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Abstract
This work is focused on developing a finite volume scheme for approximating a frag-
mentation equation. The mathematical analysis is discussed in detail by examining
thoroughly the consistency and convergence of the numerical scheme. The idea of
the proposed scheme is based on conserving the total mass and preserving the total
number of particles in the system. The proposed scheme is free from the trait that
the particles are concentrated at the representative of the cells. The verification of
the scheme is done against the analytical solutions for several combinations of stan-
dard fragmentation kernel and selection functions. The numerical testing shows that
the proposed scheme is highly accurate in predicting the number distribution func-
tion and various moments. The scheme has the tendency to capture the higher order
moments even though no measure has been taken for their accuracy. It is also shown
that the scheme is second-order convergent on both uniform and nonuniform grids.
Experimental order of convergence is used to validate the theoretical observations of
convergence.

Keywords Fragmentation · Integro-partial differential equation · Finite volume
scheme · Convergence · Grids

1 Introduction

Fragmentation is a well-known mechanism occur in many applications of aerosol
[10], depolymerization [1, 12], crystallization [31], pharmaceutical sciences [14, 15]
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and chemical engineering [23, 30]. The fragmentation process leads the formation
of two or more smaller size particles after the disintegration of larger size parti-
cles. During this mechanism, particles of various sizes are formed in the system
that can be tracked by the temporal change in the number density function governed
by a mathematical population balance model. The total number of particles in the
system increases during the fragmentation process whereas the total mass remains
conserved.

The Mathematical model required to track the evolution of the number den-
sity function f (y, t) with time t > 0 corresponding to a fragmentation process is
described by a linear integro-partial differential equation:

∂f (y, t)

∂t
=

∞

y

b(y, ξ)S(ξ)f (ξ, t)dξ − S(y)f (y, t), (1)

subject to a initial condition

f (y, 0) = f0(y) ≥ 0. (2)

Here, the selection function S(y) gives the fragmentation rate of the particles to be
selected to undergo fragmentation mechanism. Moreover, the breakage kernel b(y, ξ)

well known as fragmentation kernel describes the probability density function for
the formation of particles having properties y from particles properties ξ . The first
integral term on the right-hand side of (2) accounts for the birth of particle of size y

due to the fragmentation of particle properties ξ and the second term represents the
death of the particle size y due to fragmentation of that particle.

The breakage kernel b(y, ξ) must satisfies the following two properties:

θ

0
b(y, ξ)dy = v(ξ), for all y > 0, b(y, ξ) = 0, for all y ≥ ξ, (3)

and
ξ

0
yb(y, ξ)dy = ξ, ∀ ξ > 0. (4)

The (3) is used to express the total number of fragments produced from a particles
having size ξ and in general, v(ξ) ≥ 2. However, the relation (4) describes the mass
conservation property, that is, when the particle of size ξ splits into smaller fragments
then the total mass of those fragments is equal to ξ .

The main interest of this work is to approximate the number density function accu-
rately. But for many real-life applications, specifically in chemical engineering and
pharmaceutical sciences, the integral properties are of equal interest [33, 34, 37].
These integral properties are well known as moments calculated from the number
density function by the following relation:

μi(t) =
∞

0
yif (y, t)dy, (5)

where μi(t) gives the total number of particles (zeroth-order moment) for i = 0,
however, for i = 1, the total mass in the system (first-order moment) can be
calculated.
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In this work, our main aim is to develop a new numerical approximation for the
fragmentation (2). The other studies related to the existence [7, 25] and uniqueness
[2, 24, 32] of the fragmentation equation are discussed in detail in these references.
Despite of complex behavior of the fragmentation equation, some analytical solutions
of fragmentation equation are derived by [16, 45, 46]. Other investigations concern
scattering, self similarity and shattering are examined and discussed by [4, 5, 11].
In the literature, various researchers have developed different numerical methods to
approximate the fragmentation (2). Among these numerical methods, the sectional
methods [17, 22] are known for their accuracy to predict different order moments
and the number density function. However, the complex mathematical formulations
of these methods is their major drawback that makes these methods computationally
very expensive.

Another simple class of approximations are method of moments [3, 27, 29, 44]
in which the original equation is converted into a moment form and focused only on
capturing the various order moments accurately. After the conversion of the original
equation, the information related to the number density function is lost and other tools
are required to track the number density function. In addition, stochastic methods
[26, 43] are also very well known for their accuracy. But to achieve the accuracy, a
large number of particles are required which make these methods computationally
inefficient. However, the aforementioned issues were also addressed by develop-
ing highly efficient and accurate finite volume schemes [6, 8, 21, 38, 39, 41]
which are highly efficient and accurate. Furthermore, these schemes are straightfor-
ward to extend to solve problems involving higher-dimensional population balances
[9, 35, 36, 40, 42].

