consistent with the admissibility condition of
[14].

Here, we examine more general SDEs and consider simultaneously both explicit
and semi-implicit Euler-Maruyama schemes. Due to the monotone condition on the
drift and diffusion terms, our analysis must contend with only a finite number of
available bounded SDE moments (see for example the estimates provided by parts (i)
and (ii) of Lemma 4). Unlike in [14], we characterize precisely the backstop scheme
and integrate it into the analysis in a way that is compatible with taking a random
number of timesteps. In this way, we show that a class of admissible timestepping
strategies depending only on the drift response can be used to ensure that both the
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explicit and semi-implicit adaptive Euler-Maruyama schemes are strongly convergent
to solutions of (1) with order (1 − ε)/2, in the sense that for any ε ∈ (0, 1), there
exists Cε > 0, independent of hmax such that

E X(T ) − YN
2 ≤ Cεh

1−ε
max,

where YN is value of the numerical scheme at time T, and · is the l2 norm. The
reduction in the order of strong convergence in our main result (when compared to
that in [14]) is a direct consequence of the loss of global Lipschitz continuity in the
diffusion coefficient. If we reimpose global Lipschitz continuity on the diffusion, we
recover a strong convergence order of 1/2, and if we decompose the drift of (1) so
that A = 0, we recover the main result of [14]: see Remark 6 for more details of this.

The nature of the monotone condition is such that a timestepping scheme which
is admissible, and which can therefore successfully control the drift response, will
also be sufficient to control the diffusion response. It is well documented that the
structure of the drift function (both linear and nonlinear) under discretization may
have local dynamics that render the stability of equilibria vulnerable to the effects of
perturbation, either stochastic or numerical [1, 3, 7, 8, 11].

Our method handles stiffness leading to potential instability in the discretization in
two distinct ways. Where there is a classic (deterministic) stiff linear system, we are
able to treat this term implicitly without sacrificing numerical efficiency. Adaptive
timestepping then treats nonlinear stability under stochastic perturbation. Thus, we
deal with each source of potential instability separately, as would a stochastic IMEX-
type method. The use of an implicit approach to deal with the linear part of the
drift avoids any consideration of potential interactions between it and the diffusion
or between it and the nonlinear part of the drift. Note that the decomposition of the
drift into the form AX(t)+ f (X(t)) is determined by the modeller, and when A = 0
the convergence analysis in this article applies equally to a fully explicit method if
desired.

The literature already contains numerical schemes with fixed stepsizes that con-
verge strongly to solutions of SDEs with coefficients that satisfy local Lipschitz and
monotone conditions. Several of these extend the idea of taming as introduced in [12],
which rescales the functional response of the drift coefficient in the scheme; they do
so by allowing the entire stochastic Euler map to be rescaled by some combination
of drift and diffusion responses. For example, see the balanced method introduced
in [30] and the variant presented in [25], which are both strongly convergent in this
setting. The projected Euler method of [2] handles runaway trajectories by project-
ing them back onto a ball of radius inversely proportional to the step size; hence,
the authors control moments of the numerical solution. It was shown in [24] that
a drift-implicit discretization could also ensure strong convergence in our setting.
Finally we highlight [10], which treats SDEs and SPDEs with non-globally monotone
coefficients.
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In Section 5, we compare the numerical performance of a selection of these meth-
ods to that of the adaptive scheme presented in this article. We note this selection
cannot be exhaustive and there are a growing number of variations; see for example
[9, 22, 23, 26, 29, 31]. However, our examples illustrate some of the drawbacks of
fixed-step explicit schemes (when linear stability is an issue) and where for fixed, rel-
atively large h, the taming perturbation which imposes convergence may change the
dynamics of the solution. Compared to the fixed-step explicit methods, our numer-
ical results show that the semi-implicit adaptive method gives consistently reliable
numerical convergence results. It is also more efficient than the drift-implicit scheme
for SODEs, though this comparison is less clear for the SPDE example.

The structure of the article is as follows. In Section 2, we describe the mono-
tone condition and polynomial bounds that must be satisfied by f and g, and provide
the pth-moment bounds satisfied by the solutions of (1) within that framework. In
Section 3, we introduce the semi-implicit Euler-Maruyama method that, applied step-
wise over a random mesh and combined with an appropriate backstop method, is
the focus of the article. A mathematical definition for meshes produced by admis-
sible timestepping strategies is provided, and conditional moment bounds for the
SDE solution associated with these meshes are derived. In Section 4, we present our
main convergence result and state several technical lemmas, with proofs provided
in Section 6. In Section 5, we carry out a comparative numerical investigation of
strongly convergent schemes from the selection discussed above.

2 Setting

Throughout the paper, N denotes the set {0, 1, 2, . . .}, · denotes the l2 norm of
a d-dimensional vector, · F the Frobenius norm of a d × m-dimensional matrix,
and for any x ∈ R

d and i = 1, . . . , m, gi(x) denotes the ith column of the diffusion
coefficient matrix g(x). For a, b ∈ R let a ∨ b denote max{a, b}. For any A ∈ R

d×d ,
we let A1/2 ∈ C

d×d denote the matrix such that (A1/2)2 = A. Let (Ft )t≥0 be the
natural filtration of W. To ensure the existence of a unique strong solution for (1) (in
the sense of [21, Definition 2.2.1]) over the interval [0, T ], it suffices to place local
Lipschitz and monotone conditions on f and g:

Assumption 1 For each R > 1 there exists LR > 0 such that

f (x) − f (y) + g(x) − g(y) F ≤ LR x − y ,

for x, y ∈ R
d with x ∨ y ≤ R, and there exists c ≥ 0 such that for some p ≥ 0

x − y, f (x) − f (y) + p + 1

2
g(x) − g(y) 2

F ≤ c( x − y 2), x, y ∈ R
d . (2)

We also require a set of polynomial bounds on the derivatives of f and g, and hence
on f and g themselves. The minimum value of p in (2) required to prove our main
strong convergence result depends on the order of these bounds.
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Assumption 2 Suppose f : R
d → R

d and g : R
d → R

d×m are continuously
differentiable with derivatives bounded as follows: for some cj , γ0, γ1 ≥ 0; j =
1, . . . , 4, we have

Df (x) F ≤ c1(1 + x γ0), Dgi(x) F ≤ c2(1 + x γ1), i = 1, . . .m, (3)

where Df (x) ∈ R
d×d is the matrix of partial derivatives of f, and Dgi(x) ∈ R

d×d is
the matrix of partial derivatives of the ith column of g, and

f (x) ≤ c3(1 + x γ0+1), g(x) F ≤ c4(1 + x γ1+1). (4)

We require that some of the moments of the solutions of (1) are bounded over
the interval [0, T ]. Furthermore, (2) in Assumption 1 implies (see, for example,
Tretyakov & Zhang [30]) that there exists c ≥ 0 such that

x, f (x) + p − 1

2
g(x) 2

F ≤ c (1 + x 2), x ∈ R
d . (5)

This is a special case of Khasminskii’s condition using the Lyapunov-type function
V (x) = 1 + x 2, and it guarantees the existence of a unique strong solution of
(1) over [0, T ] for any T < ∞ (see [21, Theorem 2.3.5]), while also ensuring pth-
moment bounds as follows:

Lemma 1 Let (X(t))t∈[0,T ] be the unique solution of (1). Suppose that (5) holds for
some p ≥ 2 and (4) in Assumption 2 holds, then there exists Mp,T < ∞ such that

E sup
0≤t≤T

X(t) p−2γ1 ≤ Mp,T . (6)

Proof The proof of (6) follows from [23, Lemma 4.2], since the bound on g provided
by (4) implies Eq. (4.2) in that article, which we reproduce here as

g(x) 2
F ≤ K(1 + x r), for all x ∈ R

d ,

with r = 2γ1 + 2.