Recently, Kumar et al. [18] proposed a numerical scheme for solving a frag-
mentation equation by introducing weights into the discrete equation for achieving
the mass conservation property and number preservation property (total number of
particles in the system). However, the scheme does not capture the second-order
moment accurately which plays very important role in estimating the total area of
particles in many real-life applications [28]. Therefore, in the present work, we for-
mulate a proposed finite volume scheme with a simpler mathematical formulation
that is both computationally efficient and flexible to implement on uniform and
nonuniform grids. The new method precisely approximates the zeroth- and first-
order moments, as well as the number density function. Furthermore, the proposed
scheme captures this particular moment with high accuracy without taking any mea-
sures for the accuracy of second-order moments. In contrast to the existing scheme
[18], the proposed scheme is developed based on the notion of overlapping of
cell [9].

Rest of the paper is structured as follows: in Section 2, the formulation of the pro-
posed scheme is derived and the theoretical proofs of the mass conservation law and
preservation of total number of particles are provided. In next Section 3, the con-
vergence analysis of the proposed scheme is conducted on uniform and nonuniform
grids. Section 4 is used to compare the accuracy of the proposed method against
the analytical solutions for bench marking cases. In last Section 5, some important
conclusions are made related to this study.

467Numerical Algorithms (2022) 89:465–486



2 Numerical scheme

For developing the numerical method, the upper limit present in the first integral
(2) must be replaced by a positive number say, ymax . Thus, the equation takes the
following form:

∂f (y, t)

∂t
=

ymax

y

b(y, ξ)S(ξ)f (ξ, t)dξ − S(y)f (y, t). (6)

Further, it is necessary to discretize the continuous computational domain from 0
to ymax into L number of cells as shown in Fig. 1 where yL+1/2 ≤ ymax . The lower
and upper boundaries of the j th cell is denoted by yj−1/2 and yj+1/2, respectively,

for j ∈ N whose mean is yj = yj−1/2 + yj+1/2

2
. The step size of j th cell is given

by yj = yj+1/2 − yj−1/2.
Now let us discretize the time domain as tn+1 = tn + tn for all n ∈ N . Further

assume that the average value of f at any time tn in j th cell is the approximation
of the function f yj , t

n . Further, the function f can be discretized as fj (t) =
f yj , t +O y2

j with the presumption that the function is sufficiently smooth. It

is extremely difficult to solve this continuous (6) analytically due to the complexity
of the original equation. As a result, the idea is to integrate the (6) over each domain
of the cell j to transform the continuous equation into a set of ordinary differential
equations, which further simplifies to

dfj

dt
= Bj − Dj, for j = 1, 2, · · · , L. (7)

subject to a new initial condition

fj (0) = 1

yj

yj+1/2

yj−1/2

f (y, 0)dy.

Here the birth and death terms are written as

Bj = 1

yj

yj+1/2

yj−1/2

yL+1/2

y

b(y, ξ)S(ξ)f (ξ, t)dξdy, (8)

Fig. 1 One-dimensional domain discretization
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and

Dj = 1

yj

yj+1/2

yj−1/2

S(y)f (y, t)dy. (9)

Consider the birth term (8) and simplify the equation by changing the order of
integration, as shown below:

Bj = 1

yj

⎡
⎣ yj+1/2

yj−1/2

S(ξ)f (ξ)
ξ

yj−1/2

b(y, ξ)dydξ +
L

k=j+1

yk+1/2

yk−1/2

S(ξ)f (ξ)
yj+1/2

yj−1/2

b(y, ξ)dydξ

⎤
⎦ . (10)

The midpoint quadrature approximation is then employed to both integrals of (10)
with respect to y, yielding:

Bj = Sjfj

yj

yj−1/2

b(y, yj )dy + 1

yj

L

k=j+1

Skfk yk

yk+1/2

yk−1/2

b (y, yk) dy + O y2 .

In a similar manner, the discretize form of the death term (9) can be simplified to

Dj = Sjfj + O y2 . (11)

Assume that in a j th cell, f̂j is the numerical approximation of the number density
function fj . As a result, the discrete equations for approximating the number density
function are as follows:

df̂j

dt
= 1

yj

L

k=j

Skf̂k ykBjk − Sj f̂j . (12)

Here

Bjk =
p

j
k

yj−1/2

b (y, yk) dy. (13)

where

p
j
k = yk, when k = j,

yk+1/2, otherwise.

Now we will define a proportionality constant in detail to introduce the notion of
overlapping: For a uniform grid, the value of k

j is 1 due to the fact that the newly
formed particles fall completely inside any cell after the fragmentation mechanism.
In contrast to a uniform grid, k

j can be calculated based on the fact that when a
particle having properties, say yk of a kth cell breaks, it form two particles having
properties yk−j and yj for a nonuniform grid. Then the lower and upper bounds of the
newly formed particle after fragmentation mechanism becomes yj−1/2 = yk−1/2 −
y(k−j)−1/2 and yj+1/2 = yk+1/2−y(k−j)+1/2. Practically, the possibility of formation
of the particles completely inside the cell is rare. Hence, there are two possibilities of
overlapping of the newly formed particle with one or more cells as given below:

• When the upper boundary of the domain of the newly born particle will fall
inside the cell and lower boundary is outside the cell, that is, yj−1/2 > yk−1/2 −
y(k−j)−1/2 and yk+1/2 − y(k−j)+1/2 < yj+1/2.
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Fig. 2 Representation of two basic possibilities for overlap

• When the domain of newly born particle of size yk − yk−j will totally fall inside
the cell, that is, yj−1/2 ≤ yk−1/2 −y(k−j)−1/2 and yk+1/2 −y(k−j)+1/2 ≤ yj+1/2.

The schematic representation of all possible cases of overlapping of the cells is
shown in Fig. 2.

Mathematically, the proportionality constant for overlapping of the cells is calcu-
lated using the relation given below:

k
j =

∧k
j − ∨k

j

yk − yk−j

, (14)

where ∧k
j = min(yj+1/2, yk+1/2 − y(k−j)+1/2) and ∨k

j = max(yj−1/2, yk−1/2 −
y(k−j)−1/2). Here, ∧k

j and ∨k
j define the bounds of the intersection of the cells k

and (k − j) with cell j . The proportionality constant k
j describes the extent of

overlapping of the newly formed particle with cell j . The equality holds when the

intersection is empty k
j = 0 and when the newly born particles domain falls

completely inside the cell j k
j = 1 .

Using the aforementioned relations and expressions, the formulation (12) becomes

df̂j

dt
= 1

yj

L

k=j

Skf̂k ykBjk
k
j − Sj f̂j . (15)

It can be noticed that the (15) does not give any account for the mass conserva-
tion law which is a necessary condition for any numerical method. This signifies
that the above formulation cannot be used to track the true behavior of the number
density and require some adjustments to predict the integral properties (zeroth- and
first-order moments) accurately corresponding to the number density function. This
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issue will be resolved by adding two weights in the birth and death terms of the (15)
which gives

d

dt
f̂j = 1

yj

L

k=j

Skf̂kBjk
k
j ykω

b
k

Bj

− 1

yj

Sj f̂j yjω
d
j

Dj

. (16)

Here the weights responsible for the preservation of total number of particles and
conservation of the total mass in the system are given by

ωb
k = 1

k
j

yk(v(yk) − 1)

k−1
j=1 yk − yj Bjk

, (17)

and

ωd
k = ωb

k

yk

k

j=1

yjBjk, j = 2, 3, · · · , L. (18)

The values of weights ωb
1 and ωd

1 are consider to be zero.
Using the above notations in the (16), the final expression for a proposed finite

volume scheme for solving fragmentation equation is given by

d

dt
f̂j = 1

yj

L

k=j

Skf̂kBjk
k
j ykω

b
k

Bj

− 1

yj

Sj f̂j yjω
d
k

Dj

. (19)

The theoretical proofs of the mass conservation property and number preserva-
tion property are given below. The numerical scheme holds the number preservation
property if it satisfies the following relation:

d

dt

L

j=1

f̂j yj =
L

j=1

Sj f̂j yj (v(yj ) − 1). (20)

However, the numerical scheme holds the mass conservation property when it
satisfies the following condition:

d

dt

L

j=1

f̂j yj yj = 0. (21)

Equations (20) and (21) can be easily obtained from (7) by multiplying with yj

and taking summation corresponding to j = 0 and j = 1, respectively.

Proposition 1 The discrete formulation (19) holds the number preservation property
(zeroth-order moment).
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Proof Take summation over all j on the discrete formulation (19), we get

d

dt

L

j=1

f̂j yj =
k

j=1

L

k=j

Skf̂k yk
k
jBjkω

b
k −

I

j=1

Sj f̂j yjω
d
k . (22)

Now changing the order of the summation, we have

d

dt

L

j=1

f̂j yj =
L

k=1

k

j=1

Skf̂k yk
k
jBjkω

b
k −

I

j=1

Sj f̂j yjω
d
k . (23)

Substituting the values of weight from (18), the above equation gives

d

dt

L

j=1

f̂j yj =
L

k=1

Skf̂k yk

⎡
⎣ k

j=1

Bjkω
b
k − ωb

k

yk

k

j=1

yjBjk

⎤
⎦ .