To ensure sufficiently many bounded moments of the form (6) for our analysis to
work, we now impose a lower bound on the value of p in (2) that depends on the
order of the polynomial bounds on f and g. This bound is associated with a tolerance
parameter ε which then appears in the the rate of strong convergence in Theorem 6.

Assumption 3 Suppose that (2) in Assumption 1 holds with

p ≥ max {4γ0, 6γ1} + 4 + 2q, (7)

where γ0 and γ1 are as required in Assumption 2, and N \ {0} q > 1 − log2 ε,
where ε ∈ (0, 1) is a fixed tolerance parameter.

Finally, note that the analysis in this article is also valid if the initial vector is
random, F0-measurable, and E X(0) p < ∞.
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3 An adaptive semi-implicit Euler schemewith backstop

The adaptive timestepping scheme under investigation in this article is based upon the
semi-implicit Euler-Maruyama scheme over a random mesh {tn}n∈N on the interval
[0, T ] given by

Yn+1 = Yn + hnAYn+1 + hnf (Yn) + g(Yn) Wn+1, n ∈ N, (8)

where Wn+1 := W(tn+1) − W(tn), and {hn}n∈N is a sequence of positive random
timesteps and {tn := n

i=1hi−1}n∈N\{0} with t0 = 0. For the setting described in
Section 2, we show that, in order to ensure strong convergence with order (1 − ε)/2
of the method (8) for any ε ∈ (0, 1), it is sufficient to construct the stepsize sequence
{hn}n∈N in the same way as in [14], demonstrating the applicability of this strategy
to a significantly broader class of SDEs. We review the construction now.

Definition 1 Suppose that each member of {tn := n
i=1hi−1}n∈N\{0}, with t0 = 0,

is an Ft -stopping time: i.e., {tn ≤ t} ∈ Ft for all t ≥ 0, where (Ft )t≥0 is the natural
filtration of W. The filtration (Ft )t≥0 can be extended (see [21]) to any Ft -stopping
time τ by

Fτ := {B ∈ F : B ∩ {τ ≤ t} ∈ Ft }.
In particular, this allows us to condition on Ftn at any point on the random time-set
{tn}n∈N.

Remark 1 Throughout the article, the index of a random sequence reflects its Ftn-
measurability. For example, consider the timestep sequence {hn}n∈N: each hn is Ftn-
measurable. The only exception to this is {tn}n∈N, since each tn is Ftn−1 -measurable.

Assumption 4 Suppose that each hn is Ftn-measurable, and that there are constant
minimum and maximum stepsizes hmin and hmax imposed in a fixed ratio ρ so that

0 < hmin ≤ hn ≤ hmax < 1, hmax = ρhmin. (9)

Definition 2 For each t ∈ [0, T ], define the random integer N(t) such that

N(t) := max{n ∈ N \ {0} : tn−1 < t}.
Set N := N(T ) and tN := T , so that T is always the last point on the mesh.

We note that N(t) is a.e. the index of the right endpoint of the step that contains
t, i.e. t ∈ [tN(t)−1, tN(t) ] a.s. Both tN(t) and tN(t)−1 are Ft -stopping times, and N(t) is

supported on the finite set {N(t)
min, . . . , N

(t)
max}, where

N
(t)
min := t/hmax and N(t)

max := t/hmin . (10)

Remark 2 In (8), note that each Wn+1 = W(tn+1) − W(tn) is taken over a random
step of length hn = hn(Yn) and which depends on {W(s), s ∈ [0, tn]} through Yn.
Therefore, Wn+1 is a function of values of the Wiener process up to time tn, is not
independent of Ftn , and there is no reason to expect that Wn+1 ∼ N (0, hnId×d),
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where Id×d is the identity matrix. However, since tn+1 is a bounded Ftn-stopping
time then, by Doob’s optional sampling theorem (see, for example, [27]),

E Wn+1 Ftn = 0, E Wn+1
2 Ftn = hn, a.s. (11)

In our main analysis, we use the following lemma on the boundedness of the
moments of solutions of (1) conditioned at points on our adaptive mesh. The proof is
a modification of that of [21, Theorem 2.4.1].

Lemma 2 Let (X(t))t∈[0,T ] be a unique solution of (1), and suppose that (5) holds
for some p ≥ 2. Then, there exist constants ν1 and ν2 such that

E X(t) p|Ftn ≤ ν1 + ν2 X(tn)
p, t ≥ tn a.s.

We are now in a position to define the scheme which is the subject of this article,
and which combines a semi-implicit Euler scheme over an adaptive mesh, generated
according to an admissible timestepping strategy, with a backstop method.

Definition 3 Define the map θ : Rd × R
d × R

m × R
+ → R

d such that

θ(x, y, z, h) := x + hAy + hf (x) + g(x)z,

so that, if {Yn}n∈N is defined by the semi-implicit scheme (8), then

Yn+1 = θ(Yn, Yn+1, Wn+1, hn), n ∈ N.

Then, we define a semi-implicit Euler scheme with backstop as the sequence {Yn}n∈N
by

Yn+1 = θ(Yn, Yn+1, Wn+1, hn) · I{hmin<hn≤hmax}
+ϕ(Yn, Yn+1, Wn+1, hmin) · I{hn=hmin}, (12)

where {hn}n∈N satisfies the conditions of Assumption 4. The map ϕ : Rd × R
d ×

R
m ×R

+ → R
d characterizes the form a user-selected backstop method. We require

that

E ϕ(Yn, Yn+1, Wn+1, hmin) − X(tn+1)
2 Ftn − Yn − X(tn)

2

≤ C1h
2−ε
min + C2hmin Yn − X(tn)

2
, n ∈ N, a.s., (13)

for some positive constants C1 and C2, and ε ∈ (0, 1) the fixed parameter from
Assumption 3.

Remark 3 Note that ϕ will satisfy (13) if the backstop method is subject to a mean-
square consistency requirement that bounds the propagation of discretization error
over a single step. In practice, rather than checking (13) directly, we use as our back-
stop a method that is known to be strongly convergent of order 1/2 in this setting:
for the numerical experiments in Section 5, we use the balanced method introduced
by Tretyakov and Zhang [30], which satisfies a similar local accuracy bound (see
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[30, Eq. (2.9)]) and corresponds to the map

ϕ(x, y, z, h) = x + f (x)h + √
hg(x)z

1 + h f (x) + √
h

m
i=1 gi(x)zi

. (14)

Examples of hmin, hmax, and ρ for the scheme (12) with backstop characterized by
(14) are given in Section 5.

Finally, we define the admissible timestepping strategy (see also [14]).

Definition 4 Let {Yn}n∈N be a solution of (12) where f and g satisfy the conditions
of Assumptions 1, 2, and 3. We say that {hn}n∈N is an admissible timestepping strat-
egy for (12) if Assumption 4 is satisfied and there exist real non-negative constants
R1, R2 < ∞, independent of hmax, such that whenever hmin < hn ≤ hmax,

f (Yn)
2 ≤ R1 + R2 Yn

2, n = 0, . . . , N − 1. (15)

For example (see [14]), the timestepping rule given by

hn = hmax × min max
1

f (Yn)
,

Yn

f (Yn)
, ρ , 1

is admissible for (12). Choosing the larger of 1/ f (Yn) and Yn / f (Yn) helps
maximize the stepsize while maintaining its admissibility. The backstop is needed
since it may not always be possible to control Yn via timestep so that (15) holds. See
Section 7 for a more detailed comment.

4 Strong convergence of the adaptive scheme

4.1 Preliminary lemmas

These lemmas provide a regularity bound in time and an estimate on remainder terms
from Taylor expansions of f and g. Proofs are given in Section 6.

Lemma 3 Let (X(t))t∈[0,T ] be a solution of (1) with coefficients f and g satisfying
the conditions of Assumptions 1, 2, and 3, and suppose that the sequence of random
times {tn}n∈N is as in Definition 1 and satisfies the conditions of Assumption 4. Then
for all n ∈ N and p ≥ 2, there exists an a.s. finite and Ftn-measurable random
variable L̄p,n so that

E X(s) − X(tn)
p Ftn ≤ L̄p,n|s − tn|p/2, s ∈ [tn, tn+1], a.s. (16)

Now consider the Taylor expansions of f and gi , i = 1, . . . , m:

f (X(s)) = f (X(tn)) + Rf (s, tn, X(tn));
gi(X(s)) = gi(X(tn)) + Rgi

(s, tn, X(tn)),
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where the remainders Rf and Rgi
are given in integral form by

Rz(s, tn, X(tn)) :=
1

0
Dz(X(tn) + τ(X(s) − X(tn)))(X(s) − X(tn))dτ,

and z can be taken to read either f or gi . Furthermore, let

RA(s, tn, X(tn)) := A[X(tn+1) − X(s)].

We now giveFtn-conditional mean-square bounds on the integrals of these remainder
terms.

Lemma 4 Let (X(t))t∈[0,T ] be a solution of (1) with coefficients f and g satisfying
the conditions of Assumptions 1, 2, and 3. Let {tn}n∈N be as in Definition 1, satisfying
the conditions of Assumption 4.

Then for any ε ∈ (0, 1) there is an a.s. finite and Ftn-measurable random variable
Λ̄ε,n > 0, and a constant Λε < ∞, the latter independent of {hn}n∈N and hmax, such
that

(i) E

tn+1

tn

Rf (s, tn, X(tn))ds

2

Ftn ≤ Λ̄ε,nh
3−ε
n , a.s;

(ii) E

tn+1

tn

Rgi
(s, tn, X(tn))dW(s)

2

Ftn ≤ Λ̄ε,nh
2−ε
n , a.s;

(iii) E

tn+1

tn

RA(s, tn, X(tn))dW(s)

2

Ftn ≤ Λ̄ε,nh
3−ε
n , a.s;

(iv) E[Λ̄ε,n] ≤ Λε.

Remark 4 The notational convention used in Part (iv) of Lemma 4 is extended
throughout the paper to Ftn-adapted sequences for which there exists a finite uniform
upper bound on the expectation of each term.

4.2 Main results

In this section, we provide a lemma giving a bound on the one-step error for the
combined scheme, followed by our main theorem which uses a Gronwall inequality
to produce an order of strong convergence.

Lemma 5 Let (X(t))t∈[0,T ] be a solution of (1) with drift and diffusion coefficients f
and g satisfying the conditions of Assumptions 1, 2, and 3. Let {Yn}n∈N be a solution
of (12) with initial value Y0 = X0 and admissible timestepping strategy {hn}n∈N
satisfying the conditions of Assumption 4 and Definition 4.

Define the error sequence {En}n∈N by En := Yn − X(tn). Then, there exist a.s.
finite andFtn-measurable random variables Λ̄ε,n, Γ̄2,n, Γ̄

(m)
3,n with finite expectations
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independent of n, denoted Λε, Γ2, and Γ
(m)
3 respectively, such that

E En+1
2|Ftn − En

2 ≤ hmaxQE En+1
2|Ftn + hmaxΓ1 En

2

+h2maxΓ̄2,n + Γ̄
(m)
3,n h2−ε

max + 126Λ̄ε,nh
3−ε
max, n ∈ N, (17)

where ε ∈ (0, 1) is the fixed parameter from Assumption 3 and constants Q, Γ1 are
given by

Q := A1/2 2
F + 3

2
A 2

F ; (18)

Γ1 := (2c + 20R2 + 2) ∨ C2, (19)

where c, R2, C2 satisfy (2) in Assumption 1, (13) in Definition 3, and (15) in
Definition 4 respectively.

Proof For hn selected at time tn, for some n ∈ N, by an admissible timestepping
strategy, there are two possible cases (denoted (I) and (II)), first, hmin < hn ≤ hmax
and second, hn = hmin. We consider each in turn.

(I) In this case, we rely on the bound (15) provided by the admissibility of the
timestepping scheme. When hmin < hn ≤ hmax, Yn+1 is derived from Yn using (8),
and we have

En+1 := Yn − X(tn) +
tn+1

tn

A[Yn+1 − X(s)]ds +
tn+1

tn

[f (Yn) − f (X(s))]ds

+
m

i=1

tn+1

tn

[gi(Yn) − gi(X(s))]dWi(s).

Expand f and g as Taylor series around X(tn) over the interval of integration, and
write

A[Yn+1 − X(s)] = A[Yn+1 − X(tn+1)] + A[X(tn+1) − X(s)]
:= AEn+1 + RA(s, tn, X(tn)).