Further replace the values of the weight from (17) and after simplification, it gives

d

dt

L

j=1

f̂j yj =
L

k=1

Skf̂k
k
j yk

yk[v(yk) − 1]
yk

k
j

j

k=1 yk − yj Bjk

⎛
⎝ k

j=1

yk − yj Bjk

⎞
⎠ .

This implies

d

dt

L

j=1

f̂j yj =
L

k=1

Skf̂k yk(v(yk) − 1). (24)

This shows that the proposed finite volume scheme is preserving the zeroth-order
moment.

Proposition 2 The finite volume scheme (19) is conserving the total mass in the
system, that is, first-order moment.

Proof For proving the mass conservation property, the (19) should be multiplied with
yj on both sides and take summation over j will give

d

dt

L

j=1

yj f̂j yj =
I

k=1

k

j=1

Skf̂k yk
k
jBjkω

b
k −

I

j=1

Sj f̂j yjω
d
k . (25)

The above can also be rewritten as

d

dt

L

j=1

yj f̂j yj =
I

k=1

Skf̂k yk
k
j

⎛
⎝ωb

k

k

j=1

Bjk − ωd
k xk

⎞
⎠ . (26)

Substituting the values of ωd
k from (18) and after simplification, we get

d

dt

L

j=1

yj f̂j yj =
I

k=1

Skf̂k yk
k
jω

b
k

⎛
⎝ k

j=1

xjBjk −
k

j=1

xjBjk

⎞
⎠ . (27)
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This further gives

d

dt

L

i=1

yj f̂j yj = 0. (28)

This implies that the total mass in the system is conserved, that is, no mass is lost
from the system.

In the next section of the article, the investigation of convergence analysis of the
numerical scheme will be carried out.

3 Convergence analysis

It is necessary to write the equations in vector form before discussing the conver-
gence analysis of the proposed finite volume scheme. Assume that the vectors f and
f̂ denote, respectively, the average exact and average numerical values of the number
density functions. In vector form, the discrete (19) can be written as

∂ f̂
∂t

= J(f̂), f̂(0) = f(0). (29)

Here, the birth term (B̂), death term (D̂) and J ∈ RI are the functions of f̂ with
the components

B̂j (f̂) = 1

yj

L

k=i

ωb
kSkf̂k ykBjk, (30)

and

D̂j (f̂) = ωd
j Sj f̂j . (31)

Therefore, the final form of equation is

Jj (f̂) = B̂j f̂ − D̂j f̂ . (32)

To conduct the convergence of the discrete system, first it is necessary to define
the norm L1 which is given by

f(t) =
L

j=1

|fj (t)| yj . (33)

Now, let us give some important definitions which will be required in conducting
the convergence analysis of the proposed finite volume scheme.

Definition 1 Spatial Truncation Error σ(t) is obtained by substituting the exact
solution f = [f1(t), f2(t), . . . , fL(t)] in the discrete system of equations, that is,

σ(t) = df(t)
dt

− J(f).
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The numerical scheme is said to be consistent of order p, if y → 0

σ(t) = O( yp), uniformly for all t, 0 ≤ t ≤ T .

Now, let us define another type of discretization error which will be used to find the
order of convergence.

Definition 2 Global Discretization Error for any numerical scheme is the difference
between the exact and numerical solution (t) = f (t)− f̂ (t). The numerical scheme
is said to be convergent of order p if, for y → 0,

(t) = O( yp), uniformly for all t, 0 ≤ t ≤ T . (34)

Proposition 3 Let us suppose that a Lipschitz condition on J(f ) is satisfied for
0 ≤ t ≤ T and for all f, f̂ ∈ R

L. That is, J satisfies

J(f ) − J (f̂ ) ≤ M f − f̂ , M < ∞.

Then a consistent discretization scheme is also convergent and the convergent
order is same as the order of consistency.

First, it is important to prove the Lipschitz condition for the function J.

Proposition 4 Let us assume that the kernels S and b are twice continuously dif-
ferentiable functions over ]0, ymax] and ]0, ymax], respectively, then there exist a
constant

M = C max
y∈(0,ymax ]

S(y)v(y) < ∞, where C > 0,

such that the Lipschitz condition on J is satisfied for all f and f̂ ∈ R
L, that is,

J(f ) − J (f̂ ) ≤ M f − f̂ .

Proof Further consider the definition of the norm defined in (33)

J(f) − J(f̂) =
L

j=1

|Jj (fj ) − Jj f̂j |

This implies

J(f) − J(f̂) =
L

j=1

1

yj

L

k=j

SkBjk yk
k
j fk − f̂k ωb

k − Sj fj − f̂j yjω
d
j yj ,

which further simplifies to

J(f) − J ĝ ≤
L

j=1

L

k=j

SkBjk yk
k
j |fk − f̂k|ωb

k

T1

+
L

j=1

Sj |fj − f̂j | yjω
d
j

T2

. (35)
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Now simplify the first term by changing the order of the summation, we get

T1 =
L

j=1

L

k=j

SkBjk yk
k
j |fk − f̂k|ωb

j =
L

k=1

k

j=1

SkBjk yk
k
j |fk − f̂k|ωb

j .

After substituting the value of ωb
k and using the fact that ωb

1 = 0 in the above
equation, we have

T1 =
L

k=2

L

k=i

SkBik
k
j |fk − f̂k| yk

1
k
j

ykv(yk)

k
j=1 yk − yj Bjk

− yk

k
j=1 yk − yj Bjk

,

=
L

k=2

L

k=i

SkBik|fk − f̂k| yk

yk − yj v(yk)

k
j=1 yk − yj Bjk

− ykv(yk)

k
j=1 yk − yj Bjk

−
L

k=2

L

k=i

SkBik|fk − f̂k| yk

yk

k
j=1 yk − yj Bjk

. (36)

Rearranging the above equation, we get

T1 ≤
L

k=2
v(yk)Sk|fk − f̂k| yk +

L

k=2

v(yk)SkBik |fk−f̂k | yk
k
j=1(yk−yj )Bjk

k

j=1
yjBjk − yk , (37)

As the breakage function b(y, ξ) is considered to be twice continuously differen-
tiable function and further using the midpoint and the right end approximation of the
integrals, we obtain

yk =
yk

0
b(y, yk)dy =

k

j=1

p
j
k

yj−1/2

yb(y, yk)dy =
k

j=1

yjBjk + O( y)2.

Hence,

yj −
k

j=1

yjBjk = O( y)2 ≤ M1( y)2, where M1 < ∞ is a constant. (38)

Additionally, for k = 2, 3, · · · , L, we have

k

j=1

yk − yj Bjk ≥ (yk − yk−1)

k−1

j=1

Bjk ≥ yk

yk−1/2

0
b (y, yk) dy ≥ M2(δx) (39)

where M2 is a constant, satisfying

0 < M2 = min
k∈{2,3,··· ,L}

yk−1/2

0
b (y, yk) dy (40)
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Using the above relations in (37), we get

T1 ≤
L

k=2

v(yk)Sk|fk − f̂k| yk +
L

k=2

( y)2

δy

M1

M2
v(yk)Sk|fk − f̂k| yk

≤ 1 + M1

M2
Kymax

L

k=1

v(yk)Sk|fk − f̂k| yk (41)

≤ 1 + M1

M2
Kymax max

k∈{2,3,··· ,L}
[v(y)S(y)]

L

k=1

|fk − f̂k| yk (42)

Here δy = mini yi . The above relation can further be simplified to

T1 ≤ M3||f − f̂||. (43)

where M3 = 2
W

maxy∈{2,3,··· ,ymax }[v(y)S(y)] ≤ ∞ and W = 2 1 + M1
M2

Kymax .

Further, consider the second term T2 from the (35),

T2 =
L

j=1

Sj |fj − f̂j | yjω
d
k =

L

j=1

Sj |fj − f̂j | yjyk

ωb
k

yk

k

j=1

Bjk .

Using the fact that yj ≤ yk ∀ j = 1, 2, 3, · · · , k,

T2 ≤
L

k=1

Sj |fj − f̂j | yj

ωb
k

yk

k

j=1

yjBjk .

Now changing the order of the integration leads to

T2 ≤
L

j=1

L

k=j

Sj |fj − f̂j | yj

ωb
k

yk

yjBjk = T1.

This gives

T2 ≤ M3||f − f̂||. (44)

Using the (43) and (44), the (35) takes the following form:

J(f) − J ĝ ≤ M||f − f̂||, (45)

where M = 2M3 < ∞ is a Lipschitz constant.

Now, the next aim is to prove the order of convergence of the proposed finite
volume scheme by stating the following theorem.