Therefore,

En+1 = En +
tn+1

tn

AEn+1ds +
tn+1

tn

[f (Yn) − f (X(tn))]ds

+
m

i=1

tn+1

tn

[gi(Yn) − gi(X(tn))]dWi(s) +
tn+1

tn

RA(s, tn, X(tn))ds

:=R̃A
n+1

+
tn+1

tn

Rf (s, tn, X(tn))ds

:=R̃
f
n+1

+
m

i=1

tn+1

tn

Rgi
(s, tn, X(tn))dWi(s)

:=R̃
gi
n+1

,

730 Numerical Algorithms (2022) 89:721–747



which is

En+1 = En + hnAEn+1 + hn[f (Yn) − f (X(tn))]

+[g(Yn) − g(X(tn))] Wn+1 + R̃A
n+1 + R̃

f

n+1 +
m

i=1

R̃
gi

n+1.

Let Q be as defined in (18). Then, using that hmax ≤ 1 and the inequality 2 x, y ≤
x 2 + y 2, we find

En+1
2 ≤ En

2 + hnQ En+1
2

+ 2hn f (Yn) − f (X(tn), En + 5 [g(Yn) − g(X(tn))] Wn+1
2

:=An+1

+ 5h2n f (Yn) − f (X(tn))
2

:=Bn

+ 2 En, R̃
A
n+1 + R̃

f

n+1 + 7 R̃A
n+1 + R̃

f

n+1 +
m

i=1

R̃
gi

n+1

2

:=Cn+1

+2
m

i=1

En, R̃
gi

n+1 + 4hn f (Yn) − f (X(tn)), [g(Yn) − g(X(tn))] Wn+1

+2 En, [g(Yn) − g(X(tn))] Wn+1 .

We develop bounds on E An+1|Ftn , E Bn|Ftn , E Cn+1|Ftn in turn. The terms
after Cn+1 on the RHS of the inequality have zero conditional expectation, by (11)
in Remark 2, and the fact that En and each R̃gi

are conditionally independent with
respect to Ftn , with the latter an Itô integral with zero conditional expectation.

By (2) in Assumption 1,

E An+1|Ftn ≤ 2hn f (Yn) − f (X(tn)), En + 5hn g(Yn) − g(X(tn))
2
F

≤ 2chn En
2, a.s.

By (15) in Definition 4, and (4) in Assumption 2, we have

E Bn|Ftn = Bn

= 5h2n f (Yn) − f (X(tn))
2

≤ 10h2n( f (Yn)
2 + f (X(tn))

2)

≤ 10h2n(R1 + 2R2( En
2 + X(tn)

2) + 4c23(1 + X(tn)
2γ0+2))

= 20h2nR2 En
2

+10h2n(R1 + 2R2 X(tn)
2 + 4c23(1 + X(tn)

2γ0+2)), a.s.
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Next, by Jensen’s inequality and part (i) of Lemma 4,

E En, R̃
f

n+1 |Ftn ≤ En E R̃
f

n+1 |Ftn ≤ En E R̃
f

n+1
2|Ftn

≤ En Λ̄ε,nh
(3−ε)/2
n

≤ 1

2
hn En

2 + 1

2
Λ̄ε,nh

2−ε
n , a.s.

We also have from part (iii) of Lemma 4 E En, R̃
A
n+1 |Ftn ≤ 1

2hn En
2 +

1
2Λ̄ε,nh

2−ε
n a.s. Applying parts (i)–(iii) of Lemma 4 then gives

E Cn+1|Ftn = E

⎡
⎣2 En, R̃

A
n+1 + R̃

f

n+1 + 7 R̃A
n + R̃

f

n+1 +
m

i=1

R̃
gi

n+1

2

Ftn

⎤
⎦

≤ 2hn En
2 + (2 + 63m2)Λ̄ε,nh

2−ε
n + 126Λ̄ε,nh

3−ε
n , a.s.

Therefore, we have

E En+1
2|Ftn − En

2

≤ hnQE En+1
2|Ftn + hn (2c + 20hmaxR2 + 2) En

2

+10h2n R1 + 2R2 X(tn)
2 + 4c23(1 + X(tn)

2γ0+2)

+(2 + 63m2)Λ̄ε,nh
2−ε
n + 126Λ̄ε,nh

3−ε
n , a.s.

(II) Suppose that hn = hmin. Here Yn+1 is generated from Yn via an application of
the backstop method over a single step of length hmin. This corresponds to a single
application of the map ϕ and therefore the relation (13) is satisfied a.s.

To combine the two cases (I) and (II), define the a.s. finite and Ftn-measurable
random variables

Γ̄2,n := 10 R1 + 2R2 X(tn)
2 + 4c23(1 + X(tn)

2γ0+2) , (20)

Γ̄
(m)
3,n := (2 + 63m2)Λ̄ε,n ∨ C1, (21)

where C1 and C2 are as given in (13). Since Q, Λ̄ε,n ≥ 0 (the latter in the a.s. sense),
we have for any hn selected by an admissible adaptive timestepping strategy,

E En+1
2|Ftn − En

2 ≤ hnQE En+1
2|Ftn + hnΓ1 En

2

+h2nΓ̄2,n + Γ̄
(m)
3,n h2−ε

n + 126Λ̄ε,nh
3−ε
n , a.s. (22)

Note that since (a ∨ b) ≤ a + b when a, b ≥ 0, by (19) we may apply (6) to (20) to
show that, under Assumption 3,

E Γ̄2,n ≤ 10 R1 + 2R2M2+2γ1,T + 4c23 1 + M2(γ0+γ1)+2,T =: Γ2 < ∞,

732 Numerical Algorithms (2022) 89:721–747



where M2+2γ1,T and M2(γ0+γ1)+2,T are finite constants satisfying (6) for p =
2, 2γ0 +2 respectively. It can be similarly shown under Assumption 3 that there exist

finite constants Γ
(m)
3 , Λε such that E Γ̄

(m)
3,n ≤ Γ

(m)
3 and E Λ̄ε,n ≤ Λε.

The bound (22) characterizes the propagation of error in mean-square over a sin-
gle step of the combined semi-implicit Euler scheme with backstop (12), and holds
regardless of whether or not the timestepping strategy requires an application of the
semi-implicit scheme or the backstop scheme.

Assumption 5 Finally, hmax is chosen so that there exists a constant δ ∈ [0, 1] that
does not depend on hmax, such that

hmax < min
δ

2ρ(Q + Γ1)
,
1 − δ

Q
, (23)

where Q is defined in (18) and Γ1 is defined in (19). It follows that there exists γ < ∞
such that

1

1 − hmax2ρ(Q + Γ1)/δ
< γ . (24)

Although these conditions are required in the proof of Theorem 6, we have
observed no practical implications in our numerical experiments.

Definition 5 Define an a.s. continuous process (E2
c (t))t∈[0,T ] pathwise as the a.e. lin-

ear interpolant of En
2 and En+1

2 on each interval [tn, tn+1] for n = 0, . . . , N −
1:

E2
c (s) := tn+1 − s

hn

En
2 + s − tn

hn

En+1
2, s ∈ [tn, tn+1], a.s. (25)

The accumulation of error in mean-square for (12), and hence the order of strong
convergence, can now be estimated.

Theorem 6 Let (X(t))t∈[0,T ] be a solution of (1) with drift and diffusion coefficients
f and g satisfying the conditions of Assumptions 1, 2, and 3. Let {Yn}n∈N be a solution
of (12) in Definition 3, with initial value Y0 = X0 and admissible timestepping
strategy {hn}n∈N satisfying the conditions of Definition 4 and Assumption 5. Then,
if ε ∈ (0, 1) is the fixed parameter from Assumption 3, there exists Cε,m,ρ,T > 0,
independent of hmax such that

max
t∈[0,T ]

E E2
c (t) ≤ Cε,m,ρ,T h1−ε

max,

where E2
c (t) is as defined in Definition 5, and in particular

E X(T ) − YN
2

1/2 ≤ C
1/2
ε,m,ρ,T h

(1−ε)/2
max ,

where N is as given in Definition 2.
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Remark 5 By setting A = 0 in (1), we obtain strong convergence of identical order
of a backstopped fully explicit Euler-Maruyama adaptive method.

Proof (Theorem 6) Fix t ∈ [0, T ], and let N(t) be as in Definition 2. Multiply both
sides of (22) by the indicator variable I{N(t)≥n+1} to get

E En+1
2|Ftn I{N(t)≥n+1} − En

2I{N(t)≥n+1}

≤ hnQE En+1
2|Ftn I{N(t)≥n+1} + hnΓ1 En

2I{N(t)≥n+1}

+hn
2Γ̄2,nI{N(t)≥n+1} + Γ̄

(m)
3,n hn

2−εI{N(t)≥n+1}
+126Λ̄ε,nhn

3−εI{N(t)≥n+1}, a.s.

Since tN(t) is a Ft -stopping time, the event {N(t) ≤ n} ∈ Ftn and therefore the
indicator variable I{N(t)≥n+1} is Ftn-measurable. Thus, we have

E En+1
2I{N(t)≥n+1}|Ftn − En

2I{N(t)≥n+1}

≤ hnQE En+1
2I{N(t)≥n+1}|Ftn + hnΓ1 En

2I{N(t)≥n+1}

+hn
2Γ̄2,nI{N(t)≥n+1} + Γ̄

(m)
3,n hn

2−εI{N(t)≥n+1}
+126Λ̄ε,nhn

3−εI{N(t)≥n+1}, a.s.

Since {N(t) ≥ n + 1} ⊂ {N(t) ≥ n}, we have I{N(t)≥n+1}(ω) ≤ I{N(t)≥n}(ω) for all
ω ∈ Ω . Take expectations on both sides, and since hn ≤ hmax we have

E En+1
2I{N(t)≥n+1} − E En

2I{N(t)≥n+1}

≤ hmaxQE En+1
2I{N(t)≥n+1} + hmaxΓ1E En

2I{N(t)≥n}

+h2maxΓ2 + Γ
(m)
3 h2−ε

max + 126Λεh
3−ε
max, a.s. (26)

Now, sum both sides of (26) over n = 0, . . . , N(t)
max − 1, where N

(t)
max is the

deterministic index in (10), to get (using the bound t ≤ T )

E EN(t)
2 = E EN(t)

2I{N(t)≥N(t)}

≤ hmaxQ

N
(t)
max−1

n=0

E En+1
2I{N(t)≥n+1}

+hmaxΓ1

N
(t)
max−1

n=0

E En
2I{N(t)≥n}

+hmaxρT Γ2 + h1−ε
maxρT Γ

(m)
3 + 126Λεh

1−ε
maxρT . (27)

734 Numerical Algorithms (2022) 89:721–747



Bringing the sum inside the expectation on the RHS of (27) yields

E EN(t)
2 ≤ E

⎡
⎣hmaxQ

N(t)−1

n=0

En+1
2 + hmaxΓ1

N(t)−1

n=0

En
2

⎤
⎦

+hmaxρT Γ2 + h1−ε
maxρT Γ

(m)
3 + 126Λεh

1−ε
maxρT . (28)

By a change in index in the second sum on the RHS of (28) (and since E0
2 = 0

a.e.), we can write

E EN(t)
2 ≤ E hmaxQ EN(t)

2 + E

⎡
⎣hmax(Q + Γ1)

N(t)−1

n=0

En
2

⎤
⎦

+hmaxρT Γ2 + h1−ε
maxρT Γ

(m)
3 + 126Λεh

1−ε
maxρT . (29)

Subtracting from both sides the first term on the RHS of (29), and dividing through
by 1 − hmaxQ > δ (which holds by (23) in Assumption 4), we get

E EN(t)
2 ≤ 1

δ
hmax(Q + Γ1)E

N(t)−1

n=0
En

2 + h1−ε
maxΓε,m, (30)

where Γε,m := ρT
δ

Γ2 + Γ
(m)
3 + 126Λε , using hε

max < 1 by Assumption 4.

It follows from (25) in Definition 5 that a.s.,

(tn+1 − s) En
2 ≤ hnE2

c (s), s ∈ [tn, tn+1],

and therefore by integration

hmin En
2 ≤ 2

tn+1

tn

E2
c (s)ds, a.s. (31)

The a.s. continuity of (E2
c (t))s∈[0,T ] implies the continuity and therefore boundedness

over [0, T ] of E E2
c (t) . Combining (30) and (31), and using that hmax = ρhmin, we

get

E EN(t)
2

≤ 2ρ

δ
(Q + Γ1)E

t

0
E2

c (s)ds +
t
N(t)

t

E2
c (s)ds + h1−ε

maxΓε,m

≤ 2ρ

δ
(Q + Γ1)E

t

0
E2

c (s)ds

+2ρ

δ
(Q + Γ1)E

t
N(t)

t

E2
c (s)ds + h1−ε

maxΓε,m. (32)
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Similarly

E EN(t)−1
2 ≤ 2ρ

δ
(Q + Γ1)E

t

0
E2

c (s)ds

−2ρ

δ
(Q + Γ1)E

t

N(t)−1
E2

c (s)ds + h1−ε
maxΓε,m

≤ 2ρ

δ
(Q + Γ1)E

t

0
E2

c (s)ds + h1−ε
maxΓε,m. (33)

By (25) for all s ∈ [tN(t)−1, tN(t)] a.e.,
E2

c (s) ≤ max{ EN(t)−1
2, EN(t)

2} ≤ EN(t)−1
2 + EN(t)

2. (34)

Sum both sides of (32) and (33) and then use (34) to get

E EN(t)−1
2 + E EN(t)

2

≤ 4ρ

δ
(Q + Γ1)E

t

0
E2

c (s)ds + 2ρ

δ
(Q + Γ1)E

t
N(t)

t

E2
c (s)ds + 2h1−ε

maxΓε,m

= 4ρ

δ
(Q + Γ1)E

t

0
E2

c (s)ds

+2ρ

δ
(Q + Γ1)hmax E EN(t)−1

2 + E EN(t)
2 + 2h1−ε

maxΓε,m.