Theorem 1 Suppose that the functions S and b are twice continuously differentiable
functions over (0, ymax] and (0, ymax] × (0, ymax], respectively. Then, the solution
of the discretization (29) is non-negative and consistent, with a truncation error of
order 2, independent of the type of grid. Moreover, the scheme is convergent and the
order of convergence is the same as the order of consistency.

476 Numerical Algorithms (2022) 89:465–486



Proof For proving the theorem, we need to prove the three components of the solu-
tion, that is, non-negativity, consistency, and convergence. First we will begin the
exercise with the non-negativity of the solution.

Non-negativity For any non-negative number density function f̂ ∈ R
L, (for all

f̂ ≥ 0 which has j th component equals to zero). So, (30) and (31) give

B̂j (f̂) ≥ 0 and D̂j (f̂) = 0.

Then, the (32) implies Jj f̂ = B̂j f̂ − D̂j (f̂) ≥ 0. For all i = 1, 2, . . . , L, using

the Theorem 7.1, Chapter 1 of [13] and Proposition 3 give the non-negativity of the
solution.

Consistency Using the Definition 1, the j th component of the spatial truncation error
can be written as

σj (t) = dfj (t)

dt
− Jj (fj (t)).

Further using (7) and (32), the above relation becomes

σi(t) = Bj − Bj

I1

− (Dj − Dj)

I2

. (46)

Now consider the first term I1 of the (46),

Bj − Bj = 1

yj

⎡
⎣ L

k=j

Skfk ykBjk −
L

k=j

Skfk ykBjk
k
jω

b
k

⎤
⎦ + O y2 , (47)

Combining the terms, we get

Bj − Bj = 1

yj

⎡
⎣ L

k=j

Skfk ykBjk 1 − k
jω

b
k

⎤
⎦ + O y2 , (48)

Further estimate the order of the term 1 − k
jω

b
k as follows:

1 − k
jω

b
k = k

j

yk
k
j=1Bjk − 1

k
j

k
j=1 yk − yj Bjk

= yk − k
j=1yjBjk

k
j=1 yk − yj Bjk

.

Using the mass conservation property of the breakage function defined in (3) gives

1 − k
jω

b
k =

k
j=1

p
j
k

y1/2
y − yj b (y, yk) dy

k
j=1 yk − yj Bjk

(49)
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Apply the midpoint and right end quadrature approximations, it can be easily
shown that the numerator of above equation is of order 2 whereas the denominator
exhibits order 0. Hence, we have

1 − k
jω

b
k = O y2 .

Using the above relation, the (48) implies

Bj − Bj = O y2 . (50)

Similar to the term I1, now let us discuss the order of consistency for the term I2
of (46)

Dj − Dj = 1 − ωd
j Sjfj + O y2 (51)

Substituting the value of ωd
j from (18) in the above equation, we get

Dj − Dj =
⎛
⎝1 − ωd

j

yj

k

j=1

yjBj,k

⎞
⎠ Sjfj + O y2 , (52)

= 1

yj

⎛
⎝yj − ωb

j

k

j=1

yjBjk

⎞
⎠ Sjfj + O y2 . (53)

It can be noted that

yj =
yj

0
yb(y, yj )dm =

k

j=1

pk
j

yj−1/2

yb (y, yk) dy =
j

k=1

yjBkj + O y2 .

Using yj from the above equation in (51) will give

Dj − Dj = 1 − ωb
j

⎛
⎝ 1

yj

k

j=1

Bjk

⎞
⎠ Sjfj + O y2 . (54)

As proved earlier that 1 − ωb
j = O y2 , we have

Dj − Dj = O y2 . (55)

Hence, from (46), (50) and (55), we get

σj (t) = O y2 ⇒ σ(t) = O y2 .

Convergence From Propositions 3 and 4, and the above result on consistency proves
that the proposed finite volume scheme converges to the order same as the order of
consistency.

In the next section, the numerical results for various combinations of selection
functions and breakage kernels will be discussed.
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4 Numerical validation

To validate the proposed finite volume scheme, the numerical results in terms of dif-
ferent order moments as well as the number density functions are compared against
several benchmark cases using nonuniform grids. In particular two different cases
will be tested (a) analytically tractable kernels for which the analytical results for
both moments and number density function are available in the literature, and (b)
practically oriented kernel for which analytical results are not available. The ana-
lytical solutions of moment and number density functions corresponding to the
different initial conditions are available in literature [16, 45, 46]. For our comparison,
monodisperse f (y, 0) = δ(y − 1) initial conditions are considered for analytically
tractable cases, whereas for the practically oriented problem, the following initial
condition is considered:

f (y, 0) = 1

σ
√

2π
exp

−(y − μ)2

2σ 2
, σ 2 = 0.01, μ = 0.5. (56)