We can write, by (24),

E EN(t)−1
2 + E EN(t)

2

≤ 2ρ(Q + Γ1)/δ

1 − hmax2ρ(Q + Γ1)/δ
E

t

0
E2

c (s)ds + 2h1−ε
maxΓε,m

1

1 − hmax2ρ(Q + Γ1)/δ
.

Therefore, since t ∈ [tN(t)−1, tN(t) ] and by the lower bound in (34),

E E2
c (t) ≤ 4ρ(Q + Γ1)

δ
γE

t

0
E2

c (s)ds + 2h1−ε
maxγΓε,m, t ∈ [0, T ], (35)

where γ is given by (24) in Assumption 5.
Since (35) holds for all t ∈ [0, T ], an application of the integral form of Gronwall’s

inequality (e.g., [21, Theorem 8.1]) gives, for each t ∈ [0, T ],

E E2
c (t) ≤ h1−ε

max 2γΓε,m exp
4ρ(Q + Γ1)

δ
γ T .

The statement of the Theorem follows with

Cε,m,ρ,T := 2γΓε,m exp
4ρ(Q + Γ1)

δ
γ T .
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5 A comparative numerical review of some available schemes

Given the semi-linear SDE

du = [Au + f (u)] dt + G(u)dW, (36)

with solution u : [0, T ] × Ω → R
d , we compare our semi-implicit adaptive numer-

ical method to a number of different fixed-step schemes (with time step h) that we
outline below. Some numerical examples for an explicit adaptive scheme are given in
[14]. A majority of recent developments concentrate on a perturbation of the flow (or
solution) of order h1/2 or higher; however, the first method we present is the classic
implicit approach. We do not consider an exhaustive list of taming-type schemes and
there are other variants available; see for example [9, 22, 23, 26, 29, 31]. Our exam-
ples illustrate some of the drawbacks of explicit schemes, for example where linear
stability is an issue.

1. Drift implicit scheme [24] This is given for (36) by

Yn+1 = Yn + h(AYn+1 + f (Yn+1)) + g(Yn) Wn+1.

Although strong convergence has been proved (see [24]), at each step a nonlinear
system of the form

0 = Yn+1 − h(AYn+1 + f (Yn+1)) + b (37)

needs to be solved for Yn+1 for some vector b. Even for the deterministic case
there is no guarantee the nonlinear solver will converge to the correct root (see
[28, Chapter 4]). We observe in our numerical experiments that both a standard
Newton method and the MATLAB nonlinear solver fsolve (or fzero in one-
dimension) may fail to converge. In the event of a step where this occurs we use
as a backstop an alternative explicit method, in this article taken to be the bal-
anced method (see below). The drift implicit scheme with this backstop method
is denoted by Drift Implicit in the figures of this Section. Finally, note
that for several examples in this section the implicit solver may be made more
efficient by exploiting a known closed-form solution for the nonlinear system
(37). Such solutions are not in general available and so we do not make use of
them in our comparative analysis here.

2. Tamed [25] A tamed version which may be used when the solutions of (36) have
a limited number of finite moments [31]

Yn+1 = Yn + hAYn + f (Yn) + m
j=1gj (Yn) W

1 + hβ AYn + f (Yn) + m
j=1 gj (Yn) hβ

.

Strong convergence of order 1/2 is achieved by setting β = 1/2. We denote this
method Tamed.

3. Balanced method [30] is given for (36) by

Yn+1 = Yn + h(AYn + f (Yn)) + m
r=1gr(Yn) Wr,n+1

1 + h AYn + f (Yn) + m
r=1 gr(Yn) Wr,n+1

.

This was proved to be strongly convergent with order 1/2 (including for additive
noise) and is denoted in the figures of this Section as BM.
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4. Projected EM [2] uses the standard EM method when Yn is inside a ball
of radius inversely proportional to the step step size. However, outside of the
ball, the numerical solution is projected onto the ball. We have for Z :=
min(1, Yn/

√
h Yn )

Yn+1 = Z + h(AZ + f (Z) +
m

r=1

gr(Z) Wr,n+1.

This is denoted below as Projected EM.

We provide a comparative illustration of the combined effect of semi-implicitness
and adaptivity using five examples ranging from geometric Brownian motion to a
system of SDEs arising from the spatial discretization of an SPDE. Recall that our
use of a semi-implicit method controls instabilities from a linear operator and the
adaptive timestepping controls the discretization of the nonlinear structure. Stiffness
is manifested in the structure of each of these equations in different ways: ranging
from the linearity only (in geometric Brownian motion) to both in the linear operator
and nonlinearities for a discretization of an SPDE.

To examine strong convergence in hmax for the SDE examples below, we solve
with M = 1000 samples to estimate the root mean square error (RMSE) at a final

time T = Nh = 1, E X(T ) − XN
2 and we estimate the standard deviation

from 20 groups of 50 samples included on the error plots. Reference solutions are
computed with 106 uniform steps on [0, T ]. For efficiency, we compare the RMSE
against the average computing time over the 1000 samples (denoted cputime). Unless
otherwise stated, we take ρ = 10 throughout.

5.1 Geometric Brownianmotion

The classic example to illustrate linear mean square stability is geometric Brownian
motion

du(t) = ru(t)dt + σu(t)dW(t), u(0) = u0, t ≥ 0. (38)

If r + σ 2/2 < 0 it is straightforward to see that E (u(t)2 → 0 as t → ∞ and that
the (fixed step) explicit Euler method is only stable if 0 < h < −2(r + σ 2/2)/r2.
The drift and diffusion are both linear functions, so there is no need for either taming
or adaptivity to control growth from a nonlinear term; indeed, in this example, the
semi-implicit adaptive and fully drift implicit schemes co-coincide if A = r and
f (u) = 0.

However, it is instructive to compare the explicit schemes to the implicit schemes
(Adaptive IEM and Drift Implicit). We take r = −8 and σ = 3 so that
the explicit Euler method is unstable for h = 0.25 and h = 0.5. In Fig. 1, we plot
the error squared, |u(tn) − Yn|2, of two sample paths one with hmax = 0.25 (a) and
hmax = 0.5 (b). Although the tamed and projected schemes control growth from
the linear instability, we observe that this control can come at a price of bounded
oscillations.
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Fig. 1 Error |u(tn)−Yn|2 plotted against tn ∈ [0, 10] in two sample paths for geometric Brownian motion
(38) with a hmax = 0.25 and b hmax = 0.5

5.2 1D stochastic Ginzburg-Landau

The 1D stochastic Ginzburg-Landau SDE is a classic example with a cubic nonlin-
earity in the drift and linear diffusion

dX(t) = aX(t)[b − X(t)2]dt + cX(t)dW(t), t ≥ 0. (39)

We take here parameter values as in [22, Example 4.7], a = 0.1, b = 1 and
c = 0.2, x(0) = 2, and solve to T = 1. We see in Fig. 2 that all the methods demon-
strate convergence and that Adaptive IEM and Projected EM are similar in
convergence and efficiency. Neither the adaptive nor drift-implicit schemes used the
backstop method.

10 -4 10 -3 10 -2 10 -1

hmax

10 -4

10 -3

10 -2

10 -1

10 0

R
M

S
E

Adaptive IEM
BM
Tamed
Drift Implicit
Projected EM
Ref slope 1/2

10 -3 10 -2 10 -1 10 0

cputime

10 -4

10 -3

10 -2

10 -1

R
M

S
E

Adaptive IEM
BM
Tamed
Drift Implicit
Projected EM

a b

Fig. 2 Convergence and efficiency of methods applied to the stochastic Ginzburg-Landau (39). We
compare RMSE at T = 1 against hmax in (a) and efficiency (RMSE vs cputime) in (b)
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Fig. 3 Convergence of methods applied to the stochastic volatility system (40). We compare RMSE at
T = 1 against hmax in (a) and efficiency (RMSE vs cputime) in (b)

5.3 Stochastic volatility system

We consider an extension of the 3/2-volatility model to two dimensions as in [26]

dX(t) = λX(t)[μ − |X(t)|]dt + Σ |X(t)|3/2dW(t), t ≥ 0, (40)

with λ = 2.5, μ = 1, X(0) = a[2, 2]T , a = 1, 10, 100, and

Σ =
2√
10

1√
10

1√
10

2√
10

.

We see in Fig. 3 that all the methods demonstrate convergence but that BM and
Tamed have a larger error constant and the adaptive method Adaptive IEM is the
most efficient. The initial data taken was X(0) = [2, 2]T and the backstop method
was not used for either drift implicit or adaptive methods (as for (39)). In Fig. 4, we
examine the time steps hn for a single noise path with the same value of hmax = 0.01

0 0.2 0.4 0.6 0.8 1

Time

10 -4
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D
t
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rho=10

0 0.2 0.4 0.6 0.8 1
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10 -4
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10 -2

D
t

rho = 100
rho=10

a b

Fig. 4 Selected time steps hn with hmax = 0.01 and for ρ = 10, 100. In a X(0) = [20, 20]T and in b
X(0) = [200, 200]T
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but with ρ = 10 and ρ = 100 corresponding to hmin = 10−3 and hmin = 10−4. In
(a), we have initial data X(0) = [20, 20]T and in (b) X(0) = [200, 200]T . In (a), we
observe that with ρ = 100 the backstop method is not used at all (but it is required
for ρ = 10) whereas in (b), to deal with the larger initial data, the backstop is used in
both cases. As time progresses, the timestep taken increases until it reaches hmax.

These observations suggest that practitioners who apply a standard explicit or
semi-implicit Euler-Maruyama scheme over a uniform mesh with a step size suffi-
ciently small (e.g., close to hmin with large ρ) may rarely encounter the spurious
coefficient responses that underlie the lack of strong convergence for the scheme.

5.4 Finite difference approximation of an SPDE

Consider the SPDE

du = uxx + ηu + u3 − λu5 dt + σu2dW (41)

with t ≥ 0, x ∈ [0, 1] and zero Dirichlet boundary conditions. We take initial data
u0(x) = 2 sin(πx), σ = 0.2, η = 11, λ = 2 and trace class noise W

W(x, t) =
m

j=1

j−3/2 sin(jπx)Wj (t), t ≥ 0, x ∈ [0, 1],

for some m ∈ N \ {0} and where Wj(t) are mutually independent standard Brownian
motions.

We introduce a grid of d + 2 uniformly spaced points xk = kΔx on [0, 1] for
k = 1, . . . , d+2. Then, the finite difference approximation in space leads to a system
of d SDEs:

du(t) = Au(t) + ηu(t) + u(t)3 − λu(t)5 dt + σu(t)2dW(t), t ≥ 0, (42)

where we denote u := (u1, u2, . . . , ud)T , uk(t) ≈ u(xk, t) and the noise process is
W := (W(x1, t), W(x2, t), . . . ,W(xd, t))T . The tri-diagonal matrix A is the stan-
dard finite difference approximation to the Laplacian with zero Dirichlet boundary
conditions given by

A = 1

Δx2

⎛
⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .
−1 2

⎞
⎟⎟⎟⎠ ∈ R

d×d .

For further details on the finite difference approximation of SPDEs, see [20]. To be
able to compare different system sizes d, we scaled the Euclidean norm in the stan-
dard way (see for example [20]) to approximate the function space norm L2([0, 1]).
This system of SDEs displays linear stiffness (similar to the geometric Brownian
motion) and nonlinear stiffness arising from the drift and diffusion coefficients. The
parameter then determines the degree of linear stiffness. To examine convergence
to the SDE system (42), we take = 0.1, T = 1 for d = m = 10 (Fig. 5) and
d = m = 100 (Fig. 6).
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Fig. 5 Convergence and efficiency for the methods applied to the finite difference approximation of the
SPDE given by (42) with d = 10 a RMSE vs hmax (with reference line of slope 0.5) and b the efficiency
(RMSE vs cputime)

For the smaller system size (d = 10) in Fig. 5(a), we see all methods converging
for hmax sufficiently small, although Projected EM initially diverges. We see in
(b) that Adaptive IEM is more efficient than Drift Implicit and is similar
to the other explicit schemes. When m = 100 Projected EM is no longer seen to
converge on this range of h and so is not plotted in Fig. 6. In (a), we now see that
the Drift Implicit is more accurate for a given hmax and from (b) that it is
comparable in efficiency with Adaptive IEM.
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Fig. 6 Convergence and efficiency for the methods applied to the finite difference approximation of the
SPDE given by (42) with d = 100 a RMSE vs hmax (with reference line of slope 0.5) and b the efficiency
(RMSE vs cputime)
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6 Proofs of technical results

In this section, we frequently use the inequality a + b p ≤ 2p( a p + b p),
where a, b ∈ R

d , and p ∈ R
+, which follows from a + b p ≤ ( a + b )p ≤

(2( a ∨ b ))p = 2p( a p ∨ b p) ≤ 2p( a p + b p).

Proof (Lemma 3) Fix n ∈ N and suppose that tn < s ≤ tn+1. Then

X(s) − X(tn) =
s

tn

[AX(r) + f (X(r))]dr +
s

tn

g(X(r))dW(r).

By the triangle inequality and [21, Theorem 1.7.1] (with conditioning on Ftn),

E X(s) − X(tn)
p|Ftn

≤ 2p
E

s

tn

[AX(r) + f (X(r))]dr

p

Ftn

+2p
E

s

tn

g(X(r))dW(r)

p

Ftn

≤ 2p|s − tn|p−1
s

tn

E AX(r) + f (X(r)) p |Ftn dr

+2p/2pp/2(p − 1)p/2|s − tn|p/2−1
s

tn

E g(X(r))
p
F |Ftn dr, a.s.

Next, we apply (4), Lemma 2, and the fact that A
p
F < ∞, to get a.s.