The comparison is enhanced by quantifying the weighted sectional errors exist in
the number density function which can be estimated using the following relation:

ηi(t) =
L
j=1|f exc

j − f num
j |yi

j yi
j

L
j=1f

exc
j yi

j yi
j

, (57)

where σi(t) describes the relative weighted sectional error in the number density
function over the whole volume domain for i = 0. Similarly, other order relative
sectional errors in the number density function can be defined. These errors are eval-
uated for those cases whose analytical solutions are available in the literature and
calculated at the end time. The integration of discrete form of breakage population
balance (19) is solved using MATLAB ODE15s solver.

Moreover, the theoretical aspect of the convergence of the proposed finite volume
scheme is also tested numerically by calculating the Experimental Order of Conver-
gence (EOC) for analytically tractable kernels using the following expression given
by [19, 20]:

EOC = ln
EL

E2L

/ln(2), (58)

where EI and E2I describe the L1 error norm calculated by

L

j=1

|f exc
j − f num

j | yi
j . (59)

Here, f exc
j and f num

j describe the number of particles obtained analytically and
numerically, respectively, and the symbols L and 2L correspond to the number of
degrees of freedom.
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4.1 Test case I

Let us begin the testing of the proposed finite volume scheme for the binary break-
age kernel b(y, ξ) = 2/ξ and linear selection function S(y) = y corresponding to
the monodisperse initial condition. The computational domain considered to run the
numerical simulation begins with ymin = 10−9 and ends with ymax = 1 is divided
into 30 nonuniform cells. The advantages of the nonuniform grids over uniform grids
is provided in detail by [9]. It has been shown that a large number of grid points are
required for the uniform grid to capture the integral properties accurately. The sim-
ulations are run between time 0 s and 1000 s where the extent of breakage attained

is 1047.91, that is,
μ(t)

μ(0)
≈ 1047.91, with μ(t) denotes the zeroth-order moment at

time t . It is important to note that the numerical scheme developed by [9] for solv-
ing aggregation population balance equation stopped their simulations when the time
reached t = 1.5 s.

The qualitative comparison of numerical results in terms of number density func-
tion and different order moments against its analytical results is demonstrated in
Fig. 3. It shows that the zeroth- and first-order moments are well predicted by the

Fig. 3 Comparison of various order moments and number density for binary breakage kernel, i.e.,
b(m,m ) = 2/m with linear selection function S(m) = m for monodisperse initial condition
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Table 1 Weighted error of number density for binary breakage kernel with quadratic selection function

η FVS 30 cells FVS 60 cells

η0 0.08944 0.04718

η1 0.07630 0.04108

η2 0.08759 0.04254

proposed scheme and matching well with the analytical results, that is, the proposed
scheme preserves the total number of the particles as well as conserves the total mass
in the system (see Fig. 3a). Moreover, the second-order moment computed by the
proposed scheme also overlaps with the analytical result as shown in Fig. 3b. It is
important to notice that the proposed method accounts the accuracy of the zeroth-
and first-order moments. However, the proposed finite volume scheme still predicts
the second-order moment very accurately. Additionally, the numerical scheme devel-
oped by [18] focused only on zeroth- and first-order moments, but did not give any
account for the accuracy of the second-order moment. This shows that the proposed
approximation has the ability to track the higher order moments accurately. Also, the
number density function plotted in Fig. 3c reveals that the finite volume scheme is in
excellent agreement with the analytical result.

In order to quantify the errors in the number density function, the weighted sec-
tional errors calculated using the expression (57) are listed in Table 1 for two different
size grids. It exhibits that these errors decrease to 50% when a refined grid with
60 nonuniform cells is used. To ensure the order of the convergence of the pro-
posed scheme, the comparison of the numerical experimental order of convergence
is provided for both uniform and nonuniform grids in Table 2. It illustrates that the
proposed scheme shows second-order convergence irrespective of the kind of grids
used for discretization. It can also be seen from the table that the error obtained using
L1 norm (59) decreases enormously as the number of cells increased in the domain.