E X(s) − X(tn)
p|Ftn

≤ 22p|s − tn|p−1
s

tn

E A
p
F X(r) p + c23(1 + X(r) pγ0+p)|Ftn dr

+2p/2pp/2(p − 1)p/2|s − tn|p/2−1
s

tn

E c
p

4 (1 + X(r) pγ1+p)|Ftn dr

≤ 22p|s − tn|p−1
s

tn

A
p
F (ν1 + ν2 X(tn)

p) dr

+22p|s − tn|p−1
s

tn

c23(1 + (ν1 + ν2 X(tn)
pγ0+p)) dr

+2p/2pp/2(p − 1)p/2|s − tn|p/2−1
s

tn

c
p

4 (1 + (ν1 + ν2 X(tn)
pγ1+p)) dr .

Therefore, since |s − tn| ≤ 1, we can define an a.s. finite and Ftn-measurable
random variable

L̄n := 22p A
p
F (ν1 + ν2 X(tn)

p + c
p

3 (1 + (ν1 + ν2 X(tn)
pγ0+p)))

+2p/2pp/2(p − 1)p/2c24(1 + (ν1 + ν2 X(tn)
pγ1+p)), (43)

so that (16) holds.
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Proof (Lemma 4) Part (i): Set γ := γ0 ∨ γ1, where γ0, γ1 are as in Assumptions 2
and 3, and for q = 1, 2, . . . define

Aq(s, tn) := (1 + 22γ X(tn)
2γ + 22γ X(s) − X(tn)

2γ )2
q−1

X(s) − X(tn) ,

which satisfies the relation

Aq(s, tn)
2 = Aq+1(s, tn) X(s) − X(tn) , q ∈ N,

and, by Lemma 2, the a.s. finite bound,

E Aq(s, tn) X(s) − X(tn) |Ftn

≤ 2(2q−1+2)(1 + 2(6γ+2q )ν1) X(tn)
4 + 2(2γ+2q−1+3) X(tn)

4γ+2q+4

+2(6γ+2q+2q−1+2) X(tn)
4γ+2q+4 + 2(6γ+2q+2q−1+2)ν2 X(tn)

4γ+2q+4
1/2

,

(44)

the right-hand side of which we denote (Ῡq,n)
1/2, where Ῡq,n is an a.s. finite and Ftn-

measurable random variable. Let q ∈ N \ {0} satisfy q > 1− log2 ε. Then by (3) and
q successive applications of the Cauchy-Schwarz inequality, and (16) with p = 2 in
the statement of Lemma 3, we get

E

tn+1

tn

Rf (s, tn, X(tn))ds

2

Ftn

≤ hn

tn+1

tn

E Rf (s, tn, X(tn))
2|Ftn ds

≤ 2c21hn

tn+1

tn

E A1(s, tn) X(s) − X(tn) |Ftn ds

≤ 2c21hn

tn+1

tn

E[Aq(s, tn) X(s) − X(tn) |Ftn] 1/(2q−1)

×(L̄2,n|s − tn|)
q
i=21/(2

i−1)ds

≤ 2c21Ῡ
1/(2q )
q,n L̄

q
i=21/(2

i−1)

2,n h
2+ q

i=21/(2
i−1)

n

≤ Λ̄ε,nh
3−ε
n , a.s.,

where Λ̄ε,n := 2c21Ῡ
1/(2q )
q,n L̄

q
i=21/(2

i−1)

2,n depends on ε through q.
Part (ii): By the conditional form of the Itô isometry, for i = 1, . . . , m,

E

tn+1

tn

Rgi
(s, tn, X(tn))dW(s)

2

Ftn

=
tn+1

tn

E Rgi
(s, tn, X(tn))

2|Ftn ds,

and the proof follows as in Part (i), with a reduction of one in the order of hn.
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Part (iii) holds as a special case of Part (i). Part (iv) follows by an application
of the Cauchy-Schwarz inequality, followed by Jensen’s inequality for the functions
(·)1/(2q−1) and (·) q

i=21/(2
i−1) (both of which are concave over R+, by the second

derivative test), to get

E Λ̄ε,n = 2c21E Ῡ
1/(2q )
q,n L̄

q
i=21/(2

i−1)

2,n

≤ 2c21 E Ῡ
1/(2q−1)
q,n E L̄

q
i=21/(2

i−1)

2,n

2

≤ 2c21 E Ῡq,n
1/(2q )

E (L̄2
2,n)

q
i=21/(2

i−1)

≤ 2c21 E Ῡq,n
1/(2q )

E L̄2
2,n

q
i=21/(2

i )

,

which is finite under the conditions of Assumption 3: p satisfies (7), and therefore

by (6) the finiteness of E Ῡq,n is ensured by (44) and that of E L̄2
n is ensured by

(43).

Remark 6 By making q successive applications of the Cauchy-Schwarz inequality
in the proof of Lemma 4, we separate the expectation of dependent random factors
in Rf and Rg in such a way that the highest possible order of hn is achieved in the
estimate, given the available finite moment bounds. This is necessary to ensure a
polynomial order of strong convergence in the statement of Theorem 6. If the diffu-
sion coefficient g is globally Lipschitz continuous then the resulting uniform bound
on each Dgi(x) F , along with stronger moment bounds of the form (6), sidesteps
that requirement. In this case, the statement of Lemma 4, and hence the statement of
Theorem 6, would hold with ε = 0 (and order constant independent of q, and there-
fore ε), giving an order of strong convergence of 1/2 for the semi-implicit method
with backstop (12), using an admissible timestepping strategy. If we then set A = 0
in (1), our method becomes explicit and we recover the main result of [14].

7 Conclusion

The discretization of SDEs with non-Lipschitz drift and diffusion coefficients is a
challenging numerical problem. We have proved strong convergence for both adap-
tive semi-implicit and explicit Euler schemes, and presented numerical results that
indicate the semi-implicit variant is well suited as a general purpose solver, being
more robust than several competing explicit fixed-step methods and more efficient
than the drift implicit method.

Both the drift implicit and the adaptive schemes make use of a backstop method
which is triggered when the adaptive timestepping strategy attempts to select a
timestep at the minimum stepsize hmin. Our numerical experiments indicate that, for
an appropriate choice of ρ, hmin may be achieved only rarely (if at all). It may be
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possible to characterize the probability of this occurrence and, if it can be bounded
appropriately, a strong convergence result may be possible for a numerical method
of the form (8) that does not rely on a backstop method (provided T is reached in a
finite number of steps). A step in this direction may be found in [15].

SDEs where the drift coefficient is both positive and non-globally Lipschitz con-
tinuous are not covered by the analysis in this article, though adaptive meshes have
been used to reproduce positivity of solutions with high probability and a.s. stability
and instability of equilibria in [16] (informed by the approach of Liu & Mao [18]).
We are unaware of any strong convergence results for such equations.

Finally, since our analysis relies upon the boundedness of A F , and since the
error constant in the strong convergence estimate increases without bound with the
number of independent noise terms m, the results of the article do not automatically
extend to SPDEs. This setting is now considered in [19].
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