4.2 Test case II

Similar to the previous case, the comparison of the numerical moments and number
density function with analytical results is conducted for binary breakage kernel and

Table 2 Experimental order of convergence for Case I corresponding to monodisperse initial condition

(a) Uniform grid (b) Nonuniform grid

Grid point L1 error EOC Grid point L1 error EOC

30 0.0410 – 30 0.0098 –

60 0.0116 1.9217 60 0.0024 1.8930

120 0.0026 1.9076 120 0.0006 1.9935

240 0.0006 1.9424 240 0.0002 2.0789
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Fig. 4 Comparison of various order moments and number density for binary breakage kernel, i.e.,
b(m,m ) = 2/m with quadratic selection function S(m) = m2 for monodisperse initial condition

quadratic selection function S(y) = y2. The computational size domain taken from
ymin = 10−9 and ymax = 1.5 is partitioned into 30 nonuniform cells. The extent of

breakage achieved is
μ(t)

μ(0)
≈ 78.69475 when the simulation runs from 0 to 2000 s.

The comparison of various order moments along with the number density function
obtained numerically is conducted with analytical results in Fig. 4. Analogous to the
Section 4.1, the zeroth- and first-order moments predicted by the proposed scheme
shows excellent agreement with the analytical results, that is, the number preserva-
tion and mass conservation properties hold for the proposed scheme as expected. The
second-order moment calculated by the proposed scheme is also matching well with
the analytical result (see Fig. 4b). Additionally, the number density function is plot-
ted against the index of the cell reveals that the numerical results overlap with the
analytical result (see Fig. 4c). To quantify the difference between the analytical and
numerical values of the number density function, the weighted sectional errors are
calculated and listed in Table 3. It shows similar results to the previous case as the
errors decrease to approximately 50% when the proposed scheme is implemented on
a refined grid of 60 nonuniform cells.
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Table 3 Weighted error of number density for binary breakage kernel with quadratic selection function

η FVS 30 cells FVS 60 cells

η0 0.08605 0.04015

η1 0.12829 0.09276

η2 0.19377 0.07555

In addition, the experimental order of convergence calculated for this case using
uniform and nonuniform grids along with the L1 norm errors are listed in Table 4. It
can be observed the prediction are very similar to Section 4.1 as the proposed scheme
is exhibiting second-order convergence on both uniform and nonuniform grids. More-
over, it can also be observed that the L1 norm errors computed using uniform cells
are very large compared to the nonuniform grids. However, these errors are reducing
very fast when a refined grid is used. But, still, the proposed scheme with nonuniform
grids perform better than the uniform grids (confirming the results provided by [9]).

4.3 Test case III

This section is devoted to validate the accuracy of the proposed scheme by taking into
consideration a complex physically relevant breakage kernel of the following form:

b(y, ξ) = 12y

ξ2
1 − y

ξ
.

The quadratic selection function S(y) = y2 is considered for this case. The ana-
lytical solutions for moments and number density function for this kernel are not
available in the literature. The accuracy for this kernel is measured by examining
the experimental order of convergence computed using the expression given in [19].
The computation are run till time t = 200 s and attained the degree of breakage
μ(t)

μ(0)
≈ 12. The computational size is considered as same as Section 4.1. It can

be seen from Table 5 that the experimental order of convergence for the proposed
scheme is similar to the previous two cases as it shows second-order convergence
irrespective of the type of grid used to approximate these results.

Table 4 Experimental order of convergence for case II corresponding to monodisperse initial condition

(a) Uniform grid (b) Nonuniform grid

Grid point L1 error EOC Grid point L1 error EOC

30 0.2756 – 30 0.0299 –

60 0.0624 2.0016 60 0.0069 1.8653

120 0.0154 2.1426 120 0.0011 1.8757

240 0.0039 2.0167 240 0.0002 1.9595
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Table 5 Experimental order of convergence for case III corresponding to monodisperse initial condition

(a) Uniform grid (b) Nonuniform grid

Grid point L1 error EOC Grid point L1 error EOC

30 – – 30 – –

60 0.1166 – 60 0.0142 –

120 0.0154 1.9014 120 0.0055 1.9864

240 0.0116 1.9798 240 0.0022 1.9732

480 0.0017 1.9556 480 0.0007 1.9435

5 Conclusions

In this work, a finite volume scheme has been proposed for approximating a frag-
mentation equation based on the idea of overlapping of the cells. The mathematical
formulation of the proposed scheme is very simple and robust to implement on
both uniform and nonuniform grids. The accuracy of the scheme has been veri-
fied for analytically tractable and physically tractable kernels. The qualitative and
quantitative comparison shows that the scheme not only computed the zeroth- and
first-order moments with high precision but also computed the second-order moment
very accurately along with the number density function. The mathematical analysis
of the proposed scheme has been also discussed in detail. The experimental order of
convergence is compared with the theoretical observations in order to confirm that
the proposed scheme is second-order convergent irrespective of the grid chosen for
discretizing the given domain.
